

Oscar
Functional, Actor based Programming Language

Manager​: Ethan Adams EA2678
Language Guru​: Howon Byun HB2458
System Architect​: Jibben Lee Grabscheid Hillen JLH2218
System Architect​: Vladislav Sergeevich Scherbich VSS2113
Tester​: Anthony James Holley AJH2186

Table of Contents

Introduction

Core Concepts

Immutability

Actor

Lexical Conventions

Identifiers

Keywords

Punctuation

Operators

Types

Programming Structure

Introduction
We will be implementing an Actor-Oriented Language. We all know there are difficulties
associated with parallel computation, namely data collision when multiple threads access the
same data. Most often, this requires explicitly defining locks and mutexes to control data
access to resolve this issue, which adds significant mental and code overhead. The Actor
model is a different approach to this problem that relies on the concept of message-passing
between processes. The model simplifies the aforementioned difficulties of multiprocessing
by abstracting explicit method calls, and relying on each “actor” to handle tasks and
encapsulate mutable data. We would like to construct our language based off Erlang and
Akka framework.

Core Concepts
Immutability
Values in Oscar are immutable like Haskell and Ocaml. This means that when a non-atomic
value is declared, it cannot be reassigned and function parameters are passed by value. For
instance, this is not allowed.

int x = 5;
x = 4; // error

For primitive container types like ​list, map ​and​ set ​, they have an additional property
that re-assigning values returns a new copy of the data structure with those updates applied.

list<int> initList == [1, 2, 3, 4, 5];
list<int> changedList = (initList[3] = -4);
changedList == [1, 2, 3, -4, 5];
initList == [1, 2, 3, 4, 5];

Passing objects by value seems like a massive performance drain. After all, if a large
container, say a list of five million entries, were passed in, then there is a huge memory
overhead to copy such structure. ​List ​, and ​map ​ and ​set ​that are implemented by it, in
Oscar are implemented in as HAMT(Hash Array Mapped Trie), which guarantees practically
O(1) runtime for append, update, lookup and slice operations and allows pass by value 1

where value copied in is a pointer to one of the nodes in the list. In fact, persistent vectors in
Clojure, yet another functional programming language, are implemented using this structure.
As such, immutability can be enforced without sacrificing performance.

The main reason for implementing this is to enable painless parallel operations. Compared to
traditional imperative languages like C++ and Java where variables are mutable by default
and explicit synchronization methods are required to prevent data races, Oscar’s way of
delegating actors to handle these mean that the user does not have to worry about
synchronization primitives. Actors are discussed in further detail below.

1 http://hypirion.com/musings/understanding-persistent-vector-pt-1

With this said mutability is allowed within one context: actors. When variables are declared
with ​mut ​keyword, reassignments are allowed. Non-container primitives can have their
values changed and container types allow reassignments of the values held.

actor {
 mut int x = 10 // allowed within actors
 x = 14 // x == 14 now since x was declared to be mutable

 ​mut list<int> mutableList = [1, 2, 3, -4, 5]
 list<int> alteredList = (mutableList[3] = 5);
 mutableList == alteredList == [1, 2, 3, 5, 5]

 }

Section on actors will provide more details as to why mutables are allowed within actors.

Actor
Actor is the basic unit of parallel processing in our language. A one sentence startup pitch
for actors would be like a Java class that extends Runnable interface where all of the fields
are private and the only way to affect it is through passing a specialized construct called
messages​ .

The most often used method of achieving concurrency is threading. Threads allow a process
to efficiently perform multiple tasks at once (given necessary hardware/OS). Issue with most
imperative languages is that, as mentioned above, data races must be handled explicitly,
which means synchronization methods like locks and semaphores are needed that sacrifices
performance.

Actors fixes this issue by preventing data races through encapsulation of data within its own
unit of processing and strict enforcing of means of communication among them. As 2

mentioned before, fields declared inside actors are private, meaning other actors and
programs cannot access and change them. This prevents side effect mutations that often
cause aforementioned problems. As such, the only means of affecting other actors is
through message passing. Each actor defines the types of message it can process and
corresponding action it will take based on that message. By doing so, the concern of data
races are eliminated- one actor simply cannot implicitly modify states of others.
This is why mutable variables allowed within actors. Since these variables cannot be
modified by outside functions or actors unless message handles are specifically
implemented, these mutations can happen safely without worrying about data race
conditions.
Oscar elevates these concepts as primitives types as well as multiple operations to enable
inter-actor communications.

