
Review for the Midterm

Stephen A. Edwards

Columbia University

Fall 2014

The Midterm

Structure of a Compiler

Scanning
Languages and Regular Expressions
NFAs
Translating REs into NFAs
Building a DFA from an NFA: Subset Construction

Parsing
Resolving Ambiguity

Rightmost and Reverse-Rightmost Derivations
Building the LR(0) Automaton
FIRST and FOLLOW
Building an SLR Parsing Table
Shift/Reduce Parsing

Types
Types of Types
Structs and Unions
Type Expressions
Scope
Nested Function Definitions

The Midterm

75 minutes

Closed book

One double-sided sheet of notes of your own devising

Anything discussed in class is fair game

Little, if any, programming

Details of OCaml/C/C++/Java syntax not required

Compiling a Simple Program

int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;

}
return a;

}

What the Compiler Sees
int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;

}
return a;

}

i n t sp g c d (i n t sp a , sp i
n t sp b) nl { nl sp sp w h i l e sp
(a sp ! = sp b) sp { nl sp sp sp sp i
f sp (a sp > sp b) sp a sp - = sp b
; nl sp sp sp sp e l s e sp b sp - = sp
a ; nl sp sp } nl sp sp r e t u r n sp
a ; nl } nl

Text file is a sequence of characters

Lexical Analysis Gives Tokens

int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;

}
return a;

}

int gcd (int a , int b) { while (a

!= b) { if (a > b) a -= b ; else

b -= a ; } return a ; }

A stream of tokens. Whitespace, comments removed.

Parsing Gives an Abstract Syntax Tree

func

int gcd args

arg

int a

arg

int b

seq

while

!=

a b

if

>

a b

-=

a b

-=

b a

return

a

int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;

}
return a;

}

Semantic Analysis Resolves Symbols and Checks
Types

Symbol Table

int a

int b

func

int gcd args

arg

int a

arg

int b

seq

while

!=

a b

if

>

a b

-=

a b

-=

b a

return

a

Translation into 3-Address Code

L0: sne $1, a, b
seq $0, $1, 0
btrue $0, L1 # while (a != b)
sl $3, b, a
seq $2, $3, 0
btrue $2, L4 # if (a < b)
sub a, a, b # a -= b
jmp L5

L4: sub b, b, a # b -= a
L5: jmp L0
L1: ret a

int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;

}
return a;

}

Idealized assembly language w/
infinite registers

Generation of 80386 Assembly

gcd: pushl %ebp # Save BP
movl %esp,%ebp
movl 8(%ebp),%eax # Load a from stack
movl 12(%ebp),%edx # Load b from stack

.L8: cmpl %edx,%eax
je .L3 # while (a != b)
jle .L5 # if (a < b)
subl %edx,%eax # a -= b
jmp .L8

.L5: subl %eax,%edx # b -= a
jmp .L8

.L3: leave # Restore SP, BP
ret

Describing Tokens

Alphabet: A finite set of symbols

Examples: { 0, 1 }, { A, B, C, . . . , Z }, ASCII, Unicode

String: A finite sequence of symbols from an alphabet

Examples: ε (the empty string), Stephen, αβγ

Language: A set of strings over an alphabet

Examples: ; (the empty language), { 1, 11, 111, 1111 }, all
English words, strings that start with a letter followed by
any sequence of letters and digits

Operations on Languages

Let L = { ε, wo }, M = { man, men }

Concatenation: Strings from one followed by the other

LM = { man, men, woman, women }

Union: All strings from each language

L∪M = {ε, wo, man, men }

Kleene Closure: Zero or more concatenations

M∗ = {ε}∪M ∪M M ∪M M M · · · =
{ε, man, men, manman, manmen, menman, menmen,
manmanman, manmanmen, manmenman, . . . }

Regular Expressions over an Alphabet Σ

A standard way to express languages for tokens.

