
Beat​hoven 
 
 
 
 

 

 
 
 
 
 

 
 
 

Sona Roy sbr2146 (​Manager​)  
Jake Kwon jk3655 & Ruonan Xu rx2135 (​Language Gurus​)  

Rodrigo Manubens rsm2165 (​System Architect / Musical Guru​) 
Eunice Kokor eek2138 (​Tester​) 

 

 



Background/Purpose 

● Beathoven is a language built for MIDI/MusicXML generation so that anyone, even people who 
don’t really know music, can create a song by putting together words that represent musical 
concepts into structures that look like actual music. 

● Our language’s output creates a MusicXML or MIDI file representing a music score. We chose 
this output because it can be imported into various music software programs, such as 
MuseScore (a free music composition software, which can generate score and play the notes). 
Additionally, we also chose it because its structure allowed us more flexibility in creating our 
language’s basic functionality. 

● One of our stretch goals with this language is to create a music file that contains both melody 
and lyrics. Lyrics will not have tone, but rather have a beat = best musical genre for this language 
will be rap. 

● Another goal is to represent chords, notes, and improvisation such that different types of music 
creators (people who create music by relative pitch vs by absolute pitch) can have more 
flexibility. 

● Another one of our goals with this language will be to easily generate “stacked” music scores, 
aka music that is played at the same time with the same key but that have different (ie 
polyphonic) melodies. 

Goals and Features 
Musical Production 

- By writing a song’s common elements with our language’s syntax, functions and data structures, 
a user can digitally encode a composition of a song. Additionally our language can generate 
improvised song snippets by randomly generating melodies based off of parameters that 
describe musical patterns.  

 

 
 

1​ of 7 



Syntax 
 

Primitive Data Types Description 

pitch Absolute Pitch: ​`C `G5 `F4#  
Pitch Relative to Key: ​`1 `5 `1+ `6-  

duration e q h w 
1/4 1/8 1/16 1/2 1 2 3/4 3/8 7/16  

int Normal integers 

rest Silence pitch type 
Absolute Pitch:​ ‘s 
Pitch Relative to Key:​  0 

 
 

Supported Data Types Description 

Note 
A Note is defined as a pitch, 
duration tuple. The default pitch 
of a note is “C” and its default 
duration is a quarter.  

  ​  Note fSharp = `F4#; /*F4# pitch, 1/4 duration*/ 
    Note fa = `4:1/4; 
    Note cWhole = :w; /*C pitch, 1 duration */ 
    Note note = :1/4+1/8; /*C pitch, 3/8 duration*/ 

Chord 
A Chord is a group of notes. The 
default inversion for chords is root 
inversion. A chord can also be 
described with a shorthand 
notation($) that details the main 
note of the chord and the bass 
note of the chord. 

    Chord cMajor1 = `C&`E&`G;  
    Chord cMajor2 = cMajor1 & `C5; 
    Chord chord = note1 & note2 & note3; 
    Chord cMajor3 = `cMajor$ ’G4; /* Short hand for C chord 
                                                        Starting on G(ie third inversion) 
*/ 

 
 

Modules Example 

Seq 
A Seq is made up of Notes or Chords.  Seq will 
automatically group Notes and Chords into bars 
according to its attributes. The attribute, time 
signature, is inherited from Score if not specified.  
 

    Seq seq1 = [`1`1`5`5 `6 `6 `5:3/8]<4/4>; 
    Score.setTimeSignature(4/4);  
    Seq seq2 = `[4 4 3 3 2 2 1:3/8]; /* in 
shorthand */ 
 
    Seq seq3 = [ `5`5 seq2.(:6) ]; 

 
2​ of 7 



Seq is mutable and its elements and subsequence can 
be easily accessed like in python. Seq cannot have 
nested structures. A seq within another Seq will be 
flattened before assignment.  
 
Sequences also have a measure_length attribute. 
Measure length attribute covers how many score 
defined measures each sequence covers. 
 