2 https://en.wikipedia.org/wiki/Actor_model

Lexical Conventions
One of the main goals of Oscar is to be consistent and clear. In languages like Java, there
are way too many syntactic sugars that lend itself to inconsistent coding conventions. For
example, ​array​s contain value of ​length ​yet​ ​ArrayList​s rely on​ ​size()​. ​In Oscar, all
contains use the same convention of initializing with​ ​[value1, value2, ...] ​to
maintain consistency and ease of development by preventing developers from having to
lookup different APIs for achieving the same goal.

Identifiers
Identifiers consist of ASCII characters that must start with a letter then followed any
combination of letters and numbers. In other words, it must follow this regex

[‘a’-’z’ ‘A’-‘Z’][‘a’-‘z’ ‘A’-‘Z’ 0-9]*

Whitespace
Any combination of tabs, spaces and new lines are allowed. Unlike Python, Oscar is
not whitespace sensitive. Semicolons are used for statement separation

Keywords
Keyword Usage Example

mut Declaration for mutable​ ​data
Inside actors only

mut int i = 5;
i = 4;

actor Actor as a first class object actor Worker {}

die Kills the actor and all actors
spawned by this actor

receive() => die();

spawn Used to spawn actors and pools spawn​ ​Worker(“worker”);
spawn pool(“worker pool”);

pool Construct used to manage a
collection of workers

pool p = spawn pool(“worker pool”);

receive Message handler in actor receive {
 | messageType(arg: type) =>
}

sender Source worker of the message message(“hi”) |> sender;

message Signal between actors and pools message(“hi”) |> sender;

return Return def f(x: int) -> () => return x;

if/else/else if Conditionals if (true) {} else if (false) {} else {}

for/while Loop construction while(true) { }
for (int i <- 0 to 5 by 1) { }

to/by For loop range and loop
increment/decrementer

for (int i <- 0 to 5 by 1) { }

break Breaks out of the loop while (true) { break; }

int Integer data type int x = 4;

double Double data type used for floating
point arithmetics

double d = 4.4;

char Characters char c = ‘c’;

bool Boolean data type. Lowercase
true/false

bool lie = true;

string String string str = “hi”;

maybe/none/some Optional type. “Null” should be
wrapped with none in our language

maybe<int> m = some<int>(404);
maybe<int> n = none;

list List backed with HAMT for 3

persistence with performance.
list<int> intList = [1, 2, 3];

def Functions def f(x: int) => () = return x;

main Main function def main(args: list<string>) { }

tup Tuple tup<int, int> t = (1, 4);

Punctuation
Punctuation Usage Example

. Decimal part indicator 41.17

, List separator list<int> a = [1, 2, 3, 4, 5];

; Statement separator int x = 4; int j = 4;

[] List/set/map declaration list<int> a = [1, 2, 3, 4, 5];

[] List/set/map/tuple getter a[1]; // 1

{} Statement block if (true) { println(“hi”); }

() Conditional delimiter if (false) { }

() Tuple construction tup<int, int> t = (1, 4);

() Function arguments declaration def func(arg: type) => {}

3 http://lampwww.epfl.ch/papers/idealhashtrees.pdf

‘’ Character literal char c = ‘a’;

“” String literal String str = “hi”;

<> List type list<string> strList = [“hi”];

/* */ Multi-line comment /* hi
 * hello
 */

// Single line comment // here

Operators
Operator Usage Associativity

+ Addition Left

- Subtraction Left

* Multiplication Left

/ Division Left

% Modulo Left

= Assignment Right

== Equal to None

! Logical negation Right

!= Not equal to None

> Greater than None

>= Greater than or equal to None

< Less than None

<= Less than or equal to None

&& Logical AND Left

|| Logical OR Left

& Bitwise AND Right

| Bitwise OR Right

^ Bitwise XOR Right

<< Bitwise left shift Right

>> Bitwise right shift Right

~ Bitwise NOT Right

() Function invocation Right

. Method application Left

: Function argument type declaration Left

=> Function return type declaration Left

-> Map key-value pair Left

|> Send a message to an actor Left

|>> Broadcast a message to a pool Left

<- List comprehension assignment Right

Precedence as would be in ocamlyacc

, <--- low
=
: -> => <-
&& ||
& ^ |
< <= > >= == !=
<< >>
+ -
* / %
~
|> |>>
. <--- high