1. ε is a regular expression that denotes {ε}

2. If a ∈Σ, a is an RE that denotes {a}

3. If r and s denote languages L(r) and L(s),
Ï (r) | (s) denotes L(r)∪L(s)
Ï (r)(s) denotes {tu : t ∈ L(r),u ∈ L(s)}
Ï (r)∗ denotes ∪∞

i=0Li (L0 = {ε} and Li = LLi−1)

Nondeterministic Finite Automata

“All strings containing
an even number of 0’s
and 1’s”

A B

C D

0

0
11

0

0
1 1

1. Set of states

S :

{
A B C D

}
2. Set of input symbols Σ : {0,1}
3. Transition function σ : S×Σε → 2S

state ε 0 1
A ; {B} {C }
B ; {A} {D}
C ; {D} {A}
D ; {C } {B}

4. Start state s0 : A

5. Set of accepting states

F :

{
A

}

The Language induced by an NFA

An NFA accepts an input string x iff there is a path from the
start state to an accepting state that “spells out” x.

A B

C D

0

0
11

0

0
1 1

Show that the string “010010” is accepted.

A B D C D B A
0 1 0 0 1 0

Translating REs into NFAs

a
a

Symbol

r1r2
r1 r2r1 Sequence

r1 | r2

r1

r2

ε

ε

ε

ε

Choice

(r)∗ rε ε

ε

ε

Kleene Closure

Translating REs into NFAs

Example: Translate (a | b)∗abb into an NFA. Answer:

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Show that the string “aabb” is accepted. Answer:

0 1 2 3 6 7 8 9 10
ε ε a ε ε a b b

Simulating NFAs

Problem: you must follow the “right” arcs to show that a
string is accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the ε-closure of the start state
2. For each character c,

Ï New states: follow all transitions labeled c
Ï Form the ε-closure of the current states

3. Accept if any final state is accepting

Simulating an NFA: ·aabb, Start

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Simulating an NFA: a·abb

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Simulating an NFA: aa·bb

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Simulating an NFA: aab·b

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Simulating an NFA: aabb·, Done

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Deterministic Finite Automata

Restricted form of NFAs:

Ï No state has a transition on ε

Ï For each state s and symbol a, there is at most one edge
labeled a leaving s.

Differs subtly from the definition used in COMS W3261
(Sipser, Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining
current state. Accept if you end up on an accepting state.
Reject if you end on a non-accepting state or if there is no
transition from the current state for the next symbol.

Deterministic Finite Automata

{
type token = ELSE | ELSEIF

}

rule token =
parse "else" { ELSE }

| "elseif" { ELSEIF }

e l s e i f

Deterministic Finite Automata

{ type token = IF | ID of string | NUM of string }

rule token =
parse "if" { IF }

| [’a’-’z’] [’a’-’z’ ’0’-’9’]* as lit { ID(lit) }
| [’0’-’9’]+ as num { NUM(num) }

NUM

ID IF

ID

0–9

i

a–hj–z

f

a–z0–9

a–eg–z0–9

0–9

a–z0–9

Building a DFA from an NFA

Subset construction algorithm

Simulate the NFA for all possible inputs and track the states
that appear.

Each unique state during simulation becomes a state in the
DFA.

Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b

Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b

Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b

Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

b

a

b

Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b

Result of subset construction for (a | b)∗abb

a

b

a
b

b

a

a

ba

b

Is this minimal?

Ambiguous Arithmetic

Ambiguity can be a problem in expressions. Consider
parsing

3 - 4 * 2 + 5

with the grammar

e → e +e | e −e | e ∗e | e /e | N

+

-

3 *

4 2

5

-

3 +

*

4 2

5

*

-

3 4

+

2 5

-

3 *

4 +

2 5

-

*

+

3 4

2

5

Operator Precedence

Defines how “sticky” an operator is.

1 * 2 + 3 * 4

* at higher precedence than +:

(1 * 2) + (3 * 4)

+

*

1 2

*

3 4

+ at higher precedence than *:

1 * (2 + 3) * 4

*

*

1 +

2 3

4

Associativity
Whether to evaluate left-to-right or right-to-left

Most operators are left-associative

1 - 2 - 3 - 4

-

-

-

1 2

3

4

-

1 -

2 -

3 4

((1−2)−3)−4 1− (2− (3−4))

left associative right associative

Fixing Ambiguous Grammars

A grammar specification:

expr :
expr PLUS expr

| expr MINUS expr
| expr TIMES expr
| expr DIVIDE expr
| NUMBER

Ambiguous: no precedence or associativity.

