RSA Box Design Document

Team members:
Adam Incera (aji2112)
Jaykar Nayeck (jan2150)
Emily Pakulski (enp2111)
Noah Stebbins (nes2137)

1.Introduction

RSA Box is a hardware accelerator for the widely used RSA encryption algorithm. To take
advantage of the improved speed that hardware can provide, we'd like as much of the
computation as possible to be carried out at the hardware level. In other words, we'd like
the hardware to manage all the encryption and decryption.

The original p and g values are generated (but not saved) at the software layer, since we
would like to offer the user the possibility of entering their own private keys and
automatically generating private keys requires a highly involved, probabilistic algorithm. The
keys are only stored in hardware registers -- this way, there is no interface at neither the
software nor the hardware level through which to extract the private key. Only the public
key is accessible through the API. Furthermore, we store both our own private key (for
decryption) and the remote box’s public key (for encryption) in registers at the hardware
level so that we can access them as quickly as possible.

Figure 1 shows a high-level block diagram of our design, explained below. This box diagram
is preliminary -- the selection of operators will likely grow as we run efficiency tests on

different possible algorithms.

‘data out

init/clear bit[1] N — +
RSABox [L -
data in[8]
> — *
encrypt/decrypt bits[2]
> I —— /
f r s [] »
L J Y L J L
(0] (1 [2] (31
private private public public
key key key k.ey
register: | | register: register: register:
d n e other n_other

Figure 1

To initiate or end an RSA session, we flip and hold the value of the init/clear bitto 1 and 0,
respectively. In other words, the RSA Box will automatically turn off and clear registers if the
init/clear bit is not set to high.

Furthermore, the encrypt/decrypt bit determines what to do with the data on data in. If the
encrypt/decrypt bits are set to 0, 1, 2, and 3, the box reads off data in and writes into the
corresponding register.

If the values are already set, the bit can be set to either 0 or 1 to determine whether the
data in is ciphertext to be decrypted or a message to be encrypted.

Data is inputted and outputted serially -- one encrypted or decrypted character at a time --
on data out.

Reusing the encrypt/decrypt bit for different purposes and limiting the number of I/0s
allows us to keep the API simple. This minimalist API ensures that it is not possible to access
private data from the hardware.

The arithmetic operation modules on the far right of Figure 1 are specialized modules for
operations on wide bit-length numbers. For example, the multiplication module leverages
the Karatsuba algorithm to efficiently split up the bits in a number before multiplying it in
parts and putting it back together.

2. Hardware

2.1 Overview:

As we explained in our proposal, the 3 major algorithmic operations that need to be carried
out at the hardware level are are:
1. Generating keys
@® Compute the multiple of two large primes, yielding n (n = pq)
@ (See Section 2.2.1) Find a positive integer that is less than (p-7)(g-7) and is
coprime with (p-7)(g-1), a value called e
@ (See Section 2.2.2) Determine d, the multiplicative inverse of e (mod (p-1)(g-1))
2. Encrypting and decrypting messages
@ (See Section 2.1.4)

After completing these steps, we store p, g, and d as the private key and publish nand e as
the public key.

Section 2.2 (High-Level Subroutines) shows implementations of all the algorithms required
to compute the values for RSA. These implementations in turn rely on operators that are
usually straight-forward to invoke on an FPGA:
1. addition (+),
subtraction (-),
multiplication (¥),
division (/),
modulo (%).

ik wnN

However, RSA requires invoking these operators on very large bit-length numbers, which
adds a layer of complication. Section 2.3 (Hardware Implementations of Arithmetic
Operations) explains how we intend to efficiently implement these operators on an FPGA for
RSA.

2.2 High-Level Subroutines:

The following code snippets provide tested Python implementations of each of the
standardized algorithms we intend to use.