Types
By default, everything is immutable in Oscar. This means that values cannot be
re-assigned and container values return a new copy of the container when modified.
Mutable values are allowed in one instance: as field variables of actors. This allows
explicit, rather than implicit, changes of values through message passing

Primitive Types

Keyword Usage Example

int Integer data type int x = 4;

double Double data type used for floating
point arithmetics

double d = 4.4;

char Characters char c = ‘c’;

bool Boolean data type. Lowercase
true/false

bool t = true;
Bool f = false;

unit Unit def nothing() => () = println();

Integer ​“‘-’?[‘0’-‘9’]+”
An integer type is an immutable, signed 4 byte value of digits

int x = 5;

x = 4; // ERROR

Integers can be casted into doubles using “.asDouble()” method.

int x = 5;

X == 5.; // ERROR
x.asDouble() == 5.;

Floating Point Numbers ​“‘-’?[‘0’-’9’]+‘.’[‘0’-’9’]*”
Oscar uses ​double ​for floating point numbers. A double is a signed 8 byte
double-precision floating point data like that in Java. Fractional part can be omitted.

double x = 5.4;

double y = -3.4;
double z = 3.;

Implicit castings are ​not​ allowed
double error = 3; // ERROR

int error2 = 2.4; // ERROR

Like integers, doubles can be casted down using “.asInt()” method, which drops the
fractional part of the value.

double a = 3.0; // ERROR

a == 3; // ERROR
a.asInt() == 3;

Arithmetic operations with double always modify the return type to double
5 / 2 == 2;
5 / 2. == 5./2 == 5.0/2. == 2.5;

Character
“\‘((‘a’-‘z’|‘A’-‘Z’)|‘\\’[‘\\’ ‘*’ ‘n’ ‘r’ ‘t’ ‘“’ ‘‘’])\’”
A character is a 1 byte data consisting of ASCII values.

char c = ‘c’;

c - ‘f’ == -2; // true

Boolean ​“true”|“false”
Boolean values take 1 byte and can be either ​true ​or​ false. ​Other data types
cannot be casted as boolean. For example, ​none ​cannot be used as false

bool t = true;

Unit
Unit type is purely for functions that do not return any value denoted by ​()

def println(s: string) => () = { }

Non-Primitive Types
It is worth noting that Oscar treats ​list, set and map ​as “container primitives”

Keyword Usage Example

string String string str = “hi”;

maybe/none/some Optional type. “Null” should be
wrapped with none in our language

maybe<int> m = some<int>(404);
maybe<int> n = none;

list List backed with HAMT for 4

persistence with performance.
list<int> intList = [1, 2, 3];
list<char> charList = list<char>[];

set Set of unique values set<int> tSet = [1, 2, 3]

map Map of key value pairs map<int, string> tMap = [0 -> “hi”]

tup Tuple tup<int, int> t = (1, 4)

4 http://lampwww.epfl.ch/papers/idealhashtrees.pdf

actor Actor as a first class object actor Worker {}

message Signal between actors and pools message(“hi”) |> sender;

pool Construct used to manage a
collection of workers

pool p = spawn pool(“worker pool”);

def Functions def f(x: int) => () = return x;

String ​“\“[char]*\””
A string is just a character list like found in C++. They come with a few built-in
functions for convenience. Since strings are list backed, built-in operations for ​lists
apply to strings as well. Since explicit type conversion does not exist in Oscar,
primitives must be casted by calling “.asString()” method.

string hi = “hello world”;

hi[0] == ‘h’;
me == “hello world”; // == on strings compare values
me.size() == 11;
me.substring(0, 6); // “hello”
me.filter(x:char => char = x != ‘l’) == “heo word”;
println(“hi :” + 5); // ERROR
println(“hi :” + 5.asString()); // “hi :5”

Optional
Oscar supports optional values for ​NullPointerException​-safety.

maybe<int> perhaps = some<int>(0);

maybe<int> no = none;
Type optional has a very simple api for safely interacting with values

perhaps.isDefined() == true;

no.isDefined() == false;

no.isNone() == true;

perhaps.get() == 0;
no.get() == None;
perhaps.map(x:int => double = x + 5.4); // some<double>(5.4);

For example,

def printMaybe(x: maybe<int>) => () = {
 if (x.isDefined()) {
 println(x.get());
 }
}

List
A list is an immutable collection of values of the same type.

list<int> intList = list<int>[]; // empty list of type int
list<double> listSizeTen = list<double> (10, 0.0);

