
Embedded Systems
CSEE W4840

Design Document

Hardware implementation of connected component labelling

Avinash Nair ASN2129
Jerry Barona JAB2397

Manushree Gangwar MG3631

Spring 2016

Table	of	Contents	

TABLE	OF	CONTENTS	..	2	

PREFACE	...	3	

LINUX	...	3	

Image Storage	...	3	

Main Program	...	3	

Preconditioning data for Image Processing	..	3	

Padding	..	3	

Block	Processing	...	4	

Driver implementation	..	8	

FPGA	...	8	

RAM	implementation	...	8	

Control Byte and States	..	9	

Connected component labelling on FPGA	..	9	

First scan	..	11	

Second scan	..	12	

	

Preface

This document describes the components and procedures that constitute of the project.

It mainly consists of two parts involving the two interacting interfaces (Linux and FPGA).
The entities and algorithms within each interfaces are also described. For deeper

understanding of the procedures, flowcharts have been added.

Linux

Image Storage
The images that would be used for connected component identification will be captured
beforehand and will be stored in the SoCkit board memory. The images would be read

from the files with the help of OpenCV library functions. Each image is then processed to
identify and label connected components.

Main Program
This program will be responsible for reading the images stored in the memory, dividing
the pixel data into blocks of size MxN, transmitting the pixel information in each of the

blocks to the FPGA for processing, retrieving the processed pixel data and recombining it
into a single image.

Preconditioning data for Image Processing
Padding
The first stage of processing involves padding the image with a single pixel wide border.

This is done in order to make the algorithm on the FPGA simpler by not having to handle
edge cases.

Block	Processing	
We do not have enough memory on the FPGA to process the entire image in a single

shot. Instead, we need to divide the input image into overlapping blocks of size B. The
overlap between adjacent blocks would be at-most 1 row and 1 column. The overlapping

allows us to avoid dealing with boundary cases separately and reduces the number of
duplicate (equivalent) labels that get generated.

Each block of size B then needs to be sent to the FPGA for processing. The processing

happens in three stages. In the first stage, we do a raster scan of each block, threshold
each grayscale pixel and assign it a label if it’s a foreground pixel. If the algorithm detects

an equivalence between two labels it stores this information in a LUT. The second stage,
we do another raster scan of the block to resolve any ambiguities in labeling with the

help of the LUT created in the first stage. The third stage, is used to display the results
on a monitor.

The transfer of pixel data corresponding to each block happens in two steps. We first
send a command bit to the FPGA, through the device driver, to tell it which stage of

processing needs to be done on the data that it receives. This is then followed by the
pixel data of the block that needs to be processed.

Once the data is transferred, the program waits till it receives the processed data. The

original image’s pixel values are replaced with the processed pixel values before sending
the next block of data.

The following is the flowchart of the program:

Driver implementation

A device driver compiled into the kernel will be implemented. The driver will allow the
copying to and from the user interface (C code that manages the blocks of pixel

information split from the original input image) and the kernel space, which subsequently
will be copied or read to a memory location in the FPGA, implemented by RAM.

FPGA
RAM	implementation	

In order to store the pixel information in the FPGA memory location which the FPGA will

process, a RAM will be implemented. Each memory address will hold a byte-size memory

location. The total RAM capacity will be “B bytes” equivalent to the size of a single block

of pixels plus one control byte which will be transmitted at the beginning of each block
from the C code. Therefore, every block pixel will be stored in individual addresses each.

Control Byte and States

Because the size of the input image will largely exceed the memory capacity of the FPGA,
the input image will be split in blocks of identical size which will be processed one at a

time by the system. After a block is processed, the resulting block will be sent back to

the C code interface before the next block is read to process.

There are different types of processes that will be executed on each block each time. The
control byte is meant to inform the system what type of operation it must perform on

each pixel block read from the driver. The operations are designated as “states” in which
the system will remain until the control byte from the next block is read. There will be 3

major states that will be included in the control byte and that the system will handle:

• The first looping through the block which will label each pixel either as

“foreground” or “background” upon comparison to a previously established
threshold.

• After the labeling is completed for all blocks, the blocks will be looped through
again to unify the labels upon the detection of connected components.

• In the third state, the system will display the blocks on a visual peripheral.

Connected component labelling on FPGA

Connected component labelling assigns each connected component with a unique label.

The following steps are performed in labelling an image block:

1. Chose a threshold T to convert the input grayscale image into a binary image.

2. Compare the value of each pixel with T.

a. If I(x,y) > T then I(x,y)=1, foreground pixel
b. Else I(x,y)=0, background pixel

3. Define a 3-pixel neighborhood.

N2 N3

N1 P

4. Scan the image in blocks of size MxN.

5. In the first scan, in case of foreground pixel / I(x,y) = 1:
a. If none of its neighbors are labelled, then assign a new label to P.

b. If only one of its neighbor has a label, then assign the same label to P.

c. If two or all neighbors have the same label, then assign the same label to
P.

d. If neighborhood pixels have different values, then copy the value in N1 to
P and create an entry in the equivalence table for labels in neighborhood

pixels.
6. Repeat step 5 for all foreground pixels.

7. In the second scan, find the smallest label for each set of equivalences and replace
each label in the image with the corresponding smallest label.

First scan

	
Image	block	

Threshold	
(Comparator)	

FPGA	memory	
(Shift	register)	

Neighborhood	
comparator	

Column	
counter	

Pixel	labelling	 Label	counter	

Equivalence	table	

Second scan

Equivalence	table	 Labelled	image	

Smallest	
equivalent	label	

Pixel	scanning	 Label	comparator	

Labelled	image	

