
MDP 3.0 TICKERPLANT

Daron Lin, Jonathan Liu, Giovanni Ortuno, Mirza Ali

What is MDP3.0

MDP3.0 is a completely new data feed

implementation by the CME Group.

Sends Incremental Market Updates among a variety

of other information.

Designed to be super quick and efficient

Introduction

MDP3.0 Protocol

  The encoded FIX transmission is
sent in a packet structured as
follows:

 Packet header - contains packet
sequence number, sending time.

 Message Size - field indicating
size of message.

 Message header - contains block
length, TemplateID, SchemaID,
and Version.

 FIX header - indicates FIX
message type (example: 35=X)

 FIX message body - event driven
business data such as book
updates and trade summary.

Sample Message - Market Data

Incremental Refresh (35=X)

We decode market data incremental refresh messages

sent from the CME Group

Using this data we generate our own version of order-

books for specific securities.

We then send out snapshots of these order books at

regular intervals

Our Project

Software Implementation

 Python Code

 Book Builder

General Architecture

CME sends
Data

Packetizer
reads Input

FIFO stores
data

Parser
decodes

Order Book
Updates

FIFO stores
snapshot

Snapshot
Stream

Sent to
Network

Development Architecture

Sample data
fed as input

Avalon
MM2ST

Packetizer
reads Input

FIFO stores
data

Parser
decodes

Order Book
Updates

Avalon ST2MM

Hardware Implementation

Avalon ST

Packetizer

Parser

 Our parser reads in data from the FIFO

 Message headers are always multiples of 64 bits

 But each message can contain multiple entries.

 Each entry is typically 214 bits (which is not a multiple

of 64)

 This requires us to keep track of the entry offset

 Simple Equation :

 Offset = (Offset + 40) % 64

FIFO

 Buffer between components

 64-bits wide

 256 blocks deep

FIFO

Order Book

 10 levels of Bid and Ask prices
Bid Book

Challenges

 Oversimplified Initial sample data

 Needed a robust testing suite

 Too much trust in Modelsim

 New data format

Lessons Learned

 More robust Modelsim tests

 The initial design should have been more macro

focused

 Clarify confusing financial concepts earlier

Future Work

 Implied Orders

 Implied “IN”

 Order In spread from outright

 Implied “OUT”

 Order In the outright from spread

 Our future work on the project aims to be able to read

the saved Order Books across different months to

create Implied books

Conclusion

 Thanks for all the help!

 Prof Edwards &
Lariviere

 Qiushi Ding

