COMSWA4115 Programming Language & Translators

Final Project

Multi-Agent
Simulation
Language

Jiatian Li j13930
Wei Wang ww2315
Chong Zhang z2276

Dale Zhao dz2242

MASL OVERVIEW
WHAT & WHY

The Agent-Based Model (ABM)

% A system where the interactions between autonomous
agents (individuals) are simulated

% Global patterns and effects of such interactions as a whole
can be observed and assessed

% Example: Game of Life (as a cellular automaton), Boids,
Heatbugs

% Applications: Physical world reality simulation, cryptology,

etc.

Examples of cellular automata

% Conway's Game of Life

% Heatbugs

MASL - Multi-Agent Simulation Language

% Facilitate building ABMs without having to start from
scratch or engaging complex domain toolkits

% Particularly, we focus on developing cellular automata.

Features of MASL

% Imperative programming language

% Static and strong typing system

“ Functions as first class objects

s Compound types supported: objects and lists

% Objects as state machines

% Simple simulation environment

Features of MASL

Why state machines?

% Each individual in the system will act according its
observation of local environment as well as its inner
state. State machines are a perfect model for this.

What is a simulation?

% In a simulation, individuals will update themselves
(take actions) and visually illustrated. All these
individuals will be represented using objects and
stored in lists for the simulation environment to
step through.

A SHORT TUTORIAL
ON MASL

Basic Data Types & Lists

Basic Data Types

% Integer (32-bit) int 1 = 19;

*» Double (64-bit) double pi = 31.4e-1;
» Char char ¢ = ‘a’;

% Boolean bool flag = true;
Lists

% Defining a list [int] fib = [int] {1,

% A string is essentially a list of char elements:

[char] str = “hello world”;

Functions in MASL can be stored in variables, and used
like a variable.

int max(int a, int b) {
if (a > b) {
return a;

}

return b;

}

fun ((int, int):int) f = max;

An class consists of

% Any number of statements that defines members of its
instances and does initialization upon instantiation
(equivalent to a constructor), and

% Any number of states.

class Guard {

state Defend {
if (enemySighted()) this->Attack;

}

state Attack {
if (!enemyEliminated()) shot();
else this->Defend;

) An object is an instance of a class.

bool enemySighted() { /*...*/ }

bool enemyEliminated() { /*...*/ } Class Guard g = class Guard() ;

if (g@Attack) { /*...*/ }

More on Lists

Lists are able to accommodate elements of any data types.

[class Programmer] team = /*...*/;

[[double]] matrix =
[double] { 1, O,
[double] { O, 1, O}
[double] { 0, O,

{

b

A for-loop using list iterator: Equivalent to:

for (int n : list) { for (int 1 = 0; 1 < list.size(); 1 =1 + 1)
sum = sum + n; sum = sum + list:[1i];

Functions can be applied to elements of a list.

int n = list:.count(fun (int n) :bool { return n > 3; });

MASL Simulation

A MASL program is essentially a simulation. Currently we
only support the simulation of cellular machines.

class Cell {
/* .. *x/
}
[class Cell] container;

/* Fill in the container. */

// Set the attributes of the simulation environment.
cellSize = 10;

nx = 100;
ny = 100;
interval = 100;

run (container) ;

Greatest Common Divider Filtering a list
int gcd(int a, int b) { bool isEvenNum (int num) {
if (b == 0) { return (num%2 == 0);
return a; }
}
else { [int] list = [il’]t]{l, 2, 3, 4, 5, 6};
return gecd(b, a % b); [int] evenlist = list:.filter (isEvenNum) ;
} for(int i : evenList) {
} printInt (i) ;

}
printInt(gcd(2,14));

DEVELOPING
MASL

% Scanner recognizes the tokens

% Parser checks the syntax correctness of the
token strings building up the program

% AST is generated after parsing

% Check the semantic correctness of the program

% Translate MASL into Java source, and then

compile it into Java bytecode

[Scanner }

[Parser]

[AST }

[Semantic Check }

[Translator }

Java Glasses for Runtime Support

MaslList
MaslFunction
MaslClass

MaslSimulation

Base class of all MASL list types.
Base class of all MASL function types.
Base class of all MASL class types.

Base class of MASL simulation environment.

Unit Tests for Individual Features

gameOfLife.masl

test-dowhile.masl

test-for2.out

test-fun.masl

test-while L.out

test-block.masl

test-dowhile.out

test-far3.masl

test-fun.out

test-while2.masl

test-block.out

test-expr.masl

test-for3.out

test-if.masl

test-while2 .out

test-class1l.masl

test-expr.out

test-foreach1l.masl

test-if.out

test—classl.out

test-forl.masl

test-foreachl.out

test-list.masl

test-class2.masl

test-forl.out

test-foreach2.masl

test-list.out

test-class2.out

test-for2.masl

test-foreach2.out

test-whilel.masl

SUMMARY
LESSONS LEARNED

COLLABORATION

“ A repository on GitHub was established for the collaboration of
this project.

» Establish code framework and module-wide interfaces first, then
divide the work and develop in parallel.

% Exchange ideas in group meetings or communicate with instant
messaging tools while coding.

% Each member is responsible for an individual part and has good
knowledge about others’ work.

PROJECT PLAN

% Start simple. Start early.
% Experiment with code while designing the language.

*» Interfaces between modules should be well defined from
the beginning.

% Perform unit tests frequently and thoroughly.

% Expect failure to implement some features...

