All That Matrix

Final Project Report

8/22/2014
COMS W4115
Stefanie Zhou (sz2475)

Contents

IO 11 oo [T 1 [o SR 4
IO\ 101 (V[o OSSO R 4
R O AV TSRO STPRO 4

2. Language TULOMTAL.........coviiiiie et e st este et e nre e reenee e 4
N S O 141 o] SO SPRRSRSSN 4
2.2 MAtriX EXAMPIE ..ot 5
2.3 Compile and RUN YOUF PrOQramc.oiieiuiiieiie e eiesee et sie e steeae e sreesne e ssaene s 5

3. Language Reference ManUalcccooiuiiiiiieic i 5
K20 A 111 0o 1 od 1 o OSSPSR 5
3.2 LeXiCal EIBMENTS......c.icieiieee sttt e e e e te e ne e nre et 5

B A 00 41 1 01T USSP PRPPIN 5
TN [0 [=] 1) =] USSP 6
3. 2.3 KBYWOIUS ...ttt ettt et e e e s s e st e e seeste e s be et e sneesreeeeaneenraenreas 6
3. 2.4 PUNCEUALIONSottt ettt et et e et e s se e s ta e st e s taesbe e st e s naesreeneaneenraeneeas 6
32,5 CONSLANTS ...ttt ettt ettt h et b bbb b e be et nan e b nneas 6
G BB T L I8/ 01 RPN 7
TR T8 | | USSR TURTRORPRN 7
TR 00 = To o] 1= o SRS 7
TR 1 {1 T TSSO PSR SPPSN 7
IR V. 4) TSSOSO SPROSN 7
3.4 EXPressions and OPEIALOIS.eiiiiiieieieieste ettt sttt bbbt bbb b s e 7
KB I (0 (=TS o] USRS 7
3.4.2 BINAIY OPEIALOISiivieiieie ittt ettt ettt te ettt e st e et e s e ste e e e s teesteeneesraesreeneeeneenraenreas 7
3.4.3 LOGICAI OPEIALOTS.cuviietiieitiitieieeeet ettt b ettt b bbb nneas 8
344 BUIT-IN FRALUIES. ...c.vie ittt ettt ettt e e et et e et e e teesnnaebeeaneas 8
IS =1 (=] 4 1=] SRR 9
IR D T F- LA o] SRR 9
3.6.1 Program DefiNITIONcccoiiiiiiiiiieiee et 9
3.6.2 FUNCLION DECIArAtIONSveiiviieiie sttt e e eanas 9
K S 1ol o TPV T TPV PO P PRTPRPPPOPTPN 9
IR o] (=] (1oL SRS 9

O (o =Tot i o -V OSSO PTRRP 10

4.1 PIOCESS ...eieiutiiesiteeesitee e sttt ettt e ettt ettt e et e e sttt e st e e bt e e b bt e e bt e e e R et e e b e e e b e e b e e b e e e e e nn e e 10

Page 2

4.2 Programming StYIE GUITE.......ccueeiiiieiiee et 10

4.3 ProjJeCt TIMEIINEc..i ettt ettt e st e et e e e sreenreenee e 11
O e o] 1= ox o oo PSSR 11
4.5 Development ENVIFONMENTcoiiiiiiieeiese e 11
5. ATCNITECTUIAl DESIONveveeieceie ettt te et e st e esre e be e e e s reesneeneeeneennas 12
5.1 OVEIVIBW ...ttt bbb bbb s et b e b bbbt e st et ettt be et b nes 12
ST (0] 01 =T o T [P TRR 12
5.3 BACK-EINM ...ttt bbbttt bbb reenes 12
TN IN=TS (oI d - o OSSO 12
T T | SRR 12
8.2 IMBENOGS. ...ttt bbbttt e b et nes 13
8.3 TESE SUITE ...ttt bbbt et bbb b et reenes 13
6.4 RepresentatiVe TESE CaSE Lcuiiiiiieieie ettt bbb 14
6.5 RePreSENtative TESE CASE 2ccuviviiieiieeiie sttt ettt te e sae st sreene e s e e eeaneennas 15
6.6 RePreSentative TESE CASE 3ccuviiiiiieiieeie ittt rte e ste et be e ste e sreete e e teeeeeneenras 15
7. LESSONS LEAIMEA... .. ieiieiiieie ettt sttt e et te e s e st e beeseesseenbeeneeaneenneeneenneennn 20
ST AN o] 1= o [OSSPSR 20
ST - L= 0 1 1] SRR 21
TR B 1 0 2| S 24
8.4 DYIECOUR.IM ... 25
8.5 COMPIIE.MI .. 27
8.6 EXECULE.IMI ...ttt e e e st et e s e s teentesneenreenteereeaneeneenneenen 30
ST 112 101 1 SR 35

Page 3

1. Introduction

All That Matrix (ATM) is a programming language targeted at matrix manipulations with
emphasize on clear syntax and lightweight compiler.

1.1 Motivation

Applications of matrix are very common across scientific fields. In statistics, matrices are used
for probability calculations. In computer graphics, matrices are used to project and transform
images. And you won’t get through a lecture of linear algebra without encountering matrices.

ATM provides intuitive matrix related operators with the goal of avoiding as many built-in
functions as possible and making it easy to write custom functions in the language itself. Thus,
built-in types, operators, and keywords are kept to a minimal set.

1.2 Overview

The syntax of ATM is very similar to C and Java, so novice should have a minimal learning
curve. ATM code is translated into a set of native bytecode, which then gets executed against a
built-in stack to produce the output.

2. Language Tutorial

An ATM program is a single file consisting of functions, defined and written above the
mandatory main function, which is where the program always kicks off.

2.1 First Example
This is greatest common divisor written in ATM. This example shows general purpose features
in ATM including function declaration, while loop and conditionals.

gcd(a, b)

while (a!=b) {
if(@a>b)a=a-b;
elseb=b-a;

¥

return a;

¥

main()

{
¥

print(gcd(3,15));

Page 4

2.2 Matrix Example
This example illustrates the declaration, initiation and accessing of matrix data types.

main()
L
int i
int j;
matrix[3][3] m;
m = [1,2,3|4,5,6|7,8,9];
for(i=1;i<4;i=i+1){
for(G=1;j<4;j=j+1){
print(m[i][i]);
}
}
}

2.3 Compile and Run Your Program
Write your code in a .atm file and compile it by running these two commands.

$ make
$./atm -c < [path to your .atm file]

This will compile and run your code. You can see the AST of your program by using the “-a”
parameter and you can examine the list of bytecode generated by using the “-b” parameter.

3. Language Reference Manual

3.1 Introduction

All That Matrix is a programming language targeted at matrix manipulations with emphasize on
the clear syntax and a lightweight compiler. All That Matrix provides intuitive matrix related
operators with the goal of avoiding as many built-ins as possible and making it easy to write
custom functions in the language itself. This language reference manual is inspired by the C
reference manual [1].

3.2 Lexical Elements

3.2.1 Comments
Comments are delineated with an opening /* and closing */. The compiler will ignore comments.
Nesting of comments is not supported.

