Review for the Midterm

Stephen A. Edwards

Columbia University

Fall 2014

The Midterm
Structure of a Compiler
Scanning
Languages and Regular Expressions
NFAs
Translating REs into NFAs
Building a DFA from an NFA: Subset Construction
Parsing
Resolving Ambiguity
Rightmost and Reverse-Rightmost Derivations
Building the LR(0) Automaton
FIRST and FOLLOW
Building an SLR Parsing Table Shift/Reduce Parsing

Types
Types of Types
Structs and Unions
Type Expressions
Scope
Nested Function Definitions

The Midterm

75 minutes
Closed book
One double-sided sheet of notes of your own devising
Anything discussed in class is fair game
Little, if any, programming
Details of OCaml/C/C++/Java syntax not required

Compiling a Simple Program

```
int gcd(int a, int b)
{
    while (a != b) {
        if (a>b) a -= b;
        else b -= a;
    }
    return a;
}
```


What the Compiler Sees

```
int gcd(int a, int b)
{
    while (a != b) {
        if (a>b) a -= b;
        else b -= a;
        }
        return a;
}
```

 $\mathrm{n} \quad \mathrm{t}$ sp b) nl \{ nl sp sp w h i $\quad \mathrm{l}$ e sp ($\mathrm{a} \operatorname{sp} \quad!=\mathrm{sp} \mathrm{b}$) sp \{nl sp sp sp sp i $f \mathrm{sp} \quad(\mathrm{a} s p>\mathrm{sp} \mathrm{b}) \mathrm{sp} a \mathrm{sp}-\quad=\mathrm{sp} \mathrm{b}$; nl sp sp sp sp e l s e sp b sp - $=\mathrm{sp}$ $a \quad$; nl sp sp $\} n l \operatorname{sp} s p r$ e $t \quad u \quad r \quad n \quad s p$ a ; nl \} nl

Text file is a sequence of characters

Lexical Analysis Gives Tokens

```
int gcd(int a, int b)
{
        while (a != b) {
        if (a>b) a -= b;
        else b -= a;
        }
        return a;
}
```

int	gcd		(a	,	int		b)	\{ while			(a	
! $=$	b)		if	(a	>	b	$)$	a	-=	b	;		lse
b	-=	a	;	\}	ret	urn	a	:	\}						

A stream of tokens. Whitespace, comments removed.

Parsing Gives an Abstract Syntax Tree

Semantic Analysis Resolves Symbols and Checks

 Types

Translation into 3-Address Code

```
L0: sne $1, a, b
    seq $0,$1, 0
    btrue $0, L1 # while (a != b)
    sl $3, b, a
    seq $2, $3, 0
    btrue $2, L4 # if (a < b)
    sub a, a, b # a -= b
    jmp L5
L4: sub b, b, a # b -= a
L5: jmp L0
L1: ret a
```

int $\operatorname{gcd}($ int a, int $b)$
\{
while ($a \quad!=b$) \{
if ($a>b$) $a-=b$;
else b-= a;
\}
return $a ;$
\}

Idealized assembly language w/ infinite registers

Generation of 80386 Assembly


```
gcd: pushl %ebp # Save BP
    movl %esp,%ebp
    movl 8(%ebp),%eax # Load a from stack
    movl 12(%ebp),%edx # Load b from stack
.L8: cmpl %edx,%eax
    je .L3 # while (a != b)
    jle .L5 # if (a < b)
    subl %edx,%eax # a -= b
    jmp .L8
.L5: subl %eax,%edx # b -= a
    jmp .L8
.L3: leave # Restore SP, BP
    ret
```


Describing Tokens

Alphabet: A finite set of symbols
Examples: $\{0,1$ \}, $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{Z}\}$, ASCII, Unicode
String: A finite sequence of symbols from an alphabet
Examples: ϵ (the empty string), Stephen, $\alpha \beta \gamma$
Language: A set of strings over an alphabet
Examples: \varnothing (the empty language), $\{1,11,111,1111\}$, all English words, strings that start with a letter followed by any sequence of letters and digits

Operations on Languages

Let $L=\{\epsilon$, wo $\}, M=\{$ man, men $\}$
Concatenation: Strings from one followed by the other
$L M=\{$ man, men, woman, women $\}$
Union: All strings from each language
$L \cup M=\{\epsilon$, wo, man, men $\}$
Kleene Closure: Zero or more concatenations
$M^{*}=\{\epsilon\} \cup M \cup M M \cup M M M \cdots=$
$\{\varepsilon$, man, men, manman, manmen, menman, menmen, manmanman, manmanmen, manmenman, ...\}

Regular Expressions over an Alphabet Σ

A standard way to express languages for tokens.