Additionally the sequences module has built in 
functions to modify sequences programmatically. For 
example, some of these functions allow the user to 
algorithmically modify and “improvise” new sequences 
based off of the last notes of a sequence. Other 
functions allow the addition of notes on two 
sequences simultaneously by appending notes that 
follow a specific musical motion 
 

    Seq seqConcat = [ seq1 seq2 seq3 seq3 
seq1 seq2 ]; 
 
  
 Seq.add_note([input_sequence], 
[semitone/tone], [higher/lower/equal])  
 
    Seq.contrary_motion([first_sequence], 
[second_sequence], [up/down]) 
 
Seq phrase11 = `[3 2 1 2] Rhythm beats `[3 3 

3]; 

Seq phrase2 = [phrase11.(0:-1) `3 `1];  

Part 
A Part is a container for sequences that specifies what 
sequences should be played (and when they should be 
played)  throughout a score. If a part has no specified 
sequences for a specific measure, a part autofills 
those measures with rest sequences until all of the 
measures in the part are covered. 

        Part part_1 = [ seq_1*1, seq_2*2]  
                 -> [seq_1, seq_2, rest_seq]  

Score 
A Score is a container of parts with unique attributes 
(such as meter, key and total number of measures) 
that help describe the musical piece it represents.  

Score.parts < part1 < part2 
 
Score.setKeySignature(`Ab) 

 

 
 

Operator Description 

: Indicates a duration 

+ / - Octave /  

` Indicates a note 

& Chord 

* int Concatenates a sequence or note int times. 

< Concatenates parts into a Score-ready object 

 
3​ of 7 



; End an assignment command 

 

 
Example Code Usage 

Example 1 - General Features 
 

/* mary had a little lamb main ​https://musescore.com/user/73888/scores/92396​ */ 

1  Score.setTimeSignature(4/4); /* global variable */ 

2  Seq beats = :[q q h];  

3  Seq phrase11 = `[3 2 1 2] Rhythm beats `[3 3 3]; 

4  Seq phrase12 = `[2 2 2]:beats ‘[3 5 5]:beats; 

5  Seq phrase2 = [phrase11.(0:-1) `3 `1];  

6  Seq phrase22 = phrase11 phrase12 phrase2 `[2 2 3 2 ] `1:w; 

7  Part maryHasALittleLamb = phrase22;  

8  Score.parts < maryHasALittleLamb; 

9  Render maryHasALittleLamb mLamb.py mLamb.xml; 

 
 
Line 1: This uses the Java-like object construct to set a global variable Score’s time signature. 
setTimeSignature is a method within the Score module. Because every of our programs will be creating a 
MusicXML file that is similar to real sheet music, that line is necessary to set our time signature for the 
song. 
 
Line 2: We define a basic beat Seq initialized with the default pitch value of C.  
 
Line 3: This starts off with a sequence of notes, using a shorthand way of representing a group of notes: 
`[3 2 1 2] is short for [`3 `2 `1 `2]:[q q q q]. After that shortened sequence, Line 3 is adding on another 
sequence in which a function called Rhythm adds our beat Seq to a musical phrase with three 3 pitches. If 
we were to write that line completely it would be [‘3 ‘2 ‘1 ‘2 ‘3 ‘3 ‘3]:[q q q q q q h] so our shorthand allows 
for some simplification & less repetition.  
 
Line 4: This also uses shorthand to cast the beats onto the notes.  
 

 
4​ of 7 

https://musescore.com/user/73888/scores/92396


Line 5: we borrow from python’s list comprehension features and copy all notes of phrase11 except the 
last note and add two more. Seq does not have nested structure. Putting seq next to another seq 
concatenate them. In [phrase11.(0:-1) `3 `1], sub sequence phrase11.(0:-1) gets concatenated into the 
list. 
 
Line 6: This line is another Seq combining previously set up sequences and appending another sequence 
to the end. 
 
Line 7: Adding the entire sequence just created to a Part. 
 
Line 8: Adding the Part to the Score in order. 
 
Line 9: We use Render in which the Part gets transformed into sheet music 

Example 2 - Octaves + Chords Features 

 
 

1 Score.setKeySignature(`Ab); 

2 Score.setTimeSignature(4/4); 

3 Seq beats1 = :[3/8 1/8 q e e e e];  

4 Seq beats2 = beats1.(0:-2) :q;  

5 Seq melody1 = `[ Fm$Ab3 Fm$Ab3 Fm$Ab3 0 BbM$D BbM$D BbM$D ]:beats1; 

6 Chord Absus = `Db4 & `Eb4 & `Ab4;  

7 Chord Dflat = `DbM$Db4 & Db5; /* this shorthand plus appended note creates a four note chord */ 

8 Seq melody2 = [ Absus Absus Absus `0 Dflat Dflat ]:beats2;  

9 Seq smellsLikeTeenSpirit = melody1 melody2;  

 
Line 1: This line sets the default key signature to A flat 
 
Line 2: This line sets the default time signature to 4/4 
  
Line 3: We define a basic beat Seq of 3/8, 1/8, quarter, eighth, eighth, eighth, and eighth initialized with 
the default pitch value of C.  
 