/* This is a comment */

Page 5

3.2.2 Identifiers

Identifiers are sequences of characters that must start with a lower case letter and can be
followed by any number of upper-case letter, lower-case letters, digits, and underscores, used for
naming variables and functions. Identifiers are case sensitive.

Identifier -> [a-z][a-zA-Z_0-9]*

3.2.3 Keywords
Keywords are reserved for use as part of the programming language and therefore, cannot be
used for any other purposes.

int matrix main return
if else for while
export print

3.2.4 Punctuations
Parentheses are used to indicate function calls, signify conditionals, and group formal arguments
to functions.

Curly Braces are used to indicate a block of statements.

Semicolons are used to signal the end of a statement and also to separate statements and
expressions in for loops.

3.2.5 Constants
There are a total of four constants in ATM: integer literal, string literal, boolean, and matrix.

3.2.5.1 Integer Literals
An integer constant is a sequence of digits.

Integer Constant -> [0-9]+

3.2.5.2 String Literals

String literal constants are delineated by double quotation marks and can contain any character.
String Literal Constant -> “['a'-'z' 'A'-'Z" '0'-'9" ' " " " =R

3.2.5.4 Boolean

Boolean constants, used in conditional logic, are represented by integer literals: 1 for true and 0
for false.

Boolean->0]1

Page 6

3.2.5.4 Matrix
Matrix constant are enclosed in square brackets with vertical bars separating the rows and
commas separating the columns. Matrix constants are filled by integer literals.

[1,2,3]|4,5,6]isa?2by 3 matrix

3.3 Data Types

3.3.1Int

Integers are used to represent boolean and to build compound type matrix. It must be declared
before use.

int my_integer;
my_integer = 8;

3.3.2 Boolean
Booleans are represented by integers: 1 for true and 0 for false. Booleans are only intended to be
used in conditionals, so they are not declared.

3.3.3 String
Strings are surrounded by double quotation marks and are only designed to be used in two places.
The first one is in print statement such as

print(“test string”);
The second one is in specifying the export file name as in

export(out_val, “my_output.txt”);

3.3.4 Matrix
The one supported compound data types is matrix, which is declared with the keyword matrix
and the number of rows and columns specified in brackets as in

matrix[3][4] my_matrix;

3.4 Expressions and Operators

3.4.1 Expressions

An expression consists of at least one operand and zero or more operators. Operands are one of
the typed objects such as matrix and can be an identifier, a constant, or a function call that
returns a value.

3.4.2 Binary Operators

Binary operators for int and matrix data types follow the standard arithmetic and matrix
operation rules. These operators are valid between two objects of the same type for integers.
However, for matrices, the types between the two expressions can differ for certain operators.

Page 7

For example, multiplication between an integer and a matrix is equivalent to scaling the matrix
by the integer, whereas multiplication between two matrices follows the standard matrix
multiplication rules.

In other words, the behavior of the operators depends on the type of the operands provided. For
example, when adding two integers: 5 +10, the result is 15. When adding two row matrices [al,
bl|cl, d1] + [a2, b2| c2, d2], the result is the matrix [al+a2, b1+b2| c1+c2, d1+d2].

expression + expression

expression - expression

expression * expression
One additional operator for integers is division. Note that the result is rounded to integers
according to the rules in OCaml.

expression / expression

3.4.3 Logical Operators

These logical operators between two integers or matrices evaluate to boolean and are to be used
in control flow. The data type on the left and right sides of the operator must be the same. In the
case of matrices, their dimension must be the same as well.

expression == expression
expression != expression

These are additional logical operators for expressions of integers only.

expression < expression
expression <= expression
expression > expression
expression >= expression

3.4.4 Built-in Features
All That Matrix also provides a limited set of built-in functions and features to retrieve and save
information.

print() is a built-in function that print the item at the top of the stack. The output format for a
matrix is spaces separating the columns and new lines separating the rows.

export(identifier, string filename) is a built-in function that writes the output to an external file
specified.

col_count(matrix m) is a built-in function that returns the number of columns the input matrix
has.

row_count(matrix m) is a built-in function that returns the number of rows the input matrix has.

Page 8

3.5 Statements

All statements must end with a semi-colon. All statements either declare a variable, use, or
modify an existing variable. If-then-else statements, for and while loops are supported. The
syntax rules for them are the same as the C language. All of the following are examples of

statements.

return O; /* return statement */
If (al=b) /* control flow */
foo(2); /* function call */
[2,4]2,4]*[1,0]8,2] [* expression */
while (i > 0) /* while loop */
for(i=1;i<n;i=i+1) /*foo loop*/

3.6 Declarations

3.6.1 Program Definition

A program in All That Matrix consists of list of global variables and a list of functions. User-
defined functions should be above the main function. The program always looks for the function
main to start off.

3.6.2 Function Declarations

A function declaration must start with the name of the function, followed by a list of zero or
more parameters separated by commas and enclosed in parenthesis. Functions in All That Matrix
must be declared and implemented simultaneously. The result can be returned in a return
statement. Nested functions are not supported.

function_name (type argl, type arg2,...)
{

function body

}

3.7 Scope

A declared object is only visible in the scope enclosed by the nearest curly bracket pair.
Declarations made within functions are visible only within those functions. A declaration is not
visible to declarations that came before it. An identifier declared outside of any curly bracket
pairs is a global variable, and thus, is accessible from anywhere of the program.

3.8. References
[1] B. W. Kernighan and D. Ritchie. The C Programming Language, Second Edition. Precentice-
Hall, 1988.

Page 9

4. Project Plan

4.1 Process

Because this project was not a team project, | was responsible for all components. Hence, the
approach | took may be somewhat different. | did not follow the approach where I did not move
on to work on the parser until the scanner is completely done. | started with a very basic
framework provided by Micro C and added new pieces to all components of the language
iteratively.

There was no extensive and detailed period of project planning due to mostly timing constraint. |
did not have all details of the language flushed out and | did not start coding until I’ve reviewed
all lectures on Micro C and did some reading on O’Caml. By that time, it was already past mid
of June, so | had only one month to turn over the project.

As | began writing the compiler, | realized that several rules I laid out initially was unclear and
inconsistent and | had to go back and change it to make it work for the new specification.

However, development and Testing went well for me. | adopted the test-driven development
approach where a new test was written before the code was in place to keep the development
cycles short and focused. Core features are dealt with first before the built-in functions were
included. Unit testing was the main focus until near the end of the development cycle, where
integration testing kicked in.

4.2 Programming Style Guide

While this project did not run into the issue where different team members are vastly inconsistent
in their coding style, I still try to adhere to the general style guide outlined in this section so that
code across all components of the project are consistent and readable, which are the two main
goals.

Spaces are used instead of tabs for indentation and grouping of blocks of similar structured code
along with parenthesis. A single space should be placed on either side of assignment (=),
operators (+, -, ...), and comparisons (>, < ...).

One blank line is used to separate different sections of the code, block comments and the code
that follows it.

No line should be longer than 100 characters. It is recommended to put the condition and body of
if statements on separate lines and use indentation and parenthesis. Exceptions can be made if the
condition and the body are both really short. Compound statements (multiple statements on the
same line separated by semicolons) are generally discouraged.

Comments are kept to a minimum. They should be descriptive, and not simply repeat what the
code does.

