
	
	
	
	
	
	
	

REAL	TIME	ADAPTIVE	NOISE	CANCELLATION	ON	A	FPGA	
	

Ashwin	Karthik	Tamilselvan	(at3103)	 															Rishikanth	Chandrasekaran(rc3022)	
Gikku	Stephen	Geephilip	(gg2624)		 	 				Richa	Glenn	Netto	(rn2388)	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	



1. Overview	
	
Our	 project	 involves	 implementation	 of	 an	 adaptive	 noise	 canceller	 that	 takes	
environmental	noise	as	an	input	and	reduces	it	in	real-time.	External	sound	is	ubiquitous;	
an	 important	requirement	of	certain	environments	such	as	vehicles	and	aircrafts,	 is	 to	
minimize	the	noise	external	to	the	system	in	consideration.	We	have	implemented	our	
project	using	an	adaptive	filter	based	on	the	fast-LMS	algorithm	and	interfaced	the	FPGA	
with	hardware	peripherals,	a	microphone	and	a	speaker,	to	capture	the	noise	and	play	
the	reduced	noise	result	respectively.	We	have	utilized	the	audio	codec	on	the	FPGA	to	
process	the	sound	signals.		
	

2. General	Description	
	

a. Adaptive	Noise	Cancellation	
	

Noise	cancellation	has	always	been	one	of	the	most	fascinating	and	consumer	market-
driven	area	of	research.	In	an	ideal	setup,	an	efficient	communication	is	one	in	which	
the	complete	message	produced	from	the	source	is	reproducible	in	the	destination.	
An	ideal	setup	would	be	expected	to	be	free	of	any	extra	noise	that	could	disrupt	the	
communication	leading	to	the	loss	of	a	part	of	the	message	or	the	complete	message	
transmitted.	But	an	ideal	setup	is	very	difficult	to	achieve	practically.	Communication	
has	been	an	integral	part	of	the	human	life	and	have	been	utilized	in	various	forms.	
Media	transmission	is	one	such	widely	used	type	of	communication.		

	
A	 special	 case	 of	 audio	 transmission	 has	 been	 discussed	 in	 this	 project.	 Noise	
Cancellation	 is	 a	 technique	 developed	with	 an	 aim	 of	 providing	 the	 best	 possible	
transmission	of	audio	signals	without	considerable	loss	of	date	or	disruption	of	the	
original	 signal.	Noises	are	an	 inherently	present	as	part	of	 the	environment.	Noise	
cancellation	in	theory	would	aid	in	the	replication/reproduction	of	the	audio	signal	in	
the	same	state,	 it	was	transmitted	from	the	source.	Various	techniques	have	been	
developed	over	time	and	adaptive	noise	cancellation	is	a	popular	technique	used	in	
the	market.		

	
Adaptive	Noise	Cancellation	primarily	deals	with	the	generation	of	anti-noise	which	in	
theory	 would	 cancel	 out	 the	 ambient	 noise.	 Adaptive	 noise	 cancellation	 can	 be	
broadly	 divided	 into	 three	 different	 setups	 depending	 on	 the	 position	 of	
microphone/s,	with	each	setup	having	 its	advantage	over	 the	other	 -	 Feedforward	
Noise	Cancellation,	Feedback	Noise	Cancellation	and	Hybrid	Noise	Cancellation.	



	
We	have	selected	Feedforward	Noise	Cancellation	to	realize	the	working	of	Adaptive	
Noise	Cancellation	on	a	SoCkit	Cyclone	V	board.	In	this	setup,	a	microphone	is	placed	
outside	the	ear	cup	of	a	headphone	giving	the	advantage	of	extra	response	time	over	
the	Feedback	Noise	Cancellation	setup.	This	implementation	of	ANC	fares	better	at	
reducing	high	frequency	noise	up	to	1-2	kHz.	We	have	used	a	single	microphone	and	
an	audio	output(speakers/headphones)	in	our	setup.	We	have	modelled	the	system	
such	that	the	microphone	feeds	the	environment/ambient	noise	as	the	input	to	the	
system	and	a	 reduced	noise	 is	 obtained	at	 the	output.	 The	 anti-noise	produced	 is	
superimposed	on	the	input	noise	signal.	This	leads	to	the	partial	cancellation	of	the	
noise	signal	resulting	in	a	reduced	noise	signal.		

