
Cardigan
Joshua Lopez * jl3497 -- Project Leader

Muzi Gao * mg3194 | Miriam Melnick * mrm2198

1. Introduction

2. Tutorial

3. Manual

4. Project Plan

5. Architectural Design

6. Test Plan

7. Lessons Learned

8. Notes

9. Appendix

1. Introduction

1.1 What is Cardigan
Cardigan is a language which can be used to define, develop, test, and play card

games. Many existing languages already contain several of the data types and control
structures necessary to implement simple card games, but because the languages were not
specifically developed for this purpose, some setup is usually required. Cardigan seeks to
provide developers with tools specifically suited for creating and deploying these games with
minimal additional coding. This is accomplished by providing a small set of powerful yet flexible
object types, as well as an easy to manage function declaration system. Card games can be
easily implemented by simply defining sets of objects (cards, players) and functions (turns, card
actions, rules). Cardigan should not be confused with a framework, which only allows users to
fill in sets of customized data, but provides little control over how the game is played. A game
defined in Cardigan may define any type of rules and gameplay, and may modify these
elements during the game to any extent. A turn structure may contain as many actions as
desired. A game may even be implemented with no turn structure at all. Cardigan also allows
developers to create computerized opponents powered by algorithms which they can define in
the language.

1.2 Problems Which Cardigan Can Solve
 Developing card games is an extremely time consuming process usually requiring multiple
iterations of text and artwork, numerous modifications to existing cards, tedious organization of
numerous permutations of cards, trimming decks to size, and a fair amount cutting and pasting
(with actual scissors and paste). Considering most games contain several copies of the same
card, the entire process must be repeated several times per deck. Production of the product
requires additional investments of time and money, as well as other overheads associated with
a physical inventory.
 Cardigan seeks to minimize all of these problems simultaneously by moving the entire
development and production process into a single programming language. Each completed
program represents a game, and any modifications to the game's rules, cards, players, and
other factors require changing only a few lines of code.
 The nature of programs also facilitates sharing between developers in a way that is not
possible with physical cards. A Cardigan developer could access previously written code which
implements a particularly popular aspect of many games, and incorporate it into their project.
Any developer who choses to make their code publically available could open their games to
further modifications and ‘house rules’.

2. Tutorial

Programs in Cardigan, at the highest level, consist of assignments and function
definitions.

2.1 Scope
2.1.1 The Global Scope
A program begins in the global scope. Any assignments made in this scope are
immutable and visible to the entire program unless they are hidden by a function (see
below). Functions may only be defined in the global scope and are visible to the entire
program.

2.1.2 Function Scope
Cardigan only allows assignment and function definition in the global scope, any
other functionality must be defined within the body of a function. Inside a function,
assignments are mutable and several other statements are permitted. In addition,
variables declared within a function body are mutable.

2.2 Declaration Statements

2.2.1 Function Declaration
Declaring a function requires four parts.

1. An identifier for the function. Any valid identifier which has not been previously
used.

2. An argument list. The list must be enclosed with parentheses and comma
separated. The argument list is required for all functions, but it may be empty.

3. A single equals sign
4. The body of the function. Function bodies must be enclosed in curly braces. A

single newline character is optionally allowed after the opening curly brace. The
body of a function may be made up of any number of statements.

Functions may only be declared in the global scope, but once they have been

declared, their values may be included in struct definitions.
Any valid identifiers are allowed in the argument list but if they are identical to

identifiers in global scope, the global variables will be hidden in the body of the function.
See below for more information on variable hiding.

Statements in the body of a function are evaluated sequentially unless the
statements transfer control flow to another function or a different part of the current
function.

Functions may include return statements. The synax of a return statement is the
“return” keyword followed by some expression. If the return statement is encountered
the value of the expression is evaluated, execution of the function then terminates, and
the return value is returned by the function. There is no limit to the number of return
statements a function can have, but all of their expressions must evaluate to the same

type. If no return statement is encountered, the function will return boolean false.
All Cardigan programs must include a single function called PLAY, which takes

no arguments. After evaluating all global variable assignments, execution will begin at
the top of the PLAY function and the program will terminate when the PLAY function
finishes executing.

2.2.2 Global values
The declaration statement in Cardigan consists of an identifier, an equal sign, and a
value to assign to the identifier. A simple case is

x = 12

After this statement executes, x will have the value of 12. Notice there are no type
declarations. Cardigan is strongly typed, but types are determined automatically by the
compiler so no keyword is necessary.

If this assignment occurred in the global scope, the value would be immutable.
Changes are not permitted to immutable values so the following code would raise an
error during compilation.

x = 10
x = 120

2.2.3 Local values

If the assignment occurs within the body of a function, the value is a local value.
Local values are mutable, but any subsequent assignments must have the same type.

a() = {

x = 10 // Declaration within a function. x now has the type int
x = 20 // OK: value has the same type
x = “uh oh” // ERROR -- We cannot assign a string value to an int variable

}

Local variables are only visible in the scope in which they are declared, but they may be
passed to functions as arguments if they need to be accessible from another scope.

If a local variable has the same identifier as a global variable, the global variable will be
hidden by the local variable and any use of the identifier will refer to the local variable. If
the global value is needed in the same scope, it should be assigned to a new identifier
first. Note that this new identifier will be mutable, but any changes to it will not affect the

global variable.

x = 10
a() = {

b = x // b now has the same value as x
x = 20 // we have declared a new variable called x. The global x is no

// longer visible from this scope, but we can still use it’s value via b.
b = 30 // We have changed b, but the global x has not changed.

}

2.3 Types
Cardigan has seven built in types:
2.3.1 int
ints represent integers. only digits are allowed in ints

x = 3

2.3.2 float
floats represnt floating point values. Floats must contain a decimal point

x = 3.2

2.3.3 bool
boolean true or false
the keywords for these values are the words “true” and “false”

y = false

2.3.4 string
character strings

foo = “bar”

3.3.5 collections
a structure which may be used as an array, a queue, a stack, or a linked list. Collections
are contained within square brackets and their entries must be comma separated. The
elements of a collection may be of any type. There are two ways to declare a collection.
Either by defining all of its members

oneToTen = [1, 2, 3, 4, 5, 6, 7, 8, 9. 10]

or by defining a range using a colon

oneToTen = [1:10]

2.3.6 struct
a struct is Cardigan’s version of a hash table. Keys may be defined using identifiers.
The string representation of the identifier must be used to access the property of the
struct using dot lookup. Structs are defined with curly braces, each key/value pair must
be separated by a colon, and each entry must be separated by a comma. The entries in
a struct may be of any type. If the value of an entry in a struct is the name of a function,
the struct property will become an alias to the function.

myStruct = {info: “yes”, info2: 5, info3: false}
OUTPUT(myStruct.”info”)

would output

yes

2.3.7 enum
An enum is a collection of names which may be used in later comparisons. The body
of an enum must begin and end with a pipe “|” character, and the values inside must be
comma separated. Any valid identifier may be used as a property of the enum and they
are accessed using dot lookup with the proprety identifier. Enums are immutable and
their values may only be used in comparisons.

x = |sun, moon|

thing = x.moon

x.sun == x.moon // this would be false

thing == x.moon // this would be true

2.4 Control Structures
To actually create a game in Cardigan we need to define how to play it. To do this we
use control structures, some familiar and some novel

2.4.1 Blocks

Blocks are not valid Cardigan code on their own, but they make up a crucial part of all
the control structures of the language. A block is a set of statements contained within
curly braces.

2.4.2 if elseif else
If statements can be created using the “if” keyword, followed by a predicate, and then a
block of code. The predicate may be any expression which evaluates to a boolean value
and the code contained in the block will be executed if the predicate evaluates to true.
Optionally, any number of elseif blocks may be added after the “if” structure. These
follow the same syntax as the “if” statement, keyword-predicate-block, except that the
elseif keyword must be used instead. An if structure may include a single else structure
which come last. The else structure take no predicate, just the “else” keyword and a
block. Control begins at the if block, and evaluates each predicate, executing the block
associated with the first which evaluates to true and ignoring all subsequent elseif/else
blocks. If no predicate evaluates to true, the else block (if included) is executed.

if isTrue {

doSomething()
}
elseif otherThingIsTrue {

doSomethignElse()
}
else {

makeSandwich()
}

2.4.3 for
For loops follow the structure of “for” keyword local-identifier colon collection block.
The code in the block is evaluated once for each value in the collection, with that value
assigned to the local-identifier.

x = [“one”, “two”, “three”, “four”]
for y:x{

OUTPUT(y)
}
would print:

one
two
three

four

2.4.4. while
While loops are structured identically to the if/elseif blocks, but use the while keyword
and may only include one block. The code in the block will continue to execute until the
predicate evaluates to false.

stoppingCondition = true
while stoppingCondition{

OUTPUT(“Still going”)
...

}

If no code exists within the body of the block which modifies the value of the predicate,
you may have an infinite loop.

2.4.5 rules
Rules structures are a way to define several blocks in a single structure and let
Cardigan figure out which one should be used. Rules support local assignments which
will remain in scope for the body of the rules structure. Within the rules block are several
predicate & block pairs (with no code separating). Any predicate which evaluates to
true within the rules structure will be executed. The syntax for the rules structure is the
“rules” keyword, a parenthesis enclosed set of local assignments, and a set of predicate
block pairs

t = [1, 3, 5]
rules (x = t.length()){

x > 10 {
OUTPUT(“Woah that’s a lot”)

}
x < 2{

OUTPUT(“Only one left”)
}
x == 5{

OUTPUT(“five!”)
}

}

2.5 Built in Functions
There are four built in functions to cardigan, all written in all caps.

2.5.1 INPUT
The input function pauses execution of the program and waits for user input. The
argument to the INPUT function tells Cardigan what type of input to expect from the
user. The following keyword are allowed; int, float, bool, string.

2.5.2 OUTPUT
Output prints to the terminal. Output accepts one argument which must be a string. The
specified string will be printed

2.5.3 CAST
Cast converts from one type to another. See section 3.7.3 for a listing of which types of
casts are allowed

2.5.4 PLAY
PLAY is the entrypoint for the program after the global variables are defined. Play is not
predefined by the language, but must be included in the .crd script. This is analogous to
the main function in C/C++ and Java. Play may not be define with any arguments

3. Manual

3.1. Introduction
This document describes the Cardigan language. There are seven sections to this manual:
3.1. This introduction
3.2. Tokens -- a description of each class of tokens
3.3. Types -- a brief description of each primitive and derived data type, including syntax
3.4. Scoping -- information regarding scoping of variables
3.5. Statements -- the structure of a line, or lines, of code in a Cardigan program
3.6. Expressions -- parts of statements which need to be evaluated during execution
3.7. Writing programs -- Correct program structure and a list of built in functions.

3.2. Tokens & separators
There are 8 classes of tokens: identifiers, keywords, boolean constants, integer constants, float
constants, string literals, operators, and separators. Tab and space characters are considered
whitespace, and any combination of these are treated as a single whitespace character. Two

consecutive tokens in a single statement must be separated by whitespace unless one of the
two is either an operator or a separator, or they are the last and first tokens of two consecutive
statements. Comments are never tokenized and are ignored by the compiler.

3.2.1 Comments & Separators
Comments and token separators are not tokenized, but are instead, ignored by the compiler.
Comments are single-line and and begin with double slashes. Any characters between // and
the end of line would be ignored.
For example, a valid comment would be like:

// Here is a comment

Token separators consist of any combination of one or more tab and space characters. These
are not treated as tokens, but are used to separate tokens from each other. The compiler can
make distinction between operator tokens and other types of tokens so operators and their
operands need not be separated by spaces. Grouping separators are distinguishable from every
type of token, including other grouping separators, so they never need to be separated from
other tokens. Although it is not required, a program can include any number of token separators
before or after an operator.

3.2.2 Separators
There are three types of separators: token separators, line separators, and grouping separators.
3.2.2.1 Newline separator
The newline character is used as a line separator. All of the tokens on a single line must
comprise a single statement to be syntactically valid. Multi line statements may be created by
ending each line with a backslash character. These will be interpreted as a single line, and
therefore, a single statement.

3.2.2.2 Grouping separator
Grouping separators are used to create groups of tokens. The grouping separators are: left and
right parenthesis, left and right square bracket, left and right curly brace, the pipe character,
commas, and colons. Their uses are discussed in their relevant sections.

3.2.3 Identifiers
An identifier is a sequence of letters, digits, and underscores(_). The first character must be a
letter or underscore. Identifiers are case sensitive, which means “foo” and “Foo” are different.

3.2.4 Keywords
Keywords are simple terms that are used throughout the program for purposes specified by its
definition. Unlike identifiers or constants, keywords cannot be replaced by random names or
values.
The keywords defined here are generally used in many languages, but a few (rules, Play) are
given different names, terms related to card games.

int, float, string, bool (TYPE DECLARATIONS)
if, elseif, else, while, for, ? (CONTROL STRUCTURES)
true, false (BOOLEAN CONSTANTS)
return (FUNCTION EVALUATION)
CAST, PLAY, INPUT, OUTPUT (BUILT-IN FUNCTIONS)

3.3. Types
Cardigan is a strongly statically typed language. Identifier types are determined at declaration.
Cardigan has four following primitive types: bool, int, float, and string, and three derived types:
structs, collections, and enums.

3.1 Primitive types

3.3.1.1 Boolean Constants
A boolean constant represents either boolean true or boolean false, represented by the true
and false keywords respectively.

3.3.1.2 Integer Constants
An integer constant is a sequence of one or more digits without a decimal point. The range of
integers is 0 to 231-1. Octal or hexadecimal representations of integers are not supported.
For example, 42 is a valid integer constant, but 4.2 is not.

3.3.1.3 Float Constants
A float constant consists an integer part, and a decimal part. The integer part is a sequence of
one or more digits. The decimal part is a decimal point followed by zero, one or more digits. The
interpretation of floating-point literals that fall outside the range of representable floating-point
values is undefined.
For example, 42.7, 42. are both valid float constants, but 42 would be recognized as an integer
constant.

3.3.1.4 String literals
A string is a sequence of printable characters. A string must be surrounded by double-quote
characters ("). Special characters must be escaped using the backslash character. The
following special characters are permitted:

\n newline
\t tab
\" double quote
\\ backslash

3.3.2 Derived Types

Derived types include structs, collections, enums, and functions.

Structs are objects that divide other objects into fields. Structs can be used to simulate the role
of hash tables or classes.
Collections are objects similar to lists, and can even be modeled as arrays, stacks, queues, and
linked lists. They are usually used to create lists of game elements.