Page

4.3 Project Timeline

Start - End Date Deliverables

- 06/11/2014 Proposal

- 07/02/2014 Language reference manual

- 07/31/2014 A very basic framework complete

08/01 — 08/20/2014

Short iterative development cycles for all components of the language

- 08/20/2014 Compile final report

- 08/22/2014 Project due

4.4 Project Log

Date Focus

06/07/2014 Start thinking about the focus of the language

06/10/2014 Complete the project proposal

06/27/2014 Start defining the language rules

07/01/2014 Complete the language reference manual

07/19/2014 Complete all lectures on Micro C

07/23/2014 Read more about O’Camllex and O’Camlyacc

07/27/2014 Get a very basic framework ready for development

08/02/2014 Add core set of token rules to scanner and appropriate placeholders in
parser, ast, bytecode, compiler, and executor

08/03/2014 Add customized matrix data type

08/09/2014 Work on local and global variables

08/10/2014 Work on function declaration and function calling

08/16/2014 Implement operators for matrix

08/17/2014 Add in built-in functions

08/18/2014 Start integration testing

08/20/2014 Start compiling the final report

08/22/2014 Complete the final report

* Note: each entry such as “work on ...” and “implement” involve adding the appropriate pieces
to the parser, ast, compiler, and executor to pass testing.

4.5 Development Environment
Programming language: O’Caml

Scanner: O’Camllex
Parser: O’Camlyacc
Test: automatic bash script for regression testing

Build: Makefile

Page

5. Architectural Design

5.1 Overview
ATM is made up of a scanner, parser, AST, compiler and code executor.

Souce Program tokens

(stream of

Scanner
characters)

syntax rules

AST

Code Executor Compiler

output bvtecode

5.2 Front-end

The scanner follows the basic convention of accepting the source file, converting it into a stream
of tokens, eliminating useless tokens such as whitespace, comments, etc. The scanner raises an
exception upon encountering of an illegal token.

The parser then accepts the token stream from the scanner and parses it based on the rules laid
out in the language reference manual and constructs an abstract syntax tree. More useless tokens
are eliminated in this process and an exception occurs when the input stream does not satisfy the
predefined syntax.

5.3 Back-end

Instead of using translating the AST into Java code or some other language, I’ve decided to
translate it into native bytecode which then gets executed off a stack | implemented to produce
the final output. The stack is studied and taught in various computer science courses, but I’ve
always only had its concept understood. Therefore, | decided to take this chance to implement it
and get a first-hand experience on all the details behind it.

6. Testing Plan

6.1 Goal

There are two goals for testing. One is to decide what feature to implement next in the test-driven
development. The other is to ensure that the new code does not introduce new bugs as in
regression testing. These tests are not compressive, but they were created systematically, at least

Page

12

one test case for each portion of the language reference manual, in order to find any
inconsistencies in the way data is treated.

6.2 Methods

A test suite was kept and maintained throughout the development phase of the project. Before a
new feature was implemented, for example, global variables, at least one test case was written
for it immediately. Hence, the development cycle was test-driven where the end of one
development iteration is signaled by the passing of this new test case along with all other tests in

the test suite for regression.

The test cases were kept small because they were designed to reduce debugging effort so that
when a test fails, I will know which part, sometimes down to the exact byte code implementation,
was causing the problem. Once added, no test case was ever deleted from the test suite.

Toward the end of the development cycle, longer and more compressive test cases were added to
test the integration of the different components.

A test case consists of two files, (1) a .atm file which contains a program written in ATM, and (2)
a .out file which contains the expected output. All test cases were contained within the /test

directory. Automation in the form of a bash script was used for running all test cases in the test
suite, comparing the actual output with the expected output, and logging the result in a text file.

6.3 Test Suite

file

focus

test-arith-int.atm

Add between integers

test-arith-int2.atm

Arithmetic between integers

test-arith-metric.atm

Add between matrices

test-arith-metric2.atm

Arithmetic between matrices

test-arith-metric3.atm

Arithmetic between integers and matrices

test-built-in-func.atm

built-in function col_count and row_count

test-built-in-func-export.atm

built-in function export with int

test-built-in-func-export2.atm

built-in function export with matrix

test-comment.atm

comment properly ignored

test-det.atm

built-in functions, variables, functions, if statement, operators

test-fib.atm

recursion, if statement, variables and function declarations

test-forl.atm

for loop with int

test-for2.atm

nested for loops with matrix

test-funcl.atm

function declaration and call involving integers

test-func2.atm

function declaration and call involving matrices

test-func3.atm

function formal and actual arguments of type int

test-func4.atm

function formal and actual arguments of type matrix

test-gcd.atm

function declaration and call, while loop, if else statement

test-globall.atm

declaration and initialization of global variables of type int

test-global2.atm

declaration and initialization of global variables of type matrix

test-id.atm

identifiers

Page

test-ifl.atm

if statement — evaluates to true

test-if2.atm if statement — evaluates to false
test-if3.atm if else statement - evaluates to false
test-if4.atm if else statement - evaluates to true

test-ops-int.atm

logical operators for type int

test-ops-metric.atm

logical operators for type matrix

test-print-string.atm

print of type string

test-var-int.atm

declaration and initialization of local variables of type int

test-var-metric.atm

declaration and initialization of local variables of type matrix

test-while.atm

while loop

6.4 Representative Test Case 1
This is one of the earliest test cases written for testing the initialization and declaration of local

variable of local variables.

main()

{
matrix[3][2] b;
matrix[3][3] a;
a=[1,2,3/4,5,6|7,8,9];
b =[8,2,1|1,0,5];
print(b);
print(a);

This is the translated bytecode.

0 global variables 18 Lit 2
0 Jsr2 19 Lit1
1 HIt 20 Lit1
2 Ent21 21 Lit0
3Litl 22 Lit5
4 Lit2 23 Lit 3
5Lit3 24 Lit 2
6 Lit4 25 Max
7 Lit5 26 Sfp 9
8 Lit6 27 Drp
9Lit7 28 Lfp 9
10 Lit 8 29 Jsr -1
11Lit9 30 Drp
12 Lit 3 31Lfp21
13 Lit3 32 Jsr-1
14 Max 33 Drp
15 Sfp 21 34 Lit0
16 Drp 35Rts 0
17 Lit 8

Page

6.5 Representative Test Case 2
This is a test case targeted at testing the correct functionality of nested for loops.

main()
t
int i
int j;
matrix[3][3] m;
m = [1,2,3|4,5,6|7,8,9];
for(i=1;i<4;i=i+1){
for(G=1;j<4;j=j+1){
print(m[i][i]);
}
}
}

The bytecode produced for this is the following.

