
BLOX

Naeem Bhatti
Jonathan Voss

Tyrone Wilkinson

Motivation

● Computer-aided design and computer-aided engineering
software such as Solidworks allow the user to model 2D
and 3D structures by providing a series of parameters.
Sandbox video games such as Minecraft enable users to
build 3D structures out of cubes. Neither of these program
allow the user to solve a structural program. This is where
Blox comes in.

● Given a set of resources and a mapping of constraints on
those resources, Blox can be used to output the set of all
possible solutions that conform to those mappings in the
Additive Manufacturing File format (AMF). The generated
.amf file is 3D printable, allowing for further enhancements
in any compatible modeling program, or it can be directly
printed in any compatible printer.

Architecture

● Scanner: Character Stream → Token Stream

● Parser: Token Stream → Abstract Syntax Tree (AST)

● Analyzer: AST → A Semantically Checked AST

● Executor: Contains the underlying code for:
○ The functions our language provides for the programmer’s

use
○ Checking the validity of the programmer’s use

● Generator: Generates an .amf file based on the frame the programmer
 wants to be printed

Language Tutorial

● Blox is very beginner-friendly with a syntax similar to C
and Java.

● The programmer can make use of primitive data types (int,
float, string, bool), aggregate data types (array), and loops
(for, while) for a smooth programming experience.

● Programmer-defined functions are an unrequired but
optional aspect of our language.

● Like in C, the “main” function is the designated entry point

of the program and is called at program startup.

Language Example 1

Our inbuilt print function automatically detects the
primitive type, which it then streams to standard output.

Language Example 2
● Let’s call this short program

“H.” As is, the generated
.amf file would produce the
letter ‘H’ on a base with the
dimensions 46x5x1.

● The .amf file and model can
be found in the following
slides.
○ Spaces and comments

have been added to the
.amf file for improved
readability.

○ An actual image of the
model on actual 3D
printing software.

Language Example 2 .amf

Language Example 2 .amf

Language Example 2 .amf

Language Example 2 model

Manipulate to your liking then print when ready!

Language Examples

The prior examples are just a small, elementary sample of
what our language has to offer. You can be as simple or
elaborate as you’d like.

Important Lessons Learned

● Scheduling

● Time Management

● Effective Communication

● Consistent Collaboration

● Laying out the Language (seeing the big picture) early

● Understanding compiler components early

● OCAML

Possible Language Expansion

● Time and resource constraints forced us to reduce the
capabilities of our language. But it was designed to be
flexible enough for features to be added later on. Some of
these additions could include:
○ Expanding the problem solving ability of Blox. This

could take the form of allowing the programmer to
design more complex rules upon which object
generation would be regulated by.

○ Increasing the robustness of our compiler so that users
could specify their intentions in a high level way so that
they would not have to think in terms of blocks.
Perhaps our solution resides in machine learning.

○ Incorporating features present in the AMF open
standard such as material and texture definition to give
programmers greater control over their creations.

DEMO!!!
(as originally intended)

Questions?
Comments?

