n2n reference manual

nick falba (nrf2118), bill liu (jl4347), eli aider (ea2621), johan mena (jmm2371)
Programming Languages and Translators, Fall 2014
October 27, 2014

1. Introduction

In today’s world there is an escalating interest in relationships. Be it the connection of people
on a social networking platform, of family members in a family tree, of variables in a
mathematical equation, or the connection of trains in a city subway system, we are constantly
trying to find networks of people and things and analyze how they interrelate. Most often,
relationships are implemented in a programming setting via the graph data structure
containing a set of nodes and edges defining connections between the nodes. In standard
programming languages, however, graphs can be tedious to create and manipulate, requiring
the creation of separate classes for nodes and edges, and burdening the programmer to keep
track of their graphs manually. Finding and analyzing relationships between nodes of a
network can be challenging.

n2n is a language that provides a higher level abstraction than procedural languages to
perform common operations on graph data structures like create, read, and manipulate them
through the use of relationships.

2. Syntax

21. Statements
A statement is anything that can make up a line of n2n code.

21.1.

2.1.2.

Identifier declarations

Identifiers store data values. They can either be of a primitive type or a
complex type. The type of the identifier determines the meaning of the
values in the identifier's storage, thus the type must be explicitly
declared when specifying an identifier, as follows:

let identifier_name: type

The “let” keyword before the identifier's name brings that identifier into
existence. The name must be followed by a colon, then by its type.

Conditional statements
Conditional statements are composed of three parts: a required “if”;
zero, one, or more than one “elif’ parts; and an optional “else” part.

1. if (expression) {
statements

}

2. if (expression) {

statements

} elif (expression) {
statements

} elif (expression) {
statements

} elif (expression) {
statements

}

3. if (expression) {
statements
} elif (expression) {
statements
}else{
statements

}

Note that elif statements are always optional.

In the first case, the compiler will execute statements if the result of
evaluating expression is the boolean value of true.

In the second case, the compiler will execute the first set of statements
for which the preceding expression evaluates to a boolean value of true.

The third case is the same as the second case, except it will always
evaluate the statements inside the else part of the conditional if no other

expression evaluate to true before that.

2.1.3. Return Statements
To return a function to its caller use the keyword return as follows:

return expression
This will return the result of evaluating expression.
21.4. Function declarations
A function is a callable piece of code that can be reused. It is declared by
specifying the name, parameters, and return type of the function as follows:

fn name (parameter_list) -> return_type { statements }

parameter_listis a comma-separated list of either zero, one, or more variables
of either primitive type, a complex type, or another function.

Functions may contain and return other functions within the statements block.

Expressions
Expressions are any line or lines of n2n code that can eventually be resolved to a
single value. All expressions are also statements.

3.1.

3.2.

Identifier Assignment

Once an identifier has been declared, one can assign or reassign its value
simply by using its name followed by the assignment operator, followed by an
expression that evaluates to the identifier’s type:

identifier_name = expr

One can also declare and initialize an identifier all in one line using the
following syntax:

let identifier_name: type = expr

Where expr evaluates to a value of type type. This expressions resolves to the
value of evaluating expr.

Function call
After a function has been declared, it can be called by placing parentheses
after the name. If the function takes any arguments, those should be included

and separated by commas.

fn ohai (x: String) -> Void { print(x) } ; function declaration
ohai(“n2n!”) ; function call

The value returned can be either a primitive type, a complex type, Void or
another function.

3.3. Unary Operators
3.3.1. - operator

-1

Returns the negative version of an integer or a double. Only
works on integers and doubles.

3.3.2. ! operator
! expression

Returns true if expression evaluates to false and false otherwise.

3.4. Binary Operators
3.4.1. Arithmetic operators

3.4.2.

3.4.3.

3.4.4.

5+5
10 / expression

The +, -, *, /, % operators perform the corresponding arithmetic
operations on its operands, which should be either integers or
doubles. The % operator performs the modulus operation.

Relational operators

expression > 5
10==a

The >, <, ==, =, =>, <= operators perform numerical comparison
between two numbers and return a boolean value depending on
the result of the expression.

Logical Operators

first && second
first || second

n2n supports two logical operators: && (or “and” operator) and ||
or (“or” operator). These operate on two expressions that can be
evaluate to a boolean value (first and second, in the example
above). The && operator returns true if both first and second
evaluate to true, false otherwise. The || operator returns false if
either first or second return false, and it returns true if either first
or second return true.

Concatenation
“hello ” * “troll” ; “hello troll”
Strings can be concatenated using the * operator. This operator

returns a new string in which the string on the right is appended
to the string on the left.