0 global variables 18 Lit 2
0 Jsr2 19 Lit1
1 Hit 20Litl
2 Ent21 21 Lit0
3Litl 22 Lit5
4 Lit 2 23 Lit 3
5Lit3 24 Lit 2
6 Lit4 25 Max
7 Lit5 26 Sfp 9
8 Lit6 27 Drp
9Lit7 28 Lfp 9
10 Lit 8 29 Jsr -1
11Lit9 30 Drp
12 Lit 3 31Lfp21
13 Lit 3 32 Jsr -1
14 Max 33 Drp
15 Sfp 21 34 Lit0
16 Drp 35Rts 0
17 Lit 8

6.6 Representative Test Case 3
This is a more comprehensive test intended for integration testing.

is_square_matrix(input)

{
¥

return col_count(input) == row_count(input);

Page

det2(input)
{

}
det3(input)
{

return ((input[1][1])*(input[2][2])-(input[1][2])*(input[2][1]));

inta;

int b;

intc;

a = det2([input[2][2],input[2][3]|input[3][2],input[3][3]]);
b = det2([input[2][1],input[2][3]|input[3][1],input[3][3]]);
¢ = det2([input[2][1],input[2][2]|input[3][1],input[3][2]]);
return (input[1][1])*a-(input[1][2])*b+(input[1][3])*C;

}

det(input)

int ret_val;
ret val =0;
if (is_square_matrix(input)) {
if (col_count(input)==2) {
ret_val = det2(input);

if (col_count(input)==3) {
ret_val = det3(input);
}
}

return ret_val,

by

print_det(input)
{
if (is_square_matrix(input)) {
print(*'is a square matrix");
print(“determinant is");
print(det(input));
}
else {
print(“is not a square matrix");

¥
k

main()

{

Page

matrix[2][2] test_matrix1,
matrix[3][3] test_matrix2;
matrix[2][3] test_matrix3;
test_matrix1 =[2,8|1,7];
test_matrix2 = [12,5,1|7,4,0|11,2,3];
test_matrix3 = [12,5,1|7,4,0];
print("test_matrix1 results:");
print_det(test_matrix1);
print("test_matrix2 results:");
print_det(test_matrix2);
print("test_matrix3 results:");
print_det(test_matrix3);

The following is the bytecode produced for this.

0 global variables 116 Lit 2
0Jsr2 117 Acc

1 Hit 118 Lfp -2
2 Ent 28 119 Lit 2
3Lit2 120 Lit 3
4 Lit8 121 Acc
5Litl 122 Lfp -2
6 Lit7 123 Lit 3
7Lit2 124 Lit 3
8 Lit2 125 Acc

9 Max 126 Lit 2
10 Sfp 7 127 Lit 2
11 Drp 128 Max
12 Lit 12 129 Jsr 199
13 Lit5 130Sfp 1
14 Lit 1 131 Drp
15 Lit7 132 Lfp -2
16 Lit4 133 Lit1
17 Lit0 134 Lit 2
18 Lit1 135 Acc
19 Lit2 136 Lfp -2
20 Lit3 137 Lit 3
21 Lit3 138 Lit 2
22 Lit3 139 Acc
23 Max 140 Lfp -2
24 Sfp 19 141 Lit 1
25 Drp 142 Lit 3
26 Lit 12 143 Acc
27 Lit5 144 Lfp -2
28 Lit 1 145 Lit 3

Page

17

29 Lit7 146 Lit 3
30 Lit4 147 Acc
31Lit0 148 Lit 2
32 Lit3 149 Lit 2
33 Lit2 150 Max
34 Max 151 Jsr 199
35 Sfp 28 152 Sfp 2
36 Drp 153 Drp
37 Stg test_matrix1 results: 154 Lfp -2
38 Jsr -1 155 Lit 1
39 Drp 156 Lit 2
40 Lfp 7 157 Acc
41 Jsr 57 158 Lfp -2
42 Drp 159 Lit 2
43 Stg test_matrix2 results: 160 Lit 2
44 Jsr -1 161 Acc
45 Drp 162 Lfp -2
46 Lfp 19 163 Lit 1
47 Jsr 57 164 Lit 3
48 Drp 165 Acc
49 Stg test_matrix3 results: 166 Lfp -2
50 Jsr -1 167 Lit 2
51 Drp 168 Lit 3
52 Lfp 28 169 Acc
53 Jsr 57 170 Lit 2
54 Drp 171 Lit 2
55 Lit0 172 Max
56 Rts 0 173 Jsr 199
57 Ent 0 174 Sfp 3
58 Lfp -2 175 Drp
59 Jsr 222 176 Lfp -2
60 Beq 12 177 Lit 1
61 Stg is a square matrix 178 Lit 1
62 Jsr -1 179 Acc
63 Drp 180 Lfp 1
64 Stg determinant is 181 Mul
65 Jsr -1 182 Lfp -2
66 Drp 183 Lit 2
67 Lfp -2 184 Lit1
68 Jsr 77 185 Acc
69 Jsr -1 186 Lfp 2
70 Drp 187 Mul
71 Bra4 188 Sub
72 Stg is not a square matrix 189 Lfp -2
73 Jsr -1 190 Lit 3
74 Drp 191 Lit1
Page

18

75 Lit0
76 Rts 1
77Ent1l
78 Lit 0
79Sfp 1
80 Drp

81 Lfp-2
82 Jsr 222
83 Beq 22
84 Lfp -2
85 Jsr -3
86 Lit 2
87 Eql

88 Beq 6
89 Lfp -2
90 Jsr 199
91Sfp1
92 Drp
93Bral
94 Lfp-2
95 Jsr -3
96 Lit 3
97 Eql

98 Beq 6
99 Lfp -2
100 Jsr 109
101Sfp 1
102 Drp
103 Bral
104 Bra 1
105 Lfp 1
106 Rts 1
107 Lit 0
108 Rts 1
109 Ent 3
110 Lfp -2
111 Lit 2
112 Lit 2
113 Acc
114 Lfp -2
115 Lit 3

192 Acc
193 Lfp 3
194 Mul
195 Add
196 Rts 1
197 Lit 0
198 Rts 1
199 Ent 0
200 Lfp -2
201 Lit 1
202 Lit1
203 Acc
204 Lfp -2
205 Lit 2
206 Lit 2
207 Acc
208 Mul
209 Lfp -2
210 Lit 2
211 Lit1
212 Acc
213 Lfp -2
214 Lit1
215 Lit 2
216 Acc
217 Mul
218 Sub
219 Rts 1
220 Lit 0
221 Rts 1
222 Ent0
223 Lfp -2
224 Jsr -3
225 Lfp -2
226 Jsr -2
227 Eql
228 Rts 1
229 Lit0
230 Rts 1

Page

7. Lessons Learned

In this project, the one thing that | found most useful was the test suite. With many of the
projects that I've done in the past, testing had never been woven into the development cycle as
tightly as this project did. In the past, testing was done ad hoc with mostly random print
statements and debugger at the most. However, the test-driven development I adopted this time
put testing in the center of the project, and it helped discover all kinds of bugs.

Also, thinking in O’Caml was a very different experience for me, I spent a lot of time in the
beginning to learn in detail how all the components work together from scanning of the input to
translating it into AST and eventually, running the bytecode.

It was overwhelming initially, and I did not know how and where to start and the shortness of
summer semester certainly did not help. I find myself procrastinating. | did not start the actual
development until I’ve gone through all of the lectures on Micro C, which was past the middle of
June. I was getting panicked as the deadline is fast approaching and had to cut certain features |
had set out to do in the initial plan.

My advice is to start the project early, specifically, try to find ways to motivate your to work on
the project. For people in a team, peer pressure can often work wonders. Set goals for each of the
member the next time you meet. Allocate dedicated hours per week to work on the project as you
would for lectures. | find that test-driven development worked very well for me because it made
the development cycle shorter, made me focus on one thing at a time, and pushed me forward to
the next iteration.