// size 10 of 0.0’s
list<int> intList = [1, 2, 3, 4, 5]; // list literal
list<double> intList = [1, 2.0, 3, 4, “5”]; // ERROR

Since everything without ​mut ​keyword is immutable, assignment just returns a new list
with assignment applied

list<int> changedList = (initList[3] = -4)

changedList == [1, 2, 3, -4, 5]
initList == [1, 2, 3, 4, 5]wwwwwwwwwwwww

If declared with ​mut, ​lists behave like ​vector​s in C++
mut list<int> mutableList = [1, 2, 3, -4, 5]
list<int> alteredList = (mutableList[3] = 5);
mutableList == alteredList == [1, 2, 3, 5, 5]

Type list has a few built-in functions. Here are some
list<int> exam = [1, 2, 3, 4, 5];

exam[0] == 1;
exam.slice(0, 4) == [1, 2, 3];
exam.size() == 5;
list<int> prepend = exam.prepend(0); // [0, 1, 2, 3, 4, 5];
list<int> append = exam.append(6); // [1, 2, 3, 4, 5, 6];
list<int> popFront = exam.popFront(); // [2, 3, 4, 5];
list<int> popBack = exam.popBack(); // [1, 2, 3, 4];
exam.contains(0); // true

exam.foreach(x:int => unit = {

println(x) // prints elements of exam
});

exam.filter(x:int => int = x % 2 == 0); // [2, 4]

exam.map(x:int => int = x + 2); // [3, 4, 5, 6, 7]

exam.foldLeft((x:int, y:int) => int = x + y); // 15

List comprehension can also be used to declare lists.
list<int> comp = [int i <- 0 to 10 by 2]; // [0, 2, 4, 6, 8]
[int i <- 0 to 5 by 2].map(i:int => int = {
 return i + 4;
}).reduce((x:int, y:int) => int = x + y) // == 14

Set/Map
A set is a collection of distinct elements of the same type.

set<int> intSet = [1, 2, 3, 4, 5];
set<int> dupIntSet = [1, 2, 3, 4, 5, 1];
set<int> intSetTwo = [1, 2, 3, 7, 8, 9];
intSet == dupIntSet;
intSet.contains(3) == true;
intSet.intersect(intSetTwo); // [1, 2, 3]
intSet.union(intSetTwo); // [1, 2, 3, 4, 5, 7, 8, 9]
intSet.diff(intSetTwo); // [4, 5]
intSetTwo.diff(intSet); // [7, 8, 9]
intSet.add(8); // intSet stays, returns a new set with 8 added

Similarly, maps are collections of key value pairs.
map<int, int> test = map<int, int>[];
map<int, double> tMap = [0 -> 1.1, 4 -> 5.3, -3 -> 5.3];
map<int, double> tMapCpy = [0 -> 1.1, 4 -> 5.3, -3 -> 5.3];
map<int, double> errMap = [0 -> 1]; // ERROR as int != double
map<int, double> errMap2 = [0 -> 1.2];
map<int, double> union = [2 -> 1.2];
tMap.size() == 3;
tMap == tMapCpy; // compares all key-value pairs
tMap.union(union) == [0 -> 1.1, 4 -> 5.3, -3 -> 5.3, 2 -> 1.2];
tMap.union(errMap2); // error as key 0 exist in both maps
tMap.contains(0) == true;
tMap.add(4 -> 5.3); // tMap stays, returns a new map
tMap.remove(0); // tMap stays, returns a new map without ket 0

Get operations are protected through use of optionals

tMap[0] == some<int>(1.1);
tMap[2] == none;

Like lists, sets and maps can be declared with ​mut ​keyword inside ​actor ​context to
make them mutable.

map<int, double> tMap = [0 -> 1.1, 4 -> 5.3, -3 -> 5.3];

map<int, double> unionMap = [2 -> 1.2];
tMap.add(5 -> 4.3);
tMap == [0 -> 1.1, 4 -> 5.3, -3 -> 5.3, 5 -> 4.3];
tMap[-3] = 3.4; //[0 -> 1.1, 4 -> 5.3, -3 -> 3.4, 5 -> 4.3];
tMap.remove(4);
tMap == [0 -> 1.1, -3 -> 5.3, 5 -> 4.3];

tMap = tMap.union(unionMap);
// [0 -> 1.1, 4 -> 5.3, -3 -> 5.3, 2 -> 1.2];

Tuple
Tuples are like structs. These can be used for conveniently wrapping multiple values of
different types.

