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A Core Robot Algorithm: Inverse Kinematics 

• Setting a robot’s joints so end 
effector reaches a target 

• Input: current robot geometry 

• Output: required joint 
increments 

 
• Computationally intensive problem 
all limbed robots must solve 
 
• Beyond controlling single arms and 
legs, many larger problems rely on 
inverse kinematics 

• redundant manipulators 

• multiple end effectors 
• inverse dynamics 
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A Digital Accelerator for Inverse Kinematics 

 
• Inverse kinematics not well suited for normal digital 
architectures 

– Entirely floating point array, matrix operations 
– 40% of cycles in inverting matrices 
– 15% of cycles in sine, cosine operations 

 
• We solve IK via damped least squares 

– Dedicated sine, cosine function generators 
– Parallel, fixed-point functional units 
– Solves IK problem in 100µs: compare against 10ms 
for general algorithm on CPU 
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Architecture and Toolchain 
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Architecture and Timing Design 

• Architectural Choices 
• Pipelining sine/cosine and array multiply 
• Parallelized matrix multiply and matrix inversion 
• Fixed point representations throughout system 

• Timing Choices 
• Single array of multipliers shared amongst modules 
• Aggregate individual enable and done signals into 
global state machine 
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Experiences and Issues 

• Deciding on the algorithm to use 
• Determining what implementation would fit on  
  the board 
• Convincing ourselves the algorithm works 
• Extensively tested the core hardware, but not the 
  top-level interface (until yesterday) 
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Lessons Learned 

• Test the whole stack earlier 
• Plan before trying to implement 
• Use timing diagrams and area estimates before 
touching hardware 
• Leave no ambiguity in the design 


