

“"A fast and secure hardware accelerator
for RSA encryption with a clear, simple
interface for programmer use.”

Initial goals

Provide a simple, well-defined interface for a host machine to carry
out RSA cryptography operations on a dedicated piece of hardware.

1. Implement RSA algorithms using SystemVerilog.
2. Provide a software interface (Linux device driver, wrapper (in C),
and example interface) to use the RSA Box.

A

data out[0:31)]

reset _

write o
data in[0:31] _
address [0:2]

RSA Box

High-level design

encrypt
block

decrypt
block

7 7 A A

\ \J \ \ 4
[0:63] [0:63] [0:31] [0:127]
private private public public

key key key key

register:

r

r

register:

register:

e

register:

n

Original vs. final design

data out[0:31)

data out
reset g
- . encrypt
init/clear bit[1] _ <—> write . block
decrypt
RSABox [—[- | RSA Box | i
data in[8] —

o <—> data in[0:31]
encrypt/decrypt bits[2] address([0:2)
B —

0])] 2] 3]

[0:63]

private private public public private
key key key key ey
register: | | register: register: register: register:
d n e other n_other P

Observation: parts of the RSA algorithm are “fixed costs”, others are “marginal costs”.
Final design prioritizes lowering the overhead for repeated operations, rather than all operations -- highly costly
Extended Euclid’s algorithm moved to software.

Observation: implementing operations for large-bit values is time-consuming and not always possible.
We changed our algorithms to use fewer operations and focused on speeding up encryption/decryption.

Contributions

Jaykar: primary hardware framework writer, device driver,
hardware/software interface (first version)

Emily: C wrapper, hardware/software interface, C interface
Adam: multiplier block and exponentiation

Noah: private key generation and primality testing

Software/Hardware Interface

® Created 14 operation “ISA” that C wrapper
sends to device driver to communicate with
hardware.

® Lesson learned: standardize this earlier.

® OS was really helpful -- we struggled with the
device driver lab3 code.

Private Key Generation (Software)

® Private Key: Extended Euclid’s in Python

o computes modular multiplicative inverse = private
key, piped into C
e Public Key:

o initial approach: Miller-Rabin + Linear Backoff
o final approach: hard-coded list of 64 bit primes

Hardware implementation

e Optimized modular multiplication from 6
cycles to 2 cycles per bit

e Set up a parallel block for modular
exponentiation so encryption and decryption
can run simultaneously

Encrypting & Decrypting (Hardware)

® Modular multiplication block

o Multiplies two 128-bit numbers and reduces on a 128-
bit modulus in 257 clock cycles

® Modular exponentiation block

o Performs exponentiation in O(n) time where n is the
bit length of the exponent

Modular Exponentiation Algorithm

function modular pow(base, exponent, modulus)

Assert :: (modulus - 1) * (modulus - 1) does not overflow base
result := 1
base := base mod modulus
while exponent > 0

if (exponent mod 2 == 1):

result := (result * base) mod modulus
exponent := exponent >> 1
base := (base * base) mod modulus

return result

Source: http.//en.wikipedia.org/wiki/Modular_exponentiation

Where we struggled (Git history)

Mar 22, 201 5 - May 14, 201 5 Contributions: Commits v

Contributions to master, excluding merge commits

Mar 22, 201 5 . May 14, 201 5 Contributions: Deletions v

Contributions to master, excluding merge commits

l\/lal’ 22, 2015 - May 14, 2015 Contributions: Additions v

Contributions to master, excluding merge commits

Tl;dr: Should have taken the pre-regs. Advanced Logic Design would have been nice.