Enums are used to declare a pseudo-type, with definite values that are immutable, and are used
mainly for comparisons.

3.3.2.1 Enums
An enum is an immutable structure which allows programmers to create sets of values which
may be used in comparisons. The values of an enum are meant to be used as their own data
type exclusive to their particular enum. Enum values may be used in equality and inequality
comparisons, but they may not be the operands of any arithmetic operations or greater than/
less than comparisons.

An enum is declared using the following syntax: identifier = | identifiers |
The first identifier will be used as the name of the enum. The identifiers between the vertical
bars must be a comma separated list of one or more identifiers. These become the values of the
enum. Accessing the value of the enum is done through dot access. The syntax for enum dot
access is:
identifier.identifier
where the first identifier is the name of the enum and the second is the name of a value of the
enum.

All enums are treated as the same type so comparisons across different enums is allowed, but
will always be false.

a = |w, x|
b = |y, z|

a.w == b.y // This is allowed and will always be false.

3.3.2.2 Collections
A collection is a list of values. Each term in a collection may be any type of expressions that can
be defined in the program. Collections may also contain other collections.

Collections in Cardigan, are created using the syntax:
identifier = [values]
where values is a comma separated list of zero or more expressions. These expressions will be
stored in the collection.

Elements of the collection are accessed with the syntax:

identifier[index]
where identifier refers to the collection, and index is an integer expression. This syntax allows
you to access any element of the collection.

Collections also support several other access methods which allow them to be used as a linked
list, stack, queue. Each of these may be called using the dot operator.

append(x) - Adds x to the end of the collection.
push(x) -- Adds x to the head of the collection.
pop() - Removes the first element of the collection and returns it.
peek() -- Returns but does not remove the first element of the collection
popLast() -- Removes and returns the last element of the collection.
shuffle() -- Randomizes the elements in the collection

For example the following code:

a = []
a.append(1)
a.append (2)

would result in the variable a having a value that is a collection which looks like

[1, 2]

3.3.3.3 Struct
Structs are Cardigan’s version of a hash table. Structs can contain any number of properties,
values of any Cardigan type including functions. Structs are declared with curly braces and may
contain zero or more comma separated assignments. Within a struct an assignment is written
as:

identifier: propertyName

Identifier must be a valid identifier as described above. propertyName must be a string which
matches the name of one of the struct’s properties.. The value of the expression will be stored
in the struct under the specified identifier, and may be accessed later using dot notation. If the
expression is an identifier to a function, the property of the struct will become an alias to the
function and may be called like a function.

3.4. Scoping
3.4.1 Global Scope
In Cardigan, a complete program should be written in one file, and will be compiled at the same
time.

Within the program may be several code blocks (see section 5.4 for more information on
blocks), each with its own internal scope. At the highest level, outside of any blocks or function
definitions, is the global scope. If a variable is declared in the global scope, it is visible to
the entire program, but may not be modified. If a program attempts to modify the value of a
previously defined global value while still in the global scope, the compiler will raise an error.

3.4.2 Local Scope
Each block of code (surrounded by curly braces) had its own local scope. Variables defined
within a block will be available in the block’s local scope, as well as in the body of any internal
blocks. When the variable is available is referred to as “in scope”, the internal scope of any
internal block is called a “nested scope”. When a variable is longer in scope, and any attempts
to access it will result in a compiler error.

If the value of a variable is modified while it is in scope it will retain the new value until it is either
modified again, or passes out of scope. This is true even if the variable is modified in a nested
scope.

3.4.3 Masking & Copying
Although global variables may not be modified, it is still possible to re-use their names for
variables declared in a local scope. When a variable is declared in a local scope, with the same
name as a global variable, the local variable will mask the global variable, making it unavailable
for as long as the local variable is in scope.

If a local variable is defined to have the value of a global variable, any subsequent modifications
to the local variable will not affect the global variable.

3.4.4 Function Scope
Functions may only be declared at the global scope. Once a function is defined it may be called
anywhere in the program.

3.4.5 Recursive Functions
Cardigan supports recursive function calls without any additional code. If a function is called
within its own body, or from the body of a function which precedes it in the program, Cardigan
will keep track of the call and as long as the function is defined later in the program, the
compiler will not raise an error. If a call is made to a function which is never defined, the
compiler will raise an error.

3.5. Statements
A statement is a complete line of code. There are several valid forms for a statement. A
statement can be any valid expression (see below for details), a variable assignment, a control
structure (one of: if, while, for, or ?), or a function definition.

3.5.1 Assignments

Assignment statements are used to assign a value to a variable. The syntax for an assignment
statement is:

identifier = expression

If the identifier references a variable that has not been assigned previously, the expression may
be any expression of any type. If the variable has already been declared, the expression must
evaluate to the same type that the variable had before the assignment statement. Note that
function definitions have a similar syntax, but are not the same.

3.5.2 Increments
Increment statements are unary operations that do not return a value. The syntax of increment
statements is:

identifier operator

Any identifier with an integer or float value, including an element of a collection or a property of
a struct may be used. The operators are ++ and --. The increment operator ++ adds the value
of 1 (for integer operands) or 1.0 (for float operands) to the value of the specified identifier.
The decrement operator -- subtracts the value of 1 (for integer operands) and 1.0 (for float
operands) from the value of the specified identifier.

3.5.3 Update Expressions
Update statements are binary operations which have the form: identifier operator operand. The
identifier may be a variable, an entry in a collection, or a property of a struct provided the type of
the identifier’s value is either an int, a float, or a string. The operand may be any expression that
evaluates to a value of type int or float if the identifier’s value is of type int or float identifier, or of
type string if the identifier’s value is of type string. There are four update operators: +=, -=, *=,
and /=. In the case of int and/or float identifiers and operands the += operator adds the value
of the identifier and the operand and replaces the value of the identifier with the result of the
addition. The -=, *=, and /= operators work similarly, but perform subtraction, multiplication, or
division respectively between the identifier and operand, replacing the identifier's value with the
result of the operation.

If the identifier and operand are of type string, only the += operator may be used. The operand
string will be concatenated to the end of the string currently associated with the identifier, and
the result will replace the value of the identifier.

3.5.4 Code Blocks
A code block is a set of curly braces surrounding a set of newline-delimited statements. The
opening and closing curly

3.5.5 Control Structures
Cardian supports four types of control structures: if/elseif/else, while, for, rules

3.5.5.1 if
In an if block, the if keyword must be followed by a predicate, which must evaluate to either
true or false, and then a block of code. If the predicate evaluates to true, the block of code is
executed and control leaves the if structure. This can then be followed by 0 or more elseif
statements, each of which has its own predicate and code block, and a single optional else
block which has only a block and no predicate. In an if structure without an else block, at
most one code block is executed. In an if structure with an else block, exactly one code block
is executed.

3.5.5.2 while
A while statement is made up of the while keyword, predicate, and code block. The predicate
is evaluated and if its value is true, the code block is executed and the predicate is re-
evaluated. The code block will be run once for every time the predicate evaluates to true.
When the predicate evaluates to false, control passes out of the while structure.

3.5.5.3 for
The for statement is used to iterate over items in a collection. The syntax of a for loop is:
the for keyword, the name to use for the local variable in the code block, a colon, the name
of the collection, and the code block to execute. The code is run once with each item in the
collection. The item is passed to the code block using the specified variable name, and the code
is run. The for loop's code block will iterate once for each item in the collection, assigning each
object's value to the variable in scope sequentially. The objects will be treated as the same type
as those in the collection.

3.5.5.4 rules
The rules statement is used to check several (potentially related) conditionals. It begins with the
rules keyword, followed by an optional set of parentheses that contain a comma-delimited list of
local variable assignments, and then a brace-delimited block. The block can contain 0 or more
conditional statements, each consisting of a predicate followed by a code block. When control
reaches the structure, the specified variables are bound and each conditional is evaluated in
sequence. Any predicate which evaluates to true will have its associated code block executed.
When control reaches the end of the brace-delimited block, the local bindings defined at its
beginning go out of scope and control passes out of the rules structure.

3.5.6 Function Declaration
Functions may be declared at the top level by entering an identifier to be used as the name of
the function, a parenthesis enclosed comma separated list of zero or more identifiers to be used
as arguments, an equals sign, and a curly brace enclosed code block to be used as the body of

the function.

Any valid identifier may be used as the name of the function as long as it is not already bound
to another type. Once the function is declared, the identifier is bound to the function type and no
value of any other type may be assigned to it.

The argument list is mandatory, but it may be empty. If arguments are included, any valid
identifier may be used for the name of the arguments. These will only exist within the scope
of the function body, and will not be accessible once the function ends. The values of the
arguments may be of any type, but once the function is called, each argument’s identifier is
bound to the type it was called with until the function ends. Any assignments to these identifiers
in the body of the function must be of the same type each was given when the function is called.

The body of the function must be a valid code block as described above. In addition the the
statements allowed inside any other code block, the body of a function may also contain the
return statement. This statement consists of the word “return” followed by an expression.
When control reaches this return statement, the expression will be evaluated, but no further
statements in the function body will be executed. Instead, the value of the expression will be
returned by the function. If control reaches the end of the function body without encountering a
return statement, the value of boolean false will be returned instead.

3.6. Expressions
An expression could be either the right side of an assignment, or the entire statement. Valid
types include direct expressions, unary expressions, binary arithmetic expressions, logical
expressions, binary string operation, update and increment expressions, collection reference,
enum reference, struct reference and function call. The explanation of each type will be
described in following subsections.

A parenthesized expression is a primary expression whose type and value are identical to those
of the unadorned expression.

3.6.1 Operator Precedence
When expressions are evaluated, operators will be applied in the following order (listed from
highest to lowest precedence).

() grouping
f(args) function calls
x[index] indexing
x.attribute referencing
- unary arithmetic negation
* / % multiplication, division, modulo
+ - addition, subtraction
== != < > <= >= comparison

! logical negation
and logical and
or logical or

3.6.2 Direct Expressions
The following are all considered to be direct expressions:
identifiers: an identifier refers to a variable or a function. See the section of identifiers.
constants: a constant with primitive types (integer, float, or boolean), or derived types (enum,
struct, or collection) is a direct expression.
strings: See the section on strings.

3.6.3 Unary Expressions
There are two unary expressions in Cardigan.
One is minus “-”, which is used with a single numeric-valued operand such as an integer
constant and a float constant. This operator forces its numeric-valued operand to be negative,
and the result is of numeric type with value that equals to the negative of the numeric operand.
The other one is not “!”, which is used with a single boolean constant or a boolean variable.
This operator forces its single operand to be negative, and the result is of boolean type with
value that equals to the negative of the operand.
Unary expressions are grouped right-to-left.

3.6.4 Binary Arithmetic Expressions
There are five different binary arithmetic operations: +, -, *, /, %. The modulo operator, %, is
only defined when both arguments are integers. The result is the first modulo the second.
+, -, *, / are defined for any combination of integers and floats. The results are the standard
arithmetic sum, difference, product, and quotient of the two numbers in question. + and - are
commutative but the others are not. If both arguments are integers, then the operator will return
an integer. If either or both is a float, then the operator will return a float.

3.6.5 Logical Expressions
There are four types of logical expressions: unary boolean expressions, binary boolean
expressions, direct boolean expressions, and comparison expressions. Each type evaluates to
a boolean value.

3.6.5.1 Unary boolean expressions
Unary boolean expressions involve the negation operator (!) followed by another boolean
expressions. The result of this type of expression is the opposite boolean value of the
expression directly following the negation operator. The ! operator has higher precedence than
the other boolean operators (and, or), but lower precedence than the equality and comparison
operators.

3.6.5.2 Binary boolean expressions
Binary boolean expressions have the following form:

operand operator operand

where the operands can be any boolean expression and the operator is either the and operator
or the or operator. Operations involving the and operator return true if both operands have the
value true and false otherwise. The or operator returns true if one or both of its operands
have the value true and false if both have the value false. The and operator has higher
precedence than the or operator, and the equality comparison has higher precedence than
both the and and or operators.

3.6.5.3 Comparison expressions
Comparison expressions have the form:

operand operator operand.

The operands may be of any primitive type, an identifier which has the value of a primitive type,
or an expression which evaluates to a primitive type. For the purposes of comparisons, enum
values are treated as ints. All types allow use of the equality and inequality operators, == and
!= respectively. Integer and float values also support the use of the following operators, <=,
>=, >, <. In all cases the operands must have the same type, except for comparisons between
integers and floats, which are allowed to be compared to each other. The behavior of the
operators with each type is described below.

Booleans -- When the operands are booleans, the == operator functions like an XNOR
comparison, returning true if both values are the same, and false if they are different. The “!=”
operator functions as an XOR comparison, returning true if the operands have different values,
and false if their values are the same.

Ints -- The equality operator “==” returns true if the operands have the same value and false if
they don’t. The inequality operator “!=” returns true if the operands do not have the same value,
and false if they do. The strictly less operator “<” returns true if the first operand is less than
the second and false if they are equal, or if the first is greater. The strictly greater operator “>”
returns true if the first operand is greater, and false if they’re equal or the first is less. The less
or equal operator “<=” functions the same as the strictly less operator except that it evaluates to
true if the values are equal. The greater or equal operator “>=” functions the same as the strictly
greater operator except that it evaluates to true if the values are equal.

Floats -- The rules for float comparisons are the same as integer comparisons. Comparisons
between a float and an integer are also allowed; the int is treated as a float with the same value
as the integer and a 0 fraction value.

Strings -- The “==” operator performs a character-wise comparison of the strings and returns
true if they are identical or false otherwise. The “!=” performs the same comparison and returns
true if they are not identical, and false if they are.

3.6.5.4 String concatenation
String concatenation is performed using the + operator. The syntax is:

string + string

where each string may be a string literal or a string variable. The result of the expression will be
a single string which is the concatenation of the first and second string operands.

3.6.5.5 Collection References
Collections are indexed using the [] separators and may be used to access any element or
value in the collection using the integer mentioned inside the [] separatora. The syntax is:

my_col[N]

where my_col is the collection and N is an integer which gives you the Nth value of the
collection.

3.6.5.6 Struct and Enum References
The element of an enum can be accessed by an identifier or an enum object, followed by .(dot),
and another identifier. Here, the first identifier refers to a user-defined enum name, and the
second one refers to the name of the element.

