
Gamma Ray

By Matthew Maycock, Weiyuan Li, Ben Caimano and Arthy Sundaram

Gamma Language
Features

Ray Compiler
Architecture and design.
Implementation details.

Test-suite and Toolchain
Challenges and Lessons learnt
Demo

Agenda

Elegant and Fully object oriented
Primitive types are classes and variables are instances.
IO wrappers encapsulated within objects.

Secure
Private (protected) members are private (protected) to instances.
Subclasses cannot override superclass behaviors.

Refinement
Extend superclass behavior by refinement.
Superclass provides hooks to refining types.
Dynamic dispatch.

Anonymous class
Create classes on the fly
Akin to Lambda definitions and Java’s anonymous instantiations.

A language that has it all...!

The Gamma Language

class Account:

public:
Integer bal
Integer interest

Integer getBalance():

 if (refinable(bonus)) {
 bal := bal + refine bonus(interest) to Integer;
 }
 return bal

Refinement

class NewAccount extends Account:

refinement:

Integer getBalance.bonus(Integer norm):
 return norm * rewards

Public:
Integer rewards

class Person:
 protected:
 String name
 public:
 init(String name):
 super()
 this.name := name
 void introduce():
 Printer p := system.out
 p.printString(name)
 p.printString(refine origin() to String)
 p.printInteger(refine age() to Integer)

main(System sys, String[] args):
 (new Person("Matthew") {
 String introduce.origin() { return "New Jersey"; }

 Integer introduce.age() { return 33; }
 }
).introduce()

Anonymous classes

Mathew
NewJersey
33

class IOTest:
public:
 init():
 super()

 void interact():
 Printer p := system.out
 Integer i := promptInteger("Please enter an integer")
 p.printString("Integer converted to Float = ")
 p.printFloat(i.toF())
 p.printString("\n")

 Integer promptInteger(String msg):
 prompt(msg)
 return system.in.scanInteger()

 main(System system, String[] args):
 IOTest test := new IOTest()
 test.interact()

system - IO wrappers

Please enter an Integer: 12
Integer converted to Float = 12.0000

From gamma to C
 Gamma source

 Abstract Syntax Tree

 SAST

 C-AST

 Target C

Deanonymization
Refinement dispatch
Methods -> mangled functions

Build Environment
Access & scope checks
Type checking
Tag types

Scan and Parse

Semantic Analysis

Intermediate Representation

 Code Generation
Preprocess the MACROs
Link the builtin functions.

Objects and dynamic dispatch in C

Tools to inspect what is going on in the compiler: streams shows scanner results,
canonize takes space delimited input and produces braced input, inspect/prettify
takes input and shows the initial AST, classinfo shows metainfo about all classes
(methods, variables, etc) including built ins.

We have automated testing from earlier in our development to make sure scanner
/ parser input remained consistent. We have additional testing facilities via a
script to automatically compile and run any gamma source -- showing both the
source and the output.

Tool chains and Test suites

Translating an objected oriented program to a structural language using
functional programming language!

Design choices - don’t do early optimization (arrays, null, this)

Feature subset

Prioritizing tasks

Scheduling weekly team meetings

Most of all: Don’t take too many other classes while taking PLT

Challenges and Lessons

DEMO
 BANK SIMULATION AND N-QUEENS PUZZLE