 
b. Least	Mean	Square	Algorithm:	

	
We	have	used	the	Least	Mean	Square	Algorithm	in	this	project,	mainly	owing	to	its	
computational	simplicity	and	ease	of	implementation.	This	algorithm	is	based	on	the	
underlying	 concept	 of	 Least	 Mean	 Squares	 and	 the	 Steepest	 Descent	 Algorithm,	
however,	it	eliminates	the	need	for	exact	measurements	of	the	gradient	vector	and	
does	not	involve	matrix	inversion.	The	LMS	algorithm	is	a	class	of	adaptive	filter	used	
to	 mimic	 a	 desired	 filter	 by	 adjusting	 the	 filter	 coefficients	 in	 such	 a	 way	 that	 it	
produces	the	least	mean	square	of	the	error	signal,	ie,	if	we	consider	the	error	to	be	
a	 cost	 function,	 the	 LMS	 algorithm	basically	 finds	 filter	 coefficient	 values	 that	 can	
minimize	the	cost	function.	The	error	signal	in	this	case	is	the	difference	between	the	
desired	 and	 actual	 signal.	 Our	 project	 implements	 an	 adaptive	 filter	 using	 a	more	
efficient	variation	of	the	LMS	algorithm	to	update	the	weights	of	the	filter	in	real-time	
while	simultaneously	ensuring	that	the	computational	load	on	the	FPGA	is	reduced.		
	

	



Fig	X:	Block	Diagram	of	Adaptive	Filter	using	LMS	Algorithm	
	 	 	
	 	 The	signals	shown	in	the	Fig	X	are	described	as	follows:	

i. u(k)	is	the	input	vector	(pure	noise	signal)	
ii. d(k)	is	the	reference	signal,	ie,	the	contaminated	input	signal		
iii. y(k)	 is	 the	 output	 of	 the	 adaptive	 filter,	 which	 gives	 us	 anti-noise	 or	

reduced	noise	
iv. e(k)	is	the	estimated	error	obtained	by	subtracting	the	anti-noise	from	the	

contaminated	signal.	This	is	essentially	the	final	reduced-noise	output	of	
the	system.	

	
The	following	equations	define	the	working	of	the	LMS	algorithm:	

i. Filter	Output:	y(k)	=	uTW		
where,	W	=	vector	of	weights	applied	to	the	filter	coefficients	
	 	T	=	transpose	operation	

ii. Estimated	Error:	e(k)	=	d(k)	–	y(k)	
iii. Weight	Update:	Wk+1=Wk+2*μ*e(k)*uk	

	
The	estimated	error	and	 the	 input	noise	vector	are	applied	as	 feedback	 to	 the	
adaptive	procedure.		
	
μ	is	the	step	size	and	is	inversely	proportional	to	the	settling	time	constant	of	the	
convergence	behavior.	For	smaller	values	of	step	size,	the	adaptive	process	slows	
down	but	the	mean-square	error	is	minimized,	ie,	it	takes	longer	to	converge	but	
the	results	are	better.	Similarly,	for	larger	values	of	step	size,	the	adaptive	process	
converges	quickly,	but	the	results	are	not	as	good	as	those	obtained	with	a	smaller	
step	size.		

	
c. Fast-LMS	Algorithm	

	
In	our	system,	the	adaptive	filter	is	implemented	using	the	Fast-LMS	Algorithm.	It	
follows	the	following	equation	for	updating	the	weights:	

Wk+1=Wk	+	e(k)*sign(u(k))	>>	n	
	

The	 Fast-LMS	 algorithm	 replaces	 step	 size	 with	 a	 shift	 operation,	 where	 n	
represents	 the	 number	 of	 shifts.	 Also,	 Fast-LMS	 only	 uses	 the	 sign	 bit	 of	 the	
reference	input,	u(k),	instead	of	using	its	value.		
	



