
Page � of �1 12

Cimple

Language Reference Manual
Graham Barab (gmb2154)
Shankara Pailoor (sp3485)
Panchampreet Kaur (pk2506) 

Page � of �2 12

Introduction--- 3
Comparison with C--- 3
Inheritance 3
Interfaces 3
Method Sets 4
Methods 4
Automatic Variables and Heap Variables 4
Anonymous functions 4

Lexical Conventions-- 5
Identifiers 5
Keywords 5
Literals 6

Operators--- 7
Unary Arithmetic Operators 7
Unary Bitwise Operators 7
Binary Arithmetic Operators 7
Binary Bitwise Operators 8
Unary Logical Operators 9
Binary Logical Operators 9

Comments--- 9
Data Types-- 9
Function Types-- 10

Expressions (lowest to highest precedence)———————— 11
Scope————————————————————————————- 12

Page � of �3 12

Introduction---
The Cimple programming language is a statically-typed, low-level compiled language

that is syntactically similar to C. Its purpose is to offer the fast execution speeds of C while
simplifying the process of writing and maintaining code by offering additional language
constructs that free the programmer to organize logic in a variety of ways. These constructs
include classes with inheritance, and anonymous functions with closures, further expanding and
modularizing the ways in which the programmer may define the functionality and organization of
code.

Comparison with C---

Inheritance
Unlike C, Cimple allows user-defined custom data-types (more usually called classes)
to benefit from code-reuse, by inheriting the members of other classes. This follows a
typical parent-child hierarchy observed in most object-oriented languages. Inheriting
from other structs makes use of the extends keyword, such that a child struct
“extends” the functionality of another struct, which is its parent. Here is an illustration of
how this works:

struct Person {
 string name;
 Person(string theName)
 {
 name = theName;
 }
 }
 struct Student extends Person{
 string uni

 Student(string name, string theUni)
 {
 super(name);
 uni = theUni;
 }
 }

Another keyword worth noting here is super. It allows access to a parent struct’s methods
and can only be used within the struct definition. In the above example, the constructor of the
parent class is invoked by calling super(name);.
To access a method, this could be written: super.getName();

Interfaces

Page � of �4 12

An interface is an abstract type which defines a Method Set, which is a collection of
methods encapsulated in scope. It is a structure which enforces certain properties on an
object, which implements one. The receiver for this method set is empty. In particular all
interfaces have the same receiver.

Interface :
 “Interface” Identifier MethodSet

Ex:
interface pet {

 void feed();
 void walk();

}

Method Sets
A method set is a list of methods belonging to the same receiver. A method set is defined
internally

Ex: {
 ReturnType1 (Receiver) func_name1();
 ReturnType2 (Receiver) func_name2 ();
 }

The Receiver must begin with a capital letter or maybe empty. It is a semantic error for it to
be empty for a non interface type.

Methods
A method is a function with a receiver associated with it.
 Ex: ReturnType (Receiver_opt) func_name ()

Automatic Variables and Heap Variables
As in C, variables can be stored on the stack (“automatic variables”) or on the heap. Automatic
variables, as the name implies, are automatically deallocated upon exiting scope. Heap-
allocated variables, however, do not. A variable can be stored on the heap using the make
keyword, followed by the name of the type. If the type is a custom struct, a constructor method
call can also be used to initialize the data members to their default values. The memory
allocated for heap variables is not deallocated until a statement of the form clean <id> is
used, where <id> is an identifier that refers to a heap-allocated variable.

Anonymous functions
These are a new feature in Cimple, not found in C. These allow for a more intuitive
scheme of declaration of function arguments to other functions than what would be
done in C, using a function pointer instead. They provide compactness to the program
and enhance the readability. More is discussed about these in a later section.

Page � of �5 12

Lexical Conventions--

Identifiers
 These are strings of alphanumeric characters, which refer to virtual memory locations
that hold variable data of a specific type. They can also refer to function names. When an
identifier is initially declared, it must be preceded by the name of the type of data that it
represents. The identifier itself should necessarily start with a letter, and can otherwise be
composed of letters and digits as well as the special character ‘_’ (underscore).

Keywords
 These are words that hold a special meaning for the Cimple compiler, and are thus
reserved to only be used in a particular context. Here is a list of the Cimple keywords:

auto
register
static
extern
typedef
void
char
short
int
long
float
double
signed
unsigned
const
volatile
struct
union
case
default
if
else
switch
while
do
for
goto
continue
break
return
func
string

Page � of �6 12

true
false
func

 extends
implements
make
clean
super

Literals
Literals are supposed to be values that are interpreted exactly the way they are written, unlike
identifiers which can be interpreted as some other value (which they have been assigned to
hold). Literals come in different types in Cimple:

 Integer literals : An integer literal is simply any sequence of digits. It is of type int, unless
it is suffixed with ‘l’ or ‘L’ to indicate the long data type, ‘u’ or ‘U’ to indicate an unsigned
int. It may also be written in hexadecimal form by prepending “0x” and restricting the
following characters to hexadecimal digits, namely [0-9] and [a-f] or [A-F]. Additionally,
octal notation may be used by prepending a leading ‘0’ to the literal.
- Examples: 324, 8, 90000, 037, 0xF, 037

Floating-point literals :- A floating-point literal is a sequence of digits that include either a
decimal point, an optionally signed exponent (indicated by ‘e’ or ‘E’), or both. The type of
a floating-point literal is double unless suffixed with ‘f’ or ‘F’, in which case it is a float.
Examples: 54.5, 986.3, 0.65f, 1.2e11

Character literals :- A character constant is a single alphanumeric, punctuation and
special ASCII character enclosed in single quotation marks. Additionally, certain control
characters such as tab and newline may be indicated by a sequence of two characters:
a backslash followed by another letter, all within single quotation marks.
Examples: ‘a’, ‘B’, ‘9’, ‘&’, ‘%’, ‘\t’, ‘\n’, ‘\r’

String literals :- A string literal is a sequence of alphanumeric characters and control
characters as specified in the “Character literals” section. It is enclosed within double
quotation marks.
 Examples: “Cimple is simple to use.”
Boolean literals :- A boolean literal is represented by one of two keywords: “true” or
“false”.
Examples: true, false

- Separators
These are, as the name suggests, characters which are used to denote separation
between tokens. It should be noted that these are single-character values. The
separators used in Cimple are: {}, [], ().

Page � of �7 12

Operators---
Operators are symbols that command the language to carry out specific mathematical, relational
or logical computations over a set of data items to produce a final result. Following is the list of
all the operators that Cimple understands. Operator precedence is specified in the
“Expressions” section.

Unary Arithmetic Operators

+
The value of an expression formed by the unary plus and its operand is the positive
value of its operand.

-
The value of an expression formed by the unary minus and its operand is the negated
operand.

++
This is can be used as either a postfix or prefix unary operator that acts on an identifier
(variable name) representing an integral value. In the prefix case, the value of identifier
is incremented, and the expression formed by the operator and the operand is equal to
this new value. In the postfix case, the value of the identifier is also incremented, but the
value of the expression is equal to the value of the identifier before having been
incremented.

--
As with the unary increment operator, the unary decrement operator takes an identifier of
integral type as operand, and has prefix and postfix versions. As both a prefix or postfix
operator, the value of the operand is decremented, but the value of the expression
formed by the prefix operator and its operand is the new decremented value, whereas
the value of the expression formed by the postfix operator and its operand is the value
prior to decrementing.

Unary Bitwise Operators
~

The one’s complement operator inverts the bit pattern of its integral-typed operand.

Binary Arithmetic Operators
Note: All arithmetic operators take one operand of arithmetic type on each side of the operator.
The type of the expressions that result from a binary arithmetic operator depends on any
promotions applied to any of its operands.

*
The value of the expression formed by the multiplication operator is the product of the
operands.

/

Page � of �8 12

The value of the expression formed by the division operator is the quotient of the
operands.

+
 The value of the expression formed by the addition operator is the sum of its operands,
unless the operands are of type string, in which case the result of the expression is a
new string that is the concatenation of the operands.

-
The value of the expression formed by the subtraction operator is the difference of its
operands.

Binary Bitwise Operators
<<

The left shift operator takes two integral operands. The value of the expression in binary
is the bit pattern of the left operand shifted left by the number of bits specified by the
right operand. The new least significant bits are 0.

>>
The right shift operator takes two integral operands. The value of the expression in
binary is the bit pattern of the left operand shifted right by the number of bits specified by
the right operand. The new most significant bits are 0.

&
The bitwise “and” operator takes two integral operands. The value of the expression is
an integer whose binary representation is a comparison of the values of matching bit
positions in the operands that can be expressed in the following truth table.

 0 0 -> 0
 0 1 -> 0
 1 0 -> 0
 1 1 -> 1

|
The bitwise “or” operator takes two integral operands. The value of the expression is an
integer whose binary representation is a comparison of the values of matching bit
positions in the operands that can be expressed in the following truth table.

 0 0 -> 0
 0 1 -> 1
 1 0 -> 1
 1 1 -> 1
^

The bitwise “exclusive or” operator takes two integral operands. The value of the
expression is an integer whose binary representation is a comparison of the values of
matching bit positions in the operands that can be expressed in the following truth table.
 0 0 -> 0
 0 1 -> 1
 1 0 -> 1
 1 1 -> 0

Page � of �9 12

Unary Logical Operators
!

The logical “not” operator evaluates to true if its operand is false, and evaluates to false
if its operand is true.