Ocamlyacc’s complaint: “16 shift/reduce conflicts.”

Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr
| expr MINUS expr
| term

term : term TIMES term
| term DIVIDE term
| atom

atom : NUMBER

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “8 shift/reduce conflicts.”

Assigning Associativity

Make one side the next level of precedence

expr : expr PLUS term
| expr MINUS term
| term

term : term TIMES atom
| term DIVIDE atom
| atom

atom : NUMBER

This is left-associative.

No shift/reduce conflicts.

Rightmost Derivation of Id∗ Id+ Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e

t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

At each step, expand the rightmost nonterminal.

nonterminal

“handle”: The right side of a production

Fun and interesting fact: there is exactly one rightmost
expansion if the grammar is unambigious.

Rightmost Derivation: What to Expand

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

Expand here ↑ Terminals only

e

t + e

t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

Reverse Rightmost Derivation

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

viable prefixes terminals

Id ∗ Id+ Id Id

tId ∗ t + Id ∗Id

tt + Id Id

tt + t

et + e

e

+
e

Shift/Reduce Parsing Using an Oracle

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

stack input

Id ∗ Id+ Id shift
Id ∗ Id+ Id shift

Id ∗ Id+ Id shift
Id ∗ Id+ Id reduce 4
Id ∗ t + Id reduce 3

t + Id shift
t + Id shift

t + Id reduce 4
t + t reduce 2
t + e reduce 1

e accept

Handle Hunting

Right Sentential Form: any step in a rightmost derivation

Handle: in a sentential form, a RHS of a rule that, when
rewritten, yields the previous step in a rightmost derivation.

The big question in shift/reduce parsing:

When is there a handle on the top of the stack?

Enumerate all the right-sentential forms and pattern-match
against them? Usually infinite in number, but let’s try
anyway.

The Handle-Identifying Automaton
Magical result, due to Knuth: An automaton suffices to
locate a handle in a right-sentential form.

Id∗ Id∗·· ·∗ Id∗ t · · ·
Id∗ Id∗·· ·∗ Id · · ·
t + t +·· ·+ t +e

t + t +·· ·+ t+ Id

t + t +·· ·+ t + Id∗ Id∗·· ·∗ Id∗ t

t + t +·· ·+ t

Id

t

Id∗ t

t +e

e

t

+t

e

Id
Id

∗Id

t

e

Building the Initial State of the LR(0) Automaton

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e ′ →·e

e →·t +e
e →·t
t →·Id∗ t
t →·Id

Key idea: automata identify viable prefixes of right
sentential forms. Each state is an equivalence class of
possible places in productions.

At the beginning, any viable prefix must be at the
beginning of a string expanded from e. We write this
condition “e ′ →·e”

There are two choices for what an e may expand to: t +e
and t . So when e ′ →·e, e →·t +e and e →·t are also true, i.e.,
it must start with a string expanded from t .

Similarly, t must be either Id∗ t or Id, so t →·Id∗ t and t →·Id.

This reasoning is a closure operation like ε-closure in subset
construction.

Building the Initial State of the LR(0) Automaton

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e ′ →·e
e →·t +e
e →·t

t →·Id∗ t
t →·Id

Key idea: automata identify viable prefixes of right
sentential forms. Each state is an equivalence class of
possible places in productions.

At the beginning, any viable prefix must be at the
beginning of a string expanded from e. We write this
condition “e ′ →·e”

There are two choices for what an e may expand to: t +e
and t . So when e ′ →·e, e →·t +e and e →·t are also true, i.e.,
it must start with a string expanded from t .

Similarly, t must be either Id∗ t or Id, so t →·Id∗ t and t →·Id.

This reasoning is a closure operation like ε-closure in subset
construction.