	
Fig	X:	

	
d. Audio	Codec:	

	
To	record	and	play	audio	on	the	FPGA,	we	have	to	build	an	 interface	 to	 the	audio	
codec.	This	bidirectional	 interface	will	enable	us	to	capture	audio	from	and	stream	
audio	to	the	hardware	peripherals,	such	as	microphones	and	speakers.		
	
When	sound	travels	through	the	air	medium,	the	microphone	perceives	it	as	pressure	
waves	that	create	alternating	areas	of	compression	and	rarefaction	as	it	travels	from	
the	source	to	the	microphone.	The	microphone	then	converts	the	pressure	waves	into	
an	electrical	signal,	using	a	voltage	level	to	represent	the	pressure	at	a	point	in	the	
wave.	The	voltage	levels	are	continuous	in	time,	so	now	we	have	analog	signals,	which	
the	FPGA	cannot	process	since	it	accepts	digital	quantities	and	runs	at	a	fixed	clock	
rate.	 The	audio	 codec	on	 the	 FPGA	 converts	 the	 analog	 voltage	 values	 to	discrete	
quantities	by	capturing	voltage	levels	at	regular	intervals	based	on	a	sampling	rate,	
and	 then	 performing	 analog-to-digital	 conversion	 (ADC)	 to	 discretize	 the	 captured	
voltage	levels.	In	the	reverse	process,	when	we	want	to	play	an	audio	signal	from	the	
FPGA	through	the	speakers,	the	codec	performs	digital-to-analog	(DAC)	conversion,	
which	 results	 in	 a	 slight	 loss	of	 information	due	 to	 reconstruction	of	 a	 continuous	
signal	from	a	bunch	of	discrete	values.		
	
The	 audio	 codec	 on	 this	 FPGA	 (Analog	 Devices	 SSM2603)	 is	 configured	 with	
parameters	such	as	sampling	rate	and	sampling	width	using	the	I2C	protocol.		

	
3. Setup	

	
a. Adaptive	Noise	Canceller	–	Physical	Setup	



	
The	 setup	 of	 our	 project	 requires	 one	 microphone,	 one	 speaker	 and	 a	 noise	
source.	We	are	using	a	white	noise	source	played	out	of	a	cell	phone	as	the	noisy	
input.	The	microphone	is	held	near	the	noisy	source	and	is	plugged	into	the	mic-
in	port	on	the	FPGA.	The	line-out	port	on	FPGA	is	connected	to	a	speaker	and	it	
gives	the	reduced	noise	as	an	output.	
	

b. Fast-LMS	
	

We	have	decided	to	use	Fast-LMS	instead	of	LMS	for	our	project	because	Fast-LMS	
only	uses	the	sign	bit	of	the	input	in	the	formula	where	weights	are	updated	and	
hence,	 it	 significantly	 reduces	 the	 number	 of	 multiplications	 required	 and	
simplifies	the	implementation	of	the	LMS	filter	in	hardware.	It	also	replaces	step	
size	with	a	shift	operation,	further	simplifying	the	algorithm.	

	 		
We	have	modified	the	block	diagram	of	Adaptive	Noise	Cancellation	to	account	
for	 the	 fact	 that	 our	 input	 to	 the	 system	 is	 noise	 (in	 the	 inherent	 presence	 of	
silence)	recorded	through	a	microphone.	The	Adaptive	Filter	also	gets	the	same	
noisy	input,	and	it	generates	a	reduced	noise	which	is	represented	in	the	diagram	
as	 Filter	 Output.	 Then,	 we	 subtract	 the	 Filter	 Output	 from	 the	 Noisy	 Input	 to	
generate	the	error	output,	which	is	the	reduced	noise	signal.	This	is	then	sent	back	
to	 the	adaptive	 filter	 so	 that	 it	 can	be	used	 to	update	 the	weights	of	 the	 filter	
coefficients.	Finally,	the	reduced	error	output	is	sent	out	via	a	speaker.	