Similarly, the property of a struct can be accessed by an identifier or a struct object, followed
by .(dot) and another identifier. Here, the first identifier refers to a user-defined struct name, and
the second one refers to the name of the property.

3.6.5.7 Function Calls
To call a function and execute the statements inside the body of the function, the following
syntax must be used: identifier(expressions), where the identifier is defined as a function in
the program. The expressions is a comma separated list of zero or more expressions whose
values will be assigned to the parameters of the function. The number of expressions in the
function call must match the number of parameters in the function definition. When the function
is called, control will jump to the first line of the function and continue until a return statement
is evaluated, or the end of the function body is encountered. Control will then return to just
after the point where the function call was made. If a return statement was encountered, the
function call will be evaluated to have the value of the expression in the return statement. If no
return statement was encountered before the end of the function body, the function call will be
evaluated to have the value of boolean false.

3.7. Writing programs

3.7.1 Structure of a program
At the top level, a cardigan program is a series of assignment statements, either variable
assignments, or function definitions. Variables declared at the top level will be treated as global
variables. These may not make use of function calls, but may only consist of constants or
expressions involving previously defined global variables. All function declarations will be stored
for later use. A special function called PLAY must be included in every program as the entry
point of execution.

3.7.2 File extensions
Cardigan source files have the extension .crd

3.7.3 Built in Functions
There are four built in functions in Cardigan: INPUT, OUTPUT, CAST, and PLAY.

INPUT is used to get user input. It should be called as a function with no arguments. When this
function is called, execution of the program pauses until a user enters a value on the terminal.
The function is then evaluated to have the value of whatever the user entered. The result of
INPUT is always a string.

OUTPUT is used to display text on the screen. It should be called as a function with a single
string argument. The argument is the string which will be printed on the screen. OUTPUT does
not append a newline to the output string. If a newline is desired, it must be inserted in the string
before OUTPUT is called.

CAST is used to cast a variable of one type to another. It should be called as a function with two
arguments. The first is the value to be casted, the second is a primitive type keyword (int, float,
string, bool) which represents the desired output type. If the value cannot be cast, the compiler
throws an exception.

input type type keyword output
int int int
int float float
int string string
int bool false if the int is 0

true otherwise
float int truncate float before decimal
float float float
float string string

float bool false if the float is 0.0
true otherwise

string int an integer representation of the string
if the string contains only numerals

string float a float containing the value represented by the string.
The string must contain a valid float definition as
described in the float primitive section above. An error is
thrown otherwise

string string string
string bool false if the string is empty

true otherwise
bool int 1
bool float 1.0
bool string true if the bool is true, or false if the bool is false
bool bool bool

PLAY is not defined by the language, but is used as the entry point to the program. Any global
variables declared outside of function definitions will be assigned first, and then control will
begin at the start of the PLAY function. When control reaches the end of the PLAY function the
program terminates.

4. Project Plan

4.1 Process
The Cardigan group held 3 meetings a month during the semester to work out details
of the language. Each of the specifications we created was a list comprising what each
section of the compiler must support. For the scanner this was a list of tokens, for the
parser this was a list of statements and expressions, for the AST this was a list of trees,
and for the translator this was a list of java statements it would output.

Once we had the specification, we divided the responsibilities among group members.
Miriam created the scanner, semantic analyzer, and test automation, Josh built the
parser, including AST definitions, and implemented source code input & compiled code
output, and created the final write up & slide set, Muzi handled code generation and
Java-side support. Everyone worked on the translator together.

Once we were able to output compiled code, we all took turns creating test cases for
each section of the compiler as it was implemented.

4.2 Style Guide

Naming
Function names should always use underscore separated names: function_names
Variable names should be camel cased: variableName

Function definitions
The first line of a function declaration should end with either the word function, the -
> (for functions declared with “fun”) or the word “with” if the match statement is being
used. The function should be preceded by a comment with a description of what the
function does and an explanation of its arguments.

Indentation
To keep code readable, and associations between different sections clear, indent the
body of the following structures: match blocks (except for the pipe symbol, see the
section on matches below), if then/else blocks, function definitions, type definitions, and
any parenthesized expression which is more than one line long.

Matches
Match statements should not include more than one pattern per line. All cases for the
same match should have the same indentation. Patterns should be matched as deep as
possible to avoid nested matching and extra empty matches

GOOD NOT SO GOOD
 A(B(x)) -> eval_b x A(x) -> match x wth
| A(C(x)) -> eval_c x B(y) -> eval_b y
| A(_) -> raise (Failure “…”) | C(y) -> eval_c y

 | _ -> raise (Failure “...”)
Long Lines
Lines which exceed 80 characters should be broken up across multiple lines. Try to
break the lines up at some structural boundary (ie. concatenation operators or nested
function calls). Each section of the line should be indented far beyond the current
indentation level so it will not be confused with a separate statement.

Imperative features
If imperative features need to simulated, with “ignore” or “let _ = .. in”, the subsequent
line should be at the same level of indentation.

Above all else, the highest priority should be readability of code. If following the rules in
the style guide make code more difficult to read, then break them.

4.3
9/17 Decide on language
9/24 Determine basic syntax

Agree on keywords, operators & built in functions

9/18-9/26 Write Proposal
10/1 Formally Define syntax
10/26 Build Scanner & 1st version of Parser
10/27-10/29 Write LRM
10/20-12/12 Update AST & Parser
12/3 Write source file input & compiled code output
12/12 Implement assignment statements

Adapt test automation
Update AST
Update Parser

12/12-12/17 Implement translation cases
Add test cases
Create semantic analyzer

12/15 Write example programs
12/17 Write final report
12/19 Give presentation

4.4 Roles and Responsibilities
Muzi Gao -- At the first stage of this project, I worked with team for our first version
of Parser and AST, as well as the documents. And after that, I was working on java
classes that are needed to support our derived types (collection, struct, and enum).
I worked with Miriam on “cardigan.ml” to combine sementic analysis with code
generation. I took the responsibility to write most of codes that help output java codes,
and as well as those relevant test cases.

Joshua Lopez -- As project leader I organized our meetings and assessed the status of
the project so we could create the next set of tasks. I organized and wrote the outline
for the project proposal and language reference manual as well as writing several of
the sections. I organized and built the parser and ast definitions for Cardigan, including
determining the languages CFG. I wrote the functionality in the translator to support
assignment statements, function declarations, parenthesized expressions, and variable
updates (+=, -=). Miriam created most of the syntactic analysis code, but I added a
section which could handle keeping track of local variables and function return types.
I also wrote the final report (except for the other member’s roles & responsibilities and
lessons learned sections), the sample code, and prepared the demonstration slideshow.

Miriam Melnick -- I wrote most of the scanner, with organizational help from Josh. I
worked with the team to develop our initial parser and AST. After that, I took charge of
the semantic analysis code and the test suite. Muzi wrote a lot of her own test cases

too. I modified the microc testall script and also made it available through our Makefile.
I helped edit the LRM, the presentation, and this final report. Most of the credit for this
report goes to Josh. Muzi did a phenomenal job with all of the Java output - she and
I worked closely in the cardigan.ml file to integrate our semantic analysis and code
generation. I implemented code generation for simple unary and binary operations and
other expressions.

4.5 Software Development Environment
The team used Google Code for version control and Google Docs & Google Drive
to create the proposal, LRM, final report, and slideshow presentation. We also used
Google Hangouts and G-Chat for remote meetings. For coding Miriam used Sublime
Text, Josh used Aptana Studio, and Muzi used gedit for OCaml and Eclipse for Java.
We also used the traditional blackboard and whiteboard to plan out the structure of the
language syntax and the structure if the AST definitions. For testing, Miriam adapted
Professor Edwards’ bash test automation script.

4.6 Project Log
Wed Dec 19 22:57:42 2012 -0500: Miriam Melnick -- Implementing update
Wed Dec 19 22:29:57 2012 -0500: Miriam Melnick -- Fixing goFish.crd
Wed Dec 19 21:25:27 2012 -0500: Miriam Melnick -- Setting script to exit on first failure
Wed Dec 19 21:14:06 2012 -0500: Miriam Melnick -- Fixing cardigan script to compile
cardigan to
Wed Dec 19 21:07:22 2012 -0500: Miriam Melnick -- working java code
Wed Dec 19 21:02:18 2012 -0500: Miriam Melnick -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Wed Dec 19 21:02:15 2012 -0500: Miriam Melnick -- CamelCasing
Wed Dec 19 20:38:06 2012 -0500: Skunkwaffle -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Wed Dec 19 20:37:56 2012 -0500: Skunkwaffle -- Go Fish
Wed Dec 19 20:33:39 2012 -0500: Muzi Gao -- add more comments
Wed Dec 19 20:00:30 2012 -0500: Miriam Melnick -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Wed Dec 19 20:00:25 2012 -0500: Miriam Melnick -- Java output files now have
capitalized file names
Wed Dec 19 19:12:33 2012 -0500: Muzi Gao -- merge conflicts
Wed Dec 19 19:11:19 2012 -0500: Muzi Gao -- add comments, not finished
Wed Dec 19 18:56:29 2012 -0500: Miriam Melnick -- fixing the last non-parse error test.
Starting on the parse error ones

Wed Dec 19 18:51:48 2012 -0500: Miriam Melnick -- Fixing tabs in rules statements
Wed Dec 19 18:40:21 2012 -0500: Miriam Melnick -- Fixing some more gold files
Wed Dec 19 18:25:18 2012 -0500: Miriam Melnick -- Tabbing
Wed Dec 19 17:57:12 2012 -0500: Miriam Melnick -- Fixed reversal problem for... 4th
time?
Wed Dec 19 17:29:52 2012 -0500: Miriam Melnick -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Wed Dec 19 17:29:49 2012 -0500: Miriam Melnick -- Substituting main for play in the
output
Wed Dec 19 17:27:25 2012 -0500: Muzi Gao -- print rule statement
Wed Dec 19 16:55:21 2012 -0500: Muzi Gao -- merge conflicts
Wed Dec 19 16:54:27 2012 -0500: Muzi Gao -- fixed collection function call
Wed Dec 19 16:49:31 2012 -0500: Miriam Melnick -- Fixing rules test
Wed Dec 19 16:34:53 2012 -0500: Miriam Melnick -- Fixing reversal issue
Wed Dec 19 16:27:10 2012 -0500: Muzi Gao -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Wed Dec 19 16:27:06 2012 -0500: Muzi Gao -- add collection function access test files
Wed Dec 19 16:26:16 2012 -0500: Miriam Melnick -- Updating gold files
Wed Dec 19 16:10:00 2012 -0500: Miriam Melnick -- Fixing testall
Wed Dec 19 15:52:44 2012 -0500: Miriam Melnick -- Fixing testall script
Wed Dec 19 15:44:14 2012 -0500: Miriam Melnick -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Wed Dec 19 15:44:09 2012 -0500: Miriam Melnick -- Saving java files that aren't auto-
generated
Wed Dec 19 15:40:17 2012 -0500: Skunkwaffle -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Wed Dec 19 15:40:07 2012 -0500: Skunkwaffle -- Fixed newline issue... again
Wed Dec 19 15:27:50 2012 -0500: Miriam Melnick -- Adding Muzi's java files
Wed Dec 19 15:24:31 2012 -0500: Miriam Melnick -- Fixing name of cardigan output
Wed Dec 19 14:16:02 2012 -0500: Miriam Melnick -- public static void main
Wed Dec 19 13:49:06 2012 -0500: Miriam Melnick -- Muzi's java infrastructure
Wed Dec 19 13:37:20 2012 -0500: Skunkwaffle -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Wed Dec 19 13:37:14 2012 -0500: Skunkwaffle -- fixed newline issue
Wed Dec 19 13:07:18 2012 -0500: Miriam Melnick -- Working on structs
Wed Dec 19 12:44:16 2012 -0500: Miriam Melnick -- Renamed function call test since it
didn't have a function call
Wed Dec 19 12:40:51 2012 -0500: Miriam Melnick -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Wed Dec 19 12:40:48 2012 -0500: Miriam Melnick -- Fixing output for struct

Wed Dec 19 12:32:05 2012 -0500: Muzi Gao -- merge conflicts
Wed Dec 19 12:19:37 2012 -0500: Muzi Gao -- remove decrement2.crd
Wed Dec 19 12:12:53 2012 -0500: Miriam Melnick -- Merge
Wed Dec 19 12:05:04 2012 -0500: Miriam Melnick -- Adding struct elements to symbol
table
Wed Dec 19 12:01:15 2012 -0500: Muzi Gao -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Wed Dec 19 12:01:07 2012 -0500: Muzi Gao -- print property of structs, function call still
needed
Wed Dec 19 11:40:21 2012 -0500: Miriam Melnick -- fixing test cases
Wed Dec 19 11:39:12 2012 -0500: Miriam Melnick -- Fixing a few tests
Wed Dec 19 02:34:40 2012 -0500: Muzi Gao -- merge conflict and add indeterminate
type for collection-access
Wed Dec 19 01:51:05 2012 -0500: Muzi Gao -- fixing increment/decrement
Tue Dec 18 23:14:30 2012 -0500: Miriam Melnick -- Added currentFunction and
untypedArgs
Tue Dec 18 22:15:04 2012 -0500: Miriam Melnick -- Functions can now return ids
Tue Dec 18 21:58:04 2012 -0500: Miriam Melnick -- Fixing some too-long lines
Tue Dec 18 21:51:12 2012 -0500: Muzi Gao -- merge conflict
Tue Dec 18 21:48:20 2012 -0500: Muzi Gao -- add access-enum
Tue Dec 18 21:45:15 2012 -0500: Miriam Melnick -- Fixed increment
Tue Dec 18 21:33:26 2012 -0500: Miriam Melnick -- Fixing order of block evaluation for
the third time
Tue Dec 18 20:59:19 2012 -0500: Miriam Melnick -- Got argument types to update
Tue Dec 18 20:11:14 2012 -0500: Miriam Melnick -- fixing a typo in test script
Tue Dec 18 20:09:28 2012 -0500: Miriam Melnick -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Tue Dec 18 20:09:26 2012 -0500: Miriam Melnick -- Incrementing nestingLevel in
control structures for scoping purposes
Tue Dec 18 20:07:19 2012 -0500: Muzi Gao -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Tue Dec 18 20:07:11 2012 -0500: Muzi Gao -- merge conflicts
Tue Dec 18 19:54:58 2012 -0500: Miriam Melnick -- Got return types working for
functions if you return a literal. working on ids
Tue Dec 18 19:54:19 2012 -0500: Muzi Gao -- add collectionbounds
Tue Dec 18 19:28:56 2012 -0500: Miriam Melnick -- Starting to implement untypedArgs
Tue Dec 18 18:42:14 2012 -0500: Miriam Melnick -- Still working on function types -
having some trouble with argument type assignment
Tue Dec 18 18:22:10 2012 -0500: Miriam Melnick -- Starting prepping for tabs in output

