
replay

A language for simple repeated games

Proposal

Eric Bolton - edb2129

COMS W4115 - Programming Languages and Translators
Fall 2016 - CVN

September 28, 2016

1 Motivation

Game theory is treacherous for humans. Looks can be deceptive: even the simplest games are
tricky to analyze, and it’s easy to make silly mistakes. Repeated versions of games compound these
problems, adding layers of complexity and confusion. A natural answer is to turn to a computer
program for help. However, programming languages embraced by game theorists, such as MATLAB,
Python, or R, do little to simplify the task at hand, as they weren’t natively designed for these
analyses.
replay is an imperative programming language that makes finitely and infinitely repeated games
easier to represent and analyze. The syntax provides a clear and straightforward way to specify the
various parameters of simple games: basic strategies, payoffs, as well as more complicated variants
of strategies. Then, the language enables simple, yet powerful analyses on these games, such as
determining the set of dominated strategies, or discovering whether a strategy profile is a Nash
equilibrium. Finally, replay makes it possible to string simple games together, enabling analyses
of more complicated games - including finitely and infinitely repeated games.

2 Background

A repeated game is a version of a simple game that is played more than once. Oftentimes, the
optimal strategy in the repeated version of a game is radically different from the one in the base
game. For example, in the Prisoner’s Dilemma, optimal play dictates that the players do not
cooperate. But in the repeated version of the game, depending on the number of repetitions
and the value players attribute to their future payoffs, the threat of punishment could encourage
collaboration.
Another feature of games is information. Players may know differing amounts about what others in
the game have played. An example is the distinction between simultaneous games and sequential
games: in a simultaneous game such as Rock-Paper-Scissors, Player 2 does not know what Player
1 has played when she makes her move. This is not the case in a sequential game like Chess.

1

Finally, while games are typically described by the payoffs yielded by pure strategies, players may
choose not to play a pure strategy. That is, they may play different moves with different odds.
This is important in games of imperfect information such as simultaneous games. For example, in
Rock-Paper-Scissors, it’s a bad idea to always play Rock; it is better to attribute a probability of
1
3 to each move.

3 Sample code

3.1 A simple game

Rock Paper Scissors can be described using two statements.

1 strat Shape {Rock | Paper | Scissors};
2 Game g = sim Shape * Shape -> [[(0, 0); (-1, 1); (1, -1)];
3 [(1, -1); (0, 0); (-1, 1)];
4 [(-1, 1); (1, -1); (0, 0)]];

This sample contains objects of the two key types of replay: Game and Strategy. g is of type
Game, while Rock, Paper, and Scissors are of type Strategy, a subtlety that is explained by the
strat keyword (see below).
Other data types available in replay are integers (int), booleans (bool), and floating point numbers
(float).

The sample also demonstrates replay’s support for tuples, which are here used to designate the
payoffs for each outcome of the game.

The sample introduces two keywords:
• strat: Similar in function to an enum, this keyword helps designate a set of pure strategies.

The strategy set Shape describes the set of basic strategies in a game of Rock, Paper,
Scissors.

• sim: This keyword specifies that the players play simultaneously, an important distinction.
Had this keyword been omitted, player 2 would have 27 available pure strategies rather than
3: each describing three different responses for each of player 1’s potential moves.

It also demonstrates the use of parentheses (), brackets [], and curly braces {}. Parentheses are
reserved for tuples, functions, and arithmetic, while curly braces are reserved for block delimitation
and strategy enumerations (using bars | to separate elements). Meanwhile, brackets define arrays
(using semi-colons ; to separate elements), and can be nested to define arrays of arrays.

Finally, note that a Game can specified using the -> constructor, which maps a set of strategy
profiles to a set of payoffs. The ”Shape * Shape” expression is a shorthand for the set of each
combination of two strategies, such as (Rock, Scissors). Had the sim keyword been omitted,
the lefthand ”Shape” would have been interpreted to mean the strategy set of the player who plays
second. This shorthand essentially represents a Cartesian product of the elements in Shape. The
-> operator demands two requirements:
1. The arrays on each side of the operator must have the same size and dimension
2. The payoff tuples and strategy profiles must have the same size

2

3.2 Flow control and functions

replay supports basic flow control with if...else statements and for-loops. This is principally
helpful for writing user-defined payoff functions, which can then be used to describe objects of type
Game.

Here is the matching pennies game described in this manner:

1 strat Side {Heads | Tails};
2
3 function match(Side s1, Side s2) {
4 if (s1 == s2) {
5 return (1, -1);
6 }
7 else {
8 return (-1, 1);
9 }

10 }
11
12 Game g = sim Side * Side -> match();

Pairs generated from the left side of the -> are passed as arguments to the payoff function match().

replay supports the basic boolean operators &&, ||, !, as well as the basic arithmetic operators
+, -, *, / and comparison operators ==, !=, <, >, <=, >=. It also supports exponentiation
with **.

3.3 Repeated games

Finally, we examine the crux of replay: infinitely repeated games.

1 /* Prisoner’s Dilemma. C means collaboration, N means no collaboration */
2 strat Option {C | N};
3
4 Game pd = sim Option * Option ->
5 [[(-1,-1) (-3, 0)];
6 [(0,-3) (-2,-2)]];
7
8 Game infrep = pd ** inf;
9 infrep.p[1].delta = 0.5; // Default discount factor is 1. Change to 0.5.

10 infrep.p[2].delta = 0.5;
11
12 Strategy grim = cycle: C ** inf
13 | N: N ** inf;
14
15 Strategy[] p = [grim; grim];
16
17 // The following statement prints true: this is a Nash Equilibrium
18 print(expected(grim, p, infrep) >= expected(N ˆ inf, p, infrep));

3

This sample introduces the two crucial keywords for describing infinite games and strategies: inf
and cycle, as well as the built-in functions print and expected.

The expression ”pd ** inf” indicates that the game pd is to be repeated infinitely. Likewise, C
** inf indicates that the strategy N is to be played for infinite periods. In both cases, inf could
be replaced by a finite integer to indicate finite repetitions.

The keyword ”cycle” indicates that the strategy involves a cycle of a certain number of periods.
For it to be applicable to a game, this cycle must not only consist of available moves, but it must
also fully describe the player’s strategy. In the case of repeated games, this means that it must
have a strategy for each repetition of the game.

The ”cycle: N ** inf | C: C ** inf;” construction enables strategies to be defined as re-
sponses to certain moves. In this case, the default behavior is to play N infinitely, but if the other
player plays a C during one period, then this behavior will change to playing C infinitely. For
example, a tit-for-tat strategy would be defined by ”cycle: N ** inf | C: C ** inf | N: N
** inf;”

Finally, replay enables printing with the built-in functions print and println, and enables the
calculation of the expected payoff of a strategy given the opponent’s strategy profile using expected.

4

