BURGer Language Reference Manual

name uni role
Jacqueline Kong jek2179 Language Guru
Jordan Lee jal2283 Manager
Ashley Nguyen akn2121 Tester
Adrian Traviezo aft211; System Architect

Introduction

BURGer is a programming language whose goal is to make text-based adventure games

easy to create. While it can be used to develop real-world applications as a result of being a
general-purpose language, BURGer makes writing a text-based game more intuitive by
offering native structures and syntactical elements that optimize structuring and writing clean
code for sequences of game scenes that are to be displayed on a console. In this spirit, we have
decided to prioritize readability and avoided making the language strongly typed so that the
BURGer can appeal to users who are not necessarily familiar with stricter programming
conventions and backend concerns, just as burgers themselves often do.

1. Lexical elements

1.1. Identifiers
Identifiers are used for naming data types. Identifiers consist of any combination of
alphanumeric characters. The first character of an identifier must be a letter.
1.2. GComments
Comments are denoted like so:
// text; this is a comment!!
OR
/* text
wow look at me
multiple lines
incredible */
1.3. Keywords, Symbols, and Operators
Keywords
if int Scene
else char Inventory

for bool Item

while String Player

float List Option

def has return

else if break continue

Symbols and Operators

+ -= [] == {1}
- += << = &&

* * = >> |

/ /= <= () won
++ -- >= % AN
’ ; ! = < >
-> o=

The standard library for BURGer also includes the <, >, and - > operators, which are
used to instantiate scenes in the format shown in the sample code.

1.4. Constants

1.4.1.

1.4.2.

1.4.3.

Integer constants
An integer constant consists of one or more digits. Integers are optionally signed
and default to positive if they are unsigned.

Floating constants
Floating constants in BURGer have an integer part and decimal part. Floating
constants, like integers, are optionally signed.

Character constants

A character constant is 1 character (or 2 characters in the case of an escape
sequence) enclosed by single quotes or double quotes. BURGer does not
distinguish between the use of single quotes or double quotes. Escape sequences in
BURGer are identical to those in C.

1.4.4. Boolean constants

Boolean constants can be true or false, which respectively correspond to
logical true and false values.

1.5. Strings
A string is a sequence of characters enclosed in single or double quotes. BURGer
strings are mutable and iterable.
2. Data Types
2.1. Primitive types
There are five primitive data types: int, float, char, bool,and null.
Most numbers will be denoted as an int type, which stores up to 4 bytes (to refer to
numbers of items in inventory, for example). Numbers can also be stored as a
float, a 32-bit numerical value.
char holds a single ASCII character as its value. bool holds a Boolean value of
either true or false. null is a type used for uninitialized variables.
2.2. Non-primitive types
2.21. Stringand List
Strings, as discussed in Section 1.5, are a non-primitive type supported
in BURGer. A string is an ordered and iterable list of chars.
A List is an ordered, iterable list of any data type. This encompasses
data types common in other programming languages such as arrays.
Lists are resizable, meaning that the number of objects assigned to the
List when it’s declared can change afterwards. Data can be added and
removed from a List.
2.2.2. Custom Objects
Scene An object containing these values:
text: (String)
options: (List)
next: (Scene)
Inventory An object containing these values:
items: (list of Items)
capacity: (int)
amount: (int)

display ()

Item something that each Character can have in their Inventory; an
object containing these values:

name: (String)

quantity: (int)

use ()

Option An object containing these values:
selector: (String) mustbe unique
text: (String)

action ()

3. Expression and Statement Syntax
3.1. Operators
3.1.1. Relational Operators

BURGer has the following relational operators:
<< less than
>> greater than
< less than or equal to
>= greater than or equal to

Note that BURGer uses a different symbol for the less than and greater

than operators than most commonly-used programming languages.

3.1.2. Equality Operators
BURGer has the following equality operators:
== equals
= not equals

3.1.3. Logical Operators
BURGer has the following logical operators:
& and
| or
! not

3.1.4. Assignment Operators
BURGer has the following assignment operators:
= sets the left operand equal to the right operand
+= adds the right operand to the value of the left operand and
sets the left operand equal to the total

3.1.5.

3.1.0.

-= subtracts the right operand from the left operand value
and sets the left operand equal to the new value

*= multiplies the surrounding values and sets the left
operand equal to the product

/= divides the surrounding values and sets the left operand
equal to the result

%= divides the surrounding values and sets the left operand

equal to the remainder

Arithmetic Operators
BURGer supports the standard arithmetic operations + (addition), -
(subtraction), * (multiplication), / (division), and % (modulo).

Operator Precedence

The order of precedence for classes of operators is as follows, from the
highest to the lowest: arithmetic, logical, assignment, equality/relational.
Equality and relational operators have the same level of precedence. For
arithmetic operations, multiplication and division take precedence over
addition and subtraction.

Expressions contained within parentheses always take precedence.
Otherwise, operators of equal precedence levels will take precedence
from left to right.

3.2. Delimiters

3.2.1.

3.2.2.

3.2.3.

3.2.4.

3.2.5.

Parentheses
BURGer uses parentheses to determine the operation precedence
and for enclosing function calls.

Whitespace
BURGer uses whitespace to separate tokens. However, the amount of

whitespace has no other bearing on the language.

Semicolons
BURGer uses semicolons to terminate statements.

Square brackets
BURGer uses the square brackets to enclose the values in a list.

Angled brackets

BURGer uses the angled brackets to denote an option. It can be used
with <[selector], [text], [action]> where [selector], [text], [action] are
replaced with the option’s respective selector, text, and action functions.

