
EZ-ASCII
A Language for ASCII-Art Manipulation

Dmitriy Gromov

Joe Lee

Yilei Wang

Xin Ye

Feifei Zhong

December 18, 2012

Introduction

 Purpose: creating and manipulating ASCII Art

 Goals:

 Easy creation, manipulation, and storage of ASCII images

 Mapping / Converting intensities to characters

 Flexible features with simple syntax

Tutorial : How to compile and run

1. Extract the EZ-ASCII compiler source files into a

directory.

2. Run make to build the executable ezac.

3. The ezac executable takes a .eza source file as

input, and allows some command-line parameters.

A usage example is ezac [options] <source-file>.

Tutorial: A First EZ-ASCII Program

A simple “Hello, world!” program could look like the

following:

d <- “Hello, world!”; // store string in variable d

d -> out; // output d to stdout

Tutorial: More Examples

Looping:

 for i <- 0 | i < 5 | i <- i + 1 {

 i -> out;

 }

Functions:
 d <- 2;

 fun foo(p) {

 p -> “testfile.txt”; // output value of p to file

 d -> out; // d refers to the global d, outputs 2

 a <- 4; // a is a new local

 return a;

 }

Types

 Usable Types

 Int

 Bool

 String

 Canvas

 Special Types

 Void

 No Type Declarations

 All can be inferred based on how they are created

Scoping

 Global scope

 Global variables are accessible everywhere (but assignments
only allowed in global scope)

 Local (function) scope

 Local variables have lifetime within function body

 Rules for variable lookup within a function:

Match against function parameter list

Match against global variables

Finally, create a new local variable

 Rules imply that globals protected in function scopes

Modular Execution

 include “filename”;

 Can include other files directly

 Preprocessor replaces include with code from the given file

 Optional main

 C style main function

 Global statements executed first

Execution Storage

 Stack

 Used to store references and integers

 “Heap”

 Hashtable for complex types

 String

 Canvas

 Bool

 To not convert to 0 and 1

 Lct (Load Complex Type) Byte code

Architecture – Primary Modules

Primary
module

Function

ezac.ml Top-level module with command-line options.

preprocess.ml Recursively replace include statements with respective
source files

scanner.mll Converts source into stream of tokens

parser.mly Parses stream of tokens into an AST tree (ast.ml)

ssanalyzer.ml First pass through program, outputs compile-time errors
(type errors, undefined var/fxn errors, etc…)

compiler.ml Second pass through program, generate bytecode
(bytecode.ml)

execute.ml Executes bytecode

Architecture – Support Modules

Support module Function

canvas.ml Canvas type handling, operations, called during execution
by execute.ml.

hashtypes.ml Hashing support for complex (non-integer) types.

sast.ml Define sast (semantically-checked ast)

ast.ml Defines abstract syntax tree.

interpret.ml Runs an AST program on the fly (no bytecode
generation).

bytecode.ml Defines byte-codes for compiler.

load_image.py – calls PIL for image loading

Makefile – builds

runtests.sh – shell script for unit testing

Canvas

 2D Array of Integers

 Each int -> Intensity

 Domain -> [-1, Granularity)

 Rendering

 Intensity Map -> {intensity, ascii-char}

 If granularity < map cardinality

 ~Evenly distribute intensity in map

 -1 means null cell (not rendered)

Canvas

 Functions

 Load : From jpeg, png or .i (intensity file)

 Blank : New canvas with all 0s

 Shift : Shift canvas up, left, down

 Select : By point range(position), or boolean(intensity)

 Set : 1 value to some selected range

 Mask : Layer one canvas on top of another.

Canvas

 Load

 PIL (Python Image Library)

 Load image

 Convert to grey scale

 Shrink down to at most 100 x 100 image

 If not square will keep ratio

 If smaller than 100 x 100 stays same size

 Stores intensity file to tmp dir in lang directory

 File gets loaded into canvas

 If .i file already loads file directly

Demo

Lessons Learned

1. OCaml has a steep learning curve but is effective for compilers.

2. GIT is of huge help in keeping track of the progress

3. Get AST, Scanner and Parser done early

4. Unit test ensures code work

5. Close Teamwork and frequent communication really important in

this project

END

Thank You!

