Fall 2012
Drone Language Manual
George Brink gb2280
Xiaotong Chen xc2230
Shuo Qiu sq2144
Xiang Yao xy2191

Introduction:

Drone language is a stack-based imperative language. Designed to be used in a Drone War game.
The stack accepts only integers, booleans, and flags. Integers can be used as arithmetic operands or parameters of the functions. Booleans are subject to stack manipulation operations and as parameter for conditional jump operators. Flags are subject to stack manipulation operations and parameters for special functions which check is the flag is of the expected kind and leave boolean true or false on the stack.
Each word read from the source code is either a comment, integer, boolean call to a user defined function, label, variable, or operator.

1. Language Syntax

1.1 Keywords
Keywords used by the language are case insensitive (i.e Dup is the same as DUP or dup). The list of known keywords is:
	dup
	drop
	dropAll
	swap
	over
	rot
	read
	store
	jump
	jumpIf

	sub
	endSub
	move
	stop
	shoot
	look
	wait
	getHealth
	random
	mod

	isFoe
	isAlly
	isWall
	isEnd
	and
	or
	not
	if
	else
	endif

begin	 again while

1.2 Player defined names
Unlike keywords (which are case insensitive), names defined by the player are case sensitive.
Those names are used as names for variables, labels, and user defined functions.
[bookmark: _GoBack]
1.3 Comments
Single line comments, start with a word // and continue to the end of the line. E.g. each of the following lines contains a comment
E.g.
 	// whole line can be a comment
 	2 2 + // or comment can start after some compilable words
 	// any word appeared after first // is still a comment
Multi line comments, start with a word /* and continue to the first */ word. The nested comments are not supported.
E.g.
 	/* Inside here is a comment */

1.4 Functions
1.4.1 Structure of Function
User functions are marked with a word "Sub" followed by a function name, any number of commands and ends with "EndSub".
Sub foo
 		these words a body of a function
EndSub
 	
Sub myAdd
 		+
EndSub
It is not possible to redefine

1.4.2 Call of Function
The call to the user defined function is just its name. E.g. assuming we defined the function ‘myAdd’ as in the previous chapter, then the next two lines will do exactly the same:
	2 2 +
	2 2 myAdd

1.4.3 Layer of Function
Functions cannot have sub-functions. For example, the next example shows an illegal code:
Sub foo 1 2
Sub bar // error
3 4
EndSub
 	EndSub

1.5 Label
1.5.1 Structure of Label
Labels start with a letter followed by any number of letters, numbers, and ‘_’ (underscore) symbols. Labels ended with colon:
 	this_is_label:
 	this-is/not_a.label:
 	123456: // also not a label

Of course, the white-space character split sequences of characters into sequence of words and the next line will be understood as four words and a label with the name 'label':
this is not a label:

1.5.2 Unconditional and conditional jumps to the label
Operation "unconditional jump to the label" is marked by adding, "jump" to the name. The next line shows an unconditional jump to the labels defined in the previous example:
 	this_is_label jump
Conditional jump (marked jumpIf) checks the top of the stack first, if there was a true value, then the jump happens, if there was a false value, then jump does not happen and the execution is passed to the next operation after jumpif.

1.5.3 Local & Global Labels
 Label visibility is restricted to the function. For example:
 	Sub foo
 		2
 		lbl1: 2 +
 	 	lbl1 Jump // ok
 	EndSub
 	lbl2: lbl1 JumpIf // error
Here, label lbl1 is defined inside a function foo and jump to it is allowed. The label lbl2 is defined in the main program and jump to it is allowed from any where from the main program, but not from the inside of user defined function. Conversely, the conditional jump to lbl1 will fail since the label is defined inside of the function, but the jump is attempted from the main program.

2. Fundamental Types
2.1 Integer
Integer is word which consists solely from characters 0-9.
123 	// one integer
 	1 2 3 	// three integers
These words put the specified integer directly on the stack.

2.2 Boolean
Booleans are two words "true" and "false" which represent the logical values and are subject to logical operations and conditional jumps.

2.3 Flags
Flags are game specific type. They are produced by the function Look and explain what drone sees. There are four such flags: Foe, Ally, Wall, and End.

3. Variables
Variables are words started with a letter and any number of letters or digits that directly followed by keywords "store" or "read". The first one take the top of the stack and stores it into the variable (creating the variable in the process if necessary). The second one reads variable and puts its contents on the stack. E.g.
	2 abc store
assign the value in the top of stack to variable abc. in this example, we assign 2 to abc so that we can use abc in the future
	abc read
abc read means we get the content of variable abc and push it into the stack. In this example, we push 2 to the stack because we assigned 2 to abc before.
Variables can contain any of the three fundamental types: integer, boolean or flag.

