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What is MDP3.0 

MDP3.0 is a completely new data feed 

implementation by the CME Group. 

Sends Incremental Market Updates among a variety 

of other information. 

Designed to be super quick and efficient 

Introduction 



MDP3.0 Protocol 

  The encoded FIX transmission is 
sent in a packet structured as 
follows: 

 Packet header - contains packet 
sequence number, sending time. 

 Message Size - field indicating 
size of message. 

 Message header - contains block 
length, TemplateID, SchemaID, 
and Version. 

 FIX header - indicates FIX 
message type (example: 35=X) 

 FIX message body - event driven 
business data such as book 
updates and trade summary. 



Sample Message - Market Data 

Incremental Refresh (35=X) 



We decode market data incremental refresh messages 

sent from the CME Group 

Using this data we generate our own version of order-

books for specific securities. 

We then send out snapshots of these order books at 

regular intervals 

Our Project 



Software Implementation 

 Python Code 

 Book Builder 
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Development Architecture  
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Hardware Implementation 



Avalon ST 



Packetizer  



Parser 

 Our parser reads in data from the FIFO 

 Message headers are always multiples of 64 bits 

 But each message can contain multiple entries. 

 Each entry is typically 214 bits (which is not a multiple 

of 64) 

 This requires us to keep track of the entry offset 

 Simple Equation : 

 Offset  = (Offset + 40) % 64 





FIFO 

 Buffer between components 

 64-bits wide 

 256 blocks deep 



FIFO 



Order Book 

 10 levels of Bid and Ask prices 
Bid Book 



Challenges 

 Oversimplified Initial sample data 

 

 Needed a robust testing suite 

 

 Too much trust in Modelsim 

 

 New data format 



Lessons Learned 

 More robust Modelsim tests 

 

 The initial design should have been more macro 

focused 

 

 Clarify confusing financial concepts earlier 



Future Work  

 Implied Orders 

 Implied “IN” 

 Order In spread from outright 

 Implied “OUT” 

 Order In the outright from spread 

 

 Our future work on the project aims to be able to read 

the saved Order Books across different months to 

create Implied books 



Conclusion 

 Thanks for all the help! 

 Prof Edwards & 
Lariviere 

 Qiushi Ding 