Tue Dec 18 18:10:56 2012 -0500: Miriam Melnick -- Added function return types and
partial argument handling
Tue Dec 18 15:51:29 2012 -0500: Muzi Gao -- dealing with collection access
Tue Dec 18 15:50:38 2012 -0500: Miriam Melnick -- Now calling
save_assignment_to_hash
Tue Dec 18 15:45:22 2012 -0500: Miriam Melnick -- Added a few more function
comments
Tue Dec 18 15:34:01 2012 -0500: Miriam Melnick -- Adding comments to first few
functions
Tue Dec 18 15:08:13 2012 -0500: Muzi Gao -- merge conflicts
Tue Dec 18 14:28:01 2012 -0500: Muzi Gao -- print for loop
Tue Dec 18 13:59:56 2012 -0500: Skunkwaffle -- Updated code to follow style guide
Tue Dec 18 12:32:14 2012 -0500: Miriam Melnick -- Fixed all warnings
Tue Dec 18 12:18:26 2012 -0500: Miriam Melnick -- All tests passing ecept those
requiring function return types
Tue Dec 18 12:08:46 2012 -0500: Miriam Melnick -- Fixing binops - no longer evaluating
in ocaml
Tue Dec 18 04:39:32 2012 -0500: Skunkwaffle -- handled all warnings
Mon Dec 17 16:59:47 2012 -0500: Miriam Melnick -- fixed invert/negate type errors
Mon Dec 17 16:22:53 2012 -0500: Miriam Melnick -- Fixing test script to catch runtime
errors
Mon Dec 17 16:18:19 2012 -0500: Miriam Melnick -- Updated test script - shows all
failed tests at bottom
Mon Dec 17 16:03:49 2012 -0500: Miriam Melnick -- Almost all tests passing
Mon Dec 17 15:56:53 2012 -0500: Miriam Melnick -- merge
Mon Dec 17 15:54:34 2012 -0500: Miriam Melnick -- ALL THE THINGS pass (well,
almost)
Mon Dec 17 15:19:05 2012 -0500: Miriam Melnick -- Fixing semicolons
Mon Dec 17 14:57:49 2012 -0500: Miriam Melnick -- Results printing in right order and
being added to table in right order. Many tests failing - fixing that now.
Mon Dec 17 14:48:12 2012 -0500: Muzi Gao -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Mon Dec 17 14:48:01 2012 -0500: Muzi Gao -- add ifstatement
Mon Dec 17 14:47:42 2012 -0500: Miriam Melnick -- finally doing things in the right
order - will recommit soon with full solution.
Mon Dec 17 14:43:45 2012 -0500: Skunkwaffle -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Mon Dec 17 14:43:36 2012 -0500: Skunkwaffle -- Corrected newline handling after code
block
Mon Dec 17 13:25:59 2012 -0500: Muzi Gao -- add while-statement test

Mon Dec 17 13:05:31 2012 -0500: Miriam Melnick -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Mon Dec 17 13:05:26 2012 -0500: Miriam Melnick -- Added geq and tests
Mon Dec 17 13:01:56 2012 -0500: Skunkwaffle -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Mon Dec 17 13:01:43 2012 -0500: Skunkwaffle -- Added support for multiple newlines
Mon Dec 17 12:56:12 2012 -0500: Miriam Melnick -- Renamed some tests
Mon Dec 17 12:49:27 2012 -0500: Miriam Melnick -- Fixed a couple of Nithin's tests
Mon Dec 17 12:43:16 2012 -0500: Miriam Melnick -- Changed cardigan.ml to use
exclusively addVar and addFunc funtions
Mon Dec 17 12:32:05 2012 -0500: Miriam Melnick -- Using getVarType
Mon Dec 17 12:22:26 2012 -0500: Miriam Melnick -- All functions from semantic.ml now
copied into cardigan.ml
Mon Dec 17 12:20:50 2012 -0500: Miriam Melnick -- Frec(args, returntype)
Mon Dec 17 12:16:16 2012 -0500: Miriam Melnick -- Adding more functions from
semantic.ml to cardigan.ml
Mon Dec 17 12:09:08 2012 -0500: Miriam Melnick -- Removed enum form every Vrec.
Now handling enums as all other derived types
Mon Dec 17 12:01:25 2012 -0500: Miriam Melnick -- Starting to integrate semantic.ml
and cardigan.ml
Mon Dec 17 11:29:42 2012 -0500: Miriam Melnick -- Added gt
Mon Dec 17 11:26:04 2012 -0500: Miriam Melnick -- Implemented lt, neq
Mon Dec 17 06:01:10 2012 -0500: Skunkwaffle -- renamed test case
Sun Dec 16 23:02:21 2012 -0500: Miriam Melnick -- Implemented /,%,and,or. NOT
currently works with the word 'not', not with the exclamation mark symbol
Sun Dec 16 22:36:08 2012 -0500: Miriam Melnick -- Just realized update (ex. +=) has
not been implemented yet. Marked it as such.
Sun Dec 16 22:29:35 2012 -0500: Miriam Melnick -- Implemented +,-,*
Sun Dec 16 22:01:38 2012 -0500: Skunkwaffle -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Sun Dec 16 22:01:30 2012 -0500: Skunkwaffle -- WAR
Sun Dec 16 20:01:31 2012 -0500: Miriam Melnick -- Implementing negate, invert,
increment, decrement
Sun Dec 16 03:09:32 2012 -0500: Muzi Gao -- merge conflicts
Sun Dec 16 03:02:51 2012 -0500: Muzi Gao -- fixed access collection, add input &
output
Sun Dec 16 02:27:48 2012 -0500: Skunkwaffle -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Sun Dec 16 02:27:44 2012 -0500: Skunkwaffle -- Created external semantic analysis
script

Sat Dec 15 23:19:25 2012 -0500: Miriam Melnick -- Fixed several warnings about partial
function applications
Sat Dec 15 16:37:09 2012 -0500: Miriam Melnick -- Renaming tests to have valid
names
Sat Dec 15 16:17:44 2012 -0500: Skunkwaffle -- fixed errors in cardigan.ml
Sat Dec 15 02:57:33 2012 -0500: Muzi Gao -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Sat Dec 15 02:57:26 2012 -0500: Muzi Gao -- deal with cast(x,y)
Fri Dec 14 21:55:59 2012 -0500: Nithin Chandrasekharan -- Merge branch 'java' of
https://code.google.com/p/cardigan-plt into java
Fri Dec 14 20:50:01 2012 -0500: Skunkwaffle -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Fri Dec 14 20:49:52 2012 -0500: Skunkwaffle -- fixed backslash handling in strings
Fri Dec 14 20:18:33 2012 -0500: Nithin Chandrasekharan -- current edits for now
Fri Dec 14 20:05:12 2012 -0500: Nithin Chandrasekharan -- think i added new files
Fri Dec 14 19:56:34 2012 -0500: Nithin Chandrasekharan -- Edited type_of_expr in
cardigan added some types
Fri Dec 14 19:24:18 2012 -0500: Skunkwaffle -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Fri Dec 14 19:24:14 2012 -0500: Skunkwaffle -- Input takes an argument now
Fri Dec 14 19:22:03 2012 -0500: Nithin Chandrasekharan -- Merge branch 'java' of
https://code.google.com/p/cardigan-plt into java
Fri Dec 14 17:56:03 2012 -0500: Miriam Melnick -- Test script can now also check
failures
Fri Dec 14 17:36:30 2012 -0500: Miriam Melnick -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Fri Dec 14 17:36:26 2012 -0500: Miriam Melnick -- Finished cast function
Fri Dec 14 16:09:48 2012 -0500: Skunkwaffle -- Final versions of scanner, parser, and
ast
Fri Dec 14 15:52:44 2012 -0500: Skunkwaffle -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Fri Dec 14 15:52:39 2012 -0500: Skunkwaffle -- Added function calls
Fri Dec 14 15:50:58 2012 -0500: Miriam Melnick -- Testing string to float casting - it
works
Fri Dec 14 15:46:12 2012 -0500: Miriam Melnick -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Fri Dec 14 15:46:08 2012 -0500: Miriam Melnick -- Cast string to int now working
Fri Dec 14 14:28:40 2012 -0500: Muzi Gao -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Fri Dec 14 14:28:30 2012 -0500: Muzi Gao -- nested collection

Fri Dec 14 14:14:43 2012 -0500: Skunkwaffle -- added for looooooooooops
Fri Dec 14 14:04:57 2012 -0500: Skunkwaffle -- Added rules
Fri Dec 14 13:49:27 2012 -0500: Skunkwaffle -- Added while
Fri Dec 14 13:35:33 2012 -0500: Skunkwaffle -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Fri Dec 14 13:35:26 2012 -0500: Skunkwaffle -- Added if/else if/else
Fri Dec 14 11:53:36 2012 -0500: Muzi Gao -- quick fix of enum
Fri Dec 14 11:48:15 2012 -0500: Miriam Melnick -- Putting Muzi's code back (sorry I
deleted it)
Fri Dec 14 11:39:35 2012 -0500: Skunkwaffle -- Fixed shift/reduce conflicts
Fri Dec 14 11:33:31 2012 -0500: Miriam Melnick -- All primitive types can cast to
themselves
Fri Dec 14 11:25:03 2012 -0500: Miriam Melnick -- Casting works from int to int
Fri Dec 14 11:11:06 2012 -0500: Miriam Melnick -- Adding a note to eval_block - when
you call it, add the curly braces to the result of the function
Fri Dec 14 11:09:25 2012 -0500: Miriam Melnick -- Blocks no longer have tons of extra
curly braces. All tests passing except enum (which I will fix soon).
Thu Dec 13 22:06:29 2012 -0500: Nithin Chandrasekharan -- Added basic tests
Thu Dec 13 22:01:38 2012 -0500: Nithin Chandrasekharan -- Merge branch 'java' of
https://code.google.com/p/cardigan-plt into java
Thu Dec 13 17:46:58 2012 -0500: Muzi Gao -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Thu Dec 13 17:46:44 2012 -0500: Muzi Gao -- interpret enum object
Thu Dec 13 17:14:56 2012 -0500: Skunkwaffle -- added dot lookup and collection
indexing
Thu Dec 13 16:52:56 2012 -0500: Skunkwaffle -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Thu Dec 13 16:52:51 2012 -0500: Skunkwaffle -- added return statemtn
Thu Dec 13 16:46:14 2012 -0500: Muzi Gao -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Thu Dec 13 16:46:06 2012 -0500: Muzi Gao -- merge conflicts
Thu Dec 13 16:43:54 2012 -0500: Skunkwaffle -- added increment and decrement
Thu Dec 13 16:34:05 2012 -0500: Skunkwaffle -- Added dummy code for binary op
evaluation in interpereter
Thu Dec 13 16:29:37 2012 -0500: Muzi Gao -- interpret new collection object
Thu Dec 13 16:28:12 2012 -0500: Skunkwaffle -- Added binary operations
Thu Dec 13 16:07:24 2012 -0500: Skunkwaffle -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Thu Dec 13 16:07:19 2012 -0500: Skunkwaffle -- added unary negation, algebreic and
boolean

Thu Dec 13 16:05:37 2012 -0500: Miriam Melnick -- Fixing typo causing syntax error
Thu Dec 13 16:04:07 2012 -0500: Miriam Melnick -- Merge with Josh's code
Thu Dec 13 16:03:00 2012 -0500: Miriam Melnick -- Passing a test with a function body.
Outputting semicolons after stmts, braces around blocks.
Thu Dec 13 15:59:26 2012 -0500: Skunkwaffle -- Added OUTPUT function
Thu Dec 13 15:53:47 2012 -0500: Skunkwaffle -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Thu Dec 13 15:53:40 2012 -0500: Skunkwaffle -- added INPUT function
Thu Dec 13 15:49:26 2012 -0500: Miriam Melnick -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Thu Dec 13 15:49:20 2012 -0500: Miriam Melnick -- All tests pass. Statements are
being evaluated and function bodies should be working
Thu Dec 13 15:35:57 2012 -0500: Skunkwaffle -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Thu Dec 13 15:35:52 2012 -0500: Skunkwaffle -- added CAST function
Thu Dec 13 14:39:18 2012 -0500: Nithin Chandrasekharan -- Merge branch 'java' of
https://code.google.com/p/cardigan-plt into java
Thu Dec 13 14:27:56 2012 -0500: Miriam Melnick -- Changing java class names to have
underscores instead of hyphens
Thu Dec 13 14:12:07 2012 -0500: Skunkwaffle -- conflict fix on cardigan.ml
Thu Dec 13 14:10:21 2012 -0500: Skunkwaffle -- added updates to parser with block
and statement evaluation in interpreter
Thu Dec 13 14:03:20 2012 -0500: Muzi Gao -- add enum type in test-assign-enum.gold
Thu Dec 13 14:01:48 2012 -0500: Muzi Gao -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Thu Dec 13 14:00:18 2012 -0500: Muzi Gao -- adding javatype before variable
assignment
Thu Dec 13 13:38:23 2012 -0500: Miriam Melnick -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Thu Dec 13 13:38:19 2012 -0500: Miriam Melnick -- Enums now working with symbol
table.
Thu Dec 13 13:07:39 2012 -0500: Skunkwaffle -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Thu Dec 13 13:07:29 2012 -0500: Skunkwaffle -- Struct and parenthesized expressiong
support in parser & ast
Thu Dec 13 12:54:00 2012 -0500: Muzi Gao -- add failure message for invalid type
Thu Dec 13 12:51:33 2012 -0500: Miriam Melnick -- Adding function type_of_variable to
compiler
Thu Dec 13 12:34:25 2012 -0500: Skunkwaffle -- Added dummy enum handling to
interpreter