1. ϵ is a regular expression that denotes $\{\epsilon\}$
2. If $a \in \Sigma, a$ is an RE that denotes $\{a\}$
3. If r and s denote languages $L(r)$ and $L(s)$,

- $(r) \mid(s)$ denotes $L(r) \cup L(s)$
- (r)(s) denotes $\{t u: t \in L(r), u \in L(s)\}$
- $(r)^{*}$ denotes $\cup_{i=0}^{\infty} L^{i}\left(L^{0}=\{\epsilon\}\right.$ and $\left.L^{i}=L L^{i-1}\right)$

Nondeterministic Finite Automata

1. Set of states
"All strings containing an even number of 0's and 1 's"

2. Set of input symbols $\Sigma:\{0,1\}$
3. Transition function $\sigma: S \times \Sigma_{\epsilon} \rightarrow 2^{S}$

state	ϵ	0	1
A	\varnothing	$\{B\}$	$\{C\}$
B	\varnothing	$\{A\}$	$\{D\}$
C	\varnothing	$\{D\}$	$\{A\}$
D	\varnothing	$\{C\}$	$\{B\}$

4. Start state s_{0} :

A
5. Set of accepting states
$F:\{A\}$

The Language induced by an NFA

An NFA accepts an input string x iff there is a path from the start state to an accepting state that "spells out" x.

Show that the string "010010" is accepted.

Translating REs into NFAs

Translating REs into NFAs

Example: Translate $(a \mid b)^{*} a b b$ into an NFA. Answer:

Show that the string " $a a b b$ " is accepted. Answer:

$$
\rightarrow(0) \xrightarrow{\epsilon}(1) \xrightarrow{\epsilon}(3) \xrightarrow{\epsilon}(6) \xrightarrow{\epsilon}(8) \xrightarrow{b}(10)
$$

Simulating NFAs

Problem: you must follow the "right" arcs to show that a string is accepted. How do you know which arc is right?
Solution: follow them all and sort it out later.
"Two-stack" NFA simulation algorithm:

1. Initial states: the ϵ-closure of the start state
2. For each character c,

- New states: follow all transitions labeled c
- Form the ϵ-closure of the current states

3. Accept if any final state is accepting

Simulating an NFA: •aabb, Start

Simulating an NFA: $a \cdot a b b$

Simulating an NFA: $a a \cdot b b$

Simulating an NFA: $a a b \cdot b$

Simulating an NFA: aabbr, Done

Deterministic Finite Automata

Restricted form of NFAs:

- No state has a transition on ϵ
- For each state s and symbol a, there is at most one edge labeled a leaving s.

Differs subtly from the definition used in COMS W3261 (Sipser, Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining current state. Accept if you end up on an accepting state. Reject if you end on a non-accepting state or if there is no transition from the current state for the next symbol.

Deterministic Finite Automata

```
{
    type token = ELSE | ELSEIF
}
rule token =
    parse "else" { ELSE }
        | "elseif" { ELSEIF }
```


Deterministic Finite Automata

\{ type token = IF | ID of string | NUM of string \} rule token $=$
parse "if"

Building a DFA from an NFA

Subset construction algorithm
Simulate the NFA for all possible inputs and track the states that appear.

Each unique state during simulation becomes a state in the DFA.

Subset construction for $(a \mid b)^{*} a b b$

Subset construction for $(a \mid b)^{*} a b b$

Subset construction for $(a \mid b)^{*} a b b$

Subset construction for $(a \mid b)^{*} a b b$

Subset construction for $(a \mid b)^{*} a b b$

Result of subset construction for $(a \mid b)^{*} a b b$

Is this minimal?

