Pah! Pah! Pah!

A voice activated video game
Hao Hu(hh2506), Kezhen Liu(kl2688), Shaobo He(sh3156), Sheng Zheng(sz2372), Yi Su(ys2646)

Abstract

The goal of our project is to port a
voice activated iPhone game called Pah to
Altera DE2 Board. This project utilizes both
the hardware and software capabilities of
the Altera DE2 Board. The hardware designs
first presented along with a high level block
diagram of the project. Each hardware
component and peripheral is described in
detail. The software design is then presented
and its modules are described in details.
References used in the design construction
are presented at the end of the paper.

General Description of the Game

When the game started, an animation
scene will be displayed on the VGA screen.
Besides, a list of choice will also be displayed
through which the user could choose the
mode under which they want to play.
Basically we plan to provide the user with
two modes: keyboard-control mode and
voice-control mode. Obviously, if the
keyboard-control mode was chosen, then the
game is played by keyboard otherwise the
game is played by voice. To make the game
more interesting and energetic, we are going
to add inspiring music when the user started
the game by choosing one of the two modes.

Now suppose the user has started the
game by choosing the voice-control mode we
mentioned above, a spaceship will appear on
the screen with dynamic animations. After
that, some meteorites will be displayed on
the screen. The player’s task is to avoid

colliding with these meteorites. To simulate
the real situation in space, the positions of
these meteorites will be randomly place on
the screen and the number of these stones is
intended to be four. To make the spaceship
move up vertically, the user should make a
sound so that the sound could be detected by
the MIC on the board. And if the player wants
to make the plane keep moving upward
steadily, he should make his tone become
higher. This is mainly because the ‘up’
movement of the spaceship is controlled by
the tone. Apart from just avoiding, the user
could shoot the stone by suddenly making
his voice high, which could generate a high
frequency audio signal and will be captured
by our FFT module. Thus the spaceship will
fire correspondingly. So the player could
play this game through these basic elements.
In addition to these basic elements, the
player will also have their status (i.e. scores,
lives, time etc.) recorded and displayed on
the top of the screen. Besides, we also plan to
add more entertainment elements to the
game. Some stone will be marked by some
special colors. For example, if 3 of the
regular meteorites are white or gray, then
the special one will be red or yellow. When
the player hit this special stone with bullet,
the stone will be exploded. The explosion of
the special meteorite will spawn some
rewards to the player. If the player got this
reward by hit it with the body of the
spaceship, then the ship’s status (i.e. weapon,
lives, time) will get improved.

: .

Avalon Bus

On-board

Video and
Beeper
Controller

Keys
Controller

() (o) (o)

Hardware System Overview
The above figure is the micro-
architecture of out hardware system.

Detailed Block Description
Video and Beeper controller:
1.There are overall 14 visual elements
should be considered in this part. All these
elements will receive signals about whether
they will display or not and the coordinate
from NIOS.
(1). Start screen

When we start the game, this screen
will appear including the name of our game
and some simple pictures.
(2). Different modes

Because our game has two modes: key
controlled and voice controlled, an arrow
will direct to different modes according to
player’s selection. This part will be displayed
at the bottom of beginning screen and
changing according to signal received.
(3). Platform

After we start the game, the beginning
screen will disappear and the spaceship will
stopped on this platform. Then the platform
will fall and game will start.
(4). Background

In order to obtain a vivid effect of
flying in the universe, the background is
required. We will draw some simple white
dots or small stars.

L

%

S
4bits
Control Logic <
Controller Ah! Generator
2bits | i18bits
Vrort2(2poon |Pertz(.)
Pah! | p | FFT
Generator Cligt 8 - MegaCore
) 16bits k(1024'16b|ts))1Gbits L

J

12C Controller

(5). Spaceship

We will use array of 0 and 1 to build
the shape of the spaceship. An example of
our model is showed in the following.

~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

' The spaceship has 4 colors. The cabin
is white and the body is yellow and the nose
is brown and the tail is red. It will move up

and down according to the signal from NIOS.