Building the Initial State of the LR(0) Automaton

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e ′ →·e
e →·t +e
e →·t
t →·Id∗ t
t →·Id

Key idea: automata identify viable prefixes of right
sentential forms. Each state is an equivalence class of
possible places in productions.

At the beginning, any viable prefix must be at the
beginning of a string expanded from e. We write this
condition “e ′ →·e”

There are two choices for what an e may expand to: t +e
and t . So when e ′ →·e, e →·t +e and e →·t are also true, i.e.,
it must start with a string expanded from t .

Similarly, t must be either Id∗ t or Id, so t →·Id∗ t and t →·Id.

This reasoning is a closure operation like ε-closure in subset
construction.

Building the LR(0) Automaton

S0 :

e ′ →·e
e →·t +e
e →·t
t →·Id∗ t
t →·Id

S1 :
t → Id ·∗t
t → Id·

S7 : e ′ → e·

S2 :
e → t ·+e
e → t ·

e

Id

t

S3 :
t → Id∗·t

t →·Id∗ t
t →·Id

S4 :

e → t +·e

e →·t +e
e →·t
t →·Id∗ t
t →·Id

∗

+

S5 : t → Id∗ t ·t

Id

S6 : e → t +e·

t

Id e

“Just passed a prefix
ending in a string
derived from t”

“Just passed a
prefix that ended
in an Id”

“Just passed a string
derived from e”

The first state suggests a
viable prefix can start as any
string derived from e, any
string derived from t , or Id.

The items for these three
states come from advancing
the · across each thing, then
performing the closure
operation (vacuous here).
In S2, a + may be next. This
gives t +·e.

Closure adds 4
more items.

In S1, ∗ may be next, giving
Id∗·t

and two others.

Building the LR(0) Automaton

S0 :

e ′ →·e
e →·t +e
e →·t
t →·Id∗ t
t →·Id

S1 :
t → Id ·∗t
t → Id·

S7 : e ′ → e·

S2 :
e → t ·+e
e → t ·

e

Id

t

S3 :
t → Id∗·t

t →·Id∗ t
t →·Id

S4 :

e → t +·e

e →·t +e
e →·t
t →·Id∗ t
t →·Id

∗

+

S5 : t → Id∗ t ·t

Id

S6 : e → t +e·

t

Id e

“Just passed a prefix
ending in a string
derived from t”

“Just passed a
prefix that ended
in an Id”

“Just passed a string
derived from e” The first state suggests a

viable prefix can start as any
string derived from e, any
string derived from t , or Id.

The items for these three
states come from advancing
the · across each thing, then
performing the closure
operation (vacuous here).

In S2, a + may be next. This
gives t +·e.

Closure adds 4
more items.

In S1, ∗ may be next, giving
Id∗·t

and two others.

Building the LR(0) Automaton

S0 :

e ′ →·e
e →·t +e
e →·t
t →·Id∗ t
t →·Id

S1 :
t → Id ·∗t
t → Id·

S7 : e ′ → e·

S2 :
e → t ·+e
e → t ·

e

Id

t

S3 :
t → Id∗·t

t →·Id∗ t
t →·Id

S4 :

e → t +·e

e →·t +e
e →·t
t →·Id∗ t
t →·Id

∗

+

S5 : t → Id∗ t ·t

Id

S6 : e → t +e·

t

Id e

“Just passed a prefix
ending in a string
derived from t”

“Just passed a
prefix that ended
in an Id”

“Just passed a string
derived from e” The first state suggests a

viable prefix can start as any
string derived from e, any
string derived from t , or Id.

The items for these three
states come from advancing
the · across each thing, then
performing the closure
operation (vacuous here).

In S2, a + may be next. This
gives t +·e.

Closure adds 4
more items.

In S1, ∗ may be next, giving
Id∗·t

and two others.

