
CSEE 4840
“WhAck-A-MoLe”

Georgios Charitos
gc2662

Astha Agrawal
aa3755

Jai Sharma
js4473

Aditya Bagri
aab2234

“Whac-A-Mole” The Game

● The logic of the game is straightforward:
Hit as many moles as possible with the
hammer.

● The time is restricted to 60 seconds per
level.

● Each successful Mole hit increases the
score by one.

● The player with the highest score at the
end is the winner.

Project Architecture

The main components of the
architecture for this project involve the
SRAM Memory on the board, the linux
processor on the computer, the Avalon
bus for the Altera FPGA communication,
the VGA component for the scree, Audio
component and the Arduino/Keyboard
for the buttons. The link between these
components is shown in the image on
the right and an explanation is provided
in the following slides.

System Overview

Monitor

Speaker

Arduino Leonardo

Peripherals Hardware/Software

Hardware(1)

1. We used VGA_LED and VGA_LED_Emulator to produce the graphics on the
monitor.

2. Background is produced in order of appearance (sky first, grass second etc).
3. Holes are ellipses that do not require Sprites.
4. Tall grass, letters, numbers, moles, hammer and mud surrounding the holes are

produced with Sprites.
5. Decoders are used for producing the different numbers for (level, time, score) and

different mole positions.
6. Mole popping is done using the raster(60 frames/second)

Basis of the Hardware is the raster producing 60 frames/second!!!

Hardware(2)

Raster Scanning WhAck-A-MoLe Video

Hardware(3)

audio_effects module audio_codec module

lab3 module

address[3:0]

writedata[7:0]

Software(1)

Main software program
hello.c

VGA_LED Device Driver
vga_led.c

Hardware
VGA_LED.sv

Main software program
hello.c

main()

time_thread() keyboard_thread()

Software(2)

1. keyboard_thread: Arduino-Keyboard input
2. time_thread: Timer to synchronize all operations
3. main: Changes mole positions periodically via keyboard_thread, checks for

mole strikes via inputs from keyboard_thread

 Hardware-Software Interface
hex0[7:0] 7 6 5 4 3 2 1 0

Usage: Mole 2 Position Mole 1 Position

hex1[7:0] 7 6 5 4 3 2 1 0

Usage: Hammer Position Mole 3 Position

hex2[7:0] 7 6 5 4 3 2 1 0

Usage: Sound 8 Sound 7 Sound 6 Sound 5 Sound 4 Sound 3 Sound 2 Sound 1

hex3[7:0] 7 6 5 4 3 2 1 0

Usage: SCORE

hex4[7:0] 7 6 5 4 3 2 1 0

Usage: TIME

hex5[7:0] 7 6 5 4 3 2 1 0

Usage: LEVEL

Arduino Leonardo

The Arduino Leonardo is a
microcontroller board based on the
exciting USB-enabled ATmega32u4
(datasheet). It contains everything
needed to support the microcontroller;
one simply connect it to a computer
with a USB cable or power it with a AC-
to-DC adapter or battery to get started.

Why do we need the Arduino Leonardo?

● The purpose of the game is to hit the popping mole
on the screen.

● While this function can be achieved using the keys
on the keyboard, it is far more elegant to have real
push buttons for this task.

● The Arduino Leonardo allows us to interface push
buttons on a breadboard with the Cyclone V board.

● The Arduino can be programmed to behave as a
keyboard based on the button pressing.

● Eventually, we can have a push button system
hooked up to the Cyclone V board via the Arduino
and push the appropriate buttons to Whac the
corresponding Mole.

Sprite Graphics

● The architecture for the Sprite graphics involves the RAM and a Mux for displaying the shapes on the
screen.

● We can access the RAM using two dimensional arrays in SystemVerilog.
● The Mux is used for selecting the position of the particular Sprite on the screen.
● The logic we used to create the Sprites involves a combination of 1’s and 0’s as elements of the array.
● First we select the right dimensions of the array based on the size of the object we wish to see on the

screen.
● Then we fill out the 2D array in the shape of the object by putting a 1 at all positions that we want to see the

object and 0 everywhere else.
● And finally, we design the Mux (VGA_RGB) and Decoder for the proper positioning and logic of the

appearance of the Sprites.
● For complex figures, we need to break down the memory access as multiple overlapping Sprites for a single

object.

Sprite Graphics

Incomplete Goals & Lessons Learned

Incomplete Goals

● Arduino Leonardo
● Control Soundwaves

Lessons Learned

● It is better to split the design in small
modules.

● Approach issues in parallel. Not in
series. The ones in the end might
require more time than planned. By
dealing with them for a certain
amount of time in the beginning you
do more accurate predictions about
the workload.

Future Work

1. Insert software logic for increasing mole speed for every next level.
2. Add more sophisticated graphics (mole strike, wind moving, grass, birds,

cows in the background)
3. Add more mole stripes.
4. Incorporate main menu and player name interface.
5. Control soundwaves.

Conclusion

We are thrilled to present a working demonstration of the Whac-A-Mole game.
The final version of the game allows the user to Whac the Moles using the
keyboard buttons and records the score simultaneously for successful hits.
The time counts down from 60 seconds for each level and the final score is
displayed on the screen!

Acknowledgement

● We would like to take this opportunity to thank Professor Stephen Edwards
for such an interesting and intellectually stimulating Embedded Systems
course, we sure learned a great deal from it about hardware and software.
Also, Prof. Edwards was constantly available for advice, guidance and
assistance during the course of this project and we are extremely grateful
for that.

● We would also like to thank the three TA’s for this course for all their help
during the assignments as well as the project work.