3.3. Declaration and Initialization of Variables and Functions
3.3.1. Variables
Variables are declared without the def keyword or a return type, but
must have a variable name. In the example below, since 20 does not have
a decimal point, the value is automatically determined to be an int.

x = 20;

Variable must be assigned a value, even if that value is null. Multiple
variables can also be declared on the same line and be initialized to the
same value, like so:

X, Yy, z = null;

3.3.2. Functions
A function is declared with the de £ keyword, a function name, and a list
of parameters between parentheses. The return type of the function and
of its parameters are not specified on declaration, but a function that
does return a value is assigned that return type. A function may be
declared with curly braces specifying what the function does, like so:

def adder (x, y) {
return x + y;

i

Or, a function may be declared without any curly braces, like so:

def adder (x, vy);

In the latter case, the function does not perform any operations, but is
considered initialized and in the scope of any declarations or operations

that come after it (see 4.2 Scope).

3.4. Built-in Functions
3.4.1. print ()
BURGer uses the print () function to print to the console.

3.4.2. exit ()

3.5.

3.4.3.

3.4.4.

BURGer uses the exit () function to exit the program.

input ()
BURGer uses input () toread in a string of data.

options ()
BURGer uses the options () function by taking in a comma separated
list of options and displays the options for the player.

Control Flow Expressions

3.5.1.

3.5.2.

3.5.3.

3.5.4.

if...else

BURGer uses the if else statements in a similar way to other languages.
if(expression) { statement; } else{ statement; }

for () {}

BURGer performs for loops with the same syntax as Java.
while () {}

BURGer performs while loops with the same syntax as Java.

return statements

BURGer uses the return statement to return values from a function.

4. Program Structure and Scope Rules

Program Structure

A BURGer program must be contained in a single source file, whose extension is
“.bun” and has an analog to the C language’s main method, called start. The
function labeled start will execute at runtime.

4.1.

4.2.

Scope

The scope of a declared object (a variable, function, or struct) refers to the parts
of the program from which it is visible. An object may only be visible from
within the .bun file where it was declared.

4.2.1.1. Global objects may be declared independently of any code block -

as in, they do not need to exist within any function or as part of
another declaration. By convention, they should be declared at
the top of the file. These objects are visible from any point of the
file.

4.2.1.2. Local objects are visible only from within the function where they

are defined. If a helper function must access an object declared in
the outer function from which it is called, the object must be
passed into the helper function as a parameter.

4.2.1.3. An object is not visible to any operations or declarations that
have come before it - for example, a variable x, may not form part
of the declaration of x, unless x, was previously formally
declared.

5. Grammar
Terminals are written in bold.

program =
| program vdecl
| program fdecl
num =
id
| constant

fdecl » def id (formals) { vdecls stmts }

formals » id
| formals, id

vdecls » vdecl|
| vdecls vdecl

vdecl = id ;

expr = stringlit
| num binary_arith num
| bool_expr
| id (actuals)
| num unary_arith
| game_expr
| scene_nav
| assign_expr
| cast_expr

cast_expr = char (num)

lint (num)
| float (num)

game_expr =» < stringlit , stringlit , id >
| < stringlit , stringlit , fdecl >

actuals = expr
| actuals , expr

statements »
| statements statement

statement =+ expr ;
| end_function ;
| { statements }
| iter_statement
| cond_statement
| jump_statement ;

iter_statement = while (expr) statement
| for (expr ; expr ; expr) statement

cond_statement =» if (bool_expr) statement
| if (bool_expr) statement else statement
| if (bool_expr) statement else if (bool_expr) statement
| if (bool_expr) statement else if (bool_expr) statement else
statement

jump_statement » continue
| break

end_function » return id
| return

bool_expr =+ id binary_log num
| id binary_log stringlit

10

| id binary_log bool

| constant binary_log constant
| stringlit binary_log stringlit

| bool binary_log bool

| id binary_rel num

| constant binary_rel constant

list » num
lid , list
| constant, list

list_access = id [num]
lid [num : num]
lid [num :]
lid[:num]

assign_expr = num = num

| id = stringlit

| id = bool

| num arith_assign num
| id = null

| id = cast_expr

lid =[list]

scene_nav = id -> id

binary_arith = +
| -
| %
I/
| %

arith_assign » +=
| -=

| *=

| /=

11

| %=

unary_arith = ++

binary_rel » ==
| >>
| <<
| >=
| <=

binary_log » &&

6. Sample Code

money = 5;
inventory = Inventory(“laptop”, “bookbag”, money);

/* Initialize a few scenes */

Scenes (Bed, CS Lounge, PLT, GameOver);

/* Define the text they display upon entering scene */

Bed.text = "Good morning! It’s time for class.";

CS Lounge.text = “You came to the CS Lounge and spot a pizza, but
don’t know if you can take any. What will you do?”;

PLT.text = “You’re in class. Do you fall asleep or pay attention?”
GameOver.text = “You died, game over. Play again?”

/* Create a path of scenes */
Bed (<0, Keep sleeping.>)->Bed (<0, Run to the CS lounge for food.>)->
CS_Lounge (<0, Just go to class.>)->PLT (<0, Fall asleep.>);

/* Fill in the above scenes with more options in a different way */
PLT.options (
<attention,

Pay attention.,

FINISH() {
print ("Good job, you win!");
exit () ;

1>

) ;
CS Lounge.options (
<pizza,
Eat the pizza.,
FINISH() {
print ("You stole a pizza and got arrested! GAME OVER.");
exit () ;
}>
) ;

/* This function executes at runtime and begins the game.
def START () {

Bed () ;
bi

12