tuple<int, string> test = tuple<int, string>[1, “23”];
tup[0] == 1;
tup[2] == “23”;

Tuples can be destructed into values on the left hand side;
int i, string s, double d = tup;
i == 1;
s == “23”;
d == 2.3;

mut tuple​s can have their contents changed but their types are immutable
mut tuple<int, string, double> mutTup = (1, “23”, 2.3);
tup[0] = 2;
mutTup == (2, “23”, 2.3);
tup[0] = 2.4; // ERROR

Actor
Actors refer to units of concurrency processing defined in the Actor Model. Oscar 5

elevates these into first class constructs.
Actors are special. They can hold functions and ​variables, ​ declared using ​mut
keyword. Also, all actors must define ​receive ​function to handle ​message​s. The
spawn ​keyword is used to create them. As explained in “Core Concepts” section,
values inside actors are private. As such, explicit handling of messages is the only way
to affect actors states.

actor Worker(initValue: int) { // immutable initializer value
 mut int x = 10 // allowed within actors
 x = 14 // x == 14 now since x was declared to be mutable
 ​ receive { // all actors must have receive method defined
 | messageType1 => { } // do something 1
 | end => die() // used to kill this actor and
 // all other workers declared in this
actor
 }
}
actor worker = spawn Worker(3);

5 https://en.wikipedia.org/wiki/Actor_model

Pool
pool​ manages a group of ​actor​s. When ​message​s are sent into a ​pool​, they are
distributed in a round-robin fashion so that many ​actor​s can work concurrently. Like
actors, ​pool​s are created using ​spawn ​keyword.

pool workerPool = spawn pool(Worker(5), 10)
// puts ten workers into a pool

Message
Messages constructs used in inter-actor communications. They are structurally similar
to ​tuple​s but hold extra data and operations. ​|> ​operator is used to send a message
to actors and pools

message helloMessage(prefix: string, suffix: string)
helloMessage(“Hello”, “World!”) |> worker

helloMessage(“everyone gets a”, “ message!”) |>> workerPool
// list of messages can be mass broadcasted
[msg1, msg1, msg1] |>> workerPool

sender​ keeps track of the source actor of a message. This can be used to bounce
back a message to whomever sent it.

helloMessage(“hi”, “there”) |> sender

Function
Functions are declared with ​def ​keyword. In Oscar, functions are declared using
arrow syntax like in ECMAScript 2016 and how most lambda functions are declared.

def <identifier>(arg: type, arg2: type2 …) => <return type> = {
 return;
}
def addTwoNums(a: int, b: int) => int = a + b;
int b = addTwoNums(a, 6);
b == 11;

Since functions are first class objects in Oscar, they can be passed into functions as
well.

def apply(f: (double) => double, a: double) => double = {
 return f(a); // return is needed for multi-line functions
} // multi-line functions are surrounded with brackets
def d = apply((x:double) => double = x * 2, 44.5) == 89.0

No argument functions are declared like this:
def sayHi() => () = println(“hi!”); // void function

sayHi(); // prints “hi!”

Program Structure
A typical Oscar program is composed of functions, actors and message declarations.
This section talks about how execution flows in Oscar.

Logics and Relations
Oscar has traditional and familiar relational operators for non-container primitive types

Operator Usage Associativity

> Greater than None

>= Greater than or equal to None

< Less than None

<= Less than or equal to None

4 > 3 == true;
3.4 < 2.4 == false;

Oscar does not allow implicit casting of values. For example, this expression would

3.4 < 2;
yield an error because value 2 is of type int but 3.4 is of type double. Explicit casting
via methods like”asInt()” and “asDouble()” must be invoked for logical comparisons
across types.

Relation operations also extend to container primitives. For instance, comparison of

setA > setB
will evaluate to true if setA contains all elements of setB. Similarly, this means that
every key-value pairs in one map would be contained in the other.

Oscar’s logical operations also follow traditionally used syntaxes. Though functionality

Operator Usage Associativity

== Equal to None

! Logical Negation Right

!= Not equal to None

&& Logical AND Left

|| Logical OR Left

Remains largely the same, it is worth pointing out that Oscar does not support implicit
conversions of values into boolean values. For instance, type ​none ​cannot be
evaluated as ​false​. Also worth noting that the equality operator ​== ​extends to
container types where every single value is compared.

Control Flow
In Oscar, statements are executed from top to bottom. However this order of execution
can be modified using control flow statements.

