
 PICEL -
Language Reference Manual

Manager | Chia-Hao Hsu | ch3141

System Architect | Chih-Sheng Wang | cw2952

Language Guru |Ruijie Zhang | rz2337

Language Guru | Chang Liu | cl3418

Testing | Rui Lu | rl2784

Content
1 Introduction

2 Lexical Convention

2.1 Comments

2.2 Identifiers

2.3 Keywords

2.4 Types

2.4.1 Primitive Data Type

2.4.2 Non‐primitive Data Type

2.5 Operators & Expression

3 Control Flow

3.1 Block

3.2 Condition

3.3 Loop

4 GRAPHIC LIBRARY

4.1 Accessing Method

4.2 File Operations

4.3 Property

4.4 Enhance

4.5 Edit

4.6 Built‐in functions

5 Program Structure

1 Introduction
Nowaday, there are many photo editing software around the market, which provides

friendly user interface to manipulate and edit the pictures easily. However, there are

very few handy picture editing library or programming language. When software

engineers want to develop the a photo editing related software, they often need to

include several third party library into their project. We want to make a language that

make photo editing software development more easier. Our Language --- PICEL

provides user some easy way to store the picture. Also, our language has the built-in

matrix operation, which make developer easy to build up the image processing

function for the desired features. Moreover, PICEL also have the built-in convolution

library, which produce some fantastic photo editing effect, for example, sharpen, blur,

edge enhance, etc. For this language manual we will introduce the grammar and

syntax for this language.

2 Lexical Convention
This chapter talks about the lexical conventions in PICEL including comments and

tokens. Those tokens are a collection of 4 types: identifiers, keywords, literals and

operators. Punctuators, such as white space, is also described in this chapter.

2.1 Comments
PICEL supports the comment starting with /* and terminating with */. Once the

comment starting character /* is seen, all the other characters will be ignored until the

comment ending character */ is seen. Comments do not nest. The characters /* and */ in

a string literal are not considered as comments. The content in /* and */ can be

multiple lines.

/* This is a comment.

And because it’s long,

it spans three lines. */

2.2 Identifiers
Identifiers are sequences of characters to describe the names of variables and

functions. An identifier can include letters, digits and underscores(_). The first

character of an identifier cannot be a digit. An identifier cannot be the same as a

keyword , a boolean literal , an int literal or a null literal. The length of an identifier is

limited to 256 characters. Uppercase and lowercase letters are distinct.

identifier_name = “[‘a-z’|’A-Z’|’_’]([‘a-z’|’A-Z’|’_’|’0-9’])*”

2.3 Keywords
The keywords listed in the chart below are reserved and cannot be used for any other

purpose.

if else for while break continue

int bool char sizeof pic void

true false #include main this and

or not return copy delete

2.4 Types
2.4.1 Primitive Data Type

 Int

An integer can hold a number in 32 bit. The value of an integer can range from

-2,147,483,648() to 2,147,483,647(). For a number used as a string, you should− 231 231 − 1

use type char.

 bool

Bool type is a binary logical value which can be either true or false. A bool can also be

null. A bool takes up 1 bit.

 char

The type char contains a single character enclosed with quotation marks, e.g. ‘a’. A

char takes 8 bits. Some characters may not be represented using one char.

 string

A string is represented by two quotes, example: “hello world”

2.4.2 Nonprimitive Data Type
 array

An array is a data structure that holds one or more literals of the same type. The

elements in an array are stored consecutively in the memory. An array can have one

or more dimensions. The identifying number of an array begins at 0, not 1.

int NumArray[5] = [1, 2, 3, 4, 5];

char CharArray[2][3] = [‘a’, ‘b’, ‘c’; ‘d’, ‘e’, ‘f’];

You can also define an array and implement it later.

int NumArray[5];

NumArray[3] = 4;

You can retrieve the element in an array using its identifying number.

NumArray[0]; /* 1 */

CharArray[1][0]; /* ‘d’ */

But if you store more elements than the array size you declared, you will receive an

overflow exception. For example, “int NumArray[5] = {1, 2, 3, 4, 5, 6};” is forbidden.

Retrieving the element which exceeds the array size is forbidden as well.

a = NumArray[5]; /* invalid */

 pic

A pic is a data structure we use in PICEL to store an image. The picture is stored in

three matrices(arrays) indicating the RGB values of this image. And syntax “.r[x][y]”

can be used to refer to the R(ed) value of pixel in position (x,y). In the same way, there

are “.g[x][y]” and “.b[x][y]” to refer to the G(reen) and B(lue) value of pixels. Notice that

coordinates start from 0. There are some examples:

 /* Suppose there is a pic A with size 100*100 */

int x=A.r[0][0]; /* get the Red value of point (0,0), the first pixel */

A.g[1][1]=255; /* set the Gree value of point(1,1) to 255 */

int y=A.b[100][0]; /* Invalid since A is 100*100. So the boundary is 99*99 */

Picture type supports a series of specific functions such as lengthOf(), widthOf(), etc.

