COLUMBIA UNIVERSITY

COMPUTER SCIENCE DEPARTMENT

COMS W4115 PROGRAMMING LANGUAGES AND TRANSLATORS

CAL: Cellular Automaton Language

Authors:

Calvin Hu (ch2880)
Nathan Keane (nak2126)
Eugene Kim (esk2152)

Supervisor:
Prof. Stephen A. Edwards
Teaching Assistant: Qiuzi Jessie' Shangguan

August 16, 2013

1 INTRODUCTION
1.1 Background
1.2 Project Overview
1.3 Language Features
2 LANGUAGE TUTORIAL
2.1 Getting Started with the Compiler
2.2 Installing and Compiling the Compiler
2.3 A first example of the CAL program
2.3.1 CAL Program: brians_brain.cal
2.3.2 Compile the Program
2.3.3 Running the Program
2.3.4 Result
2.4 Additional Examples
2.4.1 Langton’s Ant
2.4.2 Rule 90
2.4.3 Game of Life
3 LANGUAGE REFERENCE MANUAL
3.1 Introduction
3.2 Lexical Conventions
3.2.1 Comments
3.2.2 ldentifiers (Names)
3.2.3 Keywords
3.2.4 Constants and Literals
3.2.4.1 Boolean constants
3.2.4.2 Character constants
3.2.4.3 Integer constants
3.2.4.4 Actor_type constants
3.2.4.5 Direction constants
3.3 Data Types
3.4 Expressions and Operators
3.4.1 Unary Operators - group right-to-left
3.4.2 Boolean Operators - group right-to-left
3.4.3 Additive Operators - group left-to-right
3.4.4 Multiplicative Operators - group left-to-right:

3.4.5 Relational Operators - group left-to-right:
3.4.6 Assignment Operator
3.5 Statements
3.5.1 Expression Statement
3.5.2 If Statement
3.5.3 While Loops
3.5.4 Return Statement

https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.o5z8rpgbhrbd
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.l3v60duuo92n
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.9m8i1lia7go2
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.sj2396y7cqkb
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.kzz1cfraql3t
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.xkvvj8drrew0
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.t4ug3qo3f9a2
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.6wmg57111xx6
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.odbsifcrwkry
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.gmm0bz2e0d3a
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.vlssfxx0qdi4
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.1el3ej3b2qxt
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.4liio52s1x2v
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.bjprp051ukd5
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.9r4x4rjlhnk6
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.s0do9ukcc0zi
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.74aomekfjr95
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.t9782g9wuqbo
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.9h1n3elsppbz
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.cnmn5by9lts6
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.8hjt32cwm00m
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.7iutbp8olwt8
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.4ilmcg2yaz1i
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.rpuedjqa3hed
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.hb0wvm19ul0x
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.oqkxg8x3apvs
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.f9bm12ug58hq
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.7zk9s47nbgq4
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.h96iz2dd2lo2
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.nr80uz60acus
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.uu3n519c51t5
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.p4j0bgefjrcd
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.a4xb0zr4ujt6
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.gut1gvia2wya
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.n7lo37yujfmi
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.kf6e1m8euzns
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.mzox70555trx
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.e7i7ybkjd5ib
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.jso2927po7n
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.4dptolpgwiac
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.ybu7w0wmz5s3

3.6 Scope Rules
3.7 Declarations
3.7.1 Variable Declarations
3.7.2 Function Declarations
3.8 System Functions
3.9 Example
4 PROJECT PLAN
4.1 Process
4.2 Programming Style
4.2.1 Names
4.2.2 Function Definitions
4.2.3 Indentation
4.3 Project Timeline
4.4 Responsibility
4.5 Software Development Environment
5 ARCHITECTURAL DESIGN
5.1 CAL Architectural Design Diagram
5.2 CAL Components
5.2.1 Scanner
5.2.2 Parser and AST
5.2.3 Semantic Analyzer
5.2.4 C Code Generator
6 TEST
6.1 Testing of AST
6.2 Testing of CAL files
7 LESSONS LEARNED
7.1 Calvin Hu
7.2 Nate Keane
7.3 Eugene Kim
8 APPENDIX

https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.7eepmo5kh6bf
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.afbbxfamlqrj
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.q1rsdwnuiowo
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.jqqukkpy5mud
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.fxo5qn9932n1
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.kv1nrs36rppg
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.vqfg9ne9he7g
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.hfwu82mc79y3
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.qr2b46gs387q
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.tvmm4nho1i4k
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.cpip1kxtqfug
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.m4v0esypi27s
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.ftmr4m18z3yo
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.2bxh0rwsupl0
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.u38nr2ufz8ed
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.1t8fdvmch7v0
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.44kkuiqipym
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.8u4td82y1rs0
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.ww1i5hcyq7cd
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.fvzdxa4j0a6k
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.xetyyzpx35fi
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.dhnps29cljio
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.ke2nyqfqhec3
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.8ug0yxltc1gk
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.kcatflh2t87d
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.khyf7bebeohw
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.4g82xfs9fm5i
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.6dlb8bmtkftt
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.fm8jhd1yq3l5
https://docs.google.com/document/d/1B8g9YIt0SVSdnYn00eQ5m6X7ro0fsLLhsyQjPJFN5fk/edit#heading=h.vocmn7syts5

1 INTRODUCTION

1.1 Background

Cellular automata are discrete, abstract computational systems that provide useful models of
non-linear dynamics in various scientific fields. Cellular automata are composed of discrete,
homogenous units called cells and each cell possesses one of a finite number of states, which changes
at discrete time steps simultaneously with the states of the other cells. State change of a cell is
governed by the states of its immediately surrounding cells. Cellular automata can display complex,
evolving behavior of small, homogenous units following set rules and are used to study computation,
algorithmic problems, pattern formation, abstract complexity science and theoretical biology.

1.2 Project Overview

Our language, Cellular Automata Language (CAL), is intended for programmers to quickly and

easily design cellular automata suited for their use. It should be easy for the programmers to designate
the set of initial states and set rules associated with their own cellular automata. They should be able
to see the outcome after a specific number of steps in both textual and graphical formats.

CAL makes use of a limited number of primitives to allow easy instantiation of rules and states. State
of an entire cellular automaton will be encapsulated in a primitive called grid. Initial state of cellular
automata will be set either manually in code or via input files using system function such as “def grid
create grid(int width, int height).” We have a primitive called direction, which is a property
associated one of the eight neighboring cells as well as the cell itself (north, south, east, west,
northwest, southwest, northeast, southeast and center). A key datatype for CAL is called actor type -
a data type that describes the internal variables and rules for how an actor should act. An actor is the
property of a cell at a given time that has a distinct property of what its next move will be depending
on the current states of its neighboring cells. CAL syntax allows programmers to declare a rule
succinctly through this acfor type.

In addition, we keep many of the basic data types like int, char, bool and string used in popular
languages such as C, C++ and Java to allow flexibility and ease of learning for programmers.
Arithmetic and boolean operators used in popular languages are mostly retained and have identical
properties as programmers are used to. CAL also implements if else conditional statements and while
loops, but our hope is that programmers will rarely have to use these features in programming cellular
automata due to our new powerful data types.

As part of our project, our team built a scanner, parser, ast file, semantic analyzer and code generator,
which altogether will scan, parse, error-check and generate correct C code that can be turned into
corresponding executable files through a C compiler.

1.3 Language Features

e CAL can build a grid of designated type and set its initial stage through easy system
functions.

CAL can set rules for each actor_type through its succinct syntax.

CAL can also set initial variables associated with each actor type.

CAL can display the built cellular automaton with a designated time interval.

CAL can change the grid and cell size as well as the screen size.

2 LANGUAGE TUTORIAL

2.1 Getting Started with the Compiler

Before running our compiler, configure your environment first by installing proper OCaml package
for your system by visiting: http://caml.inria.fr/download.en.html. CAL compiler also require C SDL

package, which can be obtained from http://www.libsdl.org/ . Finally, your system should have gcc
installed in your system.

2.2 Installing and Compiling the Compiler
After the procedure above, please place our project folder named ‘CAL.tar.gz’ into your system,
which contains source files. You need to first compile our CAL compiler by running the following

command inside the project folder.

make clean
make

After doing so, it will produce the compiler binary. Run the following to compile your CAL source
file.

./cal.out <source_file>

This will produce an executable with a “.out” extension, as well as an intermediate C source file. The
executable can be run with:

J/<output_file>

2.3 A first example of the CAL program

2.3.1 CAL Program: brians_brain.cal

http://www.google.com/url?q=http%3A%2F%2Fcaml.inria.fr%2Fdownload.en.html&sa=D&sntz=1&usg=AFQjCNEtIt26Di23LUkDMYs94pgwWChGsg
http://www.google.com/url?q=http%3A%2F%2Fwww.libsdl.org%2F&sa=D&sntz=1&usg=AFQjCNHdBFiGvKdkL17uTJ-qzi_LjQtZOg

1 actor_type Off = |

2 init:

3

4 rules:

5 neighborhood(On) =2 => {
6 assign_type(center, On);
7 }

8 default => { }

9

10 |

11

12 actor _type On = |

13 init:

14

15 rules:

16 default => { assign_type(center, Dying); }
17

18 |

19

20 actor_type Dying = |

21 init:

22

23 rules:

24 default => { assign_type(center, Off); }
25

26 |

27

28 defvoid setup(){

29 grid_size(300, 300);

30 set_chronon(10);

31 set_cell_size(2);

32}

This is a CAL program to produce a cellular automaton called “Brian’s Brain”, which consists of a
two-dimensional grid of cells and each cell may be in one of three states: On, Dying or Off. In each
time step, a cell turns on if it was off but had exactly two neighbors that were on. All cells that were
On go into the Dying state, which is not counted as an On cell in the neighbor count, and prevents
any cell from being born there. Cells that were in Dying state go into the Off state.

