
Parsing

Stephen A. Edwards

Columbia University

Spring 2016

An Add-Only Calculator

12 + 57 + 8 + 10 =

S = 0
do {
get next token
if (token is not a number) error
add token to S
get next token

} while (token is "+")
if (token is not "=") error
return S

An Add-Only Calculator

12 + 57 + 8 + 10 =

S = 0
do {
get next token
if (token is not a number) error
add token to S
get next token

} while (token is "+")
if (token is not "=") error
return S

Adding and Multiplying

12 + 57 * 8 + 10 * 5 * 3 + 2 =

S = 0
do {
P = 1
do {
get next token
if (token is not a number) error
multiply P by token
get next token

} while (token is "*")
add P to S

} while (token is +)
if (token is not "=") error
return S

Adding and Multiplying

12 + 57 * 8 + 10 * 5 * 3 + 2 =

S = 0
do {
P = 1
do {
get next token
if (token is not a number) error
multiply P by token
get next token

} while (token is "*")
add P to S

} while (token is +)
if (token is not "=") error
return S

Parentheses
12 + 57 * (8 + 3 * 2) + 10 * 5 * 3 + 2 =

int expr() {
S = sop()
if (token is not "=") error
return S

}
int sop() {

S = 0
do {
P = 1
do {
get next token
if (token is "(") {
N = sop()
if (token is not ")") error

} else if (token is a number)
N = token

else if (token is not a number) error
multiply P by N
get next token

} while (token is "*")
add P to S

} while (token is +)
return S

}

Parentheses
12 + 57 * (8 + 3 * 2) + 10 * 5 * 3 + 2 =
int expr() {
S = sop()
if (token is not "=") error
return S

}
int sop() {
S = 0
do {
P = 1
do {

get next token
if (token is "(") {

N = sop()
if (token is not ")") error

} else if (token is a number)
N = token

else if (token is not a number) error
multiply P by N
get next token

} while (token is "*")
add P to S

} while (token is +)
return S

}

Context-Free Grammars

sum → number
sum → sum + number

sum → product
sum → sum + product

product → number
product → product * number

sum → product
sum → sum + product

product → term
product → product * term

term → number
term → (sum)

Context-Free Grammars

sum → number
sum → sum + number

sum → product
sum → sum + product

product → number
product → product * number

sum → product
sum → sum + product

product → term
product → product * term

term → number
term → (sum)

Context-Free Grammars

sum → number
sum → sum + number

sum → product
sum → sum + product

product → number
product → product * number

sum → product
sum → sum + product

product → term
product → product * term

term → number
term → (sum)