Picture type must be implemented when defined.

And due to the fact that we implement pic in a special way, the normal assignment “=”

works different here. Consider a the statement “pic A=B” where “B” is some

expressions which returns a pic. And this assignment, instead of copying the content of

B to a new space for A, will let the pointer of A points to B’s content. If B is also a pic

variable, then change A will also change B, vice verse. Thus the assignment of pic must

be used carefully.

To support normal “copy” assignment, we have special function “copy(A,B)” which will

copy the content of pic B to A.

2.5 Operators & Expression
Operator is the special token that perform a special operation in the program. In this

chapter we will introduce our operator in PICEL.

 Arithmetic Operator:

PICEL provides some basic operators for arithmetic operation: addition, subtraction,

multiplication, and division. Also, there are division and negation in PICEL too.

Following are some examples to show you the functionality of the operators:

Operator Description Example Code

+ addition int x = 4 + 3; /* x = 7 */
int y = 4 + 5.0; /* Error! There is no float type */

- subtraction int y = 5 - 2; /* y = 3 */

* multiplication int z = 12 * 10; /* z = 120 */

/ division int w1 = 12 / 3; /* w1 = 4 */
int w2 = 100 / 3; /* w2 = 33 */

% modular int m = 10 % 3; /* m = 1 */

-(int var) negation int a = -5; /* a = -5 */
int b = -a; /* b = 5 */

 Array Access Operator:

In PICEL, array can be accessed with integer index starting from 0 base, the following

sample code can show the how to access array in PICEL:

int arr[3] = [1, 2, 3];

int a = arr[1]; /* a = 2 */

 Logical Operators:

Operator Description Example Code

and conjunction true and false; /* false */

or disjunction true or false; /* true */

not negation bool a = false;
not a; /* true */

 Comparison Operators:

Operator Description Example Code

> greater than 5 > 3; /* return true*/
‘a’ > ‘b’; /* return false */

< smaller than 4 < 3; /* return false*/
‘a’ < ‘z’; /* return true */

>= greater than or
equal to

4 >= 4 / *return true */
5 >= 4 / *return true */

<= smaller than
or equal to

4 <= 4 / * return true */
4 <= 10 / * return false */

== equal to 5 == 5 /* return true */
‘a’ == ‘z’ /* return false */

!= not equal to ‘a’ != ‘z’ /* return true */

 Assignment Operators:

Operator Description Example Code

= assign value int a = 5;

 Matrix Manipulation Operators:

Operator Description Example Code

convolution pic_return = pic # kernel

.+ matrix addition int matrix1[3][3] = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
int matrix2[3][3] = [[1, 1, 1], [1, 1, 1], [1, 1, 1]];
matrix1 .+ matrix2
/* return [[2, 3, 4], [5, 6, 7], [8, 9, 10]] */

.- matrix subtraction int matrix1[3][3] = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
int matrix2[3][3] = [[1, 1, 1], [1, 1, 1], [1, 1, 1]];

matrix1 .- matrix2
/* return [[0, 1, 2], [3, 4, 5], [6, 7, 8]] */

.* matrix multiplication int matrix1[2][2] = [[1, 2], [3, 4]];
int matrix2[2][2] = [[1, 1], [1, 1]];
matrix1 .+ matrix2
/* return [[3, 3], [7, 7]] */

 Operator Precedence and Associative Property:

When the program contains multiple operators , then expression will follow the

operator precedence and associative property to read our code. For example, if we

have a code in our program like “a + b * foo()”, which will follow the rules below, in

this part we follow a lot from C Language manual:
1. Function call and membership access operator expression

2. Unary Operator

3. Arithmetic Operator: Multiplication(*) & Division(/)

4. Matrix Manipulation Operator: #, .+, .-, .*

5. Arithmetic: Addition(+) & Subtraction(-)

6. Logical Operator: Greater-than(>), less-than(<), greater-than-or-equal-to(>=), and

less-than-or-equal-to(<=)

7. Logical Operator: Equal-to(==) and not-equal-to(!=) expressions.

8. Logical AND expressions (and)

9. Logical OR expressions (or)

10. Conditional expressions, evaluated from left to right

11. All assignment expressions, evaluated right to left.

12. Comma Expression

3 Control Flow
In PICEL, there are two types of control flow syntax, namely Condition and Loop,

which make program run into different branches according to the corresponding

conditions. With the help of control flow, we can build a complex program with a clear

structure.