Line 1-10: Declaration of actor_type Off-
Line 2-3: Declaration and initialization of local variables (none used in this program).
Line 4-9: Declaration of rules for actor type Off.

Line 5-6: Rule declared that if a cell currently subject to an actor_type Off has exactly two
neighboring cells of type of On, then the cell (center) will be assigned an actor type On in the next
time step.

Line 8: Default rule (none declared here) if none of the rules applies.

Line 12-19: Declaration of rules for actor type On.

Line 16: Default rule that a cell subject to an actor _type On will always be subject to actor type Off
in the next time step. This default rule will always apply because there is no other rule declared for
actor_type On.

Line 20-26: Declaration of rules for actor type Dying.

Line 24: Default rule that a cell subject to an actor type Dying will always be subject to actor type
Off in the next time step. This default rule will always apply because there is no other rule declared
for actor_type Dying.

Line 29: Set grid size to 300 by 300 cells.

Line 30: Set time interval to minimum 10 milliseconds.

Line 31: Set each cell size to 2 pixels.

2.3.2 Compile the Program
To compile the program, use the following command:

J/cal brians _brains.cal

2.3.3 Running the Program
Use the following command to execute the program:

/brians_brains.out

2.3.4 Result

The graphical output (a snapshot taken) of the above program is as below in Figure 1. Colors of
different actor_types are randomly chosen.

2.4 Additional Examples

2.4.1 Langton’s Ant

Langton's ant is a two-dimensional cellular automaton with a very simple set of rules but complicated
emergent behavior. Cells are initially assigned Black or White randomly and one cell is designated as
the ant. The ant can travel in any of the four directions (N, S, W, E) at each time step. The ant

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEmergence&sa=D&sntz=1&usg=AFQjCNFL_s-bCnhEkMtSpkqJYW2bClVBOA

moves according to the rules below:

e At a white square, turn 90° right, flip the color of the cell, move forward one unit

e At a black square, turn 90° left, flip the color of the cell, move forward one unit

<Figure 1>

The following is the program that implements the above Langton’s Ant cellular automaton.

1 actor_type White = |
2 init:

3

4 rules:

5 default=> { }
6

7

8

9 actor_type Black = |
10 init:

11

12 rules:

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

default => { }

actor_type Ant = |

nit:

rules:

actor_type atype = White;
direction ant_dir = north;

(cellat(ant_dir) = White) => {

if(ant_dir = north){
ant_dir = east;
move(north, atype);

telse if(ant_dir = east){
ant_dir = south;
move(east, atype);

telse if(ant_dir = south){
ant_dir = west;
move(south, atype);

telse{
ant_dir = north;
move(west, atype);
h
atype = Black;
printf("Direction: %d, Atype: %c\n", ant dir, atype);
}
default => {

if(ant_dir = north){
ant_dir = west;
move(north, atype);

telse if(ant_dir = west){
ant_dir = south;
move(west, atype);

telse if(ant_dir = south){
ant_dir = east;
move(south, atype);

telse{
ant_dir = north;
move(east, atype);

}

atype = White;

56
57
58
59
60
61
62
63
64
65
66
67
68

printf("Direction: %d, Atype: %d\n", ant_dir, atype);

def void setup(){

}

grid_size(200, 200);

set_chronon(1);

set_cell_size(4);

set_grid pattern(3, Black, White, 200, 200, 0, 0);
set_actor(75, 75, Ant);

The following <Figure 2> is a snapshot of the graphical output of the above program:

2.4.2 Rule 90

<Figure 2>

Rule 90 is a one-dimensional cellular automaton based on the exclusive or function. Each cell can

9

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FElementary_cellular_automaton&sa=D&sntz=1&usg=AFQjCNEx_HbmDbBhP8Jhvxh-Xu_W_3xZDA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FExclusive_or&sa=D&sntz=1&usg=AFQjCNFJhAwrPQ0C4J4tXJzztHG31UnEeQ

hold either a 0 or a 1 value and at each time step all values are simultaneously replaced by the
exclusive or of the two neighboring values.

The following is the program that implements the above Rule 90 cellular automaton.

O 00 1 N Lt A W N =

W W W W W W W W WK NN N DNDNDNDDNDNDDN M/ = = e e e e
0O N N LN P WD~ O VOV P WNFERO VUKWV P WND—~=O

actor_type On = |
init:

rules:
cellat(west) = On & & cellat(east) = On => {
assign_type(center, SetOn);
assign_type(south, Off);
¥
cellat(west) = On & & cellat(east) = Off => {
assign_type(center, SetOn);
assign_type(south, On);
¥
cellat(west) = Off & & cellat(east) = On => {
assign_type(center, SetOn);
assign_type(south, On);
¥
cellat(west) = Off & & cellat(east) = Off = {
assign_type(center, SetOn);
assign_type(south, Off);
¥
default => { }

actor_type Off = |
init:

rules:
cellat(west) = On & & cellat(east) = On => {
assign_type(center, SetOff);
assign_type(south, Off);
H
cellat(west) = On & & cellat(east) =— Off => {
assign_type(center, SetOff);
assign_type(south, On);
H
cellat(west) = Off && cellat(east) = On => {
assign_type(center, SetOff);
assign_type(south, On);

10

39 }

40 cellat(west) = Off && cellat(east) = Off => {
41 assign_type(center, SetOff);
42 assign_type(south, Off);

43 }

44 default=> { }

45 |

46

47 actor_type SetOn = |

48 init:

49

50 rules:

51 default => { }

52 |

53

54 actor_type SetOff = |

55 init:

56

57 rules:

58 default=> { }

59 |

60

61 defvoid setup(){

62 grid_size(300, 300);

63 set_cell size(2);

64 set_grid pattern(3, SetOff, On, 300, 300, 0, 0);
65 set_grid pattern(3, Off, On, 300, 1, 0, 0);

66 set_actor(150, 0, On);

67 set_chronon(20);

68 }

The graphical output (a snapshot taken) of the above program is as below in Figure 3. Colors of
different actor_types are randomly chosen.

<Figure 3>

2.4.3 Game of Life

Game of Life cellular automaton consists of a grid of cells which can either be Live or Dead. At each
time step, one of the following transition logic will apply:

e Any live cell with fewer than two live neighbours dies, as if caused by under-population.

e Any live cell with two or three live neighbours lives on to the next generation.

e Any live cell with more than three live neighbours dies, as if by overcrowding.

e Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.

The following is the program that implements the Game of Life cellular automaton.

12

1 actor_type Live = |

2 init:

3

4 rules:

5 neighborhood(Live) <2 => {assign_type(center, Dead);}

6 neighborhood(Live) = 2 || neighborhood(Live) =3 =
{assign_type(center, Live);}

7 neighborhood(Live) > 3 => {assign_type(center, Dead);}

8

9 default=> { }

10 |

11

12 actor type Dead = |

13 init:

14

15 rules:

16 neighborhood(Live) = 3 => {assign_type(center, Live);}

17

18 default => { }

19 |

20

21 defwvoid setup(){

22 grid_size(300, 300);

23 set_chronon(20);

24 set_cell size(2);

25 set_actor(50, 50, Dead);

26 set_grid pattern(1, Dead, Live, 125, 125, 75, 0);

27 set grid pattern(1, Dead, Live, 125, 125, 125, 0);

28 set_grid pattern(1, Dead, Live, 125, 125, 0, 125);

29 1}

The graphical output (a snapshot taken) of the above program is as below in Figure 4. Colors of
different actor_types are randomly chosen.

<Figure 4>

3 LANGUAGE REFERENCE MANUAL

3.1 Introduction

Cellular automata are discrete, abstract computational systems that provide useful models of
non-linear dynamics in various scientific fields. Cellular Automata Language (CAL) is intended for
programmers to quickly and easily design cellular automata suited for their use. Programmers can
easily designate the set of initial states and set rules associated with their own cellular automata and see
the outcome after a specific number of steps in both textual and graphical formats. State of an entire
cellular automaton will be encapsulated in a primitive called Grid. CAL allows programmers to

declare a rule succinctly and efficiently by using CAL’s unique syntax.

3.2 Lexical Conventions

3.2.1 Comments

A double slash - "//" comments out text to the right on the same line.

14

//This is a comment.
bool b =true; //this is also a comment.

3.2.2 Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must be alphabetic. The
underscore counts as alphabetic. Names are case sensitive. Only the first 30 characters are guaranteed
to be significant.

3.2.3 Keywords
The following identifiers are reserved for use as keywords:
if

else

true

false
while
bool

char

int

string

grid
direction
north
south

east

west
northwest
southwest
northeast
southeast
center
rules
return

def

init

this
actor_type

3.2.4 Constants and Literals

Our language will provide functionality for literals of type bool, char, int, string, rule and grid. If any
of these literals are assigned to a variable, the variable’s declared type must match the type of the
literal.

15

3.2.4.1 Boolean constants

The two boolean literals are the usual true and false. Examples:

true;

false;

bool x = true;

if (x) {
/lcode

H

3.2.4.2 Character constants

Character literals in CAL are standard ASCII- they are nested in between single quotes. Example:

[N

a;

[N
)

char ch =‘a’; // ‘a’ is a literal,;

3.2.4.3 Integer constants

An integer constant consists of a sequence of digits. Examples:

45;
_1,
inta=2; //2 is the literal

Cal only provides support for decimal representation of integers.