(6). Meteorolite

They are implemented in the same way
with spaceship and they have two colors.
There are four meteorolites to be handled in
this game. They will moving from right to left
by default. If the meteorolite is hit by
spaceship or a missile, it will disappear
according to the receiving signal and restart
from the right of the screen.
(7). Missile

There are two missiles could be
displayed on the screen at one time at most.
When the AV controller gets the signal of
launching, the missile will flying from the
nose of spaceship horizontally to the right
until it hits a metorolite.
(8). Life

The player has 3 lives by default at first.

When the spaceship hit a meteorolite, the
player will lose one life. This function will be
displayed at the top right corner and using
different number of heart-shaped image to
show lives. The number of heart will change
according to signals from NIOS.
(9). Score

When a missile hit a meteorolite, the
score will increase by 10 points.
(10). Simple meteorolite broken animation

When a meteorolite is hit, this
animation will appear according to signals
from NIOS.
(11). Simple spaceship broken animation

When a spaceship is hit, this animation
will appear according to signals from NIOS.
(12). Special meteorolite

The special meteorolite is a red one,
while the ordinary ones are white with
purple pits. When it is hit, it will break and
leave some reward.
(13). Reward

When a special meteorolite is hit, it
will appear.
(14). Game over

When the player loses the last life, the
game is over and this screen appears.
2. There are 6 audio elements will be
handled in this game. They are controlled
whether to be played or not from signals

from NIOS.
(1). Selection sound

At the beginning screen, when player
selects the mode, this sound will be played.
(2). Beginning music

After the mode is decided, the game
will start with this music.
(3). Background music

During the game, this music is played.
(4). Spaceship explosion sound

When the spaceship is hit, this sound
will be played.
(5). Meteorolite broken sound

When a meteorolite is hit, this sound
will be played.
(6). Sound of launchinga missile

When a missile is launched, this sound
will be played.
3. Interface of this module

reset_n : in std_logic;

clk : in std_logic;

read :in  std_logic;

write :in  std_logic;
chipselect :in  std_logic;

address :in  std_logic_vector(4
downto 0);

readdata : out std_logic_vector(15
downto 0);

writedata :in  std_logic_vector(15
downto 0);

VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK,
VGA_SYNC : out std_logic;
VGA_R, VGA_G, VGA_B : out
std_logic_vector(9 downto 0);
4. Control signal and according address
signal beginning_display: std_logic;

--store data from address 0000000
signal modes_display: std_logic;

-- store data from address00 00001
signal modes_x: unsigned(9 downto 0);

-- store data from address 0000011
signal modes_y: unsigned(9 downto 0);

-- store data from address 0000100
signal platform_display: std_logic;

-- store data from address 0000101
signal platform_x: unsigned(9 downto 0);

-- store data from address 0000110
signal platform_y: unsigned(9 downto 0);



-- store data from address 0000111
signal background_display: std_logic;

-- store data from address 0001000
signal spaceship_display: std_logic;

-- store data from address 0001001
signal spaceship _x: unsigned(9 downto 0);

-- store data from address 0001010
signal spaceship _y: unsigned(9 downto 0);

-- store data from address 0001011
signal meteorolite_1_display: std_logic;

-- store data from address 0001100
signal meteorolite_1_x: unsigned(9 downto

0); -- store data from address 0001101
signal meteorolite_1_y: unsigned(9 downto
0); -- store data from address 0001110

signal meteorolite_2_display: std_logic;
-- store data from address 0001111
signal meteorolite_2_x: unsigned(9 downto

0); -- store data from address 0010000
signal meteorolite_2_y: unsigned(9 downto
0); -- store data from address 0010001

signal meteorolite_3_display: std_logic;
-- store data from address 0010010
signal meteorolite_3_x: unsigned(9 downto

0); -- store data from address 0010011
signal meteorolite_3_y: unsigned(9 downto
0); -- store data from address 0010100

signal meteorolite_4_display: std_logic;
-- store data from address 0010101

signal meteorolite_4_x: unsigned(9 downto 0)