	

	
Fig	X:	

	
c. Audio	Codec	

	
The	SSM2603	Audio	Codec	takes	16-bit	data	words.	Each	transmission	will	include	
3	 acknowledgements	 before	 the	 stop	 symbol	 must	 be	 sent.	 The	 maximum	
frequency	of	SCLK	is	526	kHz.	SCLK	is	divided	down	by	128,	giving	a	frequency	of	



about	 390	 kHz.	 The	 codec	 only	 checks	 for	 acknowledgements	 after	 all	 24-bits	
(including	address,	data	and	r/w	bit)	are	transmitted.	The	ack	signal	is	set	high	if	
all	the	acknowledgements	have	been	received.		
	
Using	the	data	sheet	of	the	SSM2603	Audio	Codec,	we	have	assigned	values	to	the	
registers	 that	 we	 require	 in	 our	 system.	 The	 audio	 codec	 organizes	 its	
configuration	 variables	 into	 19	 9-bit	 registers.	 The	 first	 seven	 bits	 of	 the	
transmitted	data	are	register	address,	the	last	9	bits	are	the	register	contents.		
	

Register	 Register	
Name	

Value	

R0	 Left	Channel	
ADC	Input	
Volume	

000010111	

R1	 Right	
Channel	ADC	

Input	
Volume	

000010111	

R2	 Left	Channel	
DAC	Volume	

001111001	

R3	 Right	
Channel	DAC	

Volume	

001111001	

R4	 Analog	
Audio	Path	

011010100	

R5	 Digital	Audio	
Path	

000000100	

R7	 Digital	Audio	
Interface	

000000001	

R8	 Sampling	
Rate	

000100000	

	



	
	

	
4. Implementation	

	
We	developed	the	system	model	with	Simulink	and	evaluated	the	measured	data	using	
MATLAB.	We	then	used	ModelSim	to	verify	the	results	of	the	hardware	simulation	of	the	
adaptive	filter	using	Fast-LMS	algorithm	and	plotte	 d	the	obtained	output	using	MATLAB	
to	verify	the	noise	attenuation.	The	final	synthesis	of	the	SystemVerilog	code	has	been	
done	on	the	provided	Sockit	Cyclone	V	FPGA.		

a. Simulink	and	MATLAB	
The	LMS	algorithm	was	modelled	on	Simulink	and	Matlab	to	verify	operation.	
We	also	used	matlab	to	iterate	over	the	design	of	the	algorithm	to	make	it	more	
efficient.	We	mathematically	modelled	the	algorithm	and	reduced	the	control	
block	diagrams	to	make	it	suitable	for	implementation	on	the	FPGA.	We	then	
tested	the	designed	algorithm	with	actual	audio	input	from	a	mic	interfaced	via	
USB	and	played	back	the	output.	The	Simulink	block	diagram	designed	is	shown	
below:	



	

	
	

b. ModelSim	
The	RTL	or	hardware	design	was	done	in	SystemVerilog	and	first	simulated	on	
ModelSim.	A	state	machine	was	designed	to	take	care	of	different	sequence	of	
processings	involved.	The	state	machine	has	6	states.	The	state	machine	
transitions	occur	on	the	positive	edge	of	the	main	clock	which	runs	at	50	MHz,	
but	the	triggering	of	the	state	machine	is	on	the	positive	edge	of	the	DAC	clock	
(the	Idle	state	waits	for	the	positive	level	of	the	DAC	clock).		
The	first	state:	Waits	for	noise	input	sample	
Second	State:	Compute	filter	weights	
Third	State:	Store	noise	input	in	circular	buffer	
Fourth	State:	Increment	base	address	pointer	of	circular	buffer	
Fifth	State:	Restore	previous	history	of	noise	sample	from	circular	buffer	for	each	
tap	
Sixth	State:	Idle	State	



	
	
