
Oscar
Functional, Actor-based Programming Language

Manager​: Ethan Adams EA2678
Language Guru​: Howon Byun HB2458
System Architect​: Jibben Lee Grabscheid Hillen JLH2218
System Architect​: Vladislav Sergeevich Scherbich VSS2113
Tester​: Anthony James Holley AJH2186

Goal
We will be implementing an Actor-Oriented Language. We all know there are difficulties
associated with parallel computation, namely data collision when multiple threads access the
same data. Most often, this requires explicitly defining locks and mutexes to control data access
to resolve this issue, which adds significant mental and code overhead. The Actor model is a
different approach to this problem that relies on the concept of message-passing between
processes. The model simplifies the aforementioned difficulties of multiprocessing by
abstracting explicit method calls, and relying on each “actor” to handle tasks and encapsulate
mutable data. We would like to construct our language based off Erlang and Akka framework
available on JVM to make it easy and safe to write code for parallel computing.

Applications
The main application we aim to solve is that of stream processing. By setting up a network of
actors, one can process multiple streams. For example, we can process streams as such.

We can ingest multiple streams of data from different sources, manipulate them in parallel, and
pipe them through various transformations. Since our language is pure and functional, we can
easily reason about dataflow and trace operations in the case of an unexpected result. Since
actors interact through message passing and any side effects from outside actors are
prevented, we can attach logging pipes to keep track of various stages without altering the rest
of data flow.

Syntax
/*
 * C-style multi-line comments
 */
// used for single line comment

// ​let​ is used to declare immutable constants
// values can be declared as such with types inferred
let​ ​a = 5
a = 7 // ERROR as assignment to an immutable constant
let​ ​a = 7 // ERROR as a was declared already
/*
 * all functions are declared using arrow syntax
 * argument type declaration is necessary
 */
let​ ​addTwoNums = ​ (​a: int, b: int) -> int ​=> ​ a + b
let​ b = addTwoNums (a, 6) // b == 11

// another example
let applyFunc = (​f: (double) -> double​, a: double) ​:​ double => {
 // ​arrow syntax to declare function argument f’s signature
 ​return​ f(a) // ​return​ is needed for multi-line functions
} // multi-line functions are surrounded with brackets

// ​lambda expressions
let​ d = applyFunc(​x => x * 2 ​, 44.5) == 89.0

// no argument functions are declared like this
let​ sayHi = ​() -> () ​=> print(“hi!”) // void function
sayHi() // prints “hi!”

// ​tuples​ are first class objects just like fun ctions and actors
// tuples are declared with parentheses
// a single tuple can contain multiple types
let​ tup = (1, 2, “ what”)

let​ tup4 = (1, 2, “what”, 4.5)
// tuples can also be destructured into a series of values
let​ a, b, c = (1, 2, “what”) // a == 1, b == 2, c == “what”
let​ printTriple = ((x: int, y: int, z: int)) -> () => {
 print(x + y + z)
}

/*
 ​* ​ lists ​are first class object. There are ​no arrays
 * These are ​immutable​ . To guarantee performance,
 * lists are implemented as Hash-Array-Mapped-Trie in the backend 1

 * lists can only hold a single type
 */
let​ intList = ​list​<int>() // empty list of type int
let​ listSizeTen = ​list​ (10, 0.0)
let​ intList = [1, 2, 3, 4, 5]// used to declare list literal
let​ intList = [1, 2.0, 3, 4, “5”]// ERROR

// assignment returns a new copy of the list
let​ changedList = (initList[3] = -4)
changedList == [1, 2, 3, -4, 5]
initList == [1, 2, 3, 4, 5]

// lists support map, reduce/fold and filter
initList.filter(x => x >= 3) // == {3, 4, 5}
initList.map(x => x + 3) // == {4, 5, 6, 7, 8}

// use list comprehension for looping
[i <- start ​to​ end].foreach(i => print(i))

[i <- 0 ​to​ 5 ​by​ 2].map(i => {
 ​return​ = i + 4
}).reduce((x, y) => x + y) // == 18

1 ​http://hypirion.com/musings/understanding-persistent-vector-pt-1

http://hypirion.com/musings/understanding-persistent-vector-pt-1

// ​message​ construct dedicated for passing messages to actors
// unlike tuples, these hold reference to ​sender​ actor
message​ ​message(msg: string, payload: double)

// ​actors​ are first class data types in our lan guage
// mutables are declared with ​mut​ ​keyword inside actors.
actor​ Actor(initValue: int) { // takes in a value
 ​mut​ ​x = 10 // allowed within actors
 x = 14 // x == 14 now since x was declared to be mutable
}

mut​ y = 5 // ERROR as it is declared outside an actor

actor​ Worker(name: String) {
 ​let​ ​receive ​ => { ​// all actors must have ​receive​ method defined
 | ​messageType1​(name: string) ​ ​= ​> ​// do something 1
 | ​end()​ ​=> ​die() ​// used to kill this actor and
 // all other workers declared in this actor
 }
}