8. Appendix
8.1 scanner.mll

{ open Parser }

rule token = parse

| [' “\t''\r'\n] {token lexbuf }
| "/*" { comment lexbuf }
' {BAR}

' {LPAREN}

) {RPAREN }

|'{" {LBRACE}
|'Y {RBRACE}
| {SEMI}
g
B
|
|
|

~S— 3

{ COMMA }
' {PLUS}

{ MINUS }
[TIMES }
/' {DIVIDE}
= {ASSIGN}
"=="_{EQ}

Page

=" {NEQ}

|

|'<" {LT}
|"<=" {LEQ}
|">" {GT}
|">=" {GEQ}
| "if" {IF}

| "else” {ELSE }
| "for" {FOR}

| "while" { WHILE }

| “return” { RETURN }

|"[" {LBRACKET}

""" {RBRACKET }

|"int"asdt { DATA_TYPE(dt) }

| "matrix™ as dt { DATA_TYPE(dt) }

| [0'-'9"]+ as Ixm { LITERAL(int_of string Ixm) }
|[a-'z[a-'z2"'A'-'Z' '0-'9" " "T*as Ixm {ID(Ixm) }
[[\"][a-'z"'A-'Z"'0-'9"" """ =" *[\"] as str { STRING(str) }
| eof { EOF }

| _as char { raise (Failure("illegal character " Char.escaped char)) }

and comment = parse
"*[" { token lexbuf }
|_ { comment lexbuf }

8.2 parser.mly

%q{ open Ast %}

%token SEMI LPAREN RPAREN LBRACE RBRACE LBRACKET RBRACKET COMMA
BAR

%token PLUS MINUS TIMES DIVIDE ASSIGN

%token EQ NEQ LT LEQ GT GEQ

%token RETURN IF ELSE FOR WHILE

%token <int> LITERAL

%token <string> ID

%token <string> STRING

%token <string> DATA _TYPE

%token EOF

%nonassoc NOELSE
%nonassoc ELSE
%right ASSIGN

%left EQ NEQ

%left LT GT LEQ GEQ
%left PLUS MINUS
%left TIMES DIVIDE

Page

%start program
%type <Ast.program> program

%%

program:
/* nothing */ { [1, [1 }

| program vdecl { ($2 :: fst $1), snd $1 }

| program fdecl { fst $1, ($2 :: snd $1) }

fdecl:
ID LPAREN formals_opt RPAREN LBRACE vdecl_list stmt_list RBRACE
{ { fname = $1;
formals = $3;
locals = List.rev $6;
body = List.rev $7 } }

formals_opt:
/* nothing */ {[] }
| formal_list { List.rev $1 }

formal_list:

ID {[$1]}
| formal_list COMMA ID { $3:: $1 }

vdecl_list:
/* nothing */ {[]}
| vdecl_list vdecl { $2 :: $1 }

vdecl:
DATA_TYPE ID SEMI
{ {data_type = $1; id = $2; rows = 0; cols = 0} }
| DATA_TYPE LBRACKET LITERAL RBRACKET LBRACKET LITERAL RBRACKET
ID SEMI
{ {data_type = $1; id = $8; rows = $3; cols = $6} }

stmt_list:
/* nothing */ {[] }
| stmt_list stmt { $2 :: $1 }

stmt:
expr SEMI { Expr($1) }
| RETURN expr SEMI { Return($2) }
| LBRACE stmt_list RBRACE { Block(List.rev $2) }
| IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }

Page

22

| IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }

| FOR LPAREN expr_opt SEMI expr_opt SEMI expr_opt RPAREN stmt
{ For($3, $5, $7, $9) }

| WHILE LPAREN expr RPAREN stmt { While($3, $5) }

expr_opt:
/* nothing */ { Noexpr }
| expr {$1}
expr:
LITERAL { Literal($1) }
|ID {1d($1) }

| STRING { String($1) }

| expr LBRACKET expr RBRACKET LBRACKET expr RBRACKET { Access($1, $3, $6) }
| LBRACKET matrix RBRACKET { Matrix($2) }

| expr PLUS expr { Binop($1, Add, $3)}

| expr MINUS expr { Binop($1, Sub, $3) }

| expr TIMES expr { Binop($1, Mult, $3) }

| expr DIVIDE expr { Binop($1, Div, $3)}

|expr EQ expr { Binop($1, Equal, $3) }

|expr NEQ expr { Binop($1, Neq, $3)}

|expr LT expr{ Binop($1, Less, $3) }

|expr LEQ expr { Binop($1, Leq, $3)}

|expr GT expr { Binop($1, Greater, $3) }

|expr GEQ expr { Binop($1, Geq, $3)}

| ID ASSIGN expr { Assign($1, $3) }

| ID LPAREN actuals_opt RPAREN { Call($1, $3) }
| LPAREN expr RPAREN { $2 }

row.

{0}
| expr { [$1] }
| row COMMA expr { $3 :: $1 }

matrix:
row { [List.rev $1] }
| matrix BAR row { $1 @ [List.rev $3] }

actuals_opt:
/* nothing */ { [] }
| actuals_list { List.rev $1 }

actuals_list:

expr {[$1]}
| actuals_list COMMA expr { $3 :: $1 }

Page

8.3 ast.ml

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq

type expr =
Literal of int
| String of string
| Id of string
| Access of expr * expr * expr
| Matrix of expr list list
| Binop of expr * op * expr
| Assign of string * expr
| Call of string * expr list
| Noexpr

type stmt =
Block of stmt list
| Expr of expr
| Return of expr
| If of expr * stmt * stmt
| For of expr * expr * expr * stmt
| While of expr * stmt

type var_decl = {
data_type : string;
id : string;
rows: int;
cols: int

¥

type func_decl = {
fname : string;
formals : string list;
locals : var_decl list;
body : stmt list;

¥

type program = var_decl list * func_decl list

let rec string_of_expr = function
Literal(l) -> string_of _int |
| String(s) -> s
| 1d(s) -> s
| Access(m, r,) -> string_of_expr m ™" " ~ string_of_expr r ™ "~ string_of _expr ¢
| Matrix(m) -> String.concat ", " (List.map string_of_expr (List.concat m))
| Binop(el, o, €2) -> string_of exprel """ " (
match o with