-- store data from address 0010110
signal meteorolite_4_y: unsigned(9 downto
0); -- store data from address 0010111
signal missile_1_display: std_logic;

-- store data from address 0011000
signal missile_1_x: unsigned(9 downto 0);

-- store data from address 0011001
signal missile_1_y: unsigned(9 downto 0);

-- store data from address 0011010
signal missile_2_display: std_logic;

-- store data from address 0011011
signal missile_2_x: unsigned(9 downto 0);

-- store data from address 0011100
signal missile_2_y: unsigned(9 downto 0);

-- store data from address 0011101
signal life_1_display: std_logic;

-- store data from address 0011110
signal life_1_x: unsigned(9 downto 0);

-- store data from address 0011111
signal life_1_y: unsigned(9 downto 0);

-- store data from address 0100000
signal life_2_display: std_logic;

-- store data from address 0100001
signal life_2_x: unsigned(9 downto 0);

-- store data from address 0100010
signal life_2_y: unsigned(9 downto 0);

-- store data from address 0100011
signal life_3_display: std_logic;

-- store data from address 0100100
signal life_3_x: unsigned(9 downto 0);

-- store data from address 0100101
signal life_3_y: unsigned(9 downto 0);

-- store data from address 0100110
signal score_1_display: std_logic;

-- store data from address 0100111
signal score_1_num: std_logic;

-- store data from address 0101000
signal score_1 _x: unsigned(9 downto 0);

-- store data from address 0101001
signal score _1_y: unsigned(9 downto 0);

-- store data from address 0101010
signal score_2_display: std_logic;

-- store data from address 0101011
signal score_2_num: std_logic;

-- store data from address 0101100
signal score_2_x: unsigned(9 downto 0);

-- store data from address 0101101
signal score _2_y: unsigned(9 downto 0);

-- store data from address 0101110
signal score_3_display: std_logic;

-- store data from address 0101111
signal score_3_num: std_logic;

-- store data from address 0110000
signal score_3 _x: unsigned(9 downto 0);

-- store data from address 0110001
signal score _3_y: unsigned(9 downto 0);

-- store data from address 0110010
signal spaceship _explosion_1: std_logic;

-- store data from address 0110011
signal spaceship _explosion_2: std_logic;

-- store data from address 0110100
signal meteorolite_1 _broken_1: std_logic;

-- store data from address 0110101
signal meteorolite_1 _broken_2: std_logic;

-- store data from address 0110110
signal meteorolite_2 _broken_1: std_logic;



-- store data from address 0110111
signal meteorolite_2 _broken_2: std_logic;

-- store data from address 0111000
signal meteorolite_3 _broken_1: std_logic;

-- store data from address 0111001
signal meteorolite_3 _broken_2: std_logic;

-- store data from address 0111010
signal meteorolite_4 _broken_1: std_logic;

-- store data from address 0111011
signal meteorolite_4 _broken_2: std_logic;

-- store data from address 0111100
signal reward_display: std_logic;

-- store data from address 0111101
signal reward _x: unsigned(9 downto 0);

-- store data from address 0111110
signal reward _y: unsigned(9 downto 0);

-- store data from address 0111111
signal GameOver_display: std_logic;

-- store data from address 1000000

FFT Megafunction:

FFT

...........

We will use the FFT IP core in Quartus.
The IP core uses the N complex vector in the
time domain as the input, and outputs the
complex vector in the frequency domain in the
natural order. The inputs include 1 bit clk, 1bit
reset n signal, 1bit inverse bit to determine the
order of output, 1 bit sink valid to determine the
valid bit of the input, 1 bit start of packet signal,
1bit end of packet signal, one 16 bits real part
of signal, one 16 bits imaginary part of signal, 2

bit error control bit, and 1 bit source ready
signal. The output is very similar with the input.
1bit ready signal, 2 bit error control bit, 1 bit
sop and 1bit eop. 1 bit valid signal, 6 bits
source_exp, 16 bits real part of output and 16
bits imaginary part of the output.