Thu Dec 13 12:18:20 2012 -0500: Miriam Melnick -- Trying to merge
Thu Dec 13 12:17:08 2012 -0500: Miriam Melnick -- Adding symbol table to some eval
functions
Thu Dec 13 12:10:55 2012 -0500: Skunkwaffle -- removing redundant code from the
interpreter and ast
Thu Dec 13 11:35:28 2012 -0500: Nithin Chandrasekharan -- Merge branch 'java' of
https://code.google.com/p/cardigan-plt into java
Thu Dec 13 11:31:45 2012 -0500: Miriam Melnick -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Thu Dec 13 11:31:42 2012 -0500: Miriam Melnick -- Removing that test; we decided it is
an acceptable failure
Thu Dec 13 11:31:07 2012 -0500: Skunkwaffle -- Added Enum support in parser & ast
Thu Dec 13 11:18:12 2012 -0500: Miriam Melnick -- Comments working with one
caveat: comments ended with newline do not yet include EOL. test-comment-
backslash-trick demonstrates this failure. we should fix it.
Thu Dec 13 11:04:41 2012 -0500: Miriam Melnick -- Adding support for multi-line
commands separated by backslash
Thu Dec 13 00:27:19 2012 -0500: Miriam Melnick -- Collection declaration now adds
records to symbol table
Wed Dec 12 23:33:47 2012 -0500: Miriam Melnick -- Merging Josh's Collection changes
Wed Dec 12 23:06:22 2012 -0500: Skunkwaffle -- collection tests
Wed Dec 12 23:05:16 2012 -0500: Skunkwaffle -- Added Collection declaration. Interior
values are not being added to the symbol table
Wed Dec 12 22:35:58 2012 -0500: Skunkwaffle -- fixing conflict
Wed Dec 12 22:31:02 2012 -0500: Skunkwaffle -- Collection works in ast but not in
symbol table
Wed Dec 12 22:26:30 2012 -0500: Miriam Melnick -- All tests pass -- yay. AST is being
compiled in correct order.
Wed Dec 12 21:05:18 2012 -0500: Miriam Melnick -- Merge with Josh's code
Wed Dec 12 21:02:38 2012 -0500: Miriam Melnick -- Muzi and I got types working -- yay
Wed Dec 12 20:51:57 2012 -0500: Skunkwaffle -- Tests for mulit arg functions
Wed Dec 12 20:49:07 2012 -0500: Skunkwaffle -- funciton definitions with arguments
Wed Dec 12 20:00:35 2012 -0500: Skunkwaffle -- Added function assignment with no
arguments and empty block
Wed Dec 12 19:39:49 2012 -0500: Miriam Melnick -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Wed Dec 12 19:39:37 2012 -0500: Miriam Melnick -- Added print hash functionality for
symbol table
Wed Dec 12 19:16:00 2012 -0500: Skunkwaffle -- Fixex prior conflict
Wed Dec 12 19:13:21 2012 -0500: Skunkwaffle -- Fake functions are allowed

Wed Dec 12 19:09:09 2012 -0500: Miriam Melnick -- Merging changes to cardigan.ml
Wed Dec 12 18:40:43 2012 -0500: Skunkwaffle -- Added assigning identifiers the value
of other identifiers
Wed Dec 12 18:24:20 2012 -0500: Skunkwaffle -- Added assignment for all primative
data types
Wed Dec 12 16:51:39 2012 -0500: Miriam Melnick -- Fixing Makefile and
adding .java, .out, .diff to .gitignore
Wed Dec 12 16:48:39 2012 -0500: Miriam Melnick -- Merge branch 'java' of https://
code.google.com/p/cardigan-plt into java
Wed Dec 12 16:47:35 2012 -0500: Miriam Melnick -- Renaming testall.sh to testall
Wed Dec 12 16:47:27 2012 -0500: Skunkwaffle -- Assignment tests
Wed Dec 12 16:36:50 2012 -0500: Skunkwaffle -- interpreter that ALMOST outputs valid
jave code
Wed Dec 12 15:55:01 2012 -0500: Miriam Melnick -- Signalling which file passed
testall.sh
Wed Dec 12 15:50:35 2012 -0500: Miriam Melnick -- Test script now compares .java
to .gold
Wed Dec 12 15:38:05 2012 -0500: Miriam Melnick -- Updating test script to keep java
files
Wed Dec 12 14:52:34 2012 -0500: Skunkwaffle -- OMG it works
Wed Dec 12 14:39:16 2012 -0500: Nithin Chandrasekharan -- ast2.mli
Wed Dec 12 12:40:10 2012 -0500: Miriam Melnick -- New parser based on
varAssignments
Wed Dec 12 12:06:54 2012 -0500: Miriam Melnick -- Welcome to java branch
Wed Dec 12 11:55:43 2012 -0500: Miriam Melnick -- Putting in UnaryNegInt as a
temporary fix for UnaryNeg.
Wed Dec 12 04:11:14 2012 -0500: Josh Lopez -- fixed string handling in the scanner
and added test case for escape chars
Sat Dec 8 22:37:57 2012 -0500: Nithin Chandrasekharan -- Merge branch 'master' of
https://code.google.com/p/cardigan-plt
Sat Dec 8 22:33:13 2012 -0500: Nithin Chandrasekharan -- Have updated the types and
also added string_of_exp
Wed Dec 5 17:52:36 2012 -0500: Miriam Melnick -- To test alternate ast, (1) change first
line of parser to 'open Ast2' and (2) run make alt
Wed Dec 5 17:34:16 2012 -0500: Nithin Chandrasekharan -- Alt AST
Wed Dec 5 16:56:20 2012 -0500: Miriam Melnick -- Added parenexpr. That test and str
are currently failing
Wed Dec 5 16:42:39 2012 -0500: Miriam Melnick -- Committing the tests I just added
Wed Dec 5 16:42:11 2012 -0500: Miriam Melnick -- Added tests for floats and bools

Wed Dec 5 16:27:11 2012 -0500: Miriam Melnick -- moved literals into their own type in
AST
Wed Dec 5 16:16:59 2012 -0500: Miriam Melnick -- Adding comments to cardigan.ml
Wed Dec 5 15:40:02 2012 -0500: Miriam Melnick -- Got id test passing
Mon Dec 3 21:22:27 2012 -0500: Miriam Melnick -- Updated testall.sh. Made cardigan
print out results of eval
Mon Dec 3 19:07:03 2012 -0500: Josh Lopez -- changed interpreter to output, well,
something
Mon Dec 3 18:57:22 2012 -0500: Josh Lopez -- adding message to interpreter
Mon Dec 3 18:53:29 2012 -0500: Miriam Melnick -- It compilesgit status
Mon Dec 3 18:32:11 2012 -0500: Miriam Melnick -- Still getting some build errors
Mon Dec 3 17:52:06 2012 -0500: Josh Lopez -- interpreter that tries to use the ast
Mon Dec 3 17:37:55 2012 -0500: Miriam Melnick -- Temp changes; not working yet
Wed Nov 28 17:56:06 2012 -0500: Miriam Melnick -- Made progress on moving things
from parser to ast. Not done yet.
Mon Nov 26 18:04:44 2012 -0500: Miriam Melnick -- moving things to the ast
Mon Nov 26 17:36:30 2012 -0500: Miriam Melnick -- Deleting old microc tests
Mon Nov 26 16:45:06 2012 -0500: Miriam Melnick -- Adding cardigan and *.class
to .gitignore
Sun Nov 25 18:01:43 2012 -0500: Josh Lopez -- Added compiler script cardigan.ml and
removed its exclude rule from .gitignore
Mon Nov 19 17:44:45 2012 -0500: Miriam Melnick -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Mon Nov 19 17:44:39 2012 -0500: Miriam Melnick -- adding enumStringOrId stringOrId
to parser
Sat Nov 17 23:12:31 2012 -0500: Josh Lopez -- Added all symbols to scanner and
updated parser
Mon Nov 12 23:10:37 2012 -0500: Miriam Melnick -- finished cleaning up parser
Mon Nov 12 22:41:21 2012 -0500: Miriam Melnick -- moving some more copies from
parser into ast
Mon Nov 12 21:49:49 2012 -0500: Miriam Melnick -- starting to move copies from
parser to ast
Mon Nov 12 18:08:20 2012 -0500: Miriam Melnick -- adding a comment to the scanner
Mon Nov 12 18:01:32 2012 -0500: Josh Lopez -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Mon Nov 12 18:01:17 2012 -0500: Josh Lopez -- scanner with comments
Mon Nov 12 17:59:29 2012 -0500: Josh Lopez -- Scanner with comments
Mon Nov 12 17:57:16 2012 -0500: Miriam Melnick -- now building the scanner too
Mon Nov 12 15:12:46 2012 -0500: Miriam Melnick -- adding float literals to scanner

Mon Nov 12 15:10:54 2012 -0500: Miriam Melnick -- Added string literals to scanner (for
real).
Mon Nov 12 15:10:16 2012 -0500: Miriam Melnick -- Added string literals to scanner.
Not yet hooked into rest of program.
Mon Nov 12 02:13:37 2012 -0500: Muzi Gao -- add dot to scanner
Mon Oct 29 17:32:23 2012 -0400: Miriam Melnick -- fixing shift/reduce error in collection
declaration
Mon Oct 29 17:24:50 2012 -0400: Miriam Melnick -- fixed edge cases for collection
declaration
Mon Oct 29 17:23:05 2012 -0400: Miriam Melnick -- fixing syntax for collections and
allowing range syntax
Mon Oct 29 16:44:47 2012 -0400: Miriam Melnick -- allow empty collection
Mon Oct 29 16:42:54 2012 -0400: Miriam Melnick -- allow empty structs
Sat Oct 27 00:14:25 2012 -0400: Miriam Melnick -- fixing exprG
Sat Oct 27 00:12:19 2012 -0400: Miriam Melnick -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Sat Oct 27 00:12:14 2012 -0400: Miriam Melnick -- implementing unaryneg and
cleaning things up
Sat Oct 27 00:01:17 2012 -0400: Miriam Melnick -- merging with Nithin's code
Fri Oct 26 23:51:01 2012 -0400: Miriam Melnick -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 23:50:57 2012 -0400: Miriam Melnick -- fixing typos INTerior in parser
Fri Oct 26 23:48:05 2012 -0400: Miriam Melnick -- got rid of all the not reduced errors
Fri Oct 26 23:44:07 2012 -0400: Miriam Melnick -- fewer rules not being reduced
Fri Oct 26 23:45:10 2012 -0400: Josh Lopez -- removed confilcts
Fri Oct 26 23:40:57 2012 -0400: Josh Lopez -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 23:40:53 2012 -0400: Josh Lopez -- boolean is now a comparison
Fri Oct 26 23:38:27 2012 -0400: Josh Lopez -- boolean is now a comparison
Fri Oct 26 23:35:43 2012 -0400: Miriam Melnick -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 23:35:39 2012 -0400: Miriam Melnick -- adding funcCall to binary ops
Fri Oct 26 23:29:18 2012 -0400: Muzi Gao -- merge Josh's conflicts
Fri Oct 26 23:28:49 2012 -0400: Josh Lopez -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 23:28:46 2012 -0400: Josh Lopez -- else structure
Fri Oct 26 23:26:15 2012 -0400: Muzi Gao -- add funcCall to binary comparision
Fri Oct 26 23:23:31 2012 -0400: Miriam Melnick -- adding rules structure
Fri Oct 26 22:52:35 2012 -0400: Miriam Melnick -- calling funcCall where appropriate
Fri Oct 26 22:50:19 2012 -0400: Miriam Melnick -- adding more expr forms

Fri Oct 26 22:48:19 2012 -0400: Miriam Melnick -- merge
Fri Oct 26 22:47:56 2012 -0400: Miriam Melnick -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 22:47:53 2012 -0400: Miriam Melnick -- fixing numOp to match ast
Fri Oct 26 22:47:03 2012 -0400: Muzi Gao -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 22:47:00 2012 -0400: Muzi Gao -- merge conflicts
Fri Oct 26 22:46:55 2012 -0400: Miriam Melnick -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 22:49:30 2012 -0400: Josh Lopez -- numop operators
Fri Oct 26 22:46:50 2012 -0400: Miriam Melnick -- adding valid exprs to the expr rule in
parser
Fri Oct 26 22:44:44 2012 -0400: Muzi Gao -- add output strings to binary comparision
Fri Oct 26 22:43:51 2012 -0400: Miriam Melnick -- added numop
Fri Oct 26 22:41:22 2012 -0400: Muzi Gao -- merge Josh's work
Fri Oct 26 22:41:11 2012 -0400: Josh Lopez -- boolean fix
Fri Oct 26 22:40:14 2012 -0400: Josh Lopez -- unary negation
Fri Oct 26 22:39:40 2012 -0400: Miriam Melnick -- fixing merge
Fri Oct 26 22:39:12 2012 -0400: Muzi Gao -- binary comparision
Fri Oct 26 22:39:10 2012 -0400: Josh Lopez -- unary negation
Fri Oct 26 22:39:06 2012 -0400: Miriam Melnick -- some more binops
Fri Oct 26 22:37:03 2012 -0400: Josh Lopez -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 22:36:58 2012 -0400: Josh Lopez -- plus and mod binary operators
Fri Oct 26 22:35:15 2012 -0400: Miriam Melnick -- merging changes Josh/Miriam
Fri Oct 26 22:34:31 2012 -0400: Miriam Melnick -- added MINUS
Fri Oct 26 22:32:49 2012 -0400: Josh Lopez -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 22:32:37 2012 -0400: Josh Lopez -- some binary ops
Fri Oct 26 22:31:59 2012 -0400: Miriam Melnick -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 22:31:57 2012 -0400: Miriam Melnick -- maintaining consistency in parser
Fri Oct 26 22:28:01 2012 -0400: Miriam Melnick -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 22:27:59 2012 -0400: Miriam Melnick -- adding function calls
Fri Oct 26 22:23:47 2012 -0400: Josh Lopez -- dot lookup
Fri Oct 26 22:19:15 2012 -0400: Josh Lopez -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 22:19:12 2012 -0400: Josh Lopez -- collection index
Fri Oct 26 22:14:40 2012 -0400: Miriam Melnick -- starting expr in parser