Ambiguous Arithmetic

Ambiguity can be a problem in expressions. Consider parsing

$$
3-4 * 2+5
$$

with the grammar

Operator Precedence

Defines how "sticky" an operator is.

$$
1 * 2+3 * 4
$$

* at higher precedence than +:

$$
(1 * 2)+(3 * 4)
$$

+ at higher precedence than *:
$1 *(2+3) * 4$

Associativity

Whether to evaluate left-to-right or right-to-left Most operators are left-associative

Fixing Ambiguous Grammars

A grammar specification:

```
expr :
    expr PLUS expr
    expr MINUS expr
    expr TIMES expr
    expr DIVIDE expr
    NUMBER
```

Ambiguous: no precedence or associativity.
Ocamlyacc's complaint: "16 shift/reduce conflicts."

Assigning Precedence Levels

Split into multiple rules, one per level

```
expr : expr PLUS expr
    expr MINUS expr
    term
term : term TIMES term
        | term DIVIDE term
        atom
atom : NUMBER
```

Still ambiguous: associativity not defined
Ocamlyacc's complaint: "8 shift/reduce conflicts."

Assigning Associativity

Make one side the next level of precedence

```
expr : expr PLUS term
    | expr MINUS term
    term
term : term TIMES atom
        term DIVIDE atom
        atom
atom : NUMBER
```

This is left-associative.
No shift/reduce conflicts.

Rightmost Derivation of Id * Id + Id

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow \mathbf{I d}$

$$
\begin{gathered}
e \\
\frac{t+e}{t+\underline{t}} \\
t+\underline{\mathbf{I d}} \\
\underline{\mathbf{I d} * t}+\mathbf{I d} \\
\mathbf{I d} * \underline{\mathbf{I d}}+\mathbf{I d}
\end{gathered}
$$

At each step, expand the rightmost nonterminal.

nonterminal

"handle": The right side of a production
Fun and interesting fact: there is exactly one rightmost expansion if the grammar is unambigious.

Rightmost Derivation: What to Expand

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow$ Id

$$
\begin{gathered}
e \\
\frac{t+e}{t+\underline{t}} \\
t+\underline{\mathbf{I d}} \\
\underline{\mathbf{I d} * t}+\mathbf{I d} \\
\mathbf{I d} * \underline{\mathbf{I d}}+\mathbf{I d}
\end{gathered}
$$

Expand here \uparrow
Terminals only

Reverse Rightmost Derivation

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow \mathbf{I d}$

$$
\begin{gathered}
e \\
\frac{t+e}{t+\underline{t}} \\
t+\underline{\mathbf{I d}} \\
\underline{\mathbf{I d} * t}+\mathbf{I d} \\
\mathbf{I d} * \underline{\mathbf{I d}}+\mathbf{I d}
\end{gathered}
$$

Shift/Reduce Parsing Using an Oracle

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
\frac{t+e}{t+\underline{t}} \\
t+\underline{\mathbf{I d}} \\
\underline{\mathbf{I d} * t}+\mathbf{I d} \\
\mathbf{I d} * \underline{\mathbf{I d}}+\mathbf{I d}
\end{gathered}
$$

	$\begin{aligned} & \text { Id } * \text { Id }+ \text { Id } \\ & \text { Id } * \text { Id }+ \text { Id } \\ & \text { Id } * \text { Id }+ \text { Id } \end{aligned}$	shift shift shift
	Id $*$ Id + Id	reduce 4
	$\underline{\text { Id } * t}+$ Id	reduce 3
	$t+\mathbf{I d}$	shift
	$t+\mathrm{ld}$	shift
	$t+\underline{\text { Id }}$	reduce 4
	$t+\underline{t}$	reduce 2
	$t+e$	reduce 1
	e	accept
stack	inp	

Handle Hunting

Right Sentential Form: any step in a rightmost derivation Handle: in a sentential form, a RHS of a rule that, when rewritten, yields the previous step in a rightmost derivation.

The big question in shift/reduce parsing:

When is there a handle on the top of the stack?

Enumerate all the right-sentential forms and pattern-match against them? Usually infinite in number, but let's try anyway.

