
1

A Core Robot Algorithm: Inverse Kinematics

• Setting a robot’s joints so end
effector reaches a target

• Input: current robot geometry

• Output: required joint
increments

• Computationally intensive problem
all limbed robots must solve

• Beyond controlling single arms and
legs, many larger problems rely on
inverse kinematics

• redundant manipulators

• multiple end effectors
• inverse dynamics

2

A Digital Accelerator for Inverse Kinematics

• Inverse kinematics not well suited for normal digital
architectures

– Entirely floating point array, matrix operations
– 40% of cycles in inverting matrices
– 15% of cycles in sine, cosine operations

• We solve IK via damped least squares

– Dedicated sine, cosine function generators
– Parallel, fixed-point functional units
– Solves IK problem in 100µs: compare against 10ms
for general algorithm on CPU

3

Architecture and Toolchain

FPGA
CONFIGURATION
TIME

FPGA
RUNTIME

LINUX
RUNTIME Target Pose Incremental

Joint Actions

ROS URDF
Collada

D-H Params

Robot
Geometry

XML

matrix constants

variables

Forward
Kinematics
Jacobian

Jacobian
Block

Forward
Kinematics

Matrix
Damped Least
Squares Block

Inverse
Kinematics

Matrix

cpp-inverse-
kinematics-

library

Compiler

Robot
Current Joint

Pose

Full Matrix
Mult. Pipeline

4x4 Matrix
Multiplier

d
A

α
Θ

16

16

• axis of rot. / trans.
• pos. & rot. of joint

16

A*cos(Θ)

A*sin(Θ)

sin(Θ)sin(α)

-sin(Θ)cos(α)

-cos(Θ)sin(α)

cos(Θ)cos(α)

sin(Θ)

cos(Θ)

sin(α)

cos(α)

Θ

α

A

d

Jacobian
Finder

16...

4

Architecture and Timing Design

• Architectural Choices
• Pipelining sine/cosine and array multiply
• Parallelized matrix multiply and matrix inversion
• Fixed point representations throughout system

• Timing Choices
• Single array of multipliers shared amongst modules
• Aggregate individual enable and done signals into
global state machine

5

Experiences and Issues

• Deciding on the algorithm to use
• Determining what implementation would fit on
 the board
• Convincing ourselves the algorithm works
• Extensively tested the core hardware, but not the
 top-level interface (until yesterday)

6

Lessons Learned

• Test the whole stack earlier
• Plan before trying to implement
• Use timing diagrams and area estimates before
touching hardware
• Leave no ambiguity in the design