Types

Identifiers in n2n are labeled by type. The identifier's type determines how the compiler
interprets the data in the identifier's storage. The identifier lifetime depends upon the
scope in which the identifier is defined. A function sets a scope for a variable so that
any variables declared in a function only exist within that function and are discarded on
return. Any variable defined outside of a function definition is global in scope and is not
discarded until the end of the program. If a local variable shares its name with a global
variable, the local variable (within the function) takes precedence.

4.1. Identifier types
4.1.1 Primitive types
Integers are represented in 32-bit 2’s complement representation
e Doubles are represented in 64-bit according to the IEEE standard
e Booleans are represented as either true or false, which in n2n, cannot
be reduced.
e Strings are a sequence of ASCII characters chosen from a

41.2 Complex types: Data, Graph, Node, Rel

e Data is a collection of named primitive types intended to hold a group of
related values (like C’s structs or Ocaml’s types) and is used to
represent information contained in a Node or Rel. Examples:

Defining a Data type:

let data_example:Data = {
let bool _field:Bool
let string_filed:String

}

Data literals can then be made for that specific type and stored in a
node. Example of the above would be:

data_example{ bool_field = true, string_field = “test” }

e Nodes are the building blocks of graphs. Each node contains a set of
named fields, either primtive or Data, describing the attributes of what
the node represents. They can be instantiated and bound to an id as

follows:

let node1:Node = [data_example{ bool_field = true, string_field = “text” },

The ellipsis (...) above indicates that many Data types or primitive types
can be stored in a node. The above is an example of a node being
declared and instantiated explicitly. A node can also be declared and
instantiated implicitly using the Rel and Graph instantiation syntax (see
below). Node literals have the form:

[data_object{...}, data_object2{...}, primitive_type1:field_type,...]

Rel is the representation of a directed edge between graph nodes.
Directed means that the relationship from node1 and node2 might be
different than the relationship from node2 to node1. Rels can contain
one piece of information, either a single Data type or a single primitive
type. This single piece of information is named.

Rel literals have the form:
[source node, rel_data, destination_node]

So a rel is defined by two nodes and a directed edge containing data
about the relationship from source_node to destination_node. If
source_node or destination_node are not valid in the scope where
they’re being referenced, empty nodes are created and bound to those
identifiers. This is an example of a node being declared implicitly. Rels
can be directly instantiated and bound to an identifier with the syntax:

let rel_example:Rel = [source_node, rel_data, destination_node]
n2n supports multiple relationships between nodes.

Graph is the main data type in the language and is represented in
memory as an adjacency matrix. Graph is a collection of nodes and the
data representing the relationships (Rels, above) between them.

To fill a graph, zero or more rel and/or node objects, as defined above,
are declared within curly brackets following the graph’s assignment
operator. Node and Rel values that are to be inserted into a graph may
exist prior to the assignment of the graph in which they are placed or
they can be assigned within the graph’s declaration.

For example:

let graph1:Graph = {
let Rel_name1: Rel = [existing_node1, rel1_data, existing_node2]

let Rel_name2: Rel =[node3, rel2_data, node4]
existing_node_5

}

Or:

let graph2:Graph = {
let Rel_name1: Rel =[[node_data_object_name{ data_field =
expr }], rel_data{ rel_data_field = expr }, [node2_data_obj name{
data_field = expr }]]
let nodeb:Node = [data_type{data_type_field1 = value, ...}]

}

In the first example, existing_node1 and existing_node2 are nodes that
have been declared and instantiated explicitly as shown above. node3 and
node4 are being implcitly declared and instantiated as empty nodes.
These node types can be referenced later with the identifiers node3 and
node4, within the same scope as the graph is being defined.
existing_node_5 is added to the graph but has no relationships coming
from it. It is added as an orphan node, where relationships can be added
later.

For graph2, it consists of only one relationship and one node, explicitly
created and instantiated as well as added to the graph and bound to
identifiers using the assignment operator (see Expressions below), which
can be used to modify these objects later within the same scope as the
graph that is being instantiated.

4.1.3 Lists
e [jst maintains an ordered collection of elements and is used in our
language for iterating over a graph’s nodes, relationships, or a subset of
these. Lists are immutable in n2n.

Lexical conventions

An n2n program, written in the ASCII character set consists of one or more graph
objects, the nodes it contains, the complex relationships between those nodes, and/or
functions that manipulate or make use of the graph. It contains various types of tokens
such as expression operators, keywords, built-in function names, identifiers, and other
separators. All identifiers, keywords, and functions names are case sensitive. In
general blanks, tabs, and comments are ignored except as they serve to separate
tokens. New lines indicate the end of a statement.

5.1 Comments
Comments are introduced and terminated by the character “;”:

; This is a comment ;

5.2 Identifiers
An identifier is a sequence of letters and digits with no spaces between them.
The first character must be alphabetic. Underscore characters may be
included in the identifier. Convention is that multi-word identifiers are
separated by underscores (‘_’) to improve readability.