3.2.4.4 Actor_type constants

Actor_types are types of actors in the cellular automaton. They are used to create and configure actors
in the grid. The init block allocates variables as well as initializes them in the configuration
appropriate when the actor is created. The rules block takes a series of conditions and resulting
transition logic. Loops are not allowed within transition blocks.

actor_type al =|
init:
<datatype> <variable name>;
<datatype> <variable name2>;
rules:
<condition>=> {
<transition_block>
}
default =>{
<transition_block>

16

3.2.4.5 Direction constants
The direction datatype has 9 possible values: this, north, south, east, west, northeast, northwest,
southeast, southwest

example:
direction d = north;

3.3 Data Types
CAL will support the following primitive data types:

int - an integer

char - a character

bool - a boolean

string - a character string

grid - a n by m array of characters that represents a cellular automata grid

direction - a direction (N,S,E,W,NW,NE,SW,SE) associated with a neighboring cell type.

actor_type - a data type that describes the internal variables and rules for how an actor should act.

3.4 Expressions and Operators

3.4.1 Unary Operators - group right-to-left

- <expression>
Operand must be a char or int. Returns negative of that value.

3.4.2 Boolean Operators - group right-to-left

<expression> && <expression>
Both of the operands must be of type bool. Returns true if both are true, false otherwise.

<expression> || <expression>
Both of the operands must be of type bool. Returns true if one of the operands is true

<expression> == <expression>
Both of the operands must be of the same type, either bool,char,int, direction or string.

Returns true if both operands are bit-wise equal, false otherwise.

<expression> != <expression>

17

Both of the operands must be of the same type, either bool, char, int, direction or string.
Returns false if both operands are bit-wise equal, true otherwise.

3.4.3 Additive Operators - group left-to-right

<expression> + <expression>
Both of the operands must be of the same type, either an int or string. Returns the sum of the
two operands if it is an int, and the concatenation if is two strings.

<expression> - <expression>
Both of the operands must be of the same type, int. Returns subtraction of left from right.

3.4.4 Multiplicative Operators - group left-to-right:

<expression>/ <expression>
Both of the operands must be of type int. Returns integer division.

<expression> * <expression>
Both of the operands must be of type int. Returns integer multiplication.

<expression> % <expression>
Both of the operands must be of type int. Returns the remainder from the division of the first
by the second.

3.4.5 Relational Operators - group left-to-right:
<expression> < <expression>

<expression> > <expression>

<expression> <= <expression>

<expression> >= <expression>

Both of the operands must be of the same type int, char, string. Compares bit-wise relations.

3.4.6 Assignment Operator
lvalue = <expression>
The value of the expression replaces that of the object referred to by the Ivalue with a deep

copy.

3.5 Statements

18

3.5.1 Expression Statement

An expression statement is any expression consisting of variables, constants, operators and functions
followed by a semicolon.

3.5.2 If Statement

The if statement is executed conditionally based on the boolean value of a test expression. The test
expression has to be of bool type. When the test expression evaluates to true, then the statement
following keyword if will be executed. Otherwise, the statement following keyword else will be
executed. Else clause is not optional in if construct. You can use a series of if/else if/else statements to
test for multiple conditions. But only the first statement whose test condition evaluates to true will be
executed. The following are two general forms of the if statement:

(1)
if (expression)
{statement}
else
{statement}
)
if (expression)
{statement}
else if (expression)
{statement}

else if (expression)

else
{statement}
3.5.3 While Loops
The while statement allows multiple execution of a statement as long as the test expression evaluates

to true. The test expression has to be of bool type. The following is the general form of the while
statement.

while (expression)
{statement}

3.5.4 Return Statement

The return statement is used by a function to return program control and a value to the function that
called it. The following is a general form of the return statement.

19

return value;

3.6 Scope Rules

Scope defines the region of a program in which an identifier is visible. It is illegal to refer to
identifiers unless they have been declared. Identifiers declared at the top-level of a file is visible to the
entire file. Declarations made inside functions are only visible within those functions.

3.7 Declarations

3.7.1 Variable Declarations

Variables must be declared and initialized before they can be used. Variable declarations are in the
following form where type can be one of the following types: bool, char, int, string, grid and
actor_type.

type identifier = initialization expression

3.7.2 Function Declarations

Functions must be declared and initialized before they can be used. A functions is declared with the
keyword def followed by a return type, function identifier and a list of arguments each preceded by
its type and separated by commas in a parenthesis. The general form of function declarations is as

follows.

def type identifier (type argumentl, type argument2, ...)

3.8 System Functions
def void move(direction d, actor_type a) - Can only be used in a transition block. Moves actor to
neighboring cell location in the given direction parameter and leaves an actor of type a in its previous

location.

def void assign_type(direction d, actor type a) - Can only be used in a transition block. Assigns the
actor at the cell in direction d to actor type a.

def void set_actor(int x, int y, actor_type a) - Assigns the actor_type at the cell at location (i,j).

def actor type cellat(direction d) - Can only be used in a transition block. Returns the actor type in
the neighboring cell location in the given direction parameter.

def int neighborhood(actor _type a) - Can only be used in a transition block. Returns the number of

20

actors of type a in the neighboring cell locations.

def actor_type cellat(direction) - Can only be used in a transition block. Given a direction relative to
the actor calling the function, returns the actor in the cell location at the position.

def direction randomof(actor_type a) - Can only be used in a transition block. Returns a direction of a
random cell in the neighborhood that contains an actor of the type given.

def int random(int upper) - Returns a random integer from the range 0 to upper exclusive.

def grid size(int width, height) - Creates a grid with the given height and width and fills it randomly
with the declared actor_type.

def void set_chronos(int milliseconds) - set each chronos step at x milliseconds.
def void set _cell size(int size) - set size each cell.
def void set grid pattern(int pattern_type, actor type actor a, actor type, actor b, int width, int
height, int x, int y) - Sets the pattern at location (x,y) in the grid with int X and int y.
Patterns: 0 - Checkerboard with actor a and actor b
1 - Alternating rows with actor a and actor b

2 - Alternating columns with actor a and actor b
3 - Fill with actor_a

3.9 Example
Wa-Tor

grid g = create_grid(100, 100);

inti=0;
intj=0;
int type = 0;

actor_type Free = |
init:

rules:
default => { }

actor_type Fish = |

21

nit:

rules:

int counter = 0;

counter <= 10 && neighborhood(Free) > 0 => {
move(randomof(Free), Free);

h

counter > 10 && neighborhood(Free) >0 = {
assign_type(randomof(Free), Fish);
counter =0; }

default => { counter = counter + 1; }

actor_type Shark = |

nit:

rules:

int counter = 0;
int energy = 10;

neighborhood(Fish > 0) = {
move(randomof(Fish), Free);
energy = energy + 1;

h

neighborhood(Fish <= 0) && neighborhood(Free >0) && counter <= 10 =>{
move(randomof(Free), Free);
energy = energy - 1;

h

neighborhood(Fish <= 0) && counter > 10 && neighborhood(Free > 0) => {
assign_type(randomof(Free), Shark);
energy = energy - 1;

counter = 0;
H
energy =0 =>{
assign_type (this, Free);
}
default => {
counter = counter + 1;
energy = energy - 1;
}

22

while(i < 100){
while(j <100){
type =random(3);
if(type = 0){
assign_type(g,i,j,Shark);

¥
else if{
assign_type(g,i,j,Fish);
H
else{
assign_type(g.i,j,Free);
¥
¥
H
run(g, 100);
display(g);
4 PROJECT PLAN

4.1 Process

We formed our group during the first class of the PLT course based on our availability, which
was an important factor in hindsight. Due to the quick timing of the summer semester, we had to set
a relatively strict timeline for the progress of our project and ensure that we adhere it throughout the
semester. A regular meeting was important. We met every week, mostly two or three times a week at
a computer lab on campus to ensure that we could work next to each other. Proximity of working
near each other allowed us to code in parallel, debug collectively and make sure we were all
accomplishing our deliverables. We found that working together increased our productivity by
multiples. Most of the planning, specification, development and testing were done in person
together, allowing smooth communication and quick feedback.

In order to efficiently collaborate, we established a github for the project and made sure we git
add/commit/push/pull regularly and checked each other’s progress and code. Some of us were not
familiar with github initially but we found it extremely useful and powerful as the project progressed.

4.2 Programming Style

In general, we followed the programming style that was used in MicroC example provided in
class.

23

4.2.1 Names

Function names are lower-cased and underscores are used to separate words.

4.2.2 Function Definitions

The first line of a function declaration should end with the word function if it spans multiple
lines. Comments describing the function precedes the function definitions.

4.2.3 Indentation
In order to increase readability, we indented the body of large blocks according to the nested

structure. If a block is multi-nested, it was indented multiple tabs according to the depth of the
nested structure.

4.3 Project Timeline

2013/7/8 Team formed

2013/7/12 Language defined

2013/7/15 Language proposal submitted
2013/7/18 TA feedback on proposal received
2013/7/19 Proposal modified per TA's feedback
2013/7/24 Language reference manual submitted
2013/7/29 Scanner completed

2013/8/8 Parser and AST completed
2013/8/10 Scanner, Parser and AST tested
2013/8/12 C code generation completed
2013/8/13 Write sample programs

2013/8/15 Semantic analyzer completed
2013/8/15 Testing suite completed

2013/8/16 Final report/presentation

4.4 Responsibility

As discussed above, we collaborated on most aspects of the project with each person taking a lead on
different components of the project. Eugene Kim took the lead on the scanner, CAL sample
programs, presentation and final report. Calvin took the lead on C code generation, compilation and
graphical aspects of the project in addition to coming up with the project idea. Nathan Keane oversaw
the parser, AST and semantic analyzer as well as testing. All of us collaborated on the proposal and

24

language reference manual.

