
Bomberman

Yichun Deng, Hanyi Du, Murui Li, Wantong Li
May 10th, 2016

Overview
● Originally developed by Hudson Soft and first published in 1983

● Strategic, maze-based game

● A two-player version, where each player’s goal is to defeat the other player

through placing bombs on the map

Image & audio Processing
● Generate a memory initialization file (MIF) for each image and sound

● Single-port ROM memory blocks

● To save memory space

 For image : the three LSB-bits of image are truncated

 For audio : edit audio files for length and sampling rate

Sprite
● Why use sprite?

○ We have lots of data to control and display

○ It is easy for us to add and delete sprite (i.e. 32*32 pixel for item, 32*64 pixel for character)

○ Code different small sprite instead of whole screen display

Sprite (cont.)
● Background

○ Total size: 480*608 pixel (15 rows*19 columns)

○ Mif: grass and stone

● Map
○ Total size: 416*544 pixel (13 rows*17 columns)

○ Mif: wall(1), bomb(1), flames(7), items(6)

● character
○ Total size: 32*64 pixel

○ Mif: red character(20), blue character(20)

Memory (map)
● Propose: Hardware has the whole map information

○ Easy for VGA to display

○ Software can only send the changed information

● Memory size: 256 5-bit data (items)
○ Each address represent 32*32 pixel space

● Address: 8-bit read address for VGA, 8-bit write address for controller
○ No read and write contention

Character FSM

● Software control signal:
 Left, right, up, down, end

Audio

I2C bus for configuration:

 ● Sampling rate: 22050 Hz
 ● Quantization bits: 16 bits

Two kinds of audio

 ● Background music (in the right channel)
 ● Sound effect (in the left channel)

Reference: Howards Mao (http://zhehaomao.com/blog/fpga/2014/01/15/sockit-8.html)

http://zhehaomao.com/blog/fpga/2014/01/15/sockit-8.html

Hardware Debugging
● Debug method: use system console to test the hardware performance

● Solved bugs:
○ Sprite display: clock synchronization for VGA and memory

○ Character movement:

■ replace control signal with FSM

■ Different address counter: use 4-bit MSB of hcount and vcount to control

○ Reset signal, multiple driver problem

Gamepad Control
● Logitech Gamepad F310

○ USB connection

○ We use the five of its digital keys: four for directions and 1 for placing bombs

○ Modified the usbkeyboard.c file to search for two devices with bDeviceClass == 255

○ After pairing, we decoded the signals that represent the pressing of each key

Software Modules 1
● Initialization

○ Game map, bomb map, characters, status
○ Start movement threads, bomb thread, and status thread

● I/O Control to Hardware
○ Send information regarding position, man/item, direction/item type
○ Use mutex to protect iowrite

● Movement Control
○ One thread for each player
○ Inputs from USB gamepads
○ Obstacle detection

Music (3 bits) Position (8 bits) Man or Item (1 bit) Man: direction (5 bits) or
Item: item type (5 bits)

Software Modules 2
● Bomb Control and Timing

○ Bomb thread with a timer to count down explosion for every bomb
○ Responsible for the flame animation

● Gifts Creation and Acquisition
○ Possibility of creating random gifts after destruction of each soft brick
○ Update character status after acquiring a gift
○ Gifts: ultra bomb, immunity, halt, reverse control, constipation

● End of Game
○ Three results: man1 wins, man2 wins, or draw
○ Stop taking inputs from gamepads but leave threads running

● Reset
○ Initialize game map, bomb map, characters, status

Software Debugging
● Print game map periodically to check game logic

○ To check if the software map == the map that the hardware displays

● Difficulties encountered:
○ Mapping

○ Synchronization

○ What to send

○ When to send

○ different explosion time for bombs

Lessons Learned
● Team work

● Hardware/software interface

● Debugging skills

Demo Time