The Handle-Identifying Automaton

Magical result, due to Knuth: An automaton suffices to locate a handle in a right-sentential form.

$$
\begin{aligned}
& \mathbf{I d} * \mathbf{I d} * \cdots * \underline{\mathbf{I d} * t} \cdots \\
& \mathbf{I d} * \mathbf{I d} * \cdots * \underline{\mathbf{I d} \cdots} \\
& t+t+\cdots+\underline{t+e} \\
& t+t+\cdots+t+\underline{\mathbf{I d}} \\
& t+t+\cdots+t+\mathbf{I d} * \mathbf{I d} * \cdots * \underline{\mathbf{I d} * t} \\
& t+t+\cdots+\underline{t}
\end{aligned}
$$

Building the Initial State of the LR(0) Automaton

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow \mathbf{I d}$
Key idea: automata identify viable prefixes of right sentential forms. Each state is an equivalence class of possible places in productions.

At the beginning, any viable prefix must be at the beginning of a string expanded from e. We write this condition " e ' $\rightarrow \cdot e$ "

Building the Initial State of the LR(0) Automaton

$$
\begin{aligned}
& e^{\prime} \rightarrow \cdot e \\
& e \rightarrow \cdot t+e \\
& e \rightarrow \cdot t
\end{aligned}
$$

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow \mathbf{I d}$
Key idea: automata identify viable prefixes of right sentential forms. Each state is an equivalence class of possible places in productions.

At the beginning, any viable prefix must be at the beginning of a string expanded from e. We write this condition " e ' $\rightarrow \cdot e$ "

There are two choices for what an e may expand to: $t+e$ and t. So when $e^{\prime} \rightarrow \cdot e, e \rightarrow \cdot t+e$ and $e \rightarrow \cdot t$ are also true, i.e., it must start with a string expanded from t.

Building the Initial State of the LR(0) Automaton

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow \mathbf{I d}$
Key idea: automata identify viable prefixes of right sentential forms. Each state is an equivalence class of possible places in productions.

At the beginning, any viable prefix must be at the beginning of a string expanded from e. We write this condition " e ' $\rightarrow \cdot e$ "

There are two choices for what an e may expand to: $t+e$ and t. So when $e^{\prime} \rightarrow \cdot e, e \rightarrow \cdot t+e$ and $e \rightarrow \cdot t$ are also true, i.e., it must start with a string expanded from t.
Similarly, t must be either Id $* t$ or Id, so $t \rightarrow \cdot \mathbf{I d} * t$ and $t \rightarrow$.Id.

Building the LR(0) Automaton

$$
\begin{aligned}
e^{\prime} & \rightarrow \cdot \cdot \\
e & \rightarrow \cdot t+e \\
\mathbf{S 0}: & e \rightarrow \cdot t \\
t & \rightarrow \cdot \mathbf{l d} * t \\
t & \rightarrow \cdot \mathbf{l d}
\end{aligned}
$$

The first state suggests a viable prefix can start as any string derived from e, any string derived from t, or Id.

Building the LR(0) Automaton

"Just passed a string derived from $e^{\prime \prime}$

S7: $e^{\prime} \rightarrow e$.	"Just passed a pre ending in a string
¢ e	
$e^{\prime} \rightarrow \cdot e$	derived from $t^{\prime \prime}$
$\begin{aligned} & \mathbf{S O}: e \rightarrow \cdot t \\ & t \rightarrow \cdot \mathbf{l d} * t \end{aligned}$	t S2 ${ }^{\text {a }} \begin{aligned} & e \rightarrow t \cdot+e \\ & e \rightarrow t .\end{aligned}$

The first state suggests a viable prefix can start as any
string derived from e, any string derived from t, or Id.
The items for these three states come from advancing the • across each thing, then performing the closure operation (vacuous here).

$$
\mathbf{S 1}: \begin{aligned}
& t \rightarrow \mathbf{I d} \cdot * t \\
& t \rightarrow \mathbf{I} \mathbf{d} .
\end{aligned}
$$

"Just passed a prefix that ended in an Id"

Building the LR(0) Automaton

Building the LR(0) Automaton

Building the LR(0) Automaton

The first function

If you can derive a string that starts with terminal t from some sequence of terminals and nonterminals α, then $t \in \operatorname{first}(\alpha)$.