// creates a new worker with name ​worker

let​ botbot = ​spawn​ Worker(“ ​worker ​”)

// define a message type that contains two strings
message​ helloMessage(prefix: string, suffix: string)
// ​|>​ is used to send a message. Note that “new ” is not needed
helloMessage(“Hello”, “ World!”) ​|>​ botbot
// ​sender​ keeps track of the source actor of a message
helloMessage(“hi”, “there”) ​|>​ ​sender

// pool manages a collection of actors. Use ​spawn​ to open a pool.
// Workers do not have to be spawned individually.
let​ workerPool =
 ​spawn​ ​pool​ (Worker(“multiple”), 10) // puts ten workers into a pool
let​ workerPool2 = // another example of spawning pool
 ​spawn​ ​pool​ (botbot, Worker(“worker-3”), Worker(“worker-4”))

// broadcasts a message to a single worker in a pool using ​|>
// messages passed into a pool is distributed in round-robin fashion

// this is useful for cases where values are accumulated at the end
helloMessage​(“just one”, “ message”) ​|>​ workerPool
// broadcasts this message to all workers in this pool using ​|>>
// useful for cases like streams
helloMessage​(“everyone gets a”, “ message!”) ​|>>​ workerPool
// list of messages can be mass broadcasted
list(​msg1​, ​msg1​, ​msg1​) ​|>>​ workerPool

Key words

let Declaration for immutable data

mut Declaration for ​mutable ​data (within actors only)

actor Actor as a first class object

die Kills the actor and all actors spawned by this actor

spawn Used to spawn actors

pool Construct used to manage a collection of workers

sender Source worker of the message

message Used to communicate between actors and pools

|> Used to send a message to a worker or into a pool in round-robin fashion

|>> Used to broadcast a message or a list of messages into a pool

return Return

to/by For loop range and loop increment/decrementer

int Integer data type

double Double data type used for floating point arithmetics

char Characters

bool Boolean data type. Lowercase true/false please. (Please no python)

string String

maybe/none/some Optional type. “Null” should be wrapped with none in our language

list List backed with HAMT for persistence with performance. Remember, no arrays 2

2 http://lampwww.epfl.ch/papers/idealhashtrees.pdf

Calculation of Pi
Program inspired by ​http://doc.akka.io/docs/akka/2.0/intro/getting-started-first-scala.html

message ​start() // empty message
message ​end()
message​ ​work(start: int, numElems: int)
message​ ​result(value: double)
message​ ​piApproximation(pi: double)

// Master worker for pi approximation
actor​ Master(numWorkers: int, numMsgs: int, numElems: int) {
 ​mut​ pi = 0.0
 ​mut​ numResults = 0
 ​mut​ workerPool = ​spawn​ ​pool​() // empty pool
 ​let​ listener = ​spawn​ Listener(“pi listener”)

 ​let​ receive => {
 | ​start​() => {
 workerPool = ​spawn​ ​pool​(Worker, numWorkers)
 ​let​ msgList = [i <- 0 ​to​ numMsgs].map(i => {
 work(i * numElems, numElems)
 })

 msgList ​|>>​ workerPool
 }
 | ​result​(value: double) => {
 pi = pi + value
 numResults = numResults + 1
 ​if​ (numResults == numMsgs) {
 piApproximation(pi) ​|>>​ listener
 }
 }
 | ​end​() => {

 // automatically closes actors/pools within this actor
 ​die​()
 }
 }
}

http://doc.akka.io/docs/akka/2.0/intro/getting-started-first-scala.html

// Listener actor listens for final computed value of pi
actor​ Listener(name: string) {
 ​let​ receive => {
 | piApproximation(value: double) => {
 print(“value of pi is approximately :” + value)
 end() ​|>​ ​sender
 }
 }
}

// Pi calculation actor
actor​ Worker {
 ​let​ calcPi = (start: int, numElems: int) : double = {
 ​return​ [i <- start ​to​ (start + numElems)].map(i => {
 ​return​ 4.0 * (1 - (i % 2) * 2) / (2 * i + 1)
 }).reduce((x, y) => x + y) // list operations
 }

 ​let​ receive => {
 | work(start: int, numElems: int) => {
 result(calcPi(start, numElems)) ​|>​ ​sender
 }
 }
}

let​ ​main​ = () => { // ​main​ is a keyword
 ​spawn​ Master(5, 10000, 10000)
}