Building the LR(0) Automaton

S0 :

e ′ →·e
e →·t +e
e →·t
t →·Id∗ t
t →·Id

S1 :
t → Id ·∗t
t → Id·

S7 : e ′ → e·

S2 :
e → t ·+e
e → t ·

e

Id

t

S3 :
t → Id∗·t
t →·Id∗ t
t →·Id

S4 :

e → t +·e
e →·t +e
e →·t
t →·Id∗ t
t →·Id

∗

+

S5 : t → Id∗ t ·t

Id

S6 : e → t +e·

t

Id e

“Just passed a prefix
ending in a string
derived from t”

“Just passed a
prefix that ended
in an Id”

“Just passed a string
derived from e” The first state suggests a

viable prefix can start as any
string derived from e, any
string derived from t , or Id.

The items for these three
states come from advancing
the · across each thing, then
performing the closure
operation (vacuous here).

In S2, a + may be next. This
gives t +·e. Closure adds 4
more items.

In S1, ∗ may be next, giving
Id∗·t and two others.

Building the LR(0) Automaton

S0 :

e ′ →·e
e →·t +e
e →·t
t →·Id∗ t
t →·Id

S1 :
t → Id ·∗t
t → Id·

S7 : e ′ → e·

S2 :
e → t ·+e
e → t ·

e

Id

t

S3 :
t → Id∗·t
t →·Id∗ t
t →·Id

S4 :

e → t +·e
e →·t +e
e →·t
t →·Id∗ t
t →·Id

∗

+

S5 : t → Id∗ t ·t

Id

S6 : e → t +e·

t

Id e

“Just passed a prefix
ending in a string
derived from t”

“Just passed a
prefix that ended
in an Id”

“Just passed a string
derived from e” The first state suggests a

viable prefix can start as any
string derived from e, any
string derived from t , or Id.

The items for these three
states come from advancing
the · across each thing, then
performing the closure
operation (vacuous here).
In S2, a + may be next. This
gives t +·e.

Closure adds 4
more items.

In S1, ∗ may be next, giving
Id∗·t

and two others.

The first function
If you can derive a string that starts with terminal t from
some sequence of terminals and nonterminals α, then
t ∈first(α).

1. Trivially, first(X) = {X } if X is a terminal.
2. If X → ε, then add ε to first(X).
3. For each production X → Y · · · , add first(Y)− {ε} to

first(X).
If X can produce something, X can start with whatever
that starts with

4. For each production X → Y1 · · ·Yk Z · · · where ε ∈first(Yi)
for i = 1, . . . ,k, add first(Z)− {ε} to first(X).
Skip all potential ε’s at the beginning of whatever X
produces

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

first(Id) = {Id}

first(t) = {Id} because t → Id ∗ t and t → Id

first(e) = {Id} because e → t +e, e → t , and
first(t) = {Id}.

The follow function
If t is a terminal, A is a nonterminal, and · · · At · · · can be
derived, then t ∈ follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each production →··· Aα, add first(α)− {ε} to
follow(A).
A is followed by the first thing after it

3. For each production A →···B or a →···Bα where
ε ∈first(α), then add everything in follow(A) to
follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id
first(t) = {Id}
first(e) = {Id}

follow(e) = {$}
follow(t) = {

+ ,$

}

1. Because e is the start symbol

The follow function
If t is a terminal, A is a nonterminal, and · · · At · · · can be
derived, then t ∈ follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each production →··· Aα, add first(α)− {ε} to
follow(A).
A is followed by the first thing after it

3. For each production A →···B or a →···Bα where
ε ∈first(α), then add everything in follow(A) to
follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id
first(t) = {Id}
first(e) = {Id}

follow(e) = {$}
follow(t) = {+

,$

}

2. Because e → t+e and first(+) = {+}

The follow function
If t is a terminal, A is a nonterminal, and · · · At · · · can be
derived, then t ∈ follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each production →··· Aα, add first(α)− {ε} to
follow(A).
A is followed by the first thing after it

3. For each production A →···B or a →···Bα where
ε ∈first(α), then add everything in follow(A) to
follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id
first(t) = {Id}
first(e) = {Id}

follow(e) = {$}
follow(t) = {+ ,$}

3. Because e → t and $ ∈ follow(e)

The follow function
If t is a terminal, A is a nonterminal, and · · · At · · · can be
derived, then t ∈ follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each production →··· Aα, add first(α)− {ε} to
follow(A).
A is followed by the first thing after it

3. For each production A →···B or a →···Bα where
ε ∈first(α), then add everything in follow(A) to
follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id
first(t) = {Id}
first(e) = {Id}

follow(e) = {$}
follow(t) = {+ ,$}

Fixed-point reached: applying any rule
does not change any set

Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2

1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

From S0, shift an Id and go to S1;
or cross a t and go to S2; or cross
an e and go to S7.

Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4

2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

From S1, shift a ∗ and go to S3;
or, if the next input could follow
a t , reduce by rule 4. According
to rule 1, + could follow t ; from
rule 2, $ could.

Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2

3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

From S2, shift a + and go to S4;
or, if the next input could follow
an e (only the end-of-input $),
reduce by rule 2.

Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5

4 s1 6 2
5 r3 r3
6 r1
7 X

From S3, shift an Id and go to S1;
or cross a t and go to S5.

Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2

5 r3 r3
6 r1
7 X

From S4, shift an Id and go to S1;
or cross an e or a t .

Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3

6 r1
7 X

From S5, reduce using rule 3 if
the next symbol could follow a t
(again, + and $).

Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1

7 X

From S6, reduce using rule 1 if
the next symbol could follow an
e ($ only).

Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

If, in S7, we just crossed an e,
accept if we are at the end of
the input.

Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

Look at the state on top of the
stack and the next input token.

Find the action (shift, reduce, or
error) in the table.

In this case, shift the token onto
the stack and mark it with state 1.

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$

Reduce 3

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept

Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

Here, the state is 1, the next
symbol is ∗, so shift and mark it
with state 3.

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$

Reduce 3

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept

Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

Here, the state is 1, the next
symbol is +. The table says reduce
using rule 4.

0 Id
1

∗
3

t
5 + Id$

Reduce 3

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept

Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5

+ Id$

Reduce 3

Remove the RHS of the rule (here,
just Id), observe the state on the
top of the stack, and consult the
“goto” portion of the table.

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept

Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$ Reduce 3

Here, we push a t with state 5.
This effectively “backs up” the
LR(0) automaton and runs it over
the newly added nonterminal.

In state 5 with an upcoming +,
the action is “reduce 3.”

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept

Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$ Reduce 3

0
t
2 + Id$ Shift, goto 4

This time, we strip off the RHS for
rule 3, Id∗ t , exposing state 0, so
we push a t with state 2.

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept

Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$ Reduce 3

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept

Types of Types

Type Examples

Basic Machine words, floating-point numbers,
addresses/pointers

Aggregate Arrays, structs, classes

Function Function pointers, lambdas

Basic Types

Groups of data the processor is designed to operate on.

On an ARM processor,

Type Width (bits)

Unsigned/two’s-complement binary

Byte 8
Halfword 16
Word 32

IEEE 754 Floating Point

Single-Precision scalars & vectors 32, 64, .., 256
Double-Precision scalars & vectors 64, 128, 192, 256

Derived types

Array: a list of objects of the same type, often fixed-length

Record: a collection of named fields, often of different types

Pointer/References: a reference to another object

Function: a reference to a block of code

C’s Declarations and Declarators

Declaration: list of specifiers followed by a
comma-separated list of declarators.

static unsigned

basic type︷︸︸︷
int︸ ︷︷ ︸

specifiers

(*f[10])(int, char*);︸ ︷︷ ︸
declarator

Declarator’s notation matches that of an expression: use it
to return the basic type.

Largely regarded as the worst syntactic aspect of C: both
pre- (pointers) and post-fix operators (arrays, functions).

Structs

Structs are the precursors of objects:

Group and restrict what can be stored in an object, but not
what operations they permit.