Control logic controller and On-board
keys controller

The function of these two blocks are
similar which converts the signal from either
the 4 keys or the audio status signals to the
Avalon bus.

Pah! Generator:

The Pah! generator is basically an
amplitude detector. When the amplitude of
input in the time domain is above a very large
threshold, it will pull 1 bit clear screen bit high.
When the amplitude of input in the time domain
is between the large threshold and second large
threshold, it will generate one 1 bit missile bit.
When it is below the second large threshold, it
will pull the clear_screen and missile bit to 0.
The pseudo code for this part is as below:

If (amplitude > large threshold)
clear screen <= 1;
else if (amplitude > second threshold)
missile <= 1;
else
clear screen <= 0;
missile <= 0;

Ah! Generator:

The function of this block is to compare
the fundamental frequency of the voice
received. The audio sample of the sound of
‘Ah’ is showed in the following figure.

Audio Sample for ‘Ah’' Phoneme
02 T T T T

0151

Relative Pressure
& o
=1 =
(i} (=] (i3]
J——
e
—
e
e —— —
e

o

o
o




The FFT output of the signal is the

showed in the following figure.
Audio Magnitude Spectrum for ‘Ah’' Phoneme

2000

1800

1600 1

1400

1200

1000

Magnitude

800

600

200+

400+ ‘

E
i
I

AAAAA

Ok {
0 1000 2000 3000 4000 5000 6000
Frequency (Hz)

We can see from the figure that there
will be a frequency component that has the
largest amplitude in spectrum. We use this
frequency as the fundamental frequency.
And will be stored and compared with the
fundamental frequency of the previous time
period. Since different people have different
fundamental frequency, we only use the
difference across time.

There would be a certain threshold of
magnitude of fundamental frequency. If the
magnitude is too small, this frequency
component will be discarded. Also, since
there will be some tremble of human voice in
small scale if want to hold our pitch when
pronouncing ‘Ah’, there should be a threshold
to arbitrate the ‘stable’ of fundamental
frequency.

The logic will have 2-bit output. One bit
represents the rising of fundamental frequency
and the other bit represents the fundamental
frequency is ‘stable’.

Memory allocation:

The memory between MIC and FFT
module mainly consists of two blocks. One is
two synchronous RAMs with 10 bit address and
16 bit width and the other is memory controller
for bridging the RAMs to both MIC and FFT
module and performing Ping-Pong operation.
We configure the depth of RAM to 1024 in
order to support burst transmission to FFT since
FFT requires both start and end signals to be

asserted during one transmission, which is
inefficient. And the reason why we use two
RAMs is to avoid throttle the write operation
into RAM when read operation is about to be
performed. The scenario is when the MIC has
written 1024 chucks of data into RAM, it can
write data into the other RAM while FFT is
fetching data from the one it just write.
Memory controller is coordinating this process.
Block diagram of this sub-module is shown as
the following figure,

RAMO RAM1

MiC

Controller ="

Using off-chip SRAM worked in
principle, but it became increasingly difficult
to arbitrate reading and writing. In addition,
SRAM suffers from the inconvenience of
setting up write enable and address a cycle
before performing data operations. So we
settled on, then, was to use dedicated on-
chip storage elements via the two-port RAM
Megafunction. This method enjoys the
benefits of both previous methods, without
their shortcomings. Specifically, the RAM
Megafunction handles arbitration, so that the
designer can read and write at the same time,

but does not use up valuable logic elements.
RAM

data a[15..0] —D‘ a[15..0
‘address a[10..0] _D_ :
‘wren_a Hiks

data_b[15..0] o =z b[15.0
‘address_b[10..0] L+ 2 ’
“wren_b 1

clock




In order to deal with the asynchronous problem
caused by different speed of MIC and FFT, a
counter is used to generate one clock cycle
write enable signal even though the data is
valid during multiple clock cycles. Obviously,
the clock frequency of the RAM should be
identical to that of the faster device.