Page

Add > "+"[Sub -> " Mult > =" Div > /"

| Equal ->"=="| Neq -> "I="
| Less -> "<" | Leq -> "<="| Greater -> ">" | Geq -> ">=") " " ~ string_of_expr e2
| Assign(v, €) ->v ™" =""string_of_expre

| Call(f, el) -> f~"(" ~ String.concat ", " (List.map string_of_expr el) *
String.concat *, " (List.map (fune->"1")el) »™)"
| Noexpr -> "

let rec string_of_stmt = function
Block(stmts) -> "{\n" ~ String.concat "" (List.map string_of stmt stmts) ~ "}\n"
| Expr(expr) -> string_of_expr expr * ";\n";
| Return(expr) -> "return " ~ string_of _expr expr ";\n";
| If(e, s, Block([])) -> "if (" ~ string_of_expr e ~ ")\n" ~ string_of_stmt s
| If(e, s1, s2) -> "if (" ~ string_of _expre ™ ")\n" "
string_of_stmt s1 ” "else\n" ” string_of_stmt s2
| For(el, e2, e3, s) -> "for (" ~ string_of exprel ~" ;" "string_of expre2 "™ ;"N
string_of_expre3 ~") " " string_of _stmts
| While(e, s) -> "while (" ~ string_of _expre ™) " " string_of stmt s

let string_of vdecl var =
var.data_type A" " ~var.id ~ ";\n"

let string_of_fdecl fdecl =
fdecl.fname (" ” String.concat ", " fdecl.formals ~ ")\n{\n" ~
String.concat ™" (List.map string_of_vdecl fdecl.locals) »
String.concat """ (List.map string_of_stmt fdecl.body) »
lI}\nlI

let string_of _program (vars, funcs) =
String.concat " (List.map string_of vdecl vars) * "\n"
String.concat "\n" (List.map string_of fdecl funcs)

8.4 bytecode.ml

type bstmt =
Lit of int (* Push a literal *)
| Stg of string (* Push a string *)

| Max (* Indicate matrix data type *)
| Acc (* Access matrix*)
| Drp (* Discard a value *)

| Bin of Ast.op (* Perform arithmetic on top of stack *)
| Lod of int (* Fetch global variable *)

| Str of int (* Store global variable *)

| Lfp of int (* Load frame pointer relative *)

| Sfp of int (* Store frame pointer relative *)

| Jsr of int (* Call function by absolute address *)
Page

25

| Ent of int (* Push FP, FP -> SP, SP +=i *)

| Rts of int (* Restore FP, SP, consume formals, push result *)
| Beq of int (* Branch relative if top-of-stack is zero *)
| Bne of int (* Branch relative if top-of-stack is non-zero *)
| Bra of int (* Branch relative *)
| HIt (* Terminate *)
type prog = {

num_globals : int; (* Number of global variables *)
size_globals : int; (* Size of global variables *)
text : bstmt array; (* Code for all the functions *)

}

let string_of _stmt = function
Lit(i) -> "Lit " ~ string_of _int i
| Stg(s) ->"Stg " s
| Max -> "Max"
| Acc -> "Acc"
| Drp -> "Drp"
| Bin(Ast.Add) -> "Add"
| Bin(Ast.Sub) -> "Sub"
| Bin(Ast.Mult) -> "Mul*"
| Bin(Ast.Div) -> "Div"
| Bin(Ast.Equal) -> "Eql"
| Bin(Ast.Neq) -> "Neq"
| Bin(Ast.Less) -> "Lt"
| Bin(Ast.Leq) -> "Leq"
| Bin(Ast.Greater) -> "Gt"
| Bin(Ast.Geq) -> "Geq"
| Lod(i) -> "Lod " ~ string_of _int i
| Str(i) -> "Str " ~ string_of_int i
| Lfp(i) -> "Lfp " ~ string_of _int i
| Sfp(i) -> "Sfp " ~ string_of _int i
| Jsr(i) -> "Jsr " ~ string_of _int i
| Ent(i) -> "Ent " ~ string_of _int i
| Rts(i) -> "Rts " ~ string_of _int i
| Bne(i) -> "Bne " " string_of _int i
| Beq(i) -> "Beq " " string_of_int i
| Bra(i) -> "Bra " " string_of _int i
| HIt ->"HIt"

let string_of prog p =
string_of_int p.num_globals ” " global variables\n™ »
let funca = Array.mapi
(funis->string_of inti”"" " string_of stmts) p.text
in String.concat "\n" (Array.to_list funca)

Page

8.5 compile.ml

open Ast
open Bytecode

module StringMap = Map.Make(String)
(* Symbol table: Information about all the names in scope *)

type env = {
function_index : int StringMap.t; (* Index for each function *)
global_index : int StringMap.t; (* Address for global variables *)
local_index : int StringMap.t; (* FP offset for locals *)
arg_index :int StringMap.t; (* FP offset for args *)

}
(* val enum : int ->"a list -> (int * 'a) list *)

let rec enum stride n = function

0->10
| hd::tl -> (n, hd) :: enum stride (n+stride) tl

let rec enum_vars n = function
0->10
| hd::tl -> (

if hd.data_type="matrix" then
((n+3+(hd.rows*hd.cols)), hd.id)

else
(n+1, hd.id)) :: enum_vars
(if hd.data_type="matrix" then (n+3+(hd.rows*hd.cols)) else (n+1)) tl

(*helper function for calculating the size of allocated variables*)

let size_vars =
function vars -> List.fold_left (
funs|->
s + (if l.data_type = "matrix" then
(3+(if L.rows > 0 then l.rows else 1)*(if l.cols > 0 then l.cols else 1))
else 1)) O vars

(* val string_map_pairs StringMap 'a -> (int * 'a) list -> StringMap 'a *)

let string_map_pairs map pairs =
List.fold_left (fun m (i, n) -> StringMap.add n i m) map pairs

(* Translate a program in AST form into a bytecode program. Throw an
exception if something is wrong, e.g., a reference to an unknown

Page

27

variable or function *)
let translate (globals, functions) =
(* Allocate "addresses™ for each global variable *)
let global_indexes = string_map_pairs StringMap.empty (enum_vars 0 globals) in

(* Assign indexes to function names; built-in "print" is special *)
let built_in_functions =

StringMap.add "export" (-4) (

StringMap.add "col_count™ (-3) (

StringMap.add "row_count” (-2) (

StringMap.add "print" (-1) StringMap.empty))) in

let function_indexes = string_map_pairs built_in_functions
(enum 1 1 (List.map (fun f -> f.fname) functions)) in

(* Translate a function in AST form into a list of bytecode statements *)
let translate env fdecl =
(* Bookkeeping: FP offsets for locals and arguments *)

let num_formals = List.length fdecl.formals

and size_locals = size_vars fdecl.locals

and local_offsets = enum_vars 0 fdecl.locals

and formal_offsets = enum (-1) (-2) fdecl.formals in

let env = { env with
local_index = string_map_pairs StringMap.empty local_offsets;
arg_index = string_map_pairs StringMap.empty formal_offsets} in

let rec expr = function
Literal i -> [Lit i]
| String s -> [Stg (String.sub s 1 (String.length s - 2))]
[1ds->(
try [Lfp (StringMap.find s env.local_index)]
with Not_found -> try [Lfp (StringMap.find s env.arg_index)]
with Not_found -> try [Lod (StringMap.find s env.global_index)]
with Not_found -> raise (Failure ("undeclared variable " ” s)))
| Access(m, r, C) -> expr m @ expr c @ exprr @ [Acc]
| Matrix(m) -> List.concat (List.map expr (List.concat m)) @
[Lit (List.length (List.nth m 0))] @ [Lit (List.length m)] @ [Max]
| Binop (e1, op, €2) -> expr el @ expr e2 @ [Bin op]
| Assign (s, e) ->expre @ (