Can fake object-oriented programming:

struct poly { ... };

struct poly *poly_create();
void poly_destroy(struct poly *p);
void poly_draw(struct poly *p);
void poly_move(struct poly *p, int x, int y);
int poly_area(struct poly *p);

Unions: Variant Records

A struct holds all of its fields at once. A union holds only
one of its fields at any time (the last written).

union token {
int i;
float f;
char *string;

};

union token t;
t.i = 10;
t.f = 3.14159; /* overwrite t.i */
char *s = t.string; /* return gibberish */

Applications of Variant Records

A primitive form of polymorphism:

struct poly {
int x, y;
int type;
union { int radius;

int size;
float angle; } d;

};

If poly.type == CIRCLE, use poly.d.radius.

If poly.type == SQUARE, use poly.d.size.

If poly.type == LINE, use poly.d.angle.

Name vs. Structural Equivalence

struct f {
int x, y;

} foo = { 0, 1 };

struct b {
int x, y;

} bar;

bar = foo;

Is this legal in C? Should it be?

Type Expressions

C’s declarators are unusual: they always specify a name
along with its type.

Languages more often have type expressions: a grammar
for expressing a type.

Type expressions appear in three places in C:

(int *) a /* Type casts */
sizeof(float [10]) /* Argument of sizeof() */
int f(int, char *, int (*)(int)) /* Function argument types */

Basic Static Scope in C, C++, Java, etc.

A name begins life where it is
declared and ends at the end
of its block.

From the CLRM, “The scope
of an identifier declared at
the head of a block begins at
the end of its declarator, and
persists to the end of the
block.”

void foo()
{

int x;

}

Hiding a Definition

Nested scopes can hide earlier
definitions, giving a hole.

From the CLRM, “If an
identifier is explicitly declared
at the head of a block,
including the block
constituting a function, any
declaration of the identifier
outside the block is
suspended until the end of
the block.”

void foo()
{

int x;

while (a < 10) {
int x;

}

}

Static Scoping in Java

public void example() {
// x, y, z not visible

int x;
// x visible

for (int y = 1 ; y < 10 ; y++) {
// x, y visible

int z;
// x, y, z visible

}

// x visible
}

Basic Static Scope in O’Caml

A name is bound after the
“in” clause of a “let.” If the
name is re-bound, the
binding takes effect after the
“in.”

let x = 8 in

let x = x + 1 in

Returns the pair (12, 8):
let x = 8 in

(let x = x + 2 in
x + 2),

x

Let Rec in O’Caml

The “rec” keyword makes a
name visible to its definition.
This only makes sense for
functions.

let rec fib i =
if i < 1 then 1 else

fib (i-1) + fib (i-2)
in

fib 5

(* Nonsensical *)
let rec x = x + 3 in

Let...and in O’Caml

Let...and lets you bind
multiple names at once.
Definitions are not mutually
visible unless marked “rec.”

let x = 8
and y = 9 in

let rec fac n =
if n < 2 then

1
else

n * fac1 n
and fac1 n = fac (n - 1)
in
fac 5

Nesting Function Definitions

let articles words =

let report w =

let count = List.length
(List.filter ((=) w) words)

in w ^ ": " ^
string_of_int count

in String.concat ", "
(List.map report ["a"; "the"])

in articles
["the"; "plt"; "class"; "is";
"a"; "pain"; "in";
"the"; "butt"]

let count words w = List.length
(List.filter ((=) w) words) in

let report words w = w ^ ": " ^
string_of_int (count words w) in

let articles words =
String.concat ", "
(List.map (report words)
["a"; "the"]) in

articles
["the"; "plt"; "class"; "is";
"a"; "pain"; "in";
"the"; "butt"]

Produces “a: 1, the: 2”

	The Midterm
	Structure of a Compiler
	Scanning
	Languages and Regular Expressions
	NFAs
	Translating REs into NFAs
	Building a DFA from an NFA: Subset Construction

	Parsing
	Resolving Ambiguity

	Rightmost and Reverse-Rightmost Derivations
	Building the LR(0) Automaton
	FIRST and FOLLOW
	Building an SLR Parsing Table
	Shift/Reduce Parsing

	Types
	Types of Types
	Structs and Unions
	Type Expressions
	Scope
	Nested Function Definitions

