
Programming Language and
Translator

Project Proposal

Language For Linear Algebra (LFLA)

Author:

Chenzhe Qian

Guitian Lan

Jin Liang

Zhiyuan Guo

UNI:

cq2185

gl2510

jl4598

zg2201

September 30, 2015

Motivation

Linear algebra is one of the most important subject for undergraduate STEM stu-

dents. Currently, the undergraduate linear algebra courses are matrix oriented,

as opposed to theory oriented. However, due to the abstractness of linear alge-

bra, many students still find it too difficult to catch its essence. We believe that

computer science should play a crucial role in math education - especially helping

students to learn tough subjects like linear algebra. Yet, unfortunately, the com-

mon available math software involving linear algebra like MATLAB and R only

deal with matrix. This only leave students with the impression that linear algebra

is just matrix. Moreover, in MATLAB the vectors are treated as the (1 x m) or

(n x 1) matrix, and this is not conceptually correct. It often leads to confusion

and problems in coding and debugging. Therefore, these math oriented language

cannot truly help the students understand the fundamentals and the beauty of the

linear algebra. Given this situation, we would like to create a domain language to

help students and teachers in learning and teaching linear algebra. The Language

for Linear Algebra(LFLA) is mainly designed for educational purpose.

Features

• In LFLA we have several primitive types direct corresponding to the concept

in linear algebra. Beside the matrix, we also have vector, vector space, affine

spaces and inner product space. It will tell the students that linear algebra

is more than just matrix.

• Besides the normal matrix calculation, our language emphasizes the relation

between vector space, vectors and matrix considered as a map. We believe

that understanding their relation is important in learning the linear algebra

and students can get insight by using the language to exploring the linear

algebra world.

• We take the best to make the language syntax similar to the math notation,

so that learning the language will not be a large overhead.

1

Built-in Types

Types

var // An integer or a float as scalar

vector // An element of the real coordinate space Rn.

// An n-vector is a list of n numbers.

vecspace // Vector space. It’s a collection of vectors.

matrix // A rectangular array of numbers , arranged in

// rows and columns.

inspace // Inner product space. It’s a vector space

// with an inner product.

affspace // Affine space.

Type Declaration and Initializaition

VECTOR

// Declare a vector v

vector v;

// Declare and initialize a vector v

vector v = [a1,a2, ...,aN]; // Separate by comma

// Examples

vector v;

vector v = [1,2,3];

MATRIX

// Declare a matrix m

matrix m;

// Declare and initialize a matrix m

matrix m = [

a11,a12 ,...,a1M ;

a21,a22 ,...,a2M ;

2

......

aN1,aN2 ,...,aNM

];

// Each element in vector is separated by comma

// Each vector is separated by semicolon

// Examples

matrix m;

matrix m = [1,2; 3,4];

// Note matrix cannot interchange with vector

vector v1 = [1,3];

vector v2 = [3,4];

matrix m = [v1; v2]; // This is not allowed

VECSPACE

//A vector space is defined as a function of

// multiple vectors

vecspace vs = L(v1, v2 ,..., vN);

// Examples

vector v1 = [1,0];

vector v2 = [0,1];

vecspace vs = L(v1, v2);

Operators

LFLA contains all operators in common languages like Java and C++, except

for bit manipulation operators. However, there are subtile differences between

scalar-scaler, scalar-object and object-object operations. Here objects are vectors,

matrix, vector space, affine space and inner product space.

3

Scalar-Scalar operations

Assignment = Assign a value to a var

Addition + Add two var

Subtract − Subtract one var from another

Multiply ∗ Multiply two var

Division / Divide one var from another

Exponential ˆ Exponential computation on var

Modular % Modular computation on var

Increment ++ Add 1 to the value of var

Decrement −− Subtract 1 from the value of var

Compare !=, ==, <, >, <=, >= Normal comparison operations on var

Scalar-Object operations

Addition +. Add a var to each element in vector, matrix

Subtract −. Subtract a var from each element in vector, matrix

Multiply ∗. Multiply a var to each element in vector, matrix

Division /. Each element in vector, matrix is divided by a var

Exponential ˆ. Exponential computation on each element in vector, matrix

Modular %. Modular computation on each element in vector, matrix

Object-Object operations

Assignment = Assign an object, like vector, matrix, vecspace

Addition + Add corresponding elements in two objects

Subtract − Subtract between corresponding elements in two objects

Multiply ∗ Multiply corresponding elements in two objects

Transpose ´ Transpose of a matrix

Inner Product <,> Inner product

Lie Bracket [,] Lie Bracket

Compare <, >, ==, @ Some specific comparisons

Library Functions

In LFLA language, it provides several library functions.

• sqrt(var)

Take square root of a scalar

4

• ceil(var)

Take ceiling of a scalar

• floor(var)

Take floor of a scalar

• dim(vector v)

Give the dimension of a vector

• dim(matrix m)

Give the dimensions of a matrix

• basis(vecspace vs)

Give out one a array of basis (vector) of a vector space.

• rank(matrix m)

Give the rank of a matrix

• trace(matrix m)

Give the trace of a square matrix

• eigenValue(matrix m)

Give the eigenvalues of a matrix

• image(matrix m)

Give the image of a matrix

• orthoBasis(inspace i)

Give the orthogonal basis of a inner product space

Control Flows and Function

// if else statement

if expr

{

statements;

}

5

else if

{

statements;

}

else

{

statements;

}

// for loop

for expr

{

statements;

break;

}

// while loop

while expr

{

statements;

continue;

}

// define a function

function name(args)

{

stataments;

return [value1 , value2 , ..];

}

Sample Program

// Problem 1: Given an array of vectors of the same

// dimension , judge wether they are linear independent.

// Solution:

function linearIndep(vector [] vectors)

{

6

if vectors.length == 0

return true;

if vectors.length > dim(vectors [0])

return false;

var i;

vecspace vs;

for i=0: vectors.length

{

if vectors[i]@vs

return false;

vs = vs + L(vectors[i]);

}

return true;

}

// Problem 2: Given a inner product space W = (V,a),

// please orthonormalising a basis of vector space of V

// by the Gram -Schmidt method

// Solution:

othonomalising(vector [] basis)

{

var i, j;

for i=0: basis.length

{

vector v = basis[i];

for j=0:i

{

w = w-a<basis[i], basis[j]>*.basis[j];

}

basis[i] = w/.sqrt(a<w, w>);

}

}

7