4. Operators
Operators are always taking some number of values from the stack and return some values back on the stack:

4.1 Arithmetic operators
+ 	 a b -> (a + b)
- 	 a b -> (a - b)
*	 a b -> (a * b)
/ 	 a b -> (a / b)
mod	 a b -> (a mod b)
^ 	 a b -> (a ^ b)

4. 2 Logic operators
and	a b -> (a and b)
or 	a b -> (a or b)
not	a -> (not a)

4. 3 Logic constants
true 	-> true
false	-> false

4.4 Conditions
= 	a b -> (a = b)
< 	a b -> (a < b)
> 	a b -> (a > b)

4.5 Stack manipulation
drop 	 a b c -> a b
dropall a b c ->
dup 	 a b c -> a b c c
swap 	 a b c -> a c b
over 	 a b c -> a b c b
rot 	 a b c -> b c a

4.6 Read & Store
name store
Store value into variable "name", create the variable if necessary. Always read the first on the stack and value it to “name”.
name read
	Read value from variable "name". Die if such variable does not exist.
5. Game specific functions
5.1 move 		direction ->
 	Start moving in the specified direction

5.2 stop			->
Stop moving

5.3 shoot 	distance direction -> bool
Shoot in the specified direction. Projectile will explode after traveling the specified distance, and returns boolean value:
	true -> shooting was successful and projectile is on its way
	false -> cannon did not have enough time to cool-down

5.4 look 		direction -> END dist-1 dir-1 type-1 [... dist-n dir-n type-n]
	Look for other drones and walls in the specified direction. Returns one or more triplets (distance, direction, and type) which represent distance to the object, the exact direction to the object and type of the object. Type of the object is a flag from the set: FOE, ALLY, WALL. After the last triplets there would be a special flag END, which represents end of the look’s output.

5.5 isFoe 		flag -> bool
Checks is the top of the stack contains a flag FOE and returns corresponding boolean value.

5.6 isAlly 		flag -> bool
Checks is the top of the stack contains a flag ALLY and returns corresponding boolean value.

5.7 isWall 		flag -> bool
Checks is the top of the stack contains a flag WALL and returns corresponding boolean value.

5.8 isEnd 		flag -> bool
Checks is the top of the stack contains a flag END and returns corresponding boolean value.

5.9 wait		 ticks ->
Be idle (do nothing) for specified number of ticks

5.10 getHealth 	 -> integer
Put current drone's health on the stack

5.11 random 		a b -> integer
Make a random integer in the range [a,b] (inclusive) and return it.

6. Pseudo-commands
All operators and game-specific commands described in sections 4 and 5 take exactly are executed directly by the game engine and take one tick to perform. The next set of commands added for convenience. They are compiled by the translator into several simple operators and can take any number of additional ticks to complete.
6.1 Conditions
Conditional branching is done by the means IF/ELSE/ENDIF. The stack should contain a Boolean value before the IF. If this value is true, then the set of command which follows the IF would be executed. If the value is false, then control jumps to the set of commands after the keyword ELSE, or to the command which follows ENDIF, if the ELSE keyword is omitted. Nested IF branching is allowed. For example, shoot if the top of the stack contains the description of the enemy drone
 	isFoe if shoot endif
This code will be transformed by compiler into:
	isFoe not endif_label jumpIf shoot endif_label:

6.2 Loops
6.2.1 Endless loop
The endless loop is the most simple one, it is defined by keywords BEGIN and AGAIN:
	begin 100 500 random 0 360 random shoot again
This will make the drone to shoot endlessly to a random distance in a random direction. This code is converted into a simple:
	label: 100 500 random 0 360 random shoot label jump

6.2.2 Conditional loop
Conditional loops are defined by the same BEGIN and AGAIN keywords. Addition of the WHILE keyword allows to leave the endless loop if top of the stack is false when execution reach the WHILE keyword. For example, the cleanup after the LOOK command can be like this:
	begin isEnd while drop drop again
This is code will be compiled into
	label_start: isEnd jumpIf label_end drop drop label_start jump label_end:
The WHILE keyword can appear anywhere inside the BEGIN-AGAIN block, this allows to create loops with post-conditions or even with conditions in the middle of the block:
	begin dup isfoe shoot endif isend while drop drop again

Both types of loops can be nested.

1