Fri Oct 26 22:08:11 2012 -0400: Miriam Melnick -- allowing functions to have no args
Fri Oct 26 21:33:03 2012 -0400: Miriam Melnick -- function body block fix
Fri Oct 26 21:30:34 2012 -0400: Miriam Melnick -- Merging Muzi's changes
Fri Oct 26 21:29:30 2012 -0400: Miriam Melnick -- merging Nithin's changes
Fri Oct 26 21:28:38 2012 -0400: Muzi Gao -- fixed derivedType
Fri Oct 26 21:27:36 2012 -0400: Miriam Melnick -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 21:27:34 2012 -0400: Miriam Melnick -- Fixed shift/reduce conflict on block
Fri Oct 26 21:07:32 2012 -0400: Miriam Melnick -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 21:09:45 2012 -0400: Josh Lopez -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 21:09:21 2012 -0400: Josh Lopez -- struct fix
Fri Oct 26 21:07:23 2012 -0400: Miriam Melnick -- merge
Fri Oct 26 21:05:14 2012 -0400: Miriam Melnick -- Fixing I -> id
Fri Oct 26 20:58:24 2012 -0400: Muzi Gao -- derived type -- keep collection as
placeholder now
Fri Oct 26 20:57:02 2012 -0400: Muzi Gao -- derived type -- keep collection as
placeholder now
Fri Oct 26 20:56:56 2012 -0400: Miriam Melnick -- Resolving merge between Josh and
Miriam
Fri Oct 26 20:55:05 2012 -0400: Muzi Gao -- derived type -- keep collection as
placeholder now
Fri Oct 26 20:51:50 2012 -0400: Josh Lopez -- assignments
Fri Oct 26 20:51:44 2012 -0400: Miriam Melnick -- Merging Miriam's changes of the
parser. Merge branch 'master' of https://code.google.com/p/cardigan-plt
Fri Oct 26 20:51:36 2012 -0400: Miriam Melnick -- Added stmt and block to parser
Fri Oct 26 20:49:56 2012 -0400: Josh Lopez -- assignment statements
Fri Oct 26 20:46:16 2012 -0400: Miriam Melnick -- adding *.output to gitignore
Fri Oct 26 20:45:41 2012 -0400: Miriam Melnick -- really merging
Fri Oct 26 20:45:15 2012 -0400: Miriam Melnick -- merge
Fri Oct 26 20:37:29 2012 -0400: Miriam Melnick -- trying again
Fri Oct 26 20:37:00 2012 -0400: Miriam Melnick -- Added block, stmt - with placeholders
for A,E,W
Fri Oct 26 20:35:12 2012 -0400: Josh Lopez -- Added structs
Fri Oct 26 20:34:48 2012 -0400: Muzi Gao -- enum done
Fri Oct 26 20:34:01 2012 -0400: Muzi Gao -- enum done
Fri Oct 26 20:26:41 2012 -0400: Josh Lopez -- more tokens
Fri Oct 26 20:25:43 2012 -0400: Josh Lopez -- further tokens

Fri Oct 26 20:24:21 2012 -0400: Muzi Gao -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 20:22:05 2012 -0400: Muzi Gao -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 20:21:24 2012 -0400: Miriam Melnick -- adding more tokens
Fri Oct 26 20:19:03 2012 -0400: Josh Lopez -- token fix
Fri Oct 26 20:17:40 2012 -0400: Josh Lopez -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 20:17:31 2012 -0400: Josh Lopez -- more tokens
Fri Oct 26 20:16:28 2012 -0400: Muzi Gao -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 20:16:25 2012 -0400: Muzi Gao -- backup
Fri Oct 26 20:11:44 2012 -0400: Josh Lopez -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 20:11:35 2012 -0400: Josh Lopez -- Really added the parser info this time
Fri Oct 26 20:11:18 2012 -0400: Miriam Melnick -- got rid of 'never reduced' warnings in
parser
Fri Oct 26 20:01:14 2012 -0400: Josh Lopez -- function identifiers
Fri Oct 26 20:01:01 2012 -0400: Miriam Melnick -- fixing gitignore
Fri Oct 26 19:57:26 2012 -0400: Josh Lopez -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 19:57:15 2012 -0400: Josh Lopez -- identifiers
Fri Oct 26 19:54:46 2012 -0400: Josh Lopez -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 19:52:03 2012 -0400: Muzi Gao -- get rid of testing lines in README
Fri Oct 26 19:51:11 2012 -0400: Muzi Gao -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Fri Oct 26 19:50:52 2012 -0400: Josh Lopez -- identifier
Fri Oct 26 19:50:14 2012 -0400: Muzi Gao -- just try pushing
Fri Oct 26 19:49:01 2012 -0400: Miriam Melnick -- Added literal to parser and simplified
scanning of booleans.
Fri Oct 26 19:31:05 2012 -0400: Miriam Melnick -- ast now only contains cardigan stuff
Fri Oct 26 18:06:35 2012 -0400: Miriam Melnick -- Test environment while we are
building ast and parser. Disconnected from actually running programs.
Fri Oct 26 17:51:15 2012 -0400: Josh Lopez -- added operators
Fri Oct 26 17:21:55 2012 -0400: Miriam Melnick -- Scanner now passes booleans as a
boolean type with a value of true/false
Fri Oct 26 15:31:36 2012 -0400: Miriam Melnick -- Changed comments from microc
style to cardigan style.

Fri Oct 26 15:12:25 2012 -0400: Miriam Melnick -- Changed name to cardigan in
Makefile and changed all tests to .crd files
Fri Oct 26 14:42:37 2012 -0400: Miriam Melnick -- Fixed bug with booleans. Parser now
builds with no warnings and tests pass.
Mon Oct 22 18:58:12 2012 -0400: Nithin -- collections update
Mon Oct 22 18:42:22 2012 -0400: Nithin -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Mon Oct 22 18:37:13 2012 -0400: Nithin -- Merge branch 'master' of https://
code.google.com/p/cardigan-plt
Mon Oct 22 18:32:11 2012 -0400: Nithin -- loops
Mon Oct 22 18:26:28 2012 -0400: Nithin -- loops
Mon Oct 22 18:04:08 2012 -0400: Nithin -- Okay this should finally work
Fri Oct 26 23:04:48 2012 -0400: Miriam Melnick -- made parser a little more readable
Fri Oct 26 23:00:59 2012 -0400: Miriam Melnick -- simplifying fake expression rules
Fri Oct 26 22:59:56 2012 -0400: Miriam Melnick -- added comparison rule to parser
Fri Oct 26 22:58:18 2012 -0400: Miriam Melnick -- expr=D. sweet.
Mon Oct 22 18:03:03 2012 -0400: Nithin -- Okay this should finally work
Mon Oct 22 16:11:00 2012 -0400: Nithin -- hh
Sat Oct 20 18:42:12 2012 -0400: Miriam Melnick -- Added boolean true/false to scanner
and parser. We do not yet have the parser accepting anything but integers, so I gave
false the code 5000 and true the code 5001. Not great for readability, but sufficient (I
think) to check the ambiguity of our grammar.
Mon Oct 8 18:47:36 2012 -0400: Miriam Melnick -- initial commit. Using microc base
with the addition of the mod operator.

5. Architectural Design
5.1 Components

5.2 Interfaces
Scanner:

input -- a lexbuf created using Lexing.from_string on the entire source program
output -- a Scanner.token stream

Parser:
input -- a Scanner.token stream
output -- an Ast.program object. The object should contain a list of

Ast.Assignment objects

Translator:

input -- An Ast.program object
output -- A single string containing the compiled program, which is automatically

saved into a .java file.

Within the Translator are several eval functions which handle translation of each type of
component in an Ast. These functions all implement the following interface

tree -- the abstract syntax subtree to be evaluated
currentFunction -- the function we are currently defining
funcArgs -- the list of arguments to the function we are currently defining
symbols -- the symbol table for the scope in which the ast will be translated
nestingLevel -- the number of layers of nesting currently being applied

Final compilation script:
Calls make clean, make cardigan, executes cardigan on the given file, then runs

javac on the output and runs the resulting .class.

5.3 Contributions
Scanner -- Miriam Melnick
Parser -- Joshua Lopez
AST -- Joshua Lopez
Semantic Analysis -- Miriam Melnick, Joshua Lopez
Translator -- Miriam Melnick, Muzi Gao, Joshua Lopez
Test cases -- Miriam Melnick, Muzi Gao, Joshua Lopez
Output code generation -- Muzi Gao, Miriam Melnick, Joshua Lopez
Java support classes -- Muzi Gao

6. Test Plan
6.1 Representative program -- GoFish.crd
PLAY()={

deck =

["A", "2", "3", "4", "5", "6", "7", "8", "9", "J", "Q", "K"]

 hand = []

 for i:[1:7]{

 card = deck.pop()

 hand.append(card)

 }

 guessed = false

 while not guessed{

 guess = INPUT(string)

 idx = 0

 while not guessed and idx < hand.length(){

 if hand[idx] == guess{

 guessed = true

 }

 idx++

 }

 if not guessed{

 OUTPUT("Go Fish!")

 }

 }

 OUTPUT("You win!")

}

6.2 Compiled program GoFish.java
import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.util.Scanner;

public class GoFish{

static cInput input = new cInput();

//Begin Cardigan Code

public static void main(String[] args){

cCollection deck=new cCollection();

deck.append("A");

deck.append("2");

deck.append("3");

deck.append("4");

deck.append("5");

deck.append("6");

deck.append("7");

deck.append("8");

deck.append("9");

deck.append("J");

deck.append("Q");

deck.append("K");

cCollection hand=new cCollection();

cCollection loop=new cCollection(1,7);

for(int i=0;i<loop.size();i++){

int j=loop.find((int)i);

cCollection card=deck.pop();;

hand.append(card);

}

boolean guessed=false;

while (!guessed) {

String guess=input.cInputString();

int idx=0;

while ((!guessed)&&(idx<7)) {

if(hand[idx]==guess) {

boolean guessed=true;

}

idx++;}

if((!guessed)) {

System.out.print("Go Fish!");

}}

System.out.print("You win!");

}

//End Cardigan Code

}

6.3 Test suites
6.3.1 Types of tests
Our automated test suite allows two types of programs: those which are supposed
to succeed and those which are supposed to fail. Succeeding programs must begin
with the prefix “test-” and failing programs must begin with “fail-”. For succeeding tests
there must also be a .gold file with the same name as the Cardigan source file which
contains the desired output. The Cardigan source is passed through the compiler and
the resulting code is generated and compared to the .gold file. If they match the test
passes. For failed tests, a compile time error must be generated. If this occurs the test
is considered to have “failed successfully” and the test passes.

6.3.2 testall.sh
#!/bin/sh

CARDIGAN="./cardigan_"

Set time limit for all operations

ulimit -t 30

globallog=testall.log

rm -f $globallog

error=0

globalerror=0

keep=0

failed=""

generatedfiles=""

Usage() {

 echo "Usage: testall [options] [.crd files]"

 echo "-k Keep intermediate files"

 echo "-h Print this help"

 exit 1

}

SignalError() {

 if [$error -eq 0] ; then

echo "FAILED"

error=1

 fi

 echo " $1"

}

Compare <outfile> <reffile> <difffile>

Compares the outfile with reffile. Differences, if any,

written to difffile

Compare() {

 generatedfiles="$generatedfiles $3"

 echo diff -b $1 $2 ">" $3 1>&2

 diff -b "$1" "$2" > "$3" 2>&1 || {

SignalError "$1 differs" &&

 failed="$failed \n $1"

echo "FAILED $1 differs from $2" 1>&2

 }

}

Run <args>

Report the command, run it, and report any errors

Run() {

 echo $* 1>&2

 eval $* || {

 failed="$failed \n $2"

SignalError "$1 failed on $*"

return 1

 }

}

Check() {

 error=0

 basename=`echo $1 | sed 's/.*\\///

 s/.crd//'`

 reffile=`echo $1 | sed 's/.crd$//'`

 basedir="`echo $1 | sed 's/\/[^\/]*$//'`/."

 javafile=`echo $basename |sed -e 's/^//g' -e 's/-/_/g'`

 ajavafile=`echo $javafile | perl -pe 's/\S+/\u$&/g'`

 newjavafile=`echo $ajavafile | perl -pe 's/([^])_([a-z])/

\\1\\u\\2/g'`

 echo 1>&2

 echo "###### Testing $basename" 1>&2

 generatedfiles="$generatedfiles tests/${newjavafile}.java

tests/${basename}.diff tests/${basename}.out" &&

 Run "$CARDIGAN" $1 ">" tests/${basename}.out &&

 Compare tests/${newjavafile}.java tests/${basename}.gold

tests/${basename}.diff

 # Report the status and clean up the generated files

 if [$error -eq 0] ; then

if [$keep -eq 0] ; then

 rm -f $generatedfiles

fi

echo "OK - $basename succeeds"

echo "###### SUCCESS" 1>&2

 else

echo "###### FAILED" 1>&2

globalerror=$error

 fi

}

SignalErrorFail() {

 if [$error eq 0] ; then

 echo "$1 failed to fail"; else

 echo "OK - $* failed"

 fi

 echo " $1"

}

Run <args>

Report the command, run it, and report any errors

RunFail() {

 echo $* 1>&2

 eval $* && {

 SignalErrorFail "$1 failed on $*"

 return 0

 }

}

CheckFail() {

 error=0

 basename=`echo $1 | sed 's/.*\\///

 s/.crd//'`

 reffile=`echo $1 | sed 's/.crd$//'`

 basedir="`echo $1 | sed 's/\/[^\/]*$//'`/."

 javafile=`echo $basename |sed -e 's/^//g' -e 's/-/_/g'`

 newjavafile=`echo $javafile | perl -pe 's/\S+/\u$&/g'`

 echo 1>&2

 echo "###### Testing $basename" 1>&2

 generatedfiles="$generatedfiles tests/${basename}.diff

tests/${basename}.out" &&

 RunFail "$CARDIGAN" $1 ">" tests/${basename}.out

 # Report the status and clean up the generated files

 if [$error -lt 1] ; then

 if [$keep -eq 0] ; then

 rm -f $generatedfiles

 fi

 echo "###### FAILED TO FAIL" 1>&2

 globalerror=$error

 else

 echo "OK - $basename fails"

 echo "###### SUCCESSFULLY FAILED" 1>&2

 fi

}

while getopts kdpsh c; do

 case $c in

k) # Keep intermediate files

 keep=1

 ;;

h) # Help

 Usage

 ;;

 esac

done

shift `expr $OPTIND - 1`

if [$# -ge 1]

then

 files=$@

else

 files="tests/test-*.crd tests/fail-*.crd"

fi

for file in $files

do

 case $file in

test-)

 Check $file 2>> $globallog

 ;;

 fail-)

 CheckFail $file 2>> $globallog

 ;;

*)

 echo "unknown file type $file"

 globalerror=1

 ;;

 esac

done

tput setaf 1

echo "Failed tests: " $failed

tput sgr0

exit $globalerror

6.3.3 Test programs
fail-access-prove-statictype1.crd

b=45

a="test case"

b=a

fail-access-prove-statictype2.crd

a=2

a="2"

fail-assign.crd

x=

fail-empty-call.crd

PLAY()

fail-function-assign-play.crd

PLAY(b)={

b=4

return b

}

d=3

PLAY(d)

fail-nested-scope.crd

PLAY()={

x=false

if x {

b = 1

}

c = b

}

fail-outofbounds-collection.crd

a = [3,4]

b = a[2]

goFish.crd

PLAY()={

deck =

["A", "2", "3", "4", "5", "6", "7", "8", "9", "J", "Q", "K"]

hand = []

loop=[1:7]

for j:loop{

card = deck.pop()

hand.append(card)

}

guessed = false

while not guessed{

guess = INPUT(string)

idx = 0

while (not guessed and (idx < 7)){

if hand[idx] == guess{

guessed = true

}

idx++

}

if not guessed{

OUTPUT("Go Fish!")