4.5 Software Development Environment

Project was developed on Windows and Mac machines using the following components:
OCaml v4.00.1, Ocamllex, Ocamlyacc, C, C SDL library, GitHub, Makefile.

5 ARCHITECTURAL DESIGN

5.1 CAL Architectural Design Diagram

Parser/

Scanner [:>‘ AST

T

C-code | . Semantic
L Intermediate J generator Analyzer

C Code
\J —

Executable
File

5.2 CAL Components

5.2.1 Scanner
The scanner component reads a CAL program and turns it into a stream of tokens (ignoring white

spaces and comments), which is then passed onto the parser. It will reject any CAL program that
does not conform to the syntax of our language.

5.2.2 Parser and AST
The stream of tokens passed from the scanner will be parsed into an abstract syntax tree according to

25

the properties of each parsed object. Parser will produce error if it cannot produce a meaningful,
grammatical abstract syntax tree with the given tokens.

5.2.3 Semantic Analyzer

Semantic analyzer will check for duplicate variables, duplicate functions, validity of expressions and
validity of statements as well as format of function declarations. If there is an error, semantic analyzer
will throw an error statement, indicating what type of error has occurred.

5.2.4 C Code Generator

Code generator will take the ast object passed from parser and convert it to a valid C program, which
will then be compiled into an executable C file via a C compiler.

6 TEST

6.1 Testing of AST

This was to test semantic errors. A python script was written that piped the standard error of each .cal
test file with a specific semantic error to an appropriately named result file. The error was then
checked to see if it was matched with what we expected. For example the file “test casel.cal” :

actor_type Live = |
init:
rules:
neighborhood(Live) <2 => {assign_type(center, Dead);}
neighborhood(Live) = 2 || neighborhood(Live) = 3 => {assign_type(center, Live);}
neighborhood(Live) >3 => {assign_type(center, Dead);}

default => { }
actor type Dead = |
init:

rules:
neighborhood(Live) = 3 => {assign_type(center, Live);}

default=> { }

26

def void setup(){
mtx =2;
intx =3;

grid_size(200, 200);
set_chronon(200);
//set_actor(50, 50, Dead);
//set_grid pattern(0, Dead, Live);
set_grid_random();

Has a specific semantic error where it declares int x twice. Other than that the file is semantically
correct. Thus the predicted error would be:

‘Fatal error: exception Failure("Duplicate variable names!")’ ,

which corresponded to the error message in our AST.

6.2 Testing of CAL files

This was testing for after the compile phase. We compared this to expected C code output.

Tests of Cellular Automata were done primarily by visual inspection. We compared the wiki Gifs to
our own graphical outputs. This confirmed that we correctly coded Brians Brain:
http://en.wikipedia.org/wiki/File:Brian%27s_brain.gif

7 LESSONS LEARNED

7.1 Calvin Hu

Communicate well with your group members, miscommunication can lead to redundancy and
unnecessary work.

OCaml is actually pretty nice.

Have someone else test your code after you, you’ll find new ways to break things.

7.2 Nate Keane

Start small. Our whole project was less than 2000 lines of code which is very small considering the
amount of time we put into it. By the end of the project I realized that the most effective way to code

27

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFile%3ABrian%2527s_brain.gif&sa=D&sntz=1&usg=AFQjCNHWxNSebJnp-jTWsDSrXemeNieutg

was to do it one line at a time and compile everything. This greatly diminished debugging time.

Segregate work appropriately. By the end of the project we each were specialists in a separate piece
of code and knew how to interface in an efficient way. This was a large improvement from having to
each learn what every line of code did exactly.

7.3 Eugene Kim

Putting much time and thought into the language proposal and language reference manual paid off
for our group. Because we did that, we did not end up deviating much from our original syntax and
structure, which made group work easy. We all followed the mutually agreed language features and
syntax when we were implementing our parts.

I learned that working together in person makes collaboration so much more easy and efficient. It
made easy to check in on each others’ progress, ask questions on issues we were not familiar with,
and get help on debugging.

Finally, it was important to keep a positive attitude and believe that we could get our project done
even when there seemed to be many obstacles ahead of us. Congratulating each other and believing
in each other also helped the process and team spirit.

On a more substantive front, I believe I learned alot from this course, including functional
programming, lexical analysis, parsing, language translating, language design, github and group
coding. Looking back, I am glad that we put so much time and effort into this class. We were all so
proud when our code actually compiled and produced beautiful graphical output.

8 APPENDIX: SOURCE CODES

(* Scanner *)
(* Scanner for CAL *)

{ open Parser }
rule token = parse

[''"\t'"\r' "\n'] { token lexbuf } (* Whitespace *)
| "/ { comment lexbuf } (* Comments *)

(* Punctuations *)

|'({ LPAREN }
") { RPAREN }
|'{ { LBRACE }
|} { RBRACE }

28

B { LBRACK }
' { RBRACK }
T { BAR }

B { SEMI }

B { COLON }
| { COMMA }

(* Arithmetic Operators *)

| '+ { PLUS }
|- { MINUS }

| 1 { TIMES }
| { DIVIDE }
| '%' { MOD }

| = { ASSIGN }

(* Relational Operators *)

'=" {EQ}
| =" { NEQ }

| "&&" { AND }
" {OR}

< {LT}

"=" {LEQ}

| {GT }

| ">=" { GEQ }
=X { ARROW }
Ki {NOT }

(* Key Words *)

| "if" {IF }
| "else" { ELSE }
| "true" { TRUE }

| "false" { FALSE }

| "while" { WHILE }

| "bool" { BOOL }

| "char" { CHAR }
"int" {INT }

| "void" { VOID }

| "grid" { GRID }

| "direction"” { DIRECTION }

| "north" { NORTH }

| "south" { SOUTH }
"east" { EAST }

| "west" { WEST }

| "northwest" { NORTHWEST }
| "southwest" { SOUTHWEST }
| "northeast" { NORTHEAST }

| "southeast" { SOUTHEAST }

| "center" { CENTER }

| "rules" { RULES }

| "return"” { RETURN }

| "def" { DEF }
|"init" { INIT }
| "default" { DEFAULT }

| "actor_type" { ACTOR TYPE }

(* Literals *)

| ['0'-'9']+ as Ixm { LITERAL(int of string Ixm) }

| \"[AMTE\" as Ixm { STR_LITERAL(Ixm) }

|['a'-'z''A'-'Z"" "['a'-'z' 'A'-'Z''0'-'9" ' "]* as Ixm { ID(Ixm) }
| eof { EOF }

(* Special Character Process*)
| as char { raise (Failure("illegal character " ~ Char.escaped char)) }

and comment = parse
"n' { token lexbuf }
| _ { comment lexbuf }

(* parsey.mly *)

%o{

open Ast

let parse_error s =
print_endline s;
flush stdout

%o}

%token LPAREN RPAREN LBRACE RBRACE LBRACK RBRACK BAR SEMI COLON
COMMA

%token PLUS MINUS TIMES DIVIDE MOD ASSIGN

%token EQ NEQ AND OR LT LEQ GT GEQ ARROW NOT

%token IF ELSE TRUE FALSE WHILE

%token BOOL CHAR INT GRID VOID

%token DIRECTION NORTH SOUTH EAST WEST NORTHWEST SOUTHWEST
NORTHEAST SOUTHEAST CENTER

30

%token RULES RETURN DEF INIT DEFAULT ACTOR TYPE

%token <int> LITERAL
%token <string> STR_LITERAL
%token <string> ID

%token EOF

%nonassoc NOELSE
%nonassoc ELSE
%right ASSIGN

%left OR

%left AND

%left EQ NEQ

%left LT GT LEQ GEQ
%left PLUS MINUS
%left TIMES DIVIDE
%left MOD

Yostart program
Y%type <Ast.program> program

%%

program:
/* nothing */ {[] }
| program fdecl { ($2 :: $1) }
| program actor_type { ($2 :: $1) }

fdecl:
DEF datatype id LPAREN formals opt RPAREN LBRACE vdecl list stmt_list RBRACE
{
CFunc({
dtype = $2;
fname = $3;

formals = $5;
locals = List.rev $8;
body= List.rev $9

)

formals opt:
/* nothing */ {[] }
| formal list { List.rev $1 }

formal list:
datatype id { [FParam($1, $2)] }
| formal list COMMA datatype id { FParam($3, $4) :: $1 }

id:
ID {81}
grid:
LBRACK grid_matrix RBRACK { $2 }
grid_row:

ID {[$1]}
| grid_ row COMMA ID { $3 :: $1 }

grid matrix:
grid_row SEMI {[$1]}
| grid_matrix grid row SEMI { $2 :: $1 }

datatype:
BOOL { BoolType }
| CHAR { CharType }
| INT { IntType }
| VOID { VoidType }
| GRID { GridType }
| DIRECTION { DirectionType }
| ACTOR TYPE { Actor TypeType }

rule:
expr ARROW LBRACE stmt_list RBRACE { Rule($1, $4) }

rule list:
/% nothin */ {]}
| rule list rule { $2 :: $1 }

32

default rule:
DEFAULT ARROW LBRACE stmt_list RBRACE { $4 }

vdecl list:
/* nothing */ {[] }
| vdecl list vdecl { $2 :: $1 }

vdecl:
datatype id ASSIGN expr SEMI { VDecl($1,$2,string_of expr $4) }

actor_type:
ACTOR_TYPE id ASSIGN BAR INIT COLON vdecl_list RULES COLON rule_list
default rule BAR