Page

try [Sfp (StringMap.find s env.local_index)]
with Not_found -> try [Sfp (StringMap.find s env.arg_index)]
with Not_found -> try [Str (StringMap.find s env.global_index)]
with Not_found -> raise (Failure ("undeclared variable " ” s)))
| Call (fname, actuals) -> (
try (List.concat (List.map expr (List.rev actuals))) @
[Jsr (StringMap.find fname env.function_index)]
with Not_found -> raise (Failure ("undefined function " ~ fname)))
| Noexpr -> []

in let rec stmt = function
Block sl -> List.concat (List.map stmt sl)
|Expre ->expre @ [Drp]
| Returne ->expre @ [Rts num_formals]
[If (p,t,) ->lett' =stmttand f' =stmt fin
expr p @ [Beq(2 + List.length t')] @
t' @ [Bra(1 + List.length f)] @ f
| For (el, e2, €3, b) -> stmt (Block([Expr(el);
While(e2, Block([b; Expr(e3)]))]))
| While (e, b) -> let b' = stmt b and ' = expr e in
[Bra (1+ List.length b")] @ b' @ &' @
[Bne (-(List.length b* + List.length €"))]

in [Ent size_locals] @ (* Entry: allocate space for locals *)
stmt (Block fdecl.body) @ (* Body *)
[Lit 0; Rts num_formals] (* Default = return 0 *)
in let env = { function_index = function_indexes;
global_index = global_indexes;
local_index = StringMap.empty;
arg_index = StringMap.empty } in
(* Code executed to start the program: Jsr main; halt *)
let entry_function = try
[Jsr (StringMap.find "main” function_indexes); HIt]
with Not_found -> raise (Failure (*no \"main\" function")) in
(* Compile the functions *)
let func_bodies = entry_function :: List.map (translate env) functions in

(* Calculate function entry points by adding their lengths *)

let (fun_offset_list,) = List.fold_left
(fun (1,i) f-> (i :: I, (i + List.length 1))) ([],0) func_bodies in

Page

29

let func_offset = Array.of _list (List.rev fun_offset_list) in

{ num_globals = List.length globals;
size_globals = size_vars globals;
(* Concatenate the compiled functions and replace the function
indexes in Jsr statements with PC values *)
text = Array.of_list (List.map (function
Jsr i when i > 0 -> Jsr func_offset.(i)
| _ass->s) (List.concat func_bodies))

¥

8.6 execute.ml

open Ast
open Bytecode

(* Stack layout just after "Ent":

<--SP
Local n

Local 0

Saved FP <--FP
Saved PC

Arg 0

Amnﬂ

let execute_prog prog =
let stack = Array.make 1024 "0"
and globals = Array.make prog.size_globals "0" in

let rec exec fp sp pc = match prog.text.(pc) with
Liti -> stack.(sp) <- string_of_inti ; exec fp (sp+1) (pc+1)
| Stg s -> stack.(sp) <-s; exec fp (sp+1) (pc+l)
| Max -> stack.(sp) <- "Max"; exec fp (sp+1) (pc+1)
| Acc -> if stack.(sp-3) = "Max" then
let rows = (int_of_string stack.(sp-4)) and

cols = (int_of_string stack.(sp-5)) and

r = (int_of _string stack.(sp-1)) and

¢ = (int_of_string stack.(sp-2)) in (

stack.(sp-5-(rows*cols)) <- stack.(sp-6-(rows*cols)+((r-1)*cols)+c);

exec fp (sp-4-(rows*cols)) (pc+1))

| Drp ->exec fp (sp-1) (pc+1)

| Bin op -> if stack.(sp-1) = "Max" || stack.(sp-2) = "Max" then ((
match op with

Page

Add | Sub | Equal | Neq -> (
let rows = (int_of_string stack.(sp-2)) and
cols = (int_of_string stack.(sp-3)) in (
for i = 4 to (3+rows*cols) do
let opl = (int_of_string stack.(sp-3-i-rows*cols)) and
op2 = (int_of_string stack.(sp-i)) in
stack.(sp-i) <- (let boolean i = if i then "1" else "0" in
match op with
Add ->string_of _int (opl + op2)
| Sub ->string_of _int (opl - op2)
| Equal -> boolean (opl = op2)
| Neg ->boolean (opl != 0p2))
done))
| Mult -> (
if stack.(sp-1) <> "Max" then (
let rows = (int_of_string stack.(sp-3)) and
cols = (int_of_string stack.(sp-4)) and
const = (int_of _string stack.(sp-1)) in (
stack.(sp-1) <- "Max";
stack.(sp-2) <- string_of _int rows;
stack.(sp-3) <- string_of _int cols;
for i =5 to (4+rows*cols) do
stack.(sp-i+1) <- string_of_int (const*(int_of_string stack.(sp-1)))
done))
else (
let rows = (int_of _string stack.(sp-2)) and
cols = (int_of_string stack.(sp-3)) in (
if stack.(sp-rows*cols-4) <> "Max" then (
for i = 4 to (3+rows*cols) do
stack.(sp-i) <- string_of _int (int_of _string
stack.(sp-rows*cols-4)*(int_of_string stack.(sp-i)))
done)
else (
let rows2 = (int_of_string stack.(sp-5-rows*cols)) and
cols2 = (int_of_string stack.(sp-6-rows*cols)) in (
if cols2 1= rows then (raise (Failure(
"Operators for * do not satisfy matrix multiplication criteria™)))
else (
let opsl = ref [] and ops2 = ref [] and
res =ref [] and sum =ref 0 in (
let count = ref 0 and
m = (Array.sub stack (sp-rows*cols-6-rows2*cols2) (rows2*cols2)) in
for i = 0 to (Array.length m - 1) do
count := (Icount + 1);
opsl :=('opsl @ [Array.get mi]);
if Icount = cols2 then (

Page

count :=0;
let len = List.length 'ops1 in
for j = cols2 downto 1 do
opsl :=(topsl @ [List.nth lopsl (len - j)])
done)
done;
let count = ref 0 and
m = (Array.sub stack (sp-rows*cols-3) (rows*cols)) in (
forr =1 to rows2 do
for c =1 to cols do
for i =0 to (Array.length m - 1) do
count := (Icount + 1);
if lcount = ¢ then (ops2 := ('ops2 @ [Array.get m i]));
if 'count = cols then (count := 0)
done
done
done;
count :=0;
stack.(sp-2) <- string_of_int rows2;
for i =0 to (List.length 'opsl - 1) do
count := (Icount + 1);
sum := (!sum + ((int_of _string (List.nth lops1 i))*(
int_of_string (List.nth 'ops2 1))));
if 'count = cols2 then (
res := (res @ [!sum]); count := 0; sum :=0;)
done;
for i =0 to (List.length 'res - 1) do
stack.(sp-3-(rows2*cols)+i) <- (string_of _int (List.nth Ires i))
done)
)
));

(match op with
| Add | Sub | Mult -> ()
| Equal -> let rows = (int_of_string stack.(sp-2)) and
cols = (int_of_string stack.(sp-3)) in
stack.(sp-1) <- (let cmp = (
Array.fold_left (funse->s+ (int_of _stringe)) 0 (
Array.sub stack (sp-3-rows*cols) (rows*cols))) in
if cmp = (rows*cols) then "1" else "0")
| Neq -> let rows = (int_of_string stack.(sp-2)) and
cols = (int_of_string stack.(sp-3)) in
stack.(sp-1) <- (let cmp = (
Array.fold_left (funse ->s + (int_of_string e)) O (
Array.sub stack (sp-3-rows*cols) (rows*cols))) in
if cmp > 0 then "1" else "0"));
exec fp sp (pc+1))

