
LÉPIX
A very small General Purpose Language



THE BIG IDEA

 THE BEST LANGUAGE EVER
 STRUCTS
 CONSTRUCTORS, DESTRUCTORS, DETERMINISTIC 

DESTRUCTION WOO

 PARALLELISM
MASSIVE AMOUNTS OF IT!
 ALL THE CONCURRENCY

 FUNCTIONS
 SO MANY! BUILT IN IMAGE PROCESSING

 SUPER MULTIDIMENSIONAL ARRAYS



A tiiiny problem…

 Had to work on the project alone
 Heavy time constraint
 Aaaahhh



2 weeks, Lots to Do

 No Semantic Analyzer, Lexer/Parser not parsing the 
language, Segmentation Faults galore, no medicine 
for nine months, no time

 … Here we go!



The Better Idea

 Relax, and take several Chill Pills
 And still panic

 Focus on implementing a small subset of what was 
needed, but well



No Structs

 Not for lack of trying!
 Memory safety = gone

 No constructor/destructor, no automatic memory 
cleanup (manual new/delete, essentially)



No Parallelism

 Not for lack of Trying
 Had hand-compiled demo code for parallelism
 Worked with arrays and other things
 Couldn’t jerry-rig it into the compiler in time

 A bit sad
 One of the shiniest features



Even no Arrays :(

 At this point, a bit heartbroken
 The syntax, at least, was good
 Slicing

 The number of arguments in [ … ] = number of shed 
dimensions

 Gives C-Like dimension access ( z, y, x … )
 Tossed around by-value



Functions!

 Thankfully, have the most basic functions
 Parameters by value
Mostly because that is all there is!
 Plans for everything by value with optional reference (&) 

qualifier
 Plans for reference analysis

 Overloading selects which function to call properly!
 Compile-time arity and argument-type based
 Very strict, no covariance, codegen mangles names



Most lost features still there

 lepixc -s inputfile
 Invokes the compiler and shows the SemanticAST
 The semantic AST parses arrays, fixed-sized arrays, 

parallel blocks, functions

 But lost time struggling with semantic AST for weeks
 Codegen suffered greatly, even if everything else was 

well-done



Implementation

 Problem: Records were initially extremely painful to 
work with
 New state that changes one field? Re-vomit all fields 

and write them all out

 Time Saver: “with” record syntax
 { record_name with field1 = single_change; }
 allows for complex records with easy updates



Implementation II – Having Fun

 Might as well get decent at immutability
 Each function call is entirely self-contained with only 

dependencies on its arguments
 Barely any usage of ref



Implementation III – Even More Fun

 Travis CI builds and runs the test suite for every push
 Useful for knowing when / how things went wrong!
 A lot of tests failed a lot of the time



Standard OCaml Library?

 Pervasives (the builtins) are sparse
 Batteries, JaneStreet Core helps with this
 Some file functions, string manipulation functions not 

present in version of Ocaml that comes with VM
 Travis-CI testing required lower level compiler

 Using provided libraries means using OPAM and 
ocamlbuild
 Killed the windows build



Things to add in the future

 Structs
 Needed for proper static language handling
 Enables IIFEs and captures

 Parallelism
 Formal implementation and not the handwritten hack 

that works in only 1 case and breaks everywhere else

 Real multidimensional arrays
 We used “getelementptr” LLVM instruction for printf

calls, is also used with structs/arrays and slicing arrays



Learned Things I

 OCaml is nice
 Overloading would have been useful
 Abstract Data Types useful for new things, not employed 

usefully for regular things
 string_of_int, string_of_float, String.make 1 ch …
 Primary motivation for Overloading implementation

 “Build list then reverse” idiom is a bit annoying
 Happens everywhere, but alternatives to handling are strange

 Compiler and Ocaml environment do not work well for 
Not-Linux
 At least Torvalds is happy?



Learned Things II

 LLVM Binding is somewhat immature
 Can set custom attributes, but cannot retrieve them 

(made handlers for native functions difficult)

 Reaching out for help would have been good
 Understanding the breakdown in communication for 

teammates would have been better than being upset
 Bailing not the most desirable option



Demo

 Time to break the compiler!


	LéPiX
	THE BIG IDEA
	A tiiiny problem…
	2 weeks, Lots to Do
	The Better Idea
	No Structs
	No Parallelism
	Even no Arrays :(
	Functions!
	Most lost features still there
	Implementation
	Implementation II – Having Fun
	Implementation III – Even More Fun
	Standard OCaml Library?
	Things to add in the future
	Learned Things I
	Learned Things II
	Demo