Binary Logical Operators

&&

The logical “and” operator evaluates to true if both of its boolean-typed operands
evaluate to true. Otherwise, the expression has a value of false.

||
The logical “or” operator evaluates to true if either of its boolean-typed operands
evaluate to true. Otherwise, the expression has a value of false.

Note: All expressions formed by logical operators and their operands are of boolean type - “true”
or “false”.

Comments---
Multi-line comments in Cimple are anything which is enclosed within the character-pairs /* and
*/. A single-line comment is any text that begins with the characters //

/* This is a multi-
line comment */

// Whereas this is a single line comment
Comments contain information which is ignored by the compiler, but that is helpful to the
programmer writing and maintaining the code to which it refers. Comments cannot be nested.

Data Types--
These refer to the forms of data that Cimple can accept to perform operations on. Following is a
list of data types that Cimple recognizes:

Integers
There are 16, 32, and 64-bit integer types available in Cimple, which can be
specified with the keywords short, int and long, respectively.

Floating-Point
There are 32 and 64-bit floating-point types in Cimple, which can be specified
with the keywords float and double,respectively.

Characters
The char type is an 8-bit integer with the intended use of storing a single
character.

Page � of �10 12

Typed Pointers
A typed pointer is an unsigned integer whose size is dependent on the target
architecture, and that points to a (potentially variable) location in memory which
holds a value of that type.

Arrays
Arrays are 0-indexed lists of same-typed values. They are indicated by writing the
number of items the array should hold, enclosed by square brackets at the end of
the name of an identifier, i.e. int integerList[10]; Individual elements
from the array can later be accessed by specifying its index into the array
enclosed by square brackets at the end of the name of the identifier, i.e.

// Set the tenth element in the array to the value 10
integerList[9] = 10;

Strings
Strings are built-in data types in Cimple, and are implemented as arrays of
characters. It is specified by the string keyword.

Void
The void type indicates an absence of a value, and is used primarily as a return
type of a function to indicate that it is used purely for it’s side effects, such as
printing. It can also be used to indicate the nonexistence of arguments in a
function definition.

Structs

Structures are the primary means of creating custom data types. Structs
encapsulate data members of arbitrary type and functions that act on or with
these data members. Their size is variable and dependent on the data members
defined by the user. Constructors can be defined that initialize the state of a
struct by implicitly being called whenever an instance of that struct is allocated.

Function Types--
Named Functions

A named function is one that is declared in global scope in the following manner:
<type> <id> (<type> <id>, <type> <id>,...);

Where the first <type> indicates the type of value (of those listed in the “Data
Types” section) returned by the function, the first <id> is a valid identifier which
serves as a name for the function, and a set of parentheses that enclose a
comma separated list of the identifiers and types of the parameters.

The definition of the function begins with the same format as the declaration
without the trailing semicolon, and is followed by a pair of curly braces that
enclose a sequence of statements that define what the function does.

Page � of �11 12

Anonymous Functions
Anonymous functions can be defined inline, without the need for an identifier.
Because this means that a function could begin its definition within some scope
other than global, it is valid for the scope of the anonymous function to reference
variable names (identifiers) declared outside of its scope. In this case, the
compiler will copy the values of these variables to a data structure that is passed
as an implicit argument to the function. An anonymous function is defined as
follows:
 func (<type>)(<type> <id>, <type> <id>, …) { <statements> }
The first set of parentheses can only have one type indicated, and represents the
return type of the anonymous function. The second set of parentheses contains
the parameter list, as with the named functions.

Expressions (lowest to highest precedence)————————
■ Assignment-Expression

■ a = b; a += 1;
■ Conditional Expression

■ (a > b) ? c : d
■ Logical-AND-Expression

■ a && b
■ logical-OR-expression

■ a || b
■ And-expression

■ a & b
■ Inclusive-Or-expression

■ a | b
■ Equality-Expression
■ Additive Expression

■ Left recursive, expands to multiplicative expressions
■ Multiplicative Expression

■ Left recursive, expands to primary expressions
■ Primary Expression

■ Consists of integer, float, string, char constants
■ Parenthetical expressions

Statements
■ Expression Statements

■ expression;
■ Jump Statements

■ goto identifier;
■ continue;
■ break;
■ return expression_opt;

■ Selection Statement
■ if (expression) statement
■ if (expression) statement else statement

Page � of �12 12

■ switch (expression) statement
■ Labeled Statement

■ case expression : statement
■ default : statement
■ identifier: statement

- Loops
■ while(expression) statement
■ do statement while(expression)
■ for (expression_opt; expression_opt; expression_opt)

statement

 Here we have expression_opt defined in our grammar as

 expression_opt:
 expression
 | none

Scope————————————————————————————-
Scope is delimited by a set of curly braces { }. Any variables declared after a left curly
brace go “out of scope” after the corresponding right curly brace. That is to say, it is an
error to refer to an identifier declared in some scope from the enclosing scope.