2.2.1 Computing e

e can be any integer that is coprime to ®(n). One way to simplify selection of a value of eis
to make e prime. That way, in order to test if it is coprime to ®(n), we only need to check if e
divides ®(n), since we already know that e and ®(n) do not have any prime factors. In other
words, if ®(n) % e returns a non-zero value, then eand ®(n) are coprime, and we have
found a suitable value of e. We can have a series of prime numbers that we will test against
the value of ®(n), and use the first one that returns successfully.

The following Python code generates a value for e:
def generate e(randomNuml, randomNumZ2) :
program takes in two large random numbers
relative prime cap = (randomNuml - 1) * (randomNum2 - 1);

set the value of e

e = -1

for i in range(l, relative prime cap):
if relPrimeCap % i != 0:
e =1

break

2.2.2 Extended Euclidean Algorithm (Computing d)

d forms part of the private key, which is computed with e and . ®(n) is the number of
integers between 0 and n that are relatively prime to n. We can use this and e to calculate

the private key component, d, by invoking the Extended Euclidean algorithm.

The following Python code executes the Extended Euclidean algorithm:
Python for calculating multiplicative inverse
adapted from pseudocode for Extended Euclidean Algorithm

at http://en.wikipedia.org/wiki/Extended Euclidean algorithm#Modular integers

def inverse(e, phi n):
d=20
new d = 1
r = phi n

new r = e

while new r is not O0:

quotient = r / new_ r

(d, new d) = (new d, d - quotient * new d)

(r, new r) = (new r, r - quotient * new r)
if r > 1:

return -1 # error

if d < 0:
d =4d + phin

return d

2.2.3 Encryption and Decryption

Encryption and decryption are mathematically equivalent operations, except that the
exponent used in the calculation comes from a different register. The mathematical

formulae are:

@ encryption: cypher = input” (e) mod (pqg),whereinputisthe message

@ decryption: message = input”(d) mod (pq),whereinputis the cypher
The hardware implementation of ensuring that we read from the right register given a bit is
trivial (we can simply use one AND and one NAND gate). Given their equivalency, we will
discuss the two subroutines -- encryption and decryption -- in the same terms.

The following Python code represents the encryption/decryption step in RSA:
def encrypt (base, exponent, N):
¢ = m"e (mod n) if encrypting
m = ¢c*d (mod n) if decrypting
" in terms of params, both correspond to base”exponent (mod N)

result = 1

while exponent > O0O:

if exponent % 2 == 1:

result = (result * base) % N

exponent = exponent >> 1
base = (base * base) % N

return result;

2.3 Hardware Implementation of Arithmetic Operations

In order to fully abstract away the complications of wide-bit binary numbers, we need to
create Quartus modules for each of the operators described in the Overview.

2.3.1 Addition Module

Addition of 2 digits of nand m bit length respectively yields a sum of maximum bit length
max(n, m) + 1. Implementing this should be fairly straight-forward -- we can use a
look-ahead adder to implement addition of a wide-bit number in as few cycles as possible.

2.3.2 Subtraction Module
This is analogous to the addition module, but in reverse.

2.3.3 Multiplication

For multiplication, we can use the Karatsuba algorithm. Karatsuba is an exceptionally fast
algorithm for multiplying wide-bit numbers. It is a way to get past having to multiply
numbers in n additions and multiplications, which the grade school algorithm uses and
instead performs multiplication in 3 additions and 3 multiplications.

The implementation below assumes a 36 bit length number, and uses a black box function
that multiplies 18 bit numbers, to demonstrate how to multiply the 36 bit numbers. We used
18 bits because the specialized multiplier blocks inside the Cyclone V FPGA are 18 * 18 bits.