}

}

OUTPUT("You win!")

}

goldfish.crd

x()={

a = [3,"hello"]

b = a[0]

c = a[1]

}

guppie.crd

PLAY()={

deck =

["A", "2", "3", "4", "5", "6", "7", "8", "9", "J", "Q", "K"]

 a=1

 deck[a]

}

test-access-collection-function.crd

PLAY()={

b=[1,2,3,4]

b.shuffle()

b.popLast()

}

test-access-collection.crd

x()={

a = [3,"hello"]

b = a[0]

c = a[1]

}

test-access-enum.crd

x=|a,b,c|

y=|d,e|

m=x.a

n=y.d

test-assign-boolean.crd

a=true

b=false

test-assign-collection.crd

a = [2, false, 2.3, "hello world"]

test-assign-collectionbounds.crd

a=[1:10]

test-assign-enum.crd

x=|a,b|

y=|a,c,e|

test-assign-float.crd

a = 2.2

b = a

test-assign-identifier.crd

b=2

a=b

test-assign-int.crd

a=3

test-assign-string.crd

a="testing 123"

b="escape\""

c="new line\n"

d="tab\t"

e="backslash\\"

f="all\\\n\t\""

test-binop-and.crd

PLAY()={x=true and false}

test-binop-divide-float-float.crd

PLAY() = {x=35.1/6.2}

test-binop-divide-float-int.crd

PLAY() = {x=35.1/6}

test-binop-divide-int-float.crd

PLAY() = {x=35/6.2}

test-binop-divide-int-int.crd

PLAY() = {x=35/6}

test-binop-geq-float-float.crd

PLAY()={b=3.0 >= 3.0}

test-binop-geq-float-int.crd

PLAY()={b=3.0 >= 3}

test-binop-geq-int-float.crd

PLAY()={b=3 >= 3.0}

test-binop-geq-int-int.crd

PLAY()={b=3 >= 4}

test-binop-gt-float-float.crd

PLAY()={b=43.2>31.3}

test-binop-gt-float-int.crd

PLAY()={b=43.2>31}

test-binop-gt-int-float.crd

PLAY()={b=40>321.3}

test-binop-gt-int-int.crd

PLAY()={b=40>3}

test-binop-leq-float-float.crd

PLAY()={b=4.4<=3.2}

test-binop-leq-float-int.crd

PLAY()={b=4.1<=3}

test-binop-leq-int-float.crd

PLAY()={b=4<=3.2}

test-binop-leq-int-int.crd

PLAY()={b=4<=3}

test-binop-lt-float-float.crd

PLAY()={b=5.4<12.1}

test-binop-lt-float-int.crd

PLAY()={b=5.4<12}

test-binop-lt-int-float.crd

PLAY()={b=5<12.2}

test-binop-lt-int-int.crd

PLAY()={b=5<12}

test-binop-minus-float-float.crd

PLAY() = {x=35.1-6.2}

test-binop-minus-float-int.crd

PLAY() = {x=5.2-6}

test-binop-minus-int-float.crd

PLAY() = {x=14-5.2}

test-binop-minus-int-int.crd

PLAY() = {x=14-5}

test-binop-mod-int-int.crd

PLAY()={x=50%4}

test-binop-neq-collections.crd

a=[5,4]

b=[5,4]

c=[4,5]

d= a!=b

e= b!=c

f= a!=a

test-binop-neq-false.crd

PLAY()={b= true != true}

test-binop-neq-true.crd

PLAY()={b= true != false}

test-binop-or.crd

PLAY()={x=true or false}

test-binop-plus-float-float.crd

PLAY() = {x=35.1+6.2}

test-binop-plus-float-int.crd

PLAY() = {x=5.2+6}

test-binop-plus-int-float.crd

PLAY() = {x=4+5.2}

test-binop-plus-int-int.crd

PLAY() = {x=4+5}

test-binop-plus-string-string.crd

PLAY() = {z="hello " + "world"}

test-binop-times-float-float.crd

PLAY() = {x=3.1*6.2}

test-binop-times-float-int.crd

PLAY() = {x=5.2*6}

test-binop-times-int-float.crd

PLAY() = {x=3*5.2}

test-binop-times-int-int.crd

PLAY() = {x=3*5}

test-cast-bool-bool.crd

PLAY()={b=CAST(true,bool)}

test-cast-bool-float-valid.crd

PLAY()={b=CAST(true,float)}

test-cast-bool-int-valid.crd

PLAY()={b=CAST(true,int)}

test-cast-bool-string-valid.crd

PLAY()={

b=CAST(true,string)

c=CAST(false,string)

}

test-cast-float-bool-valid.crd

PLAY()={b=CAST(5.4,bool)}

test-cast-float-float.crd

PLAY()={b=CAST(5.4,float)}

test-cast-float-int-valid.crd

PLAY()={b=CAST(5.4,int)}

test-cast-int-bool-valid.crd

PLAY()={

b=CAST(5,bool)

c=CAST(0,bool)

}

test-cast-int-float-valid.crd

PLAY()={b=CAST(5,float)}

test-cast-int-int.crd

PLAY()={b=CAST(5,int)}

test-cast-int-string-valid.crd

PLAY()={b=CAST(5,string)}

test-cast-string-bool-valid.crd

PLAY()={b=CAST("true",bool)}

test-cast-string-float-valid.crd

PLAY()={b=CAST("5.4",float)}

test-cast-string-int-valid.crd

PLAY()={b=CAST("10",int)}

test-cast-string-string.crd

PLAY()={b=CAST("rainbow",string)}

test-collection-nest.crd

PLAY()={

b=[1,"a",["hello",2],4.3]

c=4

d=[]}

test-comment-backslash.crd

a=\

// fooble

4

b=3

test-comment-backslashes.crd

a=\

// fooble

4

//funsies

b=3

test-comment.crd

a=4

// fooble

b=3

test-decrement.crd

PLAY()={

b=5

c=5--

d=b--

e=5.3

f=5.3--

g=e--

}

test-empty-function.crd

PLAY()={}

test-function-body-several-stmts.crd

PLAY() = {

b=5

c=6

d=7

}

test-function-call-arg-constant.crd

PLAY(b)={

 b=4

 return b

}

c=PLAY(3)

test-function-call-global.crd

PLAY()={}

a()={return 5}

c=a()

test-function-call-play.crd

PLAY(b)={

b=4

return b

}

d=3

c=PLAY(d)

test-function-call.crd

PLAY()={OUTPUT(5)}

a()={return 5}

b()={c=a()}

test-function-empty-body.crd

PLAY()={a=5}

b()={}

test-function-if.crd

PLAY(b)={

 if b>4 {

 c=4

 }

 else {

 c=6

 }

 return c

}

test-function-local-body.crd

PLAY() ={

d="testing 123 \n"

e=true

f= 7

}

test-function-localvar.crd

PLAY()={b=3}

test-function-multiple-args.crd

PLAY()={}

a(b, c)={

b=5

 c=3

}

test-function-one-arg.crd

PLAY(b) = {}

test-function-reassign-arg.crd

a(b, c) ={

b=5

c=5.6

}

test-function-return-arg.crd

PLAY()={}

a(b, c) ={

b=5

c=5.6

return b

}

test-function-return-float.crd

PLAY()={

return 4.3

}

test-function-return-id-int.crd

PLAY() = {

d=7

return d

}

test-function-return-id-string.crd

PLAY()={

d="foo"

return d

}

test-function-return-int.crd

PLAY() = {

d=7

return 7

}

test-function-return-string.crd

PLAY()={

return "foo"

}

test-function-stmt-eval-order.crd

PLAY(b, c) ={

b=5

c=b + 0.6

return c

}

test-functions-type-unclear.crd

PLAY(b) = {

f = b+1

}

test-increment-float.crd

PLAY()={

b=5.7

c=5.7++

 d=b++

}

test-increment-int.crd

PLAY()={

b=5

c=5++

 d=b++

}

test-increment2.crd

PLAY()={}

a(b, c)={

 b=5

 b++

 c=3

}

d=7

test-input.crd

PLAY()={

x = INPUT(int)

y = INPUT(float)

z = INPUT(string)

w = INPUT(bool)

}

test-invert-bool.crd

PLAY()={b=not true}

test-invert-id.crd

PLAY()={

 d=true

 b= not d

 return b

}

test-linebreak-several.crd

a=\

\

\

\

\

3

b\

=4

test-linebreak.crd

a=\

3

b=4

test-local-global-scope.crd

d="1234"

PLAY() = {

e=d

d="new 123 \n"

e=d

}

f=d

test-multiple-assignments.crd

PLAY()={

a=3

b=5

c=7

d=9

e=11

}

f=6

test-multiple-functions.crd

PLAY()={b=6}

c()={d=12}

e()={f=18}

test-multiple-separators.crd

a = 3

b = 4

c = "testing 123 \n"

d =true

e= 5.6

f=7

test-negate-id.crd

PLAY()={}

a(b)={

d= -3.3

b= -d

return b

}

test-negation-minus.crd

PLAY()={x=5 - - 2}

test-negation.crd

PLAY()={x=not true}

test-output.crd

PLAY()={

x=1

y="hello world"

OUTPUT(x)

OUTPUT(y)

}

test-spaces.crd

a = 3

b = 4

test-stmt-for.crd

PLAY()={

 y=[1:10]

for x:y{

sum = 1

}

for player:players{

 OUTPUT("test")

}

}

test-stmt-if-else-if.crd

PLAY()={

if x {

b = 1

}

elseif y{

b=2

}

else {

b=3

}

}

test-stmt-if-else-nested.crd

PLAY()={

x=1

y=1

if x {

b = 1

}

elseif y{

if z{

b=2

}

else{

b=3

}

}

else {

b=4

}

}

test-stmt-if-else.crd

PLAY()={

x=true

if x {

b = 1

}

else{

b=2

}

}

test-stmt-if.crd

PLAY()={

x=false

if x {

b = 1

}

}

test-stmt-rule.crd

PLAY()={

 rules (flag1=1, flag2=false) {true {x=4} false {y=5}}

}

test-stmt-while.crd

PLAY()={

valid = true

while not valid {

OUTPUT("hello")

valid=false

}

}

test-struct.crd

PLAY()={

 num=20

 b={name:"namestring",age:20,number:num}

}

test-struct2.crd

PLAY()={

 num=20

 b={name:"namestring",age:20,number:num}

 c=b.name

}

test-tabs.crd

a = 3

b =4

war.crd

rank=|two, three, four, five, six, seven, eight, nine, ten,

jack, queen, king, ace|

suit=|hearts, clubs, diamonds, spades|

HIGHEST = 0

NEXT = 1

WAR_CARDS = 3

PLAY()={

 deck = cartesian(rank, suit) //Standard library func

 players = [] //Empty collection

 OUTPUT("How many players?") //Cardigan's print stmt

 numPlayers = INPUT(int) //Specify input type

 for id:[1:numPlayers]{

players.append({playerNumber:id, hand:[]})

} // Add players

deck.shuffle() // built in function

deck.deal(players) // standard library

winner = {} // define winning

conditions

while !winner { // while conditions have

not been met

 result = round(players)

 players[result.winner].hand.append(result.cards)

 if players[result.winner].hand.length == deck.length {

 winner = players[result.winner]

 }

 }

 OUPUT(CAST(winner.id, string) + " is the winner!")

}

round(players)={

 roundCards = []

 for player:players {

 roundCards.append(player.hand.pop())

 }

 roundCards.sort(value)

result = {}

 rules (highCard=roundCards[HIGHEST].value, next=NEXT){

 highCard.value > roundCards[next].value {

 result.winner = highCard.id

 }

 highCard.value == roundCards[next].value {

 participants = []

 participants.push(players[highCard.id])

 while roundCards[next].value == highCard {

 participants.push(players[roundCards[next].id])

 }

 warResults = war(participants)

 roundCards.append(warResults.cards)

 result.winner = warResults.winner

 }

 }

 result.cards = roundCards

 return result

}

war(participants) = {

OUTPUT("War!")

spoils = []

for participant:participants{

spoils.append(participant.hand.pop(WAR_CARDS))

}

result = round(participants)

 spoils.append(result.cards)

 return {winner: result.winner, cards: spoils}

}

6.4 Testing method
As each type of expression/statement was added to the translator, we created a test
case to ensure it was outputting code correctly. In most cases there was more than one
kind of code that could be generated. For example:
if if if if if if

else if else else if else if else if
else else if else if

else

In these cases we created a test case for each of the possible cases an evaluation
could be used to create.

6.5 Contributions
The test cases were automated using a version of the testall.sh script included with
microc, with some modifications by Miriam Melnick.

Most of the test cases were written by the person who implemented the eval function for
the corresponding Cardigan code.

In general, Muzi handled derived types, built in functions, and control structures, Miriam
handled unary and binary operators and Josh handled primitive assignments, update
statements and function declarations/calls. We all implemented these functions together
at the same time so there may have been some overlap.

7. Lessons Learned
7.1 Muzi Gao
1. Having a great group makes things better and easier.
2. It’s true that we possibly start too early without preparing well, but for me, it’s hard to
estimate the deadline unless I know the task well. Since then, it would always be better
to start early and make it in an iterative way instead of knowing everything but without
enough time to implement it.
3. Be creative in brainstorm, but be realistic when making plans.
5. Make priority for all tasks, and implement them one by one.
4. OCaml is hard to debug, especially when being compared with Java.