The key components of controller is state
machines and four counters, two for read and
write RAM 0 and the other two for RAM1. Its
state transaction diagram is shown as below.

Audio sampling:

BCLK
—_

ADALRC
i

MICIN

— : ADCDAT
WM8731 .

SDIN
—_—

SCLK

—_—

The WM8731 could do the ADC convert.
It works at the clock of 18.432 MHz,
sampling the audio at the rate of 48 KHz. We
choose the data width of 16bits, working at
the slave mode. There are five inputs of the
chip: BCLK, ADCLRC, MICIN, SDIN and SCLK.
BCLK is the 1 bit clock signal work at the
frequency of 18.432 MHz. ADCLRC is the 1bit
sample rate clock, that is, 48 KHz. MICIN the
input from microphone. SCLK is the control
clock and the SDIN the 16 bit control data.
There is one 16 bit output ADCDAT, which is
the digital signal sampled by the chip.

The chip’s control signal is work under
the [2C protocol, the output data transmitted
between the chip and FPGA is work under
the I2S protocol. The work flow is as below.
The 15:9 bit on the SDIN is the address, that
is, 6 bit address and 1 bit programmable
select signal. The 8:0 bit on the SDIN is the
control data. When master receive the
correct address and the R/W bit is 0, which

indicates writing, it begins to send data, or it
will go to idle state. Then when the output
15:8 data is transmitted, the SDIN will pulled
low. then bit 7:0 will be transmitted, then the
SDIN pulled low again. After all the data
transmitted, SDIN will pull from low to high,
indicating the end of the transmitting.

Software System
Game flow diagram:

Start of the
game

Voice On-board
Activated Activated

Game Start

| Mode

At first, the beginning screen appears and
in this screen we can choose 2 different modes.
They are voice activated and on-board key
activated. After the mode is selected, the game
will start and a simple piece of music will be
played. The spaceship will leave a falling
platform and start to flying in the universe. In
the game, the shoot, explosion, bump actions
will be detected and corresponding audio and
video control signals will be transferred to av
controller. Especially, if a special meteorolite is



hit, which is the special mode, some rewards
may be obtained by player. After some time,
the special effect gained by reward will
disappear, and game will return to normal. If
the player loses the last life, game is over.

Video processing of X-Y coordinates of
moving objects:

In general, Nios II processor will
generate the X-Y coordinates of all moving
objects including the spaceship, meteorite
and the missile. After Nios acquire the audio
status signal or onboard key status signal
from Avalon bus it will change the Y
coordinate of the spaceship by either hold or
increasing and decide wither a missile
should be launched or not. If the edge of
spaceship and meteorite overlap, a explode
effect of the spaceship will be generated and
this will be achieved by sending control
signal to VGA controller through Avalon bus.
Similarly, if the edge of a missile and a
meteorite overlap, a explode effect of the
meteorite will be generated and send to
Avalon bus.

The control of other moving objects are
similar to what has been discussed above.

Milestones:
Milestone 1 (April 2):
e Make detailed hardware design
specification
e Interface voice processing module to
Avalon bus
e Configure VGA interface
e Build software skeleton

Milestone 2 (April 16):
e Implement voice processing module
and validate it by writing testbench
e Build the game program and test it
with designated stimulus

Milestone 3 (April 30):
e Putall together by connecting voice
processing module to its interface to

avalon bus
e Debug until it totally functions
correctly
References:

1. FFT wiki link:
http://en.wikipedia.org/wiki/Fast_Fo
urier_transform

2. Pah! 2.0 App Store link:
https://itunes.apple.com/us/app/pa
h!-2.0/id5470137237mt=8

3. FFT MageCore Function User Guide:
http://www.altera.com/literature/ug
/ug_fft.pdf

4., WM8731 datasheet:
http://www.cs.columbia.edu/~sedwa
rds/classes/2013/4840/Wolfson-
WM8731-audio-CODEC.pdf