1. Trivially, $\operatorname{first}(X)=\{X\}$ if X is a terminal.
2. If $X \rightarrow \epsilon$, then add ϵ to first(X).
3. For each production $X \rightarrow Y \cdots$, add first $(Y)-\{\epsilon\}$ to first (X).
If X can produce something, X can start with whatever that starts with
4. For each production $X \rightarrow Y_{1} \cdots Y_{k} Z \cdots$ where $\epsilon \in$ first $\left(Y_{i}\right)$ for $i=1, \ldots, k$, add $\operatorname{first}(Z)-\{\epsilon\}$ to $\operatorname{first}(X)$.
Skip all potential ϵ 's at the beginning of whatever X produces
$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow \mathbf{I d}$
first $(\mathbf{l d})=\{\mathbf{l d}\}$
first $(t)=\{\mathbf{I d}\}$ because $t \rightarrow \mathbf{I d} * t$ and $t \rightarrow \mathbf{I d}$
first $(e)=\{\mathbf{I d}\}$ because $e \rightarrow t+e, e \rightarrow t$, and $\operatorname{first}(t)=\{\mathbf{I d}\}$.

The follow function

If t is a terminal, A is a nonterminal, and $\cdots A t \cdots$ can be derived, then $t \in$ follow (A).

1. Add \$ ("end-of-input") to follow(S) (start symbol). End-of-input comes after the start symbol
2. For each production $\rightarrow \cdots A \alpha$, add $\operatorname{first}(\alpha)-\{\epsilon\}$ to follow (A).
A is followed by the first thing after it
3. For each production $A \rightarrow \cdots B$ or $a \rightarrow \cdots B \alpha$ where $\epsilon \in \operatorname{first}(\alpha)$, then add everything in follow (A) to follow(B).
If B appears at the end of a production, it can be followed by whatever follows that production

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d} \\
& \text { first }(t)=\{\mathbf{I d}\} \\
& \text { first }(e)=\{\mathbf{I d}\}
\end{aligned}
$$

$$
\text { follow }(e)=\{\$\}
$$

The follow function

If t is a terminal, A is a nonterminal, and $\cdots A t \cdots$ can be derived, then $t \in$ follow (A).

1. Add \$ ("end-of-input") to follow(S) (start symbol). End-of-input comes after the start symbol
2. For each production $\rightarrow \cdots A \alpha$, add $\operatorname{first}(\alpha)-\{\epsilon\}$ to follow (A).
A is followed by the first thing after it
3. For each production $A \rightarrow \cdots B$ or $a \rightarrow \cdots B \alpha$ where $\epsilon \in \operatorname{first}(\alpha)$, then add everything in follow (A) to follow(B).
If B appears at the end of a production, it can be followed by whatever follows that production

$1: e \rightarrow t+e$	follow $(e)=\{\$\}$
$2: e \rightarrow t$	follow $(t)=\{+\quad\}$
$3: t \rightarrow \mathbf{I d} * t$	2. Because $e \rightarrow \underline{t}+e$ and first $(+)=\{+\}$
$4: t \rightarrow \mathbf{I d}$	
first $(t)=\{\mathbf{I d}\}$	
first $(e)=\{\mathbf{I d}\}$	

The follow function

If t is a terminal, A is a nonterminal, and $\cdots A t \cdots$ can be derived, then $t \in$ follow (A).

1. Add \$ ("end-of-input") to follow(S) (start symbol). End-of-input comes after the start symbol
2. For each production $\rightarrow \cdots A \alpha$, add $\operatorname{first}(\alpha)-\{\epsilon\}$ to follow (A).
A is followed by the first thing after it
3. For each production $A \rightarrow \cdots B$ or $a \rightarrow \cdots B \alpha$ where $\epsilon \in \operatorname{first}(\alpha)$, then add everything in follow (A) to follow(B).
If B appears at the end of a production, it can be followed by whatever follows that production

$1: e \rightarrow t+e$	follow $(e)=\{\$\}$
$2: e \rightarrow t$	follow $(t)=\{+, \$\}$
$3: t \rightarrow \mathbf{I d} * t$	3. Because $e \rightarrow \underline{t}$ and $\$ \in$ follow (e)
$4: t \rightarrow \mathbf{I d}$	
first $(t)=\{\mathbf{I d}\}$	
first $(e)=\{\mathbf{I}\}$	

The follow function

If t is a terminal, A is a nonterminal, and $\cdots A t \cdots$ can be derived, then $t \in$ follow (A).