{
ActorType({
aname = $2;
alocals = $7;
arules = $10;
adefault=$11;})
H
stmt_list:
/* No empty block allowed */ { [] }
| stmt_list stmt {$2:: 81}
stmt:
expr SEMI { Expr($1) }
| RETURN expr SEMI { Return($2) }
| LBRACE stmt_list RBRACE {Block(List.rev $2) }
| IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }
| IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }
| WHILE LPAREN expr RPAREN stmt { While($3, $5) }
expr:
LITERAL { Literal($1) }
| STR_LITERAL { String($1) }

33

| id {1d($1) }

| grid { Grid($1) }
| expr PLUS expr { Binop($1, Add, $3) }
| expr MINUS expr { Binop($1, Sub, $3)}
| expr TIMES expr { Binop($1, Mult, $3) }
| expr MOD expr { Binop($1, Div, $3)}
/*Directions™®/
| NORTH { Direction(North) }
| SOUTH { Direction(South) }
| WEST { Direction(West) }
| EAST { Direction(East) }
| NORTHEAST { Direction(NorthEast) }
| NORTHWEST { Direction(NorthWest) }
| SOUTHEAST { Direction(SouthEast) }
| SOUTHWEST { Direction(SouthWest) }
| CENTER { Direction(Center) }
/* bools */
| TRUE { BVal(True) }
| FALSE { BVal(False) }
| expr EQ expr { EExpr($1, BEqual, $3) }
| expr NEQ expr { EExpr($1, BNeq, $3) }
| expr GT expr { RExpr($1, BGreater, $3) }
| expr GEQ expr { RExpr($1, BGeq, $3) }
| expr LT expr { RExpr($1, BLess, $3) }
| expr LEQ expr { RExpr($1, BLeq, $3) }
| expr AND expr { BExpr($1, And, $3) }
| expr OR expr { BExpr($1, Or, $3) }
| id ASSIGN expr { Assign($1, $3) }
| id LPAREN actuals_opt RPAREN { Call($1, $3) }
| LPAREN expr RPAREN { Bracket($2) }
actuals_opt:

/% nothin */ {]}
| actual list {List.rev $1}

actual list:

expr {[$1]}
| actual list COMMA expr { $3 :: $1 }

(* ast.ml *)
(* AST *)

34

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq | Mod
type direc = North | South | East | West | NorthEast | NorthWest | SouthEast | SouthWest | Center

type bv = True | False

type bop = And | Or
type eop = BEqual | BNeq
type rop = BLess | BLeq | BGreater | BGeq

type mop = MTimes | MDivide | MMod (*multiplicative expr ops*)
type aop = AAdd | ASub (*additve expr ops*)

type vop = VAdd | VSub | VMult | VDiv
type dt = BoolType | CharType | IntType | VoidType | GridType | DirectionType | Actor_TypeType
type fparam = FParam of dt * string

type vdecl = VDecl of dt * string * string

type expr =
Literal of int
| Boolean of bool
| String of string
| Id of string
| Grid of string list list
| Direction of direc
| Bracket of expr
| Binop of expr * op * expr
| Assign of string * expr
| Call of string * expr list
| Noexpr
| BVal of bv
| RExpr of expr * rop * expr
| EExpr of expr * eop * expr
| BExpr of expr * bop * expr

type stmt =
Expr of expr
| Return of expr
| Block of stmt list
| If of expr * stmt * stmt

35

| While of expr * stmt

type rule = Rule of expr * stmt list

type arithexpr =
| ALiteral of int
| Ald of string

type varexpr =
| VLiteral of int
| VId of string
| VStringLit of string
| VBoolLit of bool
| VBinop of varexpr * vop * varexpr

type func_decl = {
dtype : dt;
fname : string;
formals : fparam list;
locals : vdecl list;
body : stmt list;

type actor_type = {
aname : string;
alocals : vdecl list;
arules : rule list;
adefault: stmt list;

type func =
| CFunc of func_decl
| ActorType of actor_type

type program = func list

let string_of var dec (a,b,c)=a”"b"c

let string_of vop = function

36

| VAdd > H+H
| VSub > "-"
| VMult-> "+
| VDiv -> /"

let string_of arithexpr = function
| ALiteral(i) -> string_of inti
| Ald(s) ->s

let rec string_of varexpr = function

| VLiteral(i) -> string_of inti

| VId(s) ->s

| VStringLit(s) -> s

| VBoolLit(b) -> string_of bool b

| VBinop(v1,op,v2) > string_of varexpr vl ~"" " string of vop op *" " " string_of varexpr
v2

let string_of dt = function
BoolType -> "bool"
| CharType -> "char"
| IntType -> "int"
| VoidType -> "void"
| GridType -> "grid"
| DirectionType -> "direction"
| Actor TypeType -> "actor type"

let string_of bop = function
| And > "&&"
| Or > H||"

let string_of rop = function
| BLess ->"<"
| BLeq > "<="
| BGreater -> ">"
| BGeq > ">="

let string_of eop = function

| BEqual ->"="
| BNeq > "!:H

37

let string_of bv = function
| True -> "true"
| False -> "false"

let string_of op = function

Add ->"+"

| Sub > "-"

| Mult -> "*"

| Div ->"/"

| Equal ->"="

| Neq ->"!="

| Less ->"<"

| Leq > "<="

| Greater -> ">"

| Geq ->">="

| Mod ->"%"

let rec string_of listlist = function
[] > nn

| a::b -> (String.concat "," a) * ";" ~ ('string_of listlist b)

let string_of grid = function
g > lv[u A (String_of_listlist g) A H]n

let rec string_of expr = function
Literal(l) -> string_of int1
| Boolean(b) -> string_of boolb
| String(s) -> s
| Id(s) -=>s
| Grid(g) -> string_of grid g
| Direction(d) ->
begin
match d with
North ->"NORTH" | South ->"SOUTH" | East -> "EAST" | West ->
"WEST" | Center -> "CENTER"
| NorthEast -> "NORTHEAST" | SouthEast -> "SOUTHEAST" | NorthWest
->"NORTHWEST" | SouthWest -> "SOUTHWEST"
end
| Binop(el, o, €2) ->
begin
match o with

38

| >
string_of exprel ~"" " (match o with
Add ->"+"| Sub ->"-" | Mult ->"*" | Div ->"/"
| Equal ->"="| Neq ->"!="
| Less ->"<"| Leq -> "<=" | Greater ->">" | Geq ->">=" | Mod ->
"o4")
AN Astring of expre2
end
| Assign(v, e) -=>v ~"=""string of expre
| Call(f, el) -> (match Str.string_match (Str.regexp "move") f 0 with
true -> £~ "(" » String.concat ", " (List.map string_of exprel) ", read grid, write grid, i, j)"
| ->match Str.string_match (Str.regexp "assign_type") f 0 with
true -> £~ "(" ” String.concat ", " (List.map string_of expr el) ~ ", write grid, i, j)"
| ->match Str.string_match (Str.regexp "neighborhood") f 0 with
true -> £~ "(" ~ String.concat ", " (List.map string_of exprel) ~ ", read grid, i, j)"
| ->match Str.string_match (Str.regexp "randomof") f 0 with
true -> £~ "(" ” String.concat ", " (List.map string_of exprel) ", read grid , i, j)"
| ->match Str.string_match (Str.regexp "cellat") f 0 with
true -> £~ "(" ” String.concat ", " (List.map string_of exprel) ", read grid, i, j)"
| ->f~"("~ String.concat ", " (List.map string_of exprel) *")")
| Noexpr ->""
| BVal(v) -> string_of bvv
| RExpr(el,0,e2) ->string_of exprel ~" " *string of rop o " " ~ string_of expre2
| EExpr(el,o0,e2) -> string_of exprel ~" " ~string_of eop o ™" " " string_of expre2
| BExpr(el,0,e2) ->string_of exprel ~"" ~string_of bop o """ string of expr e2
| Bracket(el) ->" (" ~ string_of exprel ~")"

let rec string_of stmt = function
Block(stmts) ->"{\n" " String.concat "" (List.map string_of stmt stmts) * "}\n"

| Expr(expr) -> string_of expr expr * ";\n";

| Return(expr) -> "return " * string_of expr expr * ";\n";

| If(e, s, Block([])) -> "if (" * string_of expre ~ ")\n" ~ string_of stmts

| If(e, s1, s2) -=> "if (" ~ string_of expre ™ ")\n" " string_of stmtsl " "else\n" * string_of stmt
s2

| While(e, s) -> "while (" ” string_of expre ") "~ string_of stmts

let rec string_of expr_at = function
Literal(l) -> string_of int1
| Boolean(b) -> string_of boolb
| String(s) -> s
| Id(s) -=>s
| Grid(g) -> string_of grid g
| Direction(d) ->

