
The Fly Language

Carolyn Sun Hsiang-Ho Lin Shenlong Gu Xin Xu

Introduction
- Motivation

- Compile down to C++ code

- Type inference

- Concurrency primitives: thread, channel, signal

- Thread-safe container types

- Capability for code to be dispatched and executed across systems

- Functional programming features such as lambda and clojure

- Network Library

Project Status
- 3217 lines of OCaml code

- 497 lines of C++ code

- 276 git commits

- 48 test cases, 1051 lines of test code

Spring Break
Type Inference

Basic Concurrency
Class

Lambda, Closure
Array, Map

Inter-thread
Dispatch

Scanner
Parser

Architecture

Scanner
Parser Ast Sast CodeGen

Type Inference
Variables are static typed. Functions are typed according to all kinds of calls that

invoked on the functions.

Tech: we infer a function result when a function is called with typed parameters.

Closure
Each function can be called with some parameters

to generate a closure (a function binded with some

parameters)

Tech: Use a class to hold the variables and functions.

Lambda
We support some basic lambda usage.

Variables are passed by referrence for the class, map, array.

Variables are passed by value for int, float, string.

Tech: we keep track of all variables used in the

lambda and generate a new function for C++ with

these local variables wrapped like clojure.

Dispatch/Exec
We can send a function with some parameters to another machine to execute and wait

for the result to be returned.

Concurrency: threading

Concurrency: Inter-thread communication

Signal Channel

Concurrency: Thread-Safe Containers

Automated Integration Tests
- 48 Test cases, 14 for should-fail, 34 for should-pass

- Use python script to automate the process

- Verifies all the test cases are passed before committing

Team Responsibilities
Carolyn Sun: Testing automation, Debug module, Documentation

Hsiang-Ho Lin: Compiler Front end, Code generation, C++ Library, Test case creation,

Documentation

Shenlong Gu: Compiler Front end, Semantics, Code generation, C++ Library,

Documentation

Xin Xu: Test case creation, Debug module, Documentation

Lesson Learned
- Time Management

- Start Early

- Meet Regularly

- Communication

- Listen and Share Ideas

- Collaboration

- Github

- Clean Code

- Don’t commit broken code

- Testing

- Automate

Demo

Word Count Server and Client
Time

Client str = “This is one of my favorite classes at Columbia”;
arr = str_split(str);
for (i = 0; i < arr.size(); i = i + 1) {
 con.send("put " + arr.get_at(i));
}

con.send(“getalls”); /* get all word counts, sorted by frequency */
Server

“put This”
“put is”
“put one”

Word Count Server and Client
Time

Client

Server

“put This”
“put is”
“put one”

ClientClient

1

fly handle_request
2

s = fly process_msg

register s send_back

worker

4

5

channelworkerfly worker

63

