
Lullabyte
Stanley Chang Louis Croce Nathan Hayes-Roth
Andrew Langdon Ben Nappier Peter Xu

Overview
● Goals

○ Generate MIDI music files
○ C-like syntax
○ Allow algorithmic or direct composition

● Building blocks
○ Construct sounds from ints, doubles, pitches
○ Construct tracks from series of sounds
○ Layer tracks into a song

Program Structure
● main function

void main() {...}

● global variable declarations
int global_i; sound[] sounds;

● function definitions
type function (types args) {...}

Functions
type function(){

// local variable declarations
// global variable assignments
// control flow
// other function calls
// optional return value

}

Arrays
● Dynamic. Length is not fixed
● Assigning element beyond length pads intermediate

elements with default type values (0, 0.0, false, C0,
|C0|:0.0:0, etc.)

● Accessing element beyond length throws IOB error
● Reason: Make it easier for developer to not worry about

checking array lengths since musical tracks change a
lot throughout development

Types
● int, double, boolean

● Pitch: C0, A1, Bb4, G9, …

● Sound: “<pitch(es)> : <double> : <int>”
|C0|:0.25:100 |C5, E4, G3|:0.25:70

Statements & Control Flow
● if, while, for, return
● loop (<var> : <array>) {

//body
}

● Reference to <var> in body is treated as “array[i]”
● Easy way to loop through sound arrays and make

modifications with cleaner code

Built-in Functions
● setPitches(<sound>,

<pitch>)
● setDuration(<sound>,

<double>)
● setAmplitude(<sound>,

<int>)
● getPitches(<sound>)
● getDuration(<sound>)
● getAmplitude(<sound>)

● length(<array>)
● randomInt(<int>)
● randomDouble(<double>)
● bpm(<int>)
● write()
● play()
● print(<expr>)
● mixDown(<sound[]>, <int>)

mixDown(sounds, track)
● most important built-in function
● writes array of sounds to midi
● programmer specifies track number
● can be called multiple times
● sounds appended to specified track

Architectural Design

Front End
● scanner.mll
● parser.mly
● ast.ml

Back End
● interpreter.ml

○ rules of our compiler
● typechecking

○ variable type is stored on value declaration
○ function type is stored in module

Conversion to Midi
● Bytecode Conversion

○ catches .llb Failures
○ bpm, write, play, or both
○ tracks

● BytecodeTranslator.java
● JFugue

120 p
0[[Bb5]:0.5:100,[C6]:0.5:100,
[C6]:0.5:100, [Bb5]:0.5:100]
1[[Bb4, D4, G3]:1.:100,[E4, G3,
C3]:1.:100]
0[[Bb5]:0.5:100]

“V1 [72]/0.5a100+[76]/0.25a100+[76]/0. 5a100”...

Testing
● testing suite

○ *.llb and *.out
● type check test

○ breaking the compiler

Lessons Learned
● MicroC Slides
● Version Control
● Testing
● Strength in Numbers
● Communication
● Accountability

Hey Jude Demo

Thank You
Any Questions?

