
MASL
Multi-Agent

Simulation

Language

Jiatian Li jl3930

Wei Wang ww2315

Chong Zhang cz2276

Dale Zhao dz2242

COMSW4115 Programming Language & Translators

Final Project

MASL OVERVIEW

WHAT & WHY

Motivation

 A system where the interactions between autonomous

agents (individuals) are simulated

 Global patterns and effects of such interactions as a whole

can be observed and assessed

 Example: Game of Life (as a cellular automaton), Boids,

Heatbugs

 Applications: Physical world reality simulation, cryptology,

etc.

The Agent-Based Model (ABM)

Motivation

Examples of cellular automata

 Conway’s Game of Life  Heatbugs

Motivation

 Facilitate building ABMs without having to start from

scratch or engaging complex domain toolkits

 Particularly, we focus on developing cellular automata.

MASL – Multi-Agent Simulation Language

 Imperative programming language

 Static and strong typing system

 Functions as first class objects

 Compound types supported: objects and lists

 Objects as state machines

 Simple simulation environment

Features of MASL

 Each individual in the system will act according its

observation of local environment as well as its inner

state. State machines are a perfect model for this.

Features of MASL

Why state machines?

 In a simulation, individuals will update themselves

(take actions) and visually illustrated. All these

individuals will be represented using objects and

stored in lists for the simulation environment to

step through.

What is a simulation?

A SHORT TUTORIAL

ON MASL

Basic Data Types & Lists

 Integer (32-bit) int i = 19;

 Double (64-bit) double pi = 31.4e-1;

 Char char c = ‘a’;

 Boolean bool flag = true;

Basic Data Types

Lists

 Defining a list [int] fib = [int] {1, 1, 2, 3, 5, 8};

 A string is essentially a list of char elements:

[char] str = “hello world”;

Functions as First Class Objects

Functions in MASL can be stored in variables, and used

like a variable.

int max(int a, int b) {

 if (a > b) {

 return a;

 }

 return b;

}

fun ((int, int):int) f = max;

Objects as State Machines

An class consists of

 Any number of statements that defines members of its

instances and does initialization upon instantiation

(equivalent to a constructor), and

 Any number of states.

An object is an instance of a class.

class Guard {

 state Defend {

 if(enemySighted()) this->Attack;

 }

 state Attack {

 if(!enemyEliminated()) shot();

 else this->Defend;

 }

 bool enemySighted() { /*...*/ }

 bool enemyEliminated() { /*...*/ }

}

Class Guard g = class Guard();

if(g@Attack) { /*...*/ }

More on Lists

Lists are able to accommodate elements of any data types.

[class Programmer] team = /*...*/;

[[double]] matrix = {

 [double] { 1, 0, 0}

 [double] { 0, 1, 0}

 [double] { 0, 0, 1}

};

Functions can be applied to elements of a list.

int n = list:.count(fun (int n):bool { return n > 3; });

A for-loop using list iterator:

for (int n : list) {

 sum = sum + n;

}

for (int i = 0; i < list.size(); i = i + 1) {

 sum = sum + list:[i];

}

Equivalent to:

MASL Simulation

A MASL program is essentially a simulation. Currently we

only support the simulation of cellular machines.

class Cell {

 /* ... */

}

[class Cell] container;

/* Fill in the container. */

// Set the attributes of the simulation environment.

cellSize = 10;

nx = 100;

ny = 100;

interval = 100;

run(container);

Code Sample

int gcd(int a, int b) {

 if (b == 0) {

 return a;

 }

 else {

 return gcd(b, a % b);

 }

}

printInt(gcd(2,14));

Greatest Common Divider

bool isEvenNum(int num) {

 return (num%2 == 0);

}

[int] list = [int]{1, 2, 3, 4, 5, 6};

[int] evenList = list:.filter(isEvenNum);

for(int i : evenList) {

 printInt(i);

}

Filtering a list

DEVELOPING

MASL

Scanner

Parser

AST

Semantic Check

Translator

Compiler Implementation

 Scanner recognizes the tokens

 Parser checks the syntax correctness of the

token strings building up the program

 AST is generated after parsing

 Check the semantic correctness of the program

 Translate MASL into Java source, and then

compile it into Java bytecode

 MaslList Base class of all MASL list types.

 MaslFunction Base class of all MASL function types.

 MaslClass Base class of all MASL class types.

 MaslSimulation Base class of MASL simulation environment.

Java Classes for Runtime Support

Unit Tests for Individual Features

SUMMARY

LESSONS LEARNED

 A repository on GitHub was established for the collaboration of

this project.

 Establish code framework and module-wide interfaces first, then

divide the work and develop in parallel.

 Exchange ideas in group meetings or communicate with instant

messaging tools while coding.

 Each member is responsible for an individual part and has good

knowledge about others’ work.

COLLABORATION

 Start simple. Start early.

 Experiment with code while designing the language.

 Interfaces between modules should be well defined from

the beginning.

 Perform unit tests frequently and thoroughly.

 Expect failure to implement some features…

PROJECT PLAN