The	error	values	are	calculated	using	continuous	assignment	statements	which	
computers	the	values	instantly	when	any	of	its	input	changes.		
The	output	values	for	the	DAC	are	written	at	the	negative	edge	of	the	DAC	clock	
so	that	the	data	is	ready	for	pushing	to	the	DAC	in	the	audio	codec	during	the	
next	immediate	clock	cycle.	
We	recorded	data	from	a	mic	via	MATLAB	had	it	convered	to	integer	samples	to	
feed	into	the	ModelSIm	simulation	in	real	time.	
A	testbench	was	also	designed	in	system	Verilog	which	feeds	input	generated	as	
mentioned	above	into	the	designed	System	Verilog	module	in	real-time	
according	to	the	required	clock.	It	also	records	the	output	to	a	file	in	real-time.	
The	output	date	is	then	taken	out	and	plotted	in	Matlab	to	check	the	
functioning.	The	plot	is	shown	as	seen	below:	



	
	

	

	
	
	
		

	
	
	



5. Challenges	and	Lessons	Learnt:		
	
CHALLENGES:	
	
a.		Figuring	out	Audio	Codec	:	Extensive	reading	of	the	datasheet	to	figure	out	the	 																																
different	modes	and	configuration	registers	
b.	Implementing	I2C	communication	for	the	Audio	Codec	
c.	LMS	optimization	and	reduction	:	Spent	weeks	pouring	over	research	papers	and	
math	to	figure	out	different	operations	and	how	we	could	reduce	them	to	enable	faster	
convergence	as	well	as	reduce	multiplications	to	make	it	easier	to	implement	on	FPGA.	
d.	Find	an	alternative	to	floating	point:	Ideally	the	weights	are	float	values	which	provide	
better	filter	performance.	Since	the	SoCKit	Altera	FPGA	does	not	have	a	floating	point	
unit,	we	had	to	use	only	integer	waits	and	had	to	find	a	way	to	work	with	that.	
e.	Integrating	the	Audio	Codec	and	the	LMS	module	together	for	real-time	performance	
	
LESSONS	LEARNT:		

a. Designing	real-time	embedded	systems	requires	a	good	knowledge	of	clock	level	
execution	of	statements.	

b. Clock	is	god.	
c. Time	management	

	
	
	
	

6. Future	Work:		
The	same	setup	can	be	used	with	a	more	optimized	version	of	the	fast	LMS	algorithm	or	
a	more	optimized	algorithm	to	provide	better	cancellation	effect.	The	model	takes	in	
ambient	noise	as	an	input	and	produces	a	reduced	version	of	the	noise	signal	using	a	
single	microphone	and	a	single	audio	output.	In	the	current	setup,	silence	is	inherently	
mixed	with	the	ambient	noise	signal	to	form	the	input	of	the	system.	This	system	can	be	
extended	to	take	any	audio	signal	mixed	with	an	ambient	noise	and	provide	a	noise	
reduced/cancelled	audio	signal	as	the	output.	An	enhancement	to	provide	support	for	
mp3	format	audio	files	can	be	added	to	improve	the	flexibility	and	extend	the	operation	
domain	of	the	system.		
	

7. Contribution:	
a.	System	Design:	Richa,	Gikku	
b.		LMS:	Algorithm	Design:	Richa,	Gikku	
						FPGA:	Gikku,	Rishi	
c.	Audio	Codec:	Rishi,	Ashwin	



d.	Presentation:	Rishi,	Ashwin	
d.	Report:	Richa	

	
	
	
REFERENCES:	
	
[1]	http://www.ti.com/lit/an/spra095/spra095.pdf	
	
[2]	Foul,	Wolfgang,	Jörn	Matthies,	and	Bernd	Schwarz.	"A	FPGA-based	adaptive	noise	cancelling		
system."	Proc.	of	the	12th	Int.	Conference	on	Digital	Audio	Effects	(DAFx-09).	2009.	
	
[3]	Software/Hardware	Implementation	of	an	Adaptive	Noise	Cancellation	System”	Dr.	Wagdy	H	
Mahmoud,	Dr.	Nian	Zhang,	University	of	the	District	of	Columbia	
	
[4]	https://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2011/jy554_jc2636/jy5	
54_jc2636/_fpgaimplementation.htm	
	
[5]	http://blog.jabra.com/anc-headsets-arent-all-the-same-three-types-of-anc/	
	
[6]	http://www.analog.com/media/en/technical-documentation/data-sheets/SSM2603.pdf	
	
[7]	SoCKit	User	Manual	