39

begin
match d with
North ->"NORTH" | South ->"SOUTH" | East -> "EAST" | West ->
"WEST" | Center -> "CENTER"
| NorthEast -~ "NORTHEAST" | SouthEast -> "SOUTHEAST" | NorthWest
-=>"NORTHWEST" | SouthWest -> "SOUTHWEST"

end
| Binop(el, o, €2) ->
begin
match o with
| >
string_of expr_atel »" " ” (match o with
Add ->"+"| Sub ->"-" | Mult ->"*" | Div ->"/"
| Equal ->"="| Neq ->"!="
| Less ->"<" | Leq -> "<=" | Greater ->">" | Geq -> ">="
Mod ->"%")
AN Astring of expr ate2
end
| Assign(v, e) -> "laddwritegrid!" ~ v A" =" " string_of expr ate

| Call(f, el) -> (match Str.string_match (Str.regexp "move") f 0 with
true -> £~ "(" ” String.concat ", " (List.map string_of expr_atel) *", read grid, write grid, 1,
Jj, width, height)"
| ->match Str.string_match (Str.regexp "assign_type") f 0 with
true -=> £~ "(" ” String.concat ", " (List.map string_of expr_atel) M ", write_grid, 1, j,
width, height)"
| ->match Str.string_match (Str.regexp "neighborhood") f 0 with
true -> £~ "(" ” String.concat ", " (List.map string_of expr_atel) ~", read grid, 1, j,
width, height)"
| ->match Str.string_match (Str.regexp "randomof") f 0 with
true -=> £~ "(" ” String.concat ", " (List.map string_of expr_atel) *", read grid, 1, j,
width, height)"
| ->match Str.string_match (Str.regexp "cellat") f 0 with
true -> £~ "(" ” String.concat ", " (List.map string_of expr atel) ", read grid, i,
Jj, width, height)"
| ->f~"("~ String.concat ", " (List.map string_of expr atel) *")")

| Noexpr ->""

| BVal(v) -> string_of bvv

| RExpr(el,0,e2) ->string_of expr atel ~" " *string of rop o " " *string_of expr_ate2

| EExpr(el,0,e2) -> string_of expr_atel ~"" " string_of eop o " " " string_of expr_ate2

| BExpr(el,0,e2) ->string_of expr _atel ~" " ~string_of bop o """ string of expr ate2

| Bracket(el) ->" (" ~ string_of expr atel ")"

40

let rec string_of stmt at = function
Block(stmts) ->"{\n" " String.concat "" (List.map string_of stmt at stmts) * "}\n"

| Expr(expr) -> string_of expr_at expr * ";\n";

| Return(expr) -> "return " ” string_of expr_at expr * ";\n";

| If(e, s, Block([])) -> "if (" ~ string_of expr_ate ~ ")\n" ~ string_of stmt ats

| If(e, s1, s2) -=> "if (" ~ string_of expr ate ™ ")\n" ~ string_of stmt_atsl ” "else\n" *
string_of stmt at s2

| While(e, s) -> "while (" ” string_of expr ate " ") " ~ string_of stmt ats

let rec string_of expr_setup = function
Literal(l) -> string_of int1
| Boolean(b) -> string_of boolb
| String(s) -> s
| Id(s) -=>s
| Grid(g) -> string_of grid g
| Direction(d) ->
begin
match d with
North ->"NORTH" | South ->"SOUTH" | East -> "EAST" | West ->
"WEST" | Center -> "CENTER"
| NorthEast -> "NORTHEAST" | SouthEast -> "SOUTHEAST" | NorthWest
->"NORTHWEST" | SouthWest -> "SOUTHWEST"

end
| Binop(el, o, €2) ->
begin
match o with
| >
string_of expr_setup el ~" " ” (match o with
Add ->"+" | Sub ->"-"| Mult ->"*" | Div ->"/"
| Equal ->"="| Neq ->"!="
| Less ->"<" | Leq -> "<=" | Greater ->">" | Geq -> ">="
Mod ->"%")
AN Astring of expr_setup e2
end
| Assign(v, e) -> "laddwritegrid!" ~ v ~ " =" "~ string_of expr_setup e

| Call(f, el) -> (match Str.string_match (Str.regexp "move") f 0 with
true -> £~ "(" ” String.concat ", " (List.map string_of expr_setup el) * ", read_grid,
write grid, i, j, width, height)"
| ->match Str.string_match (Str.regexp "assign_type") f 0 with
true -> £~ "(" ~ String.concat ", " (List.map string_of expr_setup el) * ", write_grid, 1, j,
width, height)"
| ->match Str.string_match (Str.regexp "neighborhood") f 0 with

41

true -> £~ "(" ” String.concat ", " (List.map string_of expr_setup el) * ", read_grid, i, j,
width, height)"
| ->match Str.string_match (Str.regexp "randomof") f 0 with
true -> £~ "(" ~ String.concat ", " (List.map string_of expr_setup el) * ", read grid , 1,
J, width, height)"
| ->match Str.string_match (Str.regexp "cellat") f 0 with
true -> £~ "(" ~ String.concat ", " (List.map string_of expr_setup el) * ", read grid
, 1, j, width, height)"
| ->match Str.string_match (Str.regexp "grid_size") f 0 with
true -> £~ "(" ” String.concat ", " (List.map string_of expr_setup el) * ",
&gridl, &grid2, &SMAX X, &EMAX Y)"
| ->match Str.string_match (Str.regexp "set_actor") f 0 with
true -> £~ "(" ” String.concat ", " (List.map string_of expr_setup el) * ",
gridl , grid2)"
| ->match Str.string_match (Str.regexp "cellat") f 0 with
true -> £~ "(" ” String.concat ", " (List.map string_of expr_setup el) * ",
read grid , i, j)"
| ->match Str.string_match (Str.regexp "set_chronon") f 0 with
true -> £~ "(" ” String.concat ", " (List.map string_of expr_setup el) * ",
&STEP_TIME)"
| ->match Str.string_match (Str.regexp "set grid pattern") f 0 with
true -> £~ "(" ~ String.concat ", " (List.map string_of expr_setup el) *
" gridl, grid2)"
| ->match Str.string_match (Str.regexp "set_cell_size") f 0 with
true -> £~ "(" ” String.concat ", " (List.map string_of expr_setup
el) »", &CELL_SIZE)"
| ->match Str.string_match (Str.regexp "set grid random") f 0
with
true -> £~ "(" ~ String.concat ", " (List.map
string_of expr_setup el) * "grid1, grid2, MAX X, MAX Y)"
| ->match Str.string_match (Str.regexp "read grid") f 0 with
true -> £~ "(" » String.concat ", " (List.map
string_of expr_setup el) ", grid1, grid2, MAX X, MAX Y)"
| ->f~"("~ String.concat ", " (List.map
string_of expr_setup el) *™M)")
| Noexpr ->""
| BVal(v) -> string_of bvv
| RExpr(el,0,e2) ->string_of expr atel ~" " *string of rop o " " *string_of expr_ate2
| EExpr(el,0,e2) -> string_of expr_atel ~"" " string_of eop o " " " string_of expr_ate2
| BExpr(el,0,e2) ->string_of expr _atel ~" " ~string_of bop o """ string of expr ate2
| Bracket(el) ->" (" ~ string_of expr atel ")"

42

let rec string_of stmt setup = function
Block(stmts) ->"{\n" " String.concat "" (List.map string_of stmt setup stmts) * "}\n"

| Expr(expr) -> string_of expr_setup expr * ";\n";

| Return(expr) -> "return " ” string_of expr_setup expr * ";\n";

| If(e, s, Block([])) -> "if (" ~ string_of expr_setup e * ")\n" * string_of stmt_setup s

| If(e, s1, s2) -=> "if (" ~ string_of expr_setup e * ")\n" " string_of stmt setup sl ~ "else\n" *
string_of stmt_setup s2

| While(e, s) -> "while (" ” string_of expr setup e * ") "~ string_of stmt setup s

let string of vdecl = function
VDecl(dtt, nm, v) => string_of dtdtt*" " *nm " "=""v " ";\n"

let string_of fparam = function
FParam(dt,s) -> string_of dtdt""""s

let string of fdecl = function
| CFunc(fdecl) -> if (String.compare fdecl.fname "setup") =0 then
"\n" ~ string_of dt fdecl.dtype » " " ” fdecl.fname " "(" ” String.concat ", " (List.m
string_of fparam fdecl.formals) ~ ") {\n" *
String.concat "" (List.map string_of vdecl fdecl.locals) *
String.concat "" (List.map string_of stmt fdecl.body) *
"n"
else ""
>

let string_of program (funcs) = String.concat "\n" (List.map string_of fdecl funcs)

(* compiler.ml *)
open Ast

open Str

open Cal std

module StringMap = Map.Make(String);;
let rec concat list1=

match 1 with
[] _> mn

ap

43

| hd :: tl -> hd ~ (concat_list tl)

let add_actortype_initdec fdecl =
let vdecls = fdecl.alocals in
let aname = fdecl.aname in
let string of vinit vd = match vd with

VDecl(dt, name,)->" " Aststring of dtdt”™"" ~name " ";\n" in
"struct " ~ aname * "_actortype{\n" * concat_list (List.map string_of vinit
vdecls)*" } "~ aname " actor;\n"

let add colors = function ActorType(fdecl) >
(let aname = fdecl.aname in
let red = Random.int 256 in
let green = Random.int 256 in
let blue = Random.int 256 in

n

" ACTORTYPE:

case " ~ String.uppercase aname "

color = SDL_MapRGB(screen->format, "*
string_of intred N","" string_of int green *"," ” string_of int blue *");
break;\n")
>

let rec replace actortypes block at list = match at list with
[] > block
| hd :: tl >
(match hd with ActorType(hd) -> replace actortypes (global replace (Str.regexp
hd.aname) ((String.uppercase hd.aname) " ACTORTYPE") block) tl | _-> block)

let add_actortype initinit fdecl func list =
let vdecls = fdecl.alocals in
let aname = fdecl.aname in
let string_of initinit vd = match vd with