5.3 Keywords
The following are reserved for use as keywords and may not be used

otherwise:
Int if false
String else return
Bool elif each
Double let filter
Graph fn in
Node Void map
Rel Null reduce
Data true find_many

5.4 Constants

5.4.1 An integer constant is a sequence of digits. A minus sign (*-’) indicates
the integer has a negative value. n2n requires decimal integer values.

12
-1
1024

5.4.2 A floating constant consists of an integer part, a decimal point, and a
fraction part. Either the integer part or the fraction part but not both may be
missing. Both are comprised of a series of digits.

1.3
2
1.

5.4.3 String constants are one or more ASCII characters surrounded by
double quotes. Certain characters may be escaped within a string as follows:

1 \nu > “ \\n 1
“ \t “_> “ \\t “
1 \\\\ 1 > “ \ “

“ \” “ > TN

6.

Built-in Functions

6.1.

6.2.

Graph and Node Operators

An existing node or relationship can be added to a Graph using the *+
operator as in: Graph_name *+ Node_name/Rel_name. Similarly, the *-
operator is used to delete a node in a Graph.

For Graph_name #- Rel_name, it just removes the particular relationship from
the “Graph”.

Whereas for Graph_name *- Node name, it removes the node and all

the relationships associated with it.

To add or remove Data from a Node, use the [+] and [-] operators respectively.
For adding data, set the field values within curly braces.
let node_example: Node = [let data: data_type]

let data_to_add: Data = {
let field1: data_type

}

node_example [+] data_to_add{field1 = value}

The result after insertion would be:

node_example = [data, data_to_add{ field1 }]

Data deletion is just deleting a spacific data from the node object, for example:
node_example [-] data

The result after deletion would be:

node_example = [data_to_add{ field1 }]

The find_many Function

The find_many method takes in a set of criteria and returns a list of Node
objects associated with the specified criteria. The criteria may be any of the
following: (For clarification purposes, examples are given below from the
following set of data: There are Nodes with Data types movies and persons
and Rel of type “acted_in” and instantiation Node named Amber)

let actor: Data = {
let name: String
let age: Int

}

let Amber: Node = [actor{ age = 27 }]

let Keanu: Node = [actor{ name = “Keanu”, age = 27}]

let acted_in: Data = {
let role: String = “Nancy”

}

let movie1: Node = [let movie_name: String = “Matrix”]
let movie2: Node = [let movie_name: String = “Matrix”]

let graph: Graph = {
[Amber acted_In movie1]
[Keanu acted_In{role ="Neo”} movie1]
movie2

}

- find_many(node_data_literal): This returns a list of all nodes with fields that
match the given node_data_literal. Some examples:

find_many([actor]) ; returns a list containing Amber and Keanu nodes;
find_many([actor{ age = 27}]) ; returns the same list as above;
find_many([actor{name = “Keanu™}]) ; returns a list containing Keanu ;

- find_many(node_data_literal, rel_data): This returns a list of nodes that are
pointed to by the nodes that match node_data_literal with relationship rel_data.

find_many([actor{name = “Keanu™}], acted_in{role = “Matrix™}) ; returns movie1.

find_many(node_data_literal1, rel_data, node_data_literal2): This returns a list
of nodes that are defined by node_data_literal1 pointing to node_data_literal2,
with relationship rel_data.

ex: returns all persons that have acted_in any movie
find_many([actor], acted_In, [movie_name]) ; returns Amber and Keanu nodes ;

For the node_literals, you could also put in a named_node variable. In these
cases, the set of nodes that match these arguments would be one, the node that
the name is bound to. The function then tries to return only those nodes that
match the rel_data pattern from that specific node. An example:

find_many(Keanu, acted_in{role = “Ne0”}) ; returns movie1,;
find_many(Amber, acted_in) ;returns movie1;
find_many([actor], acted_in, movie1) ;returns Amber and Neo;

Standard Library functions

7.1.

7.2,

7.3.

7.4.

each(collection, function) applies ‘function’ to every element in ‘collection’ and
returns the original ‘collection’

map(collection, function) returns a list of the results of running ‘function’ on
each element of ‘collection’

reduce(collection, function, init) combines all elements of ‘collection’ by
applying ‘function’ to two elements of the collection at a time, starting from an
initial value of ‘init’

filter(collection, predicate) yields every element in the collection to a predicate
and returns a new list of the elements for which predicate evaluates to true

8. Program Execution
8.1. Start symbol
The symbol “$” indicates the start point of an n2n program. All statements after
the dollar sign will be executed sequentially until the end of file is reached.

$

statement 1
statement 2
statement 3