Branching
Non-loop branching in Oscar is handled as follows:

if (condition) {

 statements block 1
} else if (another condition) {
 statements block 2
} else {
 statements block 3
}

If the first condition is satisfied, first statement is executed. If, however, the second
condition is satisfied then the ​else if ​branch is taken. If none of these conditions
pass, then statements in ​else ​branch is executed.
Conditions have to be boolean expressions. These can be constructed either by
passing a boolean value types as conditions or through relational and logical
operations explained previously.

Loop
Oscar supports both ​while ​and​ for ​keywords for looping. For loops allow iteration
over a range of values at increments defined by the value that comes after ​by​.

for (int i <- 0 to 10 by 1) {
 statements block;
}

While loops, on the other hand, repeatedly executes a block of code until the condition
is broken.

while (condition) {
 statements block;
}

Like for branches, ​condition ​has to be a boolean expression.
Loops can be forcefully exited when ​break ​is called. This returns the stage of
execution to the immediate outside score. For example,
 while (condition) { // outer loop

 while (condition) { // inner loop
 ​break;
 println(“hello”);
 }
 println(“hi”);
}

Because the inner loop is broken before its print statement, it will exit out and execute
the statement that comes after the while block and repeatedly print (“hi”) as if the inner
loop did not exist.

Actor, Pool & Message
Messages are defined as globals so that they can be used by actors. When multiple
Oscar programs are linked together, messages are shared across so that unnecessary
redeclaration of messages are prevented. They must be declared before any actor
declarations.

message message1(msg: string, payload: double)
message message2(prefix: string, suffix: string)
message message3(prefix: string, suffix: string, extra: string)

actor Actor() {}
...

As mentioned before, all actors need to have ​receive ​handler defined to prevent
compilation failures. Inside ​receive ​a series of pattern matches need to be defined.
Values contained in each ​message ​are destructured and available to its corresponding
handler.

receive = {

 | message1 => {
 println(msg + “ “ + payload.asString());
 }
 | message2 => {
 println(prefix + “ “ + suffix);
 }
}

To prevent an extraneous amount of actors from lingering around, each actor can call
die() ​method to clean up and kill its thread of execution. Since this inherently
changes the state of the actor, this must be explicitly performed by setting a message
handler.

receive = {
 | message1 => {
 println(msg + “ “ + payload.asString());
 }
 …
 | kill => {
 die();
 }
}

Once actor types are declared, a ​pool ​to manage these actors can be declared.
pool<Actor> newPool = spawn pool<Actor>(10); // ten actor pool

Executable
Every executable Oscar program needs to define a function named ​main() ​which
takes in a list of strings and returns nothing. This is a reserved keyword that denotes
the first function that gets executed. When multiple Oscar programs are linked
together, the compiler will throw an error upon encountering multiple ​main()​functions.

def main(args: list<string>) => () = { }
Here is a sample Oscar to approximate the value of pi that incorporate these features

message start() // empty message
message end()
message work(start: int, numElems: int)
message result(value: double)
message piApproximation(pi: double)

actor Worker {
 let calcPi = (start: int, numElems: int) : double = {
 return [i <- start to (start + numElems)].map(i => {
 return 4.0 * (1 - (i % 2) * 2) / (2 * i + 1)
 }).reduce((x, y) => x + y) // list operations
 }

 let receive => {
 | work(start: int, numElems: int) => {

 result(calcPi(start, numElems)) |> sender
 }
 }
}

actor Listener(name: string) {
 let receive => {
 | piApproximation(value: double) => {
 print(“value of pi is approximately :” + value)
 end() |> sender
 }
 }
}

// Master worker for pi approximation
actor Master(numWorkers: int, numMsgs: int, numElems: int) {
 mut pi = 0.0;
 mut numResults = 0;
 mut pool<Worker> workerPool = spawn pool<Worker>(numWorkers);
 actor listener = spawn Listener(“pi listener”);

 let receive => {
 | start => {
 list<work> msgList = [int i <- 0 to numMsgs by 1].map(i => {
 work(i * numElems, numElems);
 })

 msgList |>> workerPool;
 }
 | result => {
 pi = pi + value;
 numResults = numResults + 1;
 if (numResults == numMsgs) {
 piApproximation(pi) |>> listener;
 }
 }
 | end => {
 die();
 }
 }
}

let main => () = { // main is a keyword
 spawn Master(5, 10000, 10000);

}