1. Add \$ ("end-of-input") to follow(S) (start symbol). End-of-input comes after the start symbol
2. For each production $\rightarrow \cdots A \alpha$, add $\operatorname{first}(\alpha)-\{\epsilon\}$ to follow (A).
A is followed by the first thing after it
3. For each production $A \rightarrow \cdots B$ or $a \rightarrow \cdots B \alpha$ where $\epsilon \in \operatorname{first}(\alpha)$, then add everything in follow (A) to follow(B).
If B appears at the end of a production, it can be followed by whatever follows that production

$$
1: e \rightarrow t+e
$$

$$
\text { follow }(e)=\{\$\}
$$

$$
\text { follow }(t)=\{+, \$\}
$$

Fixed-point reached: applying any rule does not change any set

Converting the LR(0) Automaton to an SLR Parsing Table

State		Action				Goto	
	dd	+	$*$	$\$$		t	
0	$\mathbf{s} 1$				7	2	

From S0, shift an Id and go to S1; or cross a t and go to S 2 ; or cross an e and go to $\mathrm{S7}$.

Converting the LR(0) Automaton to an SLR Parsing Table

State		Action				Goto	
		Id	+	$*$	$\$$	e	

From S1, shift a * and go to S3; or, if the next input could follow a t, reduce by rule 4. According to rule 1 , + could follow t; from rule $2, \$$ could.

Converting the LR(0) Automaton to an SLR Parsing Table

State		Action				Goto	
		Id	+	$*$	$\$$		

From S2, shift a + and go to S4; or, if the next input could follow an e (only the end-of-input \$), reduce by rule 2 .

Converting the LR(0) Automaton to an SLR Parsing Table

State	Action				Goto	
	Id	+	*	\$	e	t
0	s1				7	2
1			s3	r4		
2		s4				
3	s1					5

From S3, shift an Id and go to S1; or cross a t and go to S5.

Converting the LR(0) Automaton to an SLR Parsing Table

State	Action				Goto	
	Id	+	*	\$	e	t
0	s1				7	2
1		r4	s3	r4		
2		s4		r2		
3	s1					5
4	s1				6	2

From S4, shift an Id and go to S1; or cross an e or a t.

Converting the LR(0) Automaton to an SLR Parsing Table

State	Action				Goto	
	Id	+	*	\$	e	t
0	s1				7	2
1		r4	s3	r4		
2		s4		r2		
3	s1					5
4	s1				6	2
5		r3		r3		

From S5, reduce using rule 3 if the next symbol could follow a t (again, + and \$).

Converting the LR(0) Automaton to an SLR Parsing Table

State	Action				Goto	
	Id	+	*	\$	e	t
0	s1				7	2
1		r4	s3	r4		
2		s4		r2		
3	s1					5
4	s1				6	2
5		r3		r3		
6				r1		

From S6, reduce using rule 1 if the next symbol could follow an e (\$ only).

Converting the LR(0) Automaton to an SLR Parsing Table

State	Action				Goto	
	Id	+	*	\$	e	t
0	s1				7	2
1		r4	s3	r4		
2		s4		r2		
3	s1					5
4	s1				6	2
5		r3		r3		
6				r1		
7				\checkmark		
If, in S7, we just crossed an e, accept if we are at the end of the input.						

Shift/Reduce Parsing with an SLR Table

Stack Input Action
$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow$ Id

State	Action					Goto	
		Id	+	$*$	$\$$		

0	Id $* \mathbf{I d}+\mathbf{I d} \$ \quad$ Shift, goto 1

Look at the state on top of the stack and the next input token.

Find the action (shift, reduce, or error) in the table.

In this case, shift the token onto the stack and mark it with state 1.

Shift/Reduce Parsing with an SLR Table

Stack Input Action
$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow \mathbf{I d}$

State	Action				Goto	
	Id	+	*	\$	e	t
0	s1				7	2
1		r4	s3	r4		
2		s4		r2		
3	s1					5
4	s1				6	2
5		r3		r3		
6				r1		
7				\checkmark		

	0	Id $*$ Id $+\mathbf{I d} \$$	Shift, goto 1
0	Id		

Here, the state is 1 , the next symbol is $*$, so shift and mark it with state 3 .