3.1 Block
In PICEL, if-block, for /while loop block and function block all begin with “{ “ and end

with “}”. This design is for the unification.

3.2 Condition
Conditional control flow is the basic type. In conditional control flow, program will

choose among two branches, or choose whether execute a branch or not, according to

the condition. Here is the syntax of conditional control flow.

if <condition>{ <branch1> } [else { <branch2> }]

All conditional control flow must begin with “if <condition> {” and end with “}”. After

“if”, there is <condition>, the condition of this control flow. All statements in <branch1>

will be executed if and only if the condition is true.

And there is also an optional syntax “else”. It can be used to set the second branch of

this conditional control flow. If the condition of this “if” control flow is false, then

<branch1> will be ignored and statements in <branch2> will be executed.

 <condition>

The <condition> could be any expression which returns a result in bool type, including

a simply bool variable and complex boolean expressions with lots of boolean

operations.

else

The “else” is an optional syntax of conditional control flow. And one “if” conditional

control flow could have at most one “else” syntax. Since a “if” conditional control flow

begins with “if” and “else” should follow the first branch which end with “}”, a “else”

control flow will match with the “if” which owns the closet “}” . And if this “if” already

has a “else”, it is an error. The following code is an example of this error.

if (b == 1){

if (a > 0){

if (c > 0){

c = 1;

}

a=0;

}

else /* match to the “if a>0” */

{

a=-1;

}

else /* match to the “if a>0” too, but that “if” already has a “else”,

{

so it leads to a compile error*/

a = -2;

}

}

Again, the matching cannot cross functions.

<branch>

The <branch> is a series of statements. Actually <branch1> includes all statements

between <condition> and “else” (or “en” if there is no “else”) and <branch2> includes

all statements between “else {” and “}”. As a result, a <branch> could just have a single

statement or hundreds of statements with complex structure. Notice that, <branch>

could contain all kinds of statements, including all control flow statements. Here is an

example.

if (a>0) {

if (c>10) {

a=a+1;

 c=c-10;

}

else{

a=0;

c=c*c;

}

b=a+c;

}

And inside <branch>, user could also define local variables. Those variables would

only be available inside the corresponding branch.

3.3 Loop
In PICEL, we have two kinds of syntax for loop, “for” and “while”. Basically, they work

in the similar way, but “for” provides a more convenient way to initialize a variable,

set a stop condition and change some variable every iteration, just like how C++ does.

for (<initialization>;<condition>;<modification>) {

<statement>

}

A “for” loop begins with a token “for <cond.> {” and end with “}”. After “for” there is a

pair of parentheses which contains <initialization>, <condition> and <modification>

separated by semicolon. Between the left parenthesis and right parenthesis, there is

the <statement> that loop will execute every iteration. Since the three section in the

parentheses is separated by semicolon, each section could only contain one statement.

Here is an example code of “for” loop.

s=0;

for (int i=1;i<11;i=i+1){

s=s+i; /*accumulate from 1 to 10*/

}

<initialization>

The <initialization> section can be regarded as an extra component that will be

executed before the program runs into the loop. As a result, we can do some

initialization for the loop, like set a variable “i” to 1 to do a loop from 1 to 10. In

<initialization>, we can also define a new local variable which is only available in the

“for” loop.

<condition>

The <condition> should be an expression which returns a boolean variable. Each time

before the program enters the loop, it will check the <condition>. If the <condition> is

true, it will begin the new iteration, otherwise it will quit the loop immediately. As a

result, if the <condition> is false before the first iteration, the program will just pass the

loop but the <initialization> will be executed since it happens at the beginning. For

example

a=1;

b=0;

for(b=1;a<1;a=a+1){ /* Here b is set to 1 during <initialization> */

/* But <condition> is false, so program will not enter the

loop and set b to 2*/

b=2;

}

/*after those code, b=1 and a=1. */

<modification>

The <modification> is the code that will be executed after each iteration, namely after

each time <statement> is finished. Basically it is used to modify the variable related to

<condition>. And it’s equivalent to set <modification> empty and put the code at the

end of <statement>. So the following two examples are equivalent.

for (int i=1;i<11;i=i+1){

s=s+i; /*accumulate from 1 to 10*/

}

for (int i=1;i<11;) {

s=s+i; /*accumulate from 1 to 10*/

i=i+1;

}

while (<condition>) { <statement> }

The “while” is a simple version of “for”. As long as <condition> holds true, a “while”

loop will repeat and execute <statement> again and again. It’s easy to change a “for”

loop:

for (<initialization>;<condition>;<modification>) {<statement> }

into a “while” loop:

{

<initialization>

while (<condition>){

 <statement>

<modification>

}

}

break

The “break” is a special token for loop control flow. It is used to jump out of the deepest

loop it is. As a result, it could only appear inside a loop.

continue

The “continue” is another token for loop control flow. It can jump to the end of the

current loop statement it’s in. It could only appear inside a loop as well.