Page

else (
let opl = (int_of_string stack.(sp-2)) and
op2 = (int_of_string stack.(sp-1)) in (
stack.(sp-2) <- (let boolean i = if i then "1" else "0" in
match op with
Add ->string_of int (opl + op2)
| Sub ->string_of _int (opl - op2)
| Mult ->string_of _int (opl * op2)
| Div ->string_of _int (opl/ op2)
| Equal ->boolean (opl = op2)
| Neq ->boolean (opl !'=0p2)
| Less ->boolean (opl < op2)
| Leq ->boolean (opl <= op2)
| Greater -> boolean (opl > op2)
| Geqg ->boolean (opl >= op2));
exec fp (sp-1) (pc+1)))
| Lodi ->if globals.(i-1) = "Max" then
let rows = (int_of_string globals.(i-2)) and
cols = (int_of_string globals.(i-3)) in (
for j = 1 to (3+rows*cols) do
stack.(sp+(3+rows*cols)-j) <- globals.(i-j)
done;
exec fp (sp+(rows*cols+3)) (pc+1))
else (
stack.(sp) <- globals.(i-1);
exec fp (sp+1) (pc+l))
| Stri ->if stack.(sp-1) = "Max" then
let rows = (int_of_string stack.(sp-2)) and
cols = (int_of_string stack.(sp-3)) in (
for j = 1 to (3+rows*cols) do
globals.(i-j) <- stack.(sp-j)
done)
else (globals.(i-1) <- stack.(sp-1));
exec fp sp (pc+1)
|Lfpi ->ifi<0then letrec f1 = (fun x offset ->
if offset = (-2) then x
else if stack.(fp+x) = "Max" then
f1 (x-3-(int_of_string stack.(fp+x-1))*(
int_of_string stack.(fp+x-2))) (offset+1)
else f1 (x-1) (offset+1)) in (
if stack.(fp+(fl (-2) i)) = "Max" then
let rows = (int_of_string stack.(fp+(f1 (-2) 1)-1)) and
cols = (int_of_string stack.(fp+(f1 (-2) i)-2)) in (
for j =1 to (rows*cols+3) do
stack.(sp+(rows*cols+3)-j) <- stack.(fp+(f1 (-2) i)-j+1)
done;

Page

exec fp (sptrows*cols+3) (pc+1))
else (
stack.(sp) <- stack.(fp+i);
exec fp (sp+1) (pc+1)))
else if stack.(fp+i-1) = "Max" then (
let rows = (int_of_string stack.(fp+i-2)) and
cols = (int_of_string stack.(fp+i-3)) in (
for j =1 to (rows*cols+3) do
stack.(sp+(rows*cols+3)-j) <- stack.(fp+i-j)
done;
exec fp (sp+(if stack.(fp+i-1) = "Max" then (rows*cols+3) else 1)) (pc+1)))
else (
stack.(sp) <- stack.(fp+i);
exec fp (sp+1) (pc+l))
| Sfp i ->if stack.(sp-1) = "Max" then (
let rows = (int_of_string stack.(sp-2)) and
cols = (int_of_string stack.(sp-3)) in (
for j = 1 to (rows*cols+3) do
stack.(fp+i-j) <- stack.(sp-j)
done))
else (stack.(fp+i) <- stack.(sp-1));
exec fp sp (pc+1)
| Jsr(-1) -> if stack.(sp-1) = "Max" then (
let rows = (int_of_string stack.(sp-2)) and
cols = (int_of_string stack.(sp-3)) in (
for i = rows downto 1 do
Array.iter (fun e -> Printf.printf "%s " e)
(Array.sub stack (sp-3-i*cols) cols);
Printf.printf "\n'
done))
else (print_endline stack.(sp-1));
exec fp sp (pc+1)
| Jsr(-2) -> if stack.(sp-1) = "Max" then
let rows = (int_of_string stack.(sp-2)) and
cols = (int_of_string stack.(sp-3)) in (
stack.(sp-3-(cols*rows)) <- string_of _int rows;
exec fp (sp-2-(cols*rows)) (pc+1))
| Jsr(-3) -> if stack.(sp-1) = "Max" then
let rows = (int_of_string stack.(sp-2)) and
cols = (int_of_string stack.(sp-3)) in (
stack.(sp-3-(cols*rows)) <- string_of _int cols;
exec fp (sp-2-(cols*rows)) (pc+1))
| Jsr(-4) -> let oc = open_out stack.(sp-1) in (
if stack.(sp-2) = "Max" then
let rows = (int_of_string stack.(sp-3)) and
cols = (int_of _string stack.(sp-4)) in (

Page

34

for i = rows downto 1 do
Array.iter (fun e -> Printf.fprintf oc "%s " e) (
Array.sub stack (sp-4-i*cols) cols);
Printf.fprintf oc "\n"
done)
else Printf.fprintf oc "%s" stack.(sp-2));
exec fp sp (pc+1)
| Jsri ->stack.(sp) <- string_of _int (pc + 1);
exec fp (sp+1) i
| Enti -> stack.(sp) <- string_of int fp;
exec sp (sp+i+l) (pct+l)
|Rtsi ->letj=(ifi>0then (letrec fl =(
fun x offset ->
if offset = 0 then x
else if stack.(fp+x) = "Max" then
f1 (x-3-(int_of_string stack.(fp+x-1))*(
int_of_string stack.(fp+x-2))) (offset+1)
else f1 (x-1) (offset+1)) in (f1 (-2) (-1)))
elsei)in (
let new_fp =int_of string stack.(fp) and
new_pc = int_of_string stack.(fp-1) in
if stack.(sp-1) = "Max" then (
let rows = (int_of_string stack.(sp-2)) and
cols = (int_of_string stack.(sp-3)) in
for x = 1 to (rows*cols+3) do
stack.(fp-j-x) <- stack.(sp-x)
done)
else stack.(fp-j-1) <- stack.(sp-1);
exec new_fp (fp-j) new_pc)
| Begi ->exec fp (sp-1) (pc + if (int_of string stack.(sp-1)) = 0 theni else 1)
| Bnei ->exec fp (sp-1) (pc + if (int_of_string stack.(sp-1)) != 0 then i else 1)
| Brai ->exec fp sp (pc+i)
|HIt ->()

inexec000

8.7 atm.ml

type action = Ast | Bytecode | Compile

let =
let action =
if Array.length Sys.argv > 1 then
List.assoc Sys.argv.(1) [("-a", Ast);
("-b", Bytecode);
("-c", Compile)]

Page

else Compile in
let lexbuf = Lexing.from_channel stdin in
let program = Parser.program Scanner.token lexbuf in match action with
Ast -> let listing = Ast.string_of_program program in print_string listing
| Bytecode -> let listing = Bytecode.string_of_prog (Compile.translate program) in
print_endline listing
| Compile -> Execute.execute_prog (Compile.translate program)

Page