Shift/Reduce Parsing with an SLR Table

Stack Input Action
$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I} \mathbf{d} *$
$4: t \rightarrow \mathbf{I d}$

State	Action					Goto	
		Id	+	$*$	$\$$	e	

0	$\mathbf{I d} * \mathbf{I d}+\mathbf{l d}$ \$	Shift, goto 1
$0 \stackrel{\text { Id }}{1}$	* Id + Id \$	Shift, goto 3
$0 \begin{array}{cc}\text { Id } \\ 1 & * \\ 3\end{array}$	Id + Id \$	Shift, goto 1
	+ Id \$	Reduce 4

Here, the state is 1 , the next symbol is + . The table says reduce using rule 4.

Shift/Reduce Parsing with an SLR Table

Stack Input

0	$\mathbf{I d} * \mathbf{I d}+\mathbf{I d}$ \$	Shift, goto 1
$0 \stackrel{\text { Id }}{1}$	* Id + Id \$	Shift, goto 3
$0 \begin{gathered}\text { Id } \\ 1\end{gathered}{ }_{3}^{*}$	Id + Id \$	Shift, goto 1
	+ Id \$	Reduce 4
$0 \begin{gathered}\text { Id } \\ 1\end{gathered}$	+ Id \$	

Remove the RHS of the rule (here, just Id), observe the state on the top of the stack, and consult the "goto" portion of the table.

Shift/Reduce Parsing with an SLR Table

Stack Input

0	$\mathbf{I d} * \mathbf{I d}+\mathbf{l d}$ \$	Shift, goto 1
$0 \stackrel{\text { Id }}{1}$	* Id + Id \$	Shift, goto 3
0 ($\begin{array}{r}\text { Id } \\ 1\end{array}$	Id + Id \$	Shift, goto 1
	+ Id \$	Reduce 4
$\begin{array}{cccc} & \text { Id } & * & t \\ 1 & 3 & 5 \end{array}$	+ Id \$	Reduce 3

Here, we push a t with state 5 . This effectively "backs up" the $\operatorname{LR}(0)$ automaton and runs it over the newly added nonterminal.

In state 5 with an upcoming +, the action is "reduce 3."

Shift/Reduce Parsing with an SLR Table

Stack Input

0	Id * Id + Id \$	Shift, goto 1
$0 \stackrel{\text { ld }}{1}$	* Id + Id \$	Shift, goto 3
$0 \underset{1}{\text { Id }} \stackrel{*}{*}$	Id + Id \$	Shift, goto 1
	+ Id \$	Reduce 4
0Id 1 3 $\frac{t}{t}$	+ Id \$	Reduce 3
$0 \frac{t}{2}$	+ Id \$	Shift, goto 4

Action

Shift, goto 4
$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow$ Id

State	Action					Goto	
		Id	+	$*$	$\$$	e	

This time, we strip off the RHS for rule 3 , $\mathbf{I d} * t$, exposing state 0 , so we push a t with state 2.

Shift/Reduce Parsing with an SLR Table

Stack
Input

0	Id * Id + Id \$	Shift, goto 1
$0 \stackrel{\text { ld }}{1}$	* Id + Id \$	Shift, goto 3
$0 \underset{1}{\text { ld }} \stackrel{*}{*}$	Id + Id \$	Shift, goto 1
	+ Id \$	Reduce 4
0Od 1	+ Id \$	Reduce 3
$0 \frac{t}{2}$	+ Id \$	Shift, goto 4
0 t $\stackrel{+}{4}$	Id \$	Shift, goto 1
	\$	Reduce 4
0 t + 2 4	\$	Reduce 2
0 t	\$	Reduce 1
$0 \frac{e}{7}$	\$	Accept

Types of Types

Type
Basic

Examples

Machine words, floating-point numbers, addresses/pointers

Aggregate Arrays, structs, classes
Function Function pointers, lambdas

Basic Types

Groups of data the processor is designed to operate on.
On an ARM processor,
Type
Width (bits)

Unsigned/two's-complement binary
Byte
Halfword
8
Word 16 32

IEEE 754 Floating Point
Single-Precision scalars \& vectors
32, 64, .., 256
Double-Precision scalars \& vectors
64, 128, 192, 256

Derived types

Array: a list of objects of the same type, often fixed-length
Record: a collection of named fields, often of different types
Pointer/References: a reference to another object
Function: a reference to a block of code

C's Declarations and Declarators

Declaration: list of specifiers followed by a comma-separated list of declarators.