VDecl(_, name, value) ->" (*actor).actors." ~ aname * " _actor."
name " =" " (replace_actortypes value func_list) * ";\n" in
" case " ” String.uppercase aname " ACTORTYPE:\n" »
concat_list (List.map string_of initinit vdecls) " break;\n"

let add_actortype deftype fdecl type number =
let aname = fdecl.aname in
"#define " * String.uppercase aname * " ACTORTYPE " # string_of int type number * "\n"

let add_actortype updateblock fdecl func list =

44

let aname = fdecl.aname in
let rules = fdecl.arules in
let default = fdecl.adefault in
let locals = fdecl.alocals in
let concat tabs s =" "Asin
let concat tabs2 s =" "Asin
let string_of rule rl = match rl with
Rule(condition, statement list) -> "if(" ~ string_of expr_at condition * "){\n"
concat_list (List.map concat_tabs (List.map Ast.string of stmt at statement list)) " "
H\n else " in
let string_of default df rule count = match rule count with
0 -> concat_list (List. map concat tabs2 (List.map Ast.string_of stmt at df)) * "\n"
| ->"{\n" "~ concat_list (List. map concat tabs (List.map Ast.string_of stmt at df)) *
" H\n" in
let add prefix to vars_block var = match var with
VDecl(_, name,) ->global replace (Str.regexp "!addwritegrid!read grid")
"write grid" (global replace (Str.regexp name) ("read grid[i][j].actors.""aname”" actor."“name)
s_block) in
let rec add_prefix_to_vars stmt block vars = match vars with
[] -> stmt_block
| hd :: tl ->add prefix to vars (add prefix to var stmt block hd) tl in
add prefix to vars (replace actortypes(" case "
String.uppercase aname * " ACTORTYPE:\n "~ concat_list
(List.map string_of rule rules) ” string_of default default (List.length rules) "
break;\n") func_list) locals

let get actortype initdecs = function ActorType(fdecl) ->add actortype initdec fdecl | ->""

let rec get actortype initinits functions functions_for count =
let get actortype_initinits_helper func func_list = match func with
ActorType(fdecl) -=> (add_actortype_initinit fdecl func_list)] _ ->""in
match functions_for count with
>
| hd :: tl -> ((get_actortype_initinits helper hd functions) " (get actortype initinits
functions tl))

let rec get actortype count funcs count = match funcs with
[] - count
| hd :: tl > (match hd with
ActorType(hd) -> get actortype count tl (count + 1)
| ->get actortype count tl count)

45

let get actortype deftypes fdecl type number = match fdecl with ActorType(fdecl) ->
add_actortype deftype fdecl type number| ->""

let rec get actortype deftypes rec functions type number =
match functions with
[] > nn
| hd :: tl -> get_actortype deftypes hd type number " get actortype deftypes rec tl
(type_number + 1)

let rec get actortype updateblocks functions functions_for count=
let get actortype updateblocks helper func func_list = match func with
ActorType(func) -> (add_actortype updateblock func func list)| ->"" in
match functions_for count with
0->"
| hd :: tl ->((get_actortype updateblocks helper hd functions) »
(get_actortype updateblocks functions tl))

let rec get setup function functions func_count = match func count with
[]->"
| hd :: tl -> (match hd with
CFunc(hd) -> if (String.compare (string_of dt hd.dtype) "void") =0 &&
(List.length hd.formals) <= 0 && (String.compare hd.fname "setup") = 0 then replace actortypes
(concat_list (List. map Ast.string of stmt setup hd.body)) functions else get setup function
functions tl
| ->get setup function functions tl)

let translate functions program_name =
let ochannel = ignore(Random.self init ()); open_out (program_name * ".c") in
let sorted functions = List.rev (List.sort compare functions) in
let at_count = get actortype count functions 0 in
let actor_initdecs = concat_list (List. map get actortype initdecs sorted functions) in
let actor_initinits = get actortype_initinits sorted functions sorted functions in
let actor_typedefs = get actortype deftypes_rec sorted functions 0 in
let actor _updateblocks = get actortype updateblocks sorted functions
sorted functions in
let actor colors = concat _list (List.map add_colors sorted functions) in
let normal funcs = concat _list (List.map string_of fdecl sorted functions) in
let setup func = get setup function sorted functions sorted functions in
let program_string =
global replace (Str.regexp("PROGRAM NAME"))
("\""*program_name”"\"")
(Cal_std.std_templateO ~ string of int at count * Cal std.std templatel
actor_typedefs " Cal std.std template2 »

46

actor_initdecs ~ Cal_std.std template3 » actor initinits *

Cal std.std template4 " actor updateblocks * Cal std.std template5 *

normal funcs » Cal std.std template6 * setup func ~ Cal std.std template7 »
actor_colors”

Cal_std.std template8)

in
let exit_code = ignore(Printf.fprintf ochannel "%s" program_string);
close out ochannel;
Sys.command (Printf.sprintf "gcc -0 %s.out %s.c -lmingw32
-ISDLmain -ISDL
" program_name program_name) in
match exit code with
0 -> "\nCompilation was a success.\n"
| ->"\nCompilation failed.\n"

(* cal_std.ml *)

let std_template0 = "#include <stdio.h>
#include <stdlib.h>

#include <time.h>

#include \"SDL/SDL.h\"

#define SOUTHWEST 0
#define WEST 1

#define NORTHWEST 2
#define SOUTH 3
#define CENTER 4
#define NORTH 5
#define SOUTHEAST 6
#define EAST 7

#define NORTHEAST 8

#define TOTAL TYPES"
let std_templatel ="

typedef int direction;
typedef char actor type;

let std_template2 ="

47

typedef struct actor{
union actor_types{"

let std_template3 ="
} actors;
char type;
} ACTOR;

void init(char type, ACTOR* actor){
(*actor).type = type;
switch(type){"

let std_templated ="}

}

void set _grid random(ACTOR** gridl, ACTOR** grid2, int width, int height){
int 1,j;
for(i = 0; i < width; i++){
for(j = 0; j <height; j++){
init(rand() % TOTAL TYPES, &grid1[i][j]);
grid2[i][j] = grid I [1][j];

}

void grid_size(int w, int h, ACTOR*** gridl, ACTOR*** grid2, int *width, int *height){
int i;
for(i = 0; i < *width; i++){
free((*grid1)[i]);
free((*grid2)[i]);
h
free(*grid1);
free(*grid2);
*width = w;
*height = h;
*oridl = malloc(w * sizeof(ACTOR¥*));
*grid2 = malloc(w * sizeof(ACTOR*));
for(i =0; i <w;i++){
(*grid1)[i] = malloc(h * sizeof(ACTOR));
(*grid2)[i] = malloc(h * sizeof(ACTOR));

48

H
set_grid_random(*grid1, *grid2, *width, *height);

void set_actor(int x, int y, char type, ACTOR** gridl, ACTOR** grid2){
init(type, &grid1[x][y]);
init(type, &grid2[x][y]);

void set_chronon(int millis, int *time){
*time = millis;

void set_cell_size(int size, int *cellsize){
*cellsize = size;

void set grid pattern(int pattern_type, char atype 1, char atype 2, intw_s, int h_s, int startx, int
starty, ACTOR** grid1, ACTOR** grid2){
int 1,j;
int width = startx + w_s;
int height = starty +h_s;
switch(pattern_type){
//CHECKERBOARD
case 0:
printf(\"inloop\\n\");
for(i = startx; i < width; i+=2){
for(j = starty; j < height; j+=2){
init(atype 1, &grid1[i][j]);
grid2[i][j] = grid I [1][j];

h
for(i = startx; i < width; i+=2){
for(j = starty + 1; j <height; j+=2){
init(atype 2, &grid1[i][j]);
grid2[i][j] = grid L [i][j];

h
for(i = startx + 1; i < width; i+=2){
for(j = starty + 1; j <height; j+=2){
init(atype 1, &grid1[i][j]);
grid2[i][j] = grid L [i][j];

49

H
for(i = startx + 1; i < width; i+=2){
for(j = starty; j < height; j+=2){
init(atype 2, &grid1[i][j]);
grid2[i][j] = grid 1[i][j];

}
break;

//ROWS
case 1:
for(i = startx; i < width; i++){
for(j = starty; j < height; j+=2){
init(atype 1, &grid1[i][j]);
grid2[i][j] = grid L [i][j];
H
h
for(i = startx; i < width; i++){
for(j = starty+1; j < height; j+=2){
init(atype 2, &grid1[i][j]);
grid2[i][j] = grid L [i][j];

h
}
break;
//ICOLUMNS
case 2:
for(i = startx; i < width; i+=2){
for(j = starty; j < height; j++){
init(atype 1, &grid1[i][j]);
grid2[i][j] = grid 1[i][j];
}
h
for(i = starty+1; i < width; i+=2){
for(j = starty; j < height; j++){
init(atype 2, &grid1[i][j]);
grid2[i][j] = grid 1[i][j];
}
h
break;
//FILL
case 3:

for(i = startx; i < width; i++){
for(j = starty; j < height; j++){
init(atype 1, &grid1[i][j]);

50

grid2[i][j] = grid Ii]j];

break;

void read_grid(char* file_path, ACTOR** grid1, ACTOR** grid2, int width, int height){

char cellat(int direction, ACTOR** grid, int xpos, int ypos, int width, int height){
int xstart, ystart;
if(xpos <= 0){
xstart = width - 1;
h
else{
xstart = xpos - 1;
h
if(ypos <= 0){
ystart = height - 1;
h
else{
ystart = ypos - 1;
h
switch(direction){
case SOUTHWEST:
return grid[xstart%width][(ystart%height)].type;
case WEST:
return grid[xstart%width][((ystart+1)%height)].type;
case NORTHWEST:
return grid[xstart%width][((ystart+2)%height)].type;
case SOUTH:
return grid[(xstart+1)%width][(ystart%height)].type;
case CENTER:
return grid[(xstart+1)%width][((ystart+1)%height)].type;
case NORTH:
return grid[(xstart+1)%width][((ystart+2)%height)].type;
case SOUTHEAST:
return grid[(xstart+2)%width][(ystart%height)].type;
case EAST:
return grid[(xstart+2)%width][((ystart+1)%height)].type;
case NORTHEAST:

}

return grid[(xstart+2)%width][((ystart+2)%height)].type;
default:
return grid[(xstart+1)%width][((ystart+1)%height)].type;

void assign_type(int direction, char type, ACTOR** grid, int xpos, int ypos, int width, int height){
int xstart, ystart;
if(xpos <= 0){

}

else{

}

xstart = width - 1;

xstart = xpos - 1;

if(ypos <= 0){

ystart = height - 1;

h
else{
ystart = ypos - 1;
}
switch(direction){

case SOUTHWEST:
init(type, &(grid[xstart%width][(ystart%height)]));
break;

case WEST:
init(type, &(grid[xstart%width][((ystart+1)%height)]));
break;

case NORTHWEST:
init(type, &(grid[xstart%width][((ystart+2)%height)]));
break;

case SOUTH:
init(type, &(grid[(xstart+1)%width][(ystart%height)]));
break;

case CENTER:
init(type, &(grid[(xstart+1)%width][((ystart+1)%height)]));
break;

case NORTH:
init(type, &(grid[(xstart+1)%width][((ystart+2)%height)]));
break;

case SOUTHEAST:
init(type, &(grid[(xstart+2)%width][(ystart%height)]));
break;

case EAST:

52

init(type, &(grid[(xstart+2)%width][((ystart+1)%height)]));
break;

case NORTHEAST:
init(type, &(grid[(xstart+2)%width][((ystart+2)%height)]));
break;

default:
init(type, &(grid[(xstart+1)%width][((ystart+1)%height)]));

}

void move(int direction, char replace type, ACTOR** read grid, ACTOR** write grid, int xpos,
int ypos, int width, int height){

char og_type =read_grid[xpos][ypos].type;

//assign_type(direction, og_type, grid, xpos, ypos);
int xstart, ystart;

if(xpos <= 0){

xstart = width - 1;
H
else{

xstart = xpos - 1;
}
if(ypos <= 0){

ystart = height - 1;
H
else{

ystart = ypos - 1;

switch(direction){

case SOUTHWEST:
write_grid[xstart%owidth][(ystart%height)] = write _grid[xpos][ypos];
break;

case WEST:
write grid[xstart%width][((ystart+1)%height)] = write grid[xpos][ypos];
break;

case NORTHWEST:
write grid[xstart%width][((ystart+2)%height)] = write grid[xpos][ypos];
break;

53

case SOUTH:
write _grid[(xstart+1)%width][(ystart%height)] = write grid[xpos][ypos];
break;

case CENTER:
write grid[(xstart+1)%width][((ystart+1)%height)] = write grid[xpos][ypos];
break;

case NORTH:
write _grid[(xstart+1)%width][((ystart+2)%height)] = write grid[xpos][ypos];
break;

case SOUTHEAST:
write grid[(xstart+2)%width][(ystart%height)] = write grid[xpos][ypos];
break;

case EAST:
write grid[(xstart+2)%width][((ystart+1)%height)] = write grid[xpos][ypos];
break;

case NORTHEAST:
write grid[(xstart+2)%width][((ystart+2)%height)] = write grid[xpos][ypos];
break;

default:
write_grid[(xstart+1)%width][((ystart+1)%height)] = write grid[xpos][ypos];

H
init(replace_type, &(write_grid[xpos][ypos]));

int neighborhood(char type, ACTOR** grid, int xpos, int ypos, int width, int height){
int neighbor_count = 0;

int i,j;

int xstart, ystart;

int curr_x, curr_y;

int current_direction = 0;

if(xpos <= 0){

xstart = width - 1;
}
else{

xstart = xpos - 1;
H
if(ypos <= 0){

ystart = height - 1;
}

else{

54

ystart = ypos - 1;

for(i=0;1<3; it++H){
for(j =0; j <3; j+h){

curr_x = (xstart+i)%width;

curr_y = (ystart+j)%height;

if(current_direction = 4){
continue;

h

if(grid[curr_x][curr_y].type = type){
neighbor_count++;

return neighbor_count;

int randomof(char type, ACTOR** grid, int xpos, int ypos, int width, int height){
int neighborhood[8];
int neighbor_count = 0;
int current_direction = 0;

int i,j;
int xstart, ystart;
int curr_x, curr_y;
if(xpos <= 0){

xstart = width - 1;
}
else{

xstart = xpos - 1;
h
if(ypos <= 0){

ystart = height - 1;
}
else{

ystart = ypos - 1;

for(i =0;1<3; i++H){
for(j=0;j <3;j+H{
curr_x = (xstart+i)%width;

55

curr_y = (ystart+j)%height;

if(current_direction = 4){
current _direction++;
continue;

H

if(grid[curr_x][curr_y].type = type){
neighborhood[neighbor count] = current direction;
neighbor_count++;

}

current_direction++;

if(neighbor _count > 0){

return neighborhood[rand() % neighbor count];
h
else{

return -1;

void update(ACTOR** read_grid, ACTOR** write_grid, int width, int height){
int i,j;
char new_type;
for(i = 0; i < width; i++){
for(j = 0; j <height; j++){
write grid[i][j] =read_grid[i][j];

H
for(i=0; i < width; i++){
for(j = 0; j <height; j++){
switch(read_grid[i][j].type){"

let std_templateS ="

void colorblock(SDL_Rect rect, SDL._Rect offset, SDL._Surface* screen, SDL_Surface* surface, int
Xpos, int ypos, int width, int height, Uint32 color){

56

rect.x =0;
rect.y =0;
rect.w = width;
rect.h = height;

offset.x = xpos;
offset.y = ypos;
offset.w = width;
offset.h = height;

SDL_FillRect(surface, &rect, color);
SDL _BlitSurface(surface, NULL, screen, &offset);

}"
let std_template6 ="

int main(int argc, char* args[]){
srand(time(NULL));

int MAX X =100;
int MAX_ Y =100;
int CELL_SIZE =4;
int STEP_TIME = 50;
int 1,j,k;

ACTOR** grid1 = malloc(sizeof(ACTOR*) * MAX X);
ACTOR** grid2 = malloc(sizeof(ACTOR*) * MAX X);

for(i =0; i <MAX X;it++){
grid1[i] = malloc(sizeof(ACTOR) * MAX Y);
grid2[i] = malloc(sizeof(ACTOR) * MAX Y);
}
set_grid random(gridl,grid2, MAX X,MAX Y);

n

—n

let std_template?
printf(\"%d,%d\\n\", MAX X, MAX Y);
int grid_switch = 1;

//Setup sdl screen stuff
SDL_Surface* screen = NULL;
SDL _Surface* surface = NULL;

57

SDL Rect rect;

SDL Rect offset;

//Start SDL

SDL Init(SDL_INIT EVERYTHING);

surface = SDL._CreateRGBSurface(0, CELL SIZE, CELL SIZE, 32, 0, 0, 0, 0);

screen = SDL_SetVideoMode(CELL_SIZE * MAX X, CELL SIZE * MAX Y, 32,
SDL_SWSURFACE);
SDL. WM _SetCaption(PROGRAM NAME, NULL);

ACTOR** current_grid;
Uint32 color;
SDL_Event event;
int quit = 0;
int pause = 0;
while(!quit){
if(!pause){
if(grid_switch){
current_grid = grid1;
}
else{
current_grid = grid2;
h
for(i=0; 1 <MAX X;it+){
forG=0;j <MAX Y;j+H){
switch(current_grid[i][j].type){

let std_template8 = "
colorblock(rect, offset, screen, surface, CELL SIZE * i,
CELL_SIZE * j, CELL_SIZE, CELL_SIZE, color);
H
H
if(grid_switch){
update(grid1, grid2, MAX X, MAX Y);
grid switch = 0;

H

else{
update(grid2, gridl, MAX X, MAX Y);
grid_switch = 1;

H

58

if(SDL_Flip(screen) = -1){

return 1;
h
h
while(SDL_PollEvent(&event)){
switch(event.type){
case SDL KEYDOWN:
pause = !pause;
break;
case SDL_QUIT:
quit=1;
break;
h
h
SDL Delay(STEP_TIME);
h

for(i=0; 1 <MAX X;it+){
free(grid1[i]);
free(grid2[i]);

h

free(grid1);

free(grid2);

//Free the loaded image

SDL_FreeSurface(surface);

SDL_FreeSurface(screen);

//Quit SDL

SDL_Quit();

return 0;
3"
(* cal.ml *)
exception NolnputFile
let usage = Printf.sprintf "Usage: cal <filepath>"
let get prog name source file path =

let split_path = (Str.split (Str.regexp_string "/") source_file path) in
let file_ name = List.nth split_path ((List.length split_path) - 1) in

59

let split name = (Str.split (Str.regexp_string ".") file_name) in
List.nth split name ((List.length split_ name) - 2)

let =
try
let file_ name =
if Array.length Sys.argv > 1 then
get prog name Sys.argv.(1)
else raise NolnputFile in
let input_chan = open_in Sys.argv.(1) in
let lexbuf = Lexing.from_channel input chan in
let rev_prog = Parser.program Scanner.token lexbuf in
let program = List.rev rev_prog in
let semantic_check = Semantic.check program program in
let comp_result = if semantic_check = true then
Compile.translate program file_name
else raise(Failure("\nInvalid program.\n")) in
print_string comp_result
with
| NolnputFile -> ignore (Printf.printf "Invalid filepath\n%s" usage

60

	coverpage
	CAL Final Report - Google Drive