The Karatsuba implementation below is simply a proof-of-concept: even though we are
using 36 bits, we can arbitrarily extend it. For example, if we wanted to multiply 72x72 bit
numbers, we could mimic the same logic but call our function to multiply 36x36 bits for a
72x72 bit multiplication. This implementation only uses bit shifts, additions, and the black
box multiplication, simulating what would be available to us on the FPGA.

def multiply 18x18(a, b):
return long(long(a) * long(b))

def multiply 36x36(a, b):
count = long(0)
nbits = 18

By &ing with the first nbits, we get the low bit values. this number can be
hardcoded in verilog.
for i in xrange (nbits):

count = count << 1 | 1

#getting first half of bits and last half of bits this will probably be much
easier in verilog, because we can simply split the input wire

A high = long(a >> nbits)

A low = long(a & count)

B high = long(b >> nbits)

B low = long(b & count)

#3 multiplications and 3 additions

templ = multiply 18x18 (A high, B high)

temp3 = multiply 18x18 (A low, B low)

temp4 = long(multiply 18x18(long(A high + A low), long(B high + B low)) - templ
- temp3)

return long((templ << (nbits<<l)) + temp3 + (tempd << (nbits)))

2.3.4 Division

For division, we can use a variation of the MegaWizard function LPM_DIVIDE, which
calculates the reciprocal of a value and supports bit widths in the denominator of up to 64
(https://www.altera.com.cn/zh_CN/pdfs/literature/ug/ug Ipm_divide mf.pdf), and then use
the efficient multiplication aglorithm described above to multiply with the reciprocal.

The Newton Raphson Method (http://en.wikipedia.org/wiki/Division_algorithm) implements
this approach highly efficiently:

Express D as M x 2e where 1 < M < 2 (standard floating point

representation)

D' =D / 2e+l # scale between 0.5 and 1, can be performed with bit
shift / exponent subtraction

N' = N / 2e+l

X = 48/17 - 32/17 * D' # precompute consts with same precis as D
repeat time

https://www.altera.com.cn/zh_CN/pdfs/literature/ug/ug_lpm_divide_mf.pdf
http://en.wikipedia.org/wiki/Division_algorithm#Goldschmidt_division

X =X + X x (1 - D' x X)
end
return N' x X

2.3.5 Modulo
The modulo operator can be implemented either using division, multiplication, and a floor
function or by repeatedly subtracting one value from another
(stackoverflow.com/questions/2660997/):
® Option1:a $ b =a - (b * floor(a / b))
@ Option 2: using repeated subtraction
def mod(a, b):
remainder = a;
while (b < temp):

remainder = a - b

return remainder

Since looping operations would be costly in hardware, we chose to implement Option 1.
Option 1 requires us to implement a floor function.

3. Software

The software layer exists to simplify programmer usage of RSA Box, as well as to prove that
the hardware functions correctly. As such, the sections below describe the following
programs:
1. adriver to connect to the RSA Box,
2. aClibrary that exposes a simple API and generates the seed values,
3. ademo chat application to provide an elegant demonstration that the RSA Box
platform is working and ready to be used by other developers.

3.1 Driver

We'd like to build a kernel-space driver that connects to the RSA box that supports the
following functionality:
1. Request a new public key,
2. Express individual ASCII characters as 8-bit wide values that are sent to the
RSA and return them in a 128-bit wide encrypted form.

We would write a kernel module similar to what we wrote in lab 3.

3.2 C Library Wrapper

http://stackoverflow.com/questions/2660997/

The C library makes it easy for an application programmer to use RSAB. The programmer
can initiate a session -- that is, generate a unique public key with a unique hidden private
key -- and then encrypt or decrypt messages.

The interface that the C library would expose looks as follows:
// Start session.
// Use user-specified private key, return public key.

long RSA init(long p, long q);

// Start session.
// Use auto-generated private key, return public key.
long RSA init();

// Save remote keys to register.
void set remote keys(long e other, long n other);

// Encryption and decryption using values stored in registers.
// Raise exception and set errno if relevant register not set.
char *encrypt (char *msg);

char *decrypt (char *cypher);

// End session and clear registers.
void RSA end();

3.3 Demo Chat Application

Finally, we'll implement a simple chat client to demonstrate the functionality. The chat client
will allow two users to enter an IP address and a port to connect to in order to initiate a chat
session. The users will then be able to chat normally, but under the hood, none of the
transmitted data will be sent as cleartext.