Declarator's notation matches that of an expression: use it to return the basic type.
Largely regarded as the worst syntactic aspect of C: both pre- (pointers) and post-fix operators (arrays, functions).

Structs

Structs are the precursors of objects:
Group and restrict what can be stored in an object, but not what operations they permit.

Can fake object-oriented programming:

```
struct poly { ... };
struct poly *poly_create();
void poly_destroy(struct poly *p);
void poly_draw(struct poly *p);
void poly_move(struct poly *p, int x, int y);
int poly_area(struct poly *p);
```


Unions: Variant Records

A struct holds all of its fields at once. A union holds only one of its fields at any time (the last written).

```
union token {
    int i;
    float f;
    char *string;
};
union token t;
t.i = 10;
t.f=3.14159; /* overwrite t.i */
char *s = t.string; /* return gibberish */
```


Applications of Variant Records

A primitive form of polymorphism:

```
struct poly {
    int }x,y\mathrm{ ;
    int type;
    union { int radius;
        int size;
        float angle; } d;
};
```

If poly.type == CIRCLE, use poly.d.radius.
If poly.type == SQUARE, use poly.d.size.
If poly.type == LINE, use poly.d.angle.

Name vs. Structural Equivalence

```
struct f {
    int x, y;
} foo = { 0, 1 };
struct b {
    int x, y;
} bar;
bar = foo;
```

Is this legal in C? Should it be?

Type Expressions

C's declarators are unusual: they always specify a name along with its type.
Languages more often have type expressions: a grammar for expressing a type.
Type expressions appear in three places in C :

```
(int *) a /* Type casts */
sizeof(float [10]) /* Argument of sizeof() */
int f(int, char *, int (*)(int)) /* Function argument types */
```


Basic Static Scope in C, C++, Java, etc.

A name begins life where it is declared and ends at the end of its block.

From the CLRM, "The scope of an identifier declared at the head of a block begins at the end of its declarator, and persists to the end of the block."

```
void foo()
{
    int x;
```


Hiding a Definition

Nested scopes can hide earlier definitions, giving a hole.

From the CLRM, "If an identifier is explicitly declared at the head of a block, including the block constituting a function, any declaration of the identifier outside the block is suspended until the end of
 the block."

Static Scoping in Java

```
public void example() {
    // x, y, z not visible
    int x;
    // x visible
    for ( int y=1 ; y< 10 ; y++ ) {
        // x, y visible
        int z;
        // x, y, z visible
    }
    // x visible
}
```


Basic Static Scope in O'Caml

A name is bound after the "in" clause of a "let." If the name is re-bound, the binding takes effect after the "in."

Returns the pair $(12,8)$:
let $\mathrm{x}=8$ in
(let $\mathrm{x}=\mathrm{x}+2$ in

$$
x+2),
$$

Let Rec in O'Caml

The "rec" keyword makes a name visible to its definition. This only makes sense for functions.

```
let rec fib i =
    if i < 1 then 1 else
        fib (i-1) + fib (i-2)
in
    fib 5
```

(* Nonsensical *)
let $\mathrm{rec} \mathrm{x}=\mathrm{x}+3$ in

Let...and in O'Caml

$$
\begin{aligned}
& \text { let } x=8 \\
& \text { and } y=9 \text { in }
\end{aligned}
$$

Let...and lets you bind multiple names at once.
Definitions are not mutually visible unless marked "rec."

```
let rec fac n =
    if n < 2 then
        1
    else
        n * fac1 n
and fac1 n = fac (n - 1)
in
fac 5
```


Nesting Function Definitions

let articles words =
let report $w=$
let count = List.length (List.filter ((=) w) words)
in w ^ ": " ^
string_of_int count
in String.concat ", "
(List.map report ["a"; "the"])

in articles

["the"; "plt"; "class"; "is"; "a"; "pain"; "in"; "the"; "butt"]
let count words $w=$ List. length (List.filter ((=) w) words) in
let report words $w=w$ ^ ": " ^ string_of_int (count words w) in
let articles words =
String.concat ", "
(List.map (report words) ["a"; "the"]) in
articles

```
    ["the"; "plt"; "class"; "is";
        "a"; "pain"; "in";
        "the"; "butt"]
```

Produces "a: 1, the: 2"