 
5​ of 7 



Line 4: We define beats2 as beats1 from first index to third of last index. This function resembles that of 
Python. 
 
Line 5: This starts off with a sequence of chords, using a shorthand way of representing a group of 
chords: `[ Fm$Ab3 Fm$Ab3 Fm$Ab3 0 BbM$D BbM$D BbM$D ]:beats1 is a short for `[ Fm$Ab3 Fm$Ab3 
Fm$Ab3 0 BbM$D BbM$D BbM$D ]:[3/8 1/8 q e e e e]. [3/8 1/8 q e e e e]. Defining the elements of the 
Seq list, `Fm$Ab3 means a F minor chord made out of Ab3, C4, F4 notes. 0 means a rest. BbM$D means a 
B flat major chord made out of D4, F4, B flat 4 notes. Also, A letter followed by a number is an octave, 
which means, for example, C4 fourth octave of a C note. 
 
Line 6: This line creates a chord with Db4, Eb4, Ab4 notes. 
 
Line 7: This line creates a D flat major chord with D flat 5 note, which is Db4, F4, Ab4, and D flat 5. 
  
Line 8: Creates sequence using Absus and Dflat chords, which we created in line 6 and line 7.  
 
Line 9: Finish the song by concatenating melody1 and melody2, which we created in line4 and line8.  

Example 3 - Automation Features with Cantus Firmus 
 

1  Score.setTimeSignature(3/4); 

2  Seq voice_1 = ‘[ 5 5 6]; 

3  Seq voice_2 = ‘[1 2 3]; 

4  Seq.add_note (voice_1, tone, lower) 

5  Seq.add_note(voice_2, tone, equal); 

5  Seq.parallel_motion(voice_1,voice_2, tone, down); 

6  Seq.parallel_motion(voice_1,voice_2,tone, down); 

7  Part part_1 = voice_1; 

8  Part part_2  = voice_2; 

9  Score.parts < part_1 < part_2; 

10 Render Score cantus_f.py cantus_f.xml; 

 
Line 1: setting time signature to the rhythm 3 quarter notes for the total phrase length 
 
Line 2: setting sequence to pitches [5 5 6] with default duration 
  
Line 3: setting sequence to pitches [1 2 3] with default duration 
 

 
6​ of 7 



Line 4: appending the new note to sequence voice_1, with the tone desired and the lower frequency than 
the last note 
 
Line 5: appending the new note to sequence voice_2, with the tone desired and an equal frequency to the 
last note 
 
Line 6: Seq.parallel_motion, there are two stacked sequences, and when they move in parallel both 
sequences move down the same interval - for every call you append a note to each of the two sequences 
you have used in parallel 
 
Line 7: setting the order of sequences such that voice_1 is played first 
 
Line 8: setting the order of sequences such that voice_2 is played second 
 
Line 9: inputting the parts in order into the score 
 
Line 10:  rendering the score into a python file (in order to create a MIDI file) and an .xml file 

Example 4 - Control Flow 

1  Seq Rhythm(Seq beats, Seq melody) = {  /* definition of the Rhythm function used in example 1 */ 
2 if (beats.length == 0) Exception(“empty beats”);  
3 for (int i = 0, j = 0; j < melody.length; j = j + 1) { 
4 melody.(j).duration = beats.(i).duration; 
5 i = if (i + 1 < beats.length) {i+1} else {0}; 
6             } 
7            return melody; 
8  } 
9 
10  function increasePitch() { 
11 Seq baseSequence = `[3 2 1 2] Rhythm beats `[3 3 3]; 
12  } 
13 
14  Score createScore(int totalMeasures, int totalParts) = { 
15          Score score = new Score(); 
16          for(int i = 0; i < totalParts; i=i+1){ 
17                    score.addPart(Part(totalMeters)); 
18 
19           return Score; 
12  }  

 

 
7​ of 7 