4 GRAPHIC LIBRARY
4.1 Accessing Method
In order to access PICEL’s powerful graphic library, programmer should type ‘#include

graphics.pic’ at the top of the source code, which is similar with C manner. An example

is as follows.

#include graphics.pic

int main() {

/* code here */

/* Once including our graphic library */

/* pre-defined functions are available */

...

}

The graphic library should be only included once, it be error if the library is included

again. So do not include the graphic library a second time.

In the graphic library, PICEL provides three main kinds of picture-editing functions,

namely Property, Enhance and Edit. Property-related functions allow programmer to

obtain basic properties of single picture. Enhance-related functions allow programmer

to do some self-defined color operations or enhancing operations toward the target

pictures. Edit-related functions allows programmer to do other operations regarding

size and direction.

4.2 File Operations
Functions

pic load(char src_filename[])

Returns a picture read from path of src_filename.

void save(char dist_filename[], pic picture)

Save a picture to a given path, which is defined in dist_filename.

void copy(pic dist_picture, pic src_picture)

Copy a picture and assign it to another identifier.

4.3 Property
PICEL provides two functions to assist programmer to obtain the width and

height of a certain picture.

Functions

int sizeOf(Array array)

Returns the size of the input array.

int widthOf(pic picture)

Returns the width of the input picture, the unit is pixel.

int heightOf(pic picture)

Returns the height of the input picture, the unit is pixel.

4.4 Enhance
PICEL provides functions for programmers to modify R,G,B values of a picture.

Correspondingly, PICEL supports operations toward Hue. Besides, operations

about saturation and brightness are also supported by PICEL’s graphic library.

Functions

void setR(pic picture, int percentage)

Sets the R value of the given picture and directly modifies the input picture. The

second parameter indicates the ratio of targeted R value to original R value. For

example, if programmer wants to double the R value, this function should be

used in the following manner:

setR(original_pic, 200);

void setG(pic picture, int percentage)

Sets the G value of the given picture and directly modifies the input picture. The

second parameter indicates the ratio of targeted G value to original G value. The

usage is the same as setR().

void setB(pic picture, int percentage)

Sets the B value of the given picture and directly modifies the input picture. The

second parameter indicates the ratio of targeted B value to original B value. The

usage is the same as setR().

void setSaturation(pic picture, int percentage)

Sets the saturation value of the given picture and directly modifies the input

picture. The second parameter indicates the ratio of targeted saturation value to

original saturation value.

void setHue(pic picture, int percentage)

Sets the hue value of the given picture and directly modifies the input picture.

The second parameter indicates the ratio of targeted hue value to original hue

value.

void setValue(pic picture, int percentage)

Sets the brightness value of the given picture and directly modifies the input

picture. The second parameter indicates the ratio of targeted brightness value to

original brightness value.

4.5 Edit
PICEL supports resize, rotate and crop operations.

Functions

pic resize(pic picture, int new_width, int new_height)

Resizes the given picture with given width and height, and returns a new

picture.

pic rotate(pic picture)

Rotates the given picture 90 degrees clockwise and returns a new picture, the

degree here is default.

pic crop(pic picture, int start_x, int start_y, int new_width, int new_height)

Crops the given picture from pixel point (x, y) and returns a new picture whose

size is new_width x new_height.

4.6 Builtin functions
1. File operations:

a. open

b. read

c. write

2. Screen output:

a. printf

3. Memory operations:

a. malloc

b. free

c. memcpy

5 Program Structure
Layout of .pic file

1. All #include [filename] should be placed on top of source file

2. A single file can only be included once

#include stdlib.pic

Global variable declarations

Function Declarations

Function Definitions

Function and Variable Scoping

1. All variables should be declared before being referenced.

a. Global variables being declared without initial value will have a default

value 0.

2. All functions should be declared(or defined) before being called.

3. The entry point of a PICEL program is the function declared as “main”

4. The variables declared in inner blocks can NOT be referenced by from outer

blocks.

5. Variables of the inner block have higher precedence than the outer block.

Function Declaration Syntax

<return type> <function name>(<parameter list>)

{

<function content>

}

Example program: hello.pic

