
Save Edwards

Wei Wei 2313
Zhe Cao zc2237

Zeyang Yang zy2171
Ge Zhao gz2196

Overview

• Tower defense game on DE2 board
• Motivated by iPhone game the Creeps
• Storyline: Edwards is sleeping. Monsters are

getting close to him wave after wave. We should
build towers along the path to kill them and save
Edwards.

• Strategies are needed to win
– Kill monsters to earn money
– Build proper towers on proper position on the map
– Upgrade or sell towers when needed

Memory

• SDRAM: CPU memory

• Data storage:

– SRAM: store images

– On chip RAM: store sound

Image preprocessing

• Object: generate bitmap for DE2 board

• Memory requirement: within 512 KB SRAM

• 8-bit index color, i.e. 256 colors

Define 0xFF
“Transparent”

Color Look Up Table (CLUT)

Image preprocessing (cont.)

• Image categories and amount
– Background (640 x 480): 3

– Monsters (32 x 32 or 32 x 40): 33

– Towers (32 x 32): 159

– Buttons (various sizes): 16

– Numbers (8 x 16): 10

• Total image size
– SDRAM Occupation: 1112KB

– SRAM Occupation: 490KB

Audio preprocessing

• Sampling rate: 8KHz
• Quantization bits: 16 bits
• On chip RAM Occupation: 43KB
• Overlap algorithm considerations:

– In real world: overlap without limits
– In digital world: may overflow(summing) or lose quality

(averaging)
– In SaveEdwards: sum up all concurrent audios

• carefully adjusted magnitude of audio (average below 10%
maximum amplitude)

• Realistic, overflow avoided, simple implementation, good quality
using 16 bit quantization

Hardware configurations

Sprite control

• Why we choose sprite and design a specific
sprite controller?
– We have tens of objects who have their individual

characteristics and motions

– Directly code in VGA module will exponentially
increase our pain when the number of the sprite
increases

– After developing this hardware platform, it is easy
to add or delete sprites and to control by the
software

Sprite control (cont.)

• List of sprites

Sprite category Amount

Mouse pointer 1

Selects 2

Buttons 9

Monsters 13

Glue effects 13

Health bar 13

Towers 13

Bullets 13

Numbers 11

TOTAL 88

Sprite control (cont.)

• Computation in sprite controller and display
on VGA “ at the same time”

– 800 clock cycles to display one row under 25MHz
frequency in VGA module

– 1600 clock cycles to compute one row pixel data
under 50MHz frequency in sprite controller

Sprite control (cont.)

• Two sets of buffers
– Two sets of buffers and alternatively write to and read

from them

– Refreshing the pixel information of current row and
displaying the pixel of previous row

– No data contention

Read to

VGA for

display

321 400Address

321 654 800799Pixel ...

...

321 400Address

321 654 800799Pixel ...

...

Refresh from sprite controller

Buffer0

Buffer1

Read to

VGA for

display321 400Address

321 654 800799Pixel ...

...

Buffer0

321 400Address

321 654 800799Pixel ...

...

Refresh from sprite controller

Buffer1

Sprite control (cont.)

• 5-stage pipeline

Audio control

• Why we design a specific audio controller?

– 13 monsters and 13 towers can sound together,
simply throwing all the sound data into codec will
definitely mess all the things up, real time
challenge!

– Algorithm: add all sounds up

– Similar to sprite control: each piece of sound is
like one “sprite”

Audio control (cont.)

• Different from sprite controller

 Sprite Control Audio Control

Put the new data into the buffer and
replace the old one

-- Pipeline

Fetch the old data from the buffer and
do the operation, then put the result
back to the same buffer
-- FSM

Software enables and disables Software enables and hard ware disables

• Safest way to control the enable signal – software enables and
hardware disables, easy to fit the time requirement

• Enable signal in software flips, the hardware considers it as an
enable signal, making the communication problem easier

Audio control (cont.)

• FSM of the audio control
– 28 states, first state is initial state, last state is hold

state, the rest 26 states correspond to 13 towers and
13 monsters

– Go to the next state and merge the next object’s
sound every time the clock cycle counter gets to 256

– Cumulative offset pointer to indicate the offset of
current data

• Audio length is controllable according to game
speed

PS2 Control

• PS2 mouse as input device

• Return status of left button, right button and
middle button

• Return X, Y coordinates movement

• IRQ asserted when button clicked or released

• X & Y positions captured with frame display

Software state diagram

Gaming effects

• Monsters on the map, monsters on monsters

• Explosive effect on monsters

• Slow down effect on monsters

• Health bar above monsters

Interactive operations

• Map selection – select a map to start

• Dynamically display money, score, wave number, lives

• Play/pause buttons – play or pause

• Speed button – Normal speed and double speed

• Mute and unmute buttons

• Click on blank ground – towers to build if money is
enough

• Click on obstacles, or path – forbidden sign

• Click on towers – show attack range, sell and upgrade
buttons

Experiences and issues

• Incoherent in display

– Read and write data conflict

– Inappropriate IRQ of mouse events

• Limited sprite amount

– The pixels of the new row to display must be
computed out while displaying the previous row.
The amount depends on the displaying frame rate
and board clock frequency

Lessons learned

• Architecture of hardware and software on
FPGA board

• Resource allocation – use hardware
controllers to share computation

• Scheduling optimization – remove slacked
operations away from critical path

Lessons learned (cont.)

• Debug methods:

– Write testbenches to simulate hardware entities.
Use waveforms to debug.

– Use LEDs and LCD screen on DE2 board to indicate
certain wires in tested entities

– Use console in NIOS II to debug software

Lessons learned (cont.)

Demos