7.2 Joshua Lopez
1. It’s possible to start too early. Implementing components before we really knew

how to build them led to more work than just waiting another couple of weeks.
2. Newlines are a frustrating line delimiter. Regex matches and CFG patterns are

way more complicated
3. Ocaml is unforgiving and unhelpful. The sooner you stop looking at its errors and

start paying attention to what you write, the better off you’ll be
4. Get to know your team members. The sooner you know each other’s strengths

and how much you can trust them, the better off everyone will be.
5. Set realistic deadlines. Building a scanner only takes a day or so, defining the

abstract syntax isn’t a small job.

7.3 Miriam Melnick

1. Wow, this project is so much easier with a great group.
2. Stay on task - don't let time pass without working on the project.
3. Be prepared and pick up each others' slack.
4. Be realistic - make a list of fancy features that would be nice but don't implement
them until core functionality is working.
5. Commit early, commit often.
6. Test early, test even more often.
7. Communicate regularly and make sure everyone knows the status of the project and
what they should be working on.

8. Notes
8.1 Missing Group Member

Originally, Cardigan was a four person group. Our fourth member, Nithin
Chandrasekharan suffered from several health related issues which kept from from
regularly attending group meetings. On more than one occasion when he was present,
he had a seizure during the meeting.

Unfortunately his condition made it very difficult for Nithin to stay updated on
the status of the project and he was not able to contribute to the development of the
compiler as much as the rest of the group. Most of the code he checked in had to be
rewritten by other members of the group, and he made only limited contributions to the
project proposal and LRM, most of which also had to be rewritten. Nithin did create a
few of the more exhaustive test cases which are included in the test suite, but most of
these also had to be modified to support the exact output of each piece of functionality
(ie. correct formatting, nested cases).

Realizing that he had made few significant contributions to the project, Nithin
decided to withdraw from the group on December 15th, 2012, five days before the
project deadline. The remaining members of Cardigan decided it would be better to
complete the compiler without implementing all of the features we originally intended,
rather support all features with a non-working compiler. Among these were including
java source compilation into the compiler, implementing bisect for code coverage
evaluation, and some of the more card-game related features (ie. winning conditions &
predefined players, decks etc), most of which were just condensed versions of already
existing syntax. We hope the effect of circumstances which were beyond anyone’s
control on the amount and quality of work we were able to accomplish will be taken into
account when evaluating our project.

8.2 Outstanding Issues

Our type inference algorithm is not correctly determining the types of collection access
variables. Our plan to fix this would be to add the types of these items to the symbol
table and check in the semantic analysis code if the type in the symbol table was valid.

We have not fully tested our language's recursive features. Our plan to proceed here
would be to add an extra table to our eval functions and check types of recursive
functions separately from non-recursive functions.

9. Appendix
9.1 scaner.mll
{ open Parser }

rule token = parse

[' ' '\t' '\r'] { token lexbuf }

(* Whitespace *)

| "//" { comment lexbuf }

(* Comments *)

(* Primitive types *)

| ['0'-'9']+ as lxm { INT(int_of_string lxm)

}

| ['0'-'9']+'.'['0'-'9']* as fl {

FLOAT(float_of_string(fl)) }

| ['0'-'9']*'.'['0'-'9']+ as fl {

FLOAT(float_of_string(fl)) }

| "true" { BOOLEAN(true) }

| "false" { BOOLEAN(false) }

| ('\"'([^'\\''\"']|'\\'['\\''n''t''\"'])*'\"') as st

{STRING(st)}

(* Grouping symbols *)

| '(' { LPAREN }

| ')' { RPAREN }

| '{'['\r''\n''\t'' ']* { LCURL }

(* Allow one newline *)

| '}' { RCURL }

| '[' { LBRAC }

| ']' { RBRAC }

| '|' { BAR }

(* Punctuation *)

| ',' { COMMA }

| '.' { DOT }

| ':' { COLON }

| '=' { ASSIGN }

 (* Inc/Dec Operators *)

 | "++" { INCREMENT }

 | "--" { DECREMENT }

(* Arithmetic Operators *)

| '+' { PLUS }

| '-' { MINUS }

| '*' { TIMES }

| '/' { DIVIDE }

| '%' { MOD }

 (* Update Operators *)

 | "+=" { PLUSEQUALS }

 | "-=" { MINUSEQUALS }

 | "*=" { TIMESEQUALS }

 | "/=" { DIVIDEEQUALS }

(* Boolean comparison operators *)

| "not" { NOT }

| "and" { AND }

| "or" { OR }

(* Comparison operators *)

| "!=" { NEQ }

| "==" { EQ }

| '<' { LT }

| ">" { GT }

| "<=" { LEQ }

| ">=" { GEQ }

(* Separators *)

| '\n'['\n'' ''\t']* { EOL }

| eof { EOF }

(* Keywords *)

| "if" { IF }

| "elseif" { ELSEIF }

| "else" { ELSE }

| "while" { WHILE }

| "for" { FOR }

| "return" { RETURN }

| "rules" { RULES }

(* Built in functions *)

| "CAST" { CAST }

| "INPUT" { INPUT }

| "OUTPUT" { OUTPUT }

(* Type keywords *)

| "int" { INTTYPE }

| "float" { FLOATTYPE }

| "string" { STRINGTYPE }

| "bool" { BOOLTYPE }

(* Identifier *)

| ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_']* as lxm

{ ID(lxm) }

(* Error *)

| _ as char { raise

(Failure("illegal character " ^ Char.escaped char)) }

and comment = parse

 '\n' { token

lexbuf }

| _ { comment

lexbuf }

9.2 parser.mly
%{open Ast %}

%token<string> ID

/* Primitive types */

%token<int> INT

%token<bool> BOOLEAN

%token<float> FLOAT

%token<string> STRING

/* Grouping symbols */

%token LPAREN RPAREN RCURL LCURL RBRAC LBRAC BAR

/* Punctuation */

%token COMMA DOT COLON ASSIGN

/* Arithmetic Operators */

%token PLUS MINUS TIMES DIVIDE MOD

/* Boolean Operators */

%token NOT AND OR

/* Comparison Operators */

%token NEQ EQ LT GT LEQ GEQ

/* Update Operators */

%token PLUSEQUALS MINUSEQUALS TIMESEQUALS DIVIDEEQUALS

/* Separators */

%token EOL EOF

/* Keywords */

%token IF ELSEIF ELSE WHILE FOR RETURN RULES

/* Built in functions */

%token CAST PLAY INPUT OUTPUT

/* Type keywords */

%token INTTYPE FLOATTYPE STRINGTYPE BOOLTYPE

/* Increment/Decrement keywords */

%token INCREMENT DECREMENT

/* Associativity rules */

%right ASSIGN

%left EQ NEQ LT GT LEQ GEQ

%left AND OR

%left PLUS MINUS

%left TIMES DIVIDE MOD

%left NOT

%left INCREMENT DECREMENT DOT

/* Start info */

%start program

%type <Ast.program> program

%%

arguments:

 /* no args */ {[]}

| ID

{[Identifier($1)]}

| ID COMMA arguments

{Identifier($1)::$3}

identifier:

 ID

{Identifier($1)}

functionId:

 ID LPAREN arguments RPAREN

{FunctionIdentifier($1, $3)}

block:

 LCURL statementList RCURL

{Block($2)}

ruleBlock:

 expression block

{[RuleBlock($1, $2)]}

| expression block ruleBlock

{RuleBlock($1, $2)::$3}

expressionList:

 /* empty list */ {[]}

| expression

{[$1]}

| expression COMMA expressionList {$1::$3}

structDef:

 ID COLON expression

{StructDef($1, $3)}

structBody:

 /* empty struct */ {[]}

| structDef

{[$1]}

| structDef COMMA structBody {$1::$3}

typeKeyword:

 INTTYPE

{"int"}

| FLOATTYPE

{"float"}

| STRINGTYPE

{"String"}

| BOOLTYPE

{"boolean"}

binaryOperation:

 expression PLUS expression

{Plus($1,$3)}

| expression MINUS expression

{Minus($1,$3)}

| expression TIMES expression

{Times($1,$3)}

| expression DIVIDE expression

{Divide($1,$3)}

| expression MOD expression

{Mod($1,$3)}

| expression AND expression

{And($1,$3)}

| expression OR expression

{Or($1,$3)}

| expression NEQ expression

{Neq($1,$3)}

| expression EQ expression

{Eq($1,$3)}

| expression LT expression

{Lt($1,$3)}

| expression GT expression

{Gt($1,$3)}

| expression LEQ expression

{Leq($1,$3)}

| expression GEQ expression

{Geq($1,$3)}

expression:

 INT

{Integer($1)}

| BOOLEAN

{Boolean($1)}

| FLOAT

{Floating($1)}

| STRING

{StringString($1)}

| identifier

{IdExpr($1)}

| LBRAC expression COLON expression RBRAC

{CollectionBounds($2, $4)}

| LBRAC expressionList RBRAC

{Collection($2)}

| BAR arguments BAR

{Enum($2)}

| LPAREN expression RPAREN

{ParenExpr($2)}

| LCURL structBody RCURL

{Struct($2)}

| CAST LPAREN expression COMMA typeKeyword RPAREN

 {Cast($3, $5)}

| INPUT LPAREN typeKeyword RPAREN

{Input($3)}

| MINUS expression

{Negate($2)}

| NOT expression

{Invert($2)}

| binaryOperation

{BinaryOp($1)}

| expression INCREMENT

{Increment($1)}

| expression DECREMENT

{Decrement($1)}

| identifier LBRAC expression RBRAC

{CollectionIndex($1, $3)}

| identifier DOT expression

{Lookup($1, $3)}

| functionId

{FunctionCall($1)}

statementList:

 statement

{[$1]}

| statementList EOL {$1}

| statementList EOL statement {$3::$1}

idUpdate:

 identifier PLUSEQUALS expression {PlusUp($1,

$3)}

| identifier MINUSEQUALS expression

{MinusUp($1, $3)}

| identifier TIMESEQUALS expression

{TimesUp($1, $3)}

| identifier DIVIDEEQUALS expression

{DivideUp($1, $3)}

elseStatements:

 ELSE block

{[IfStatement("else", Boolean(true), $2)]}

| ELSEIF expression block

{[IfStatement("else if", $2, $3)]}

| ELSEIF expression block elseStatements

{IfStatement("else if", $2, $3)::$4}

assignmentList:

 /*empty*/ {[]}

| assignment

{[$1]}

| assignment COMMA assignmentList {$1::$3}

statement:

 expression

{Expression($1)}

| assignment

{LocalVar($1)}

| idUpdate

{Update($1)}

| OUTPUT LPAREN expression RPAREN

{Output($3)}

| RETURN expression

{Return($2)}

| IF expression block

{IfStructure(IfStatement("if", $2, $3)::[])}

| IF expression block elseStatements

{IfStructure(IfStatement("if", $2, $3)::$4)}

| WHILE expression block

{WhileStructure($2, $3)}

| RULES LCURL ruleBlock RCURL

{RuleStructure([], $3)}

| RULES LPAREN assignmentList RPAREN LCURL ruleBlock RCURL

{RuleStructure($3, $6)}

| FOR identifier COLON expression block

{ForStructure($2, $4, $5)}

assignment:

 identifier ASSIGN expression

{Assignment($1, $3)}

| functionId ASSIGN block

{FunctionAssign($1, $3)}

program:

 assignment

{[$1]}

| program EOL assignment

{($3::$1)}

9.3 ast.mli
type javaType =

 JavaVoid

| JavaBool

| JavaInt

| JavaFloat

| JavaString

| JavaInvalidType

| JavaCollection

| JavaEnumItem

| JavaEnum

| JavaStruct

| Indeterminate

type identifier =

 Identifier of string

type functionId =

 FunctionIdentifier of string * identifier list

type expression =

 Integer of int

| Boolean of bool

| Floating of float

| StringString of string

| IdExpr of identifier

| Collection of expression list

| CollectionBounds of expression * expression

| Enum of identifier list

| ParenExpr of expression

| Struct of structDef list

| Cast of expression * string

| Input of string

| Negate of expression

| Invert of expression

| BinaryOp of binaryOperation

| Increment of expression

| Decrement of expression

| CollectionIndex of identifier * expression

| Lookup of identifier * expression

| FunctionCall of functionId

and structDef =

 StructDef of string * expression

and binaryOperation =

 Plus of expression * expression

| Minus of expression * expression

| Times of expression * expression

| Divide of expression * expression

| Mod of expression * expression

| And of expression * expression

| Or of expression * expression

| Neq of expression * expression

| Eq of expression * expression

| Lt of expression * expression

| Gt of expression * expression

| Leq of expression * expression

| Geq of expression * expression

type statement =

 Expression of expression

| LocalVar of assignment

| Update of update

| Output of expression

| Return of expression

| IfStructure of ifStatement list

| WhileStructure of expression * block

| RuleStructure of assignment list * ruleBlock list

| ForStructure of identifier * expression * block

and block =

 Block of statement list

and ruleBlock =

 RuleBlock of expression * block

and assignment =

 Assignment of identifier * expression

| FunctionAssign of functionId * block

| Empty

and update =

 PlusUp of identifier * expression

| MinusUp of identifier * expression

| TimesUp of identifier * expression

| DivideUp of identifier * expression

and ifStatement =

 IfStatement of string * expression * block

type program =

 assignment list

9.4 cardigan.ml

9.5 Makefile
cardigan_ : cardigan.ml ast.mli parser.mly scanner.mll

ocamllex scanner.mll

ocamlyacc parser.mly

ocamlc -c ast.mli

ocamlc -c parser.mli

ocamlc -c scanner.ml

ocamlc -c parser.ml

ocamlc -c cardigan.ml

ocamlc -o cardigan_ parser.cmo scanner.cmo cardigan.cmo

parser.cmi : ast.cmo

%.cmo : %.ml

ocamlc -c $<

%.cmi : %.mli

ocamlc -c $<

ast.cmo :

ast.cmx :

.PHONY : clean

clean :

rm -f cardigan_ parser.ml parser.mli parser.output \

scanner.ml testall.log *.cmo *.cmi *.out *.diff tests/

*.class\

tests/*.diff tests/*.out tests/Test*.java tests/Fail*.java

.PHONY : test

test :

./testall

.PHONY : testk

testk :

./testall -k

.PHONY : all

all : clean cardigan test

.PHONY : allk

allk: clean cardigan testk

9.6 Java Libraries
cCollection.java

import java.util.Collections;

import java.util.LinkedList;

public class cCollection {

public LinkedList<Object> collectionContainer = new

LinkedList<Object>();

public cCollection(){

this.collectionContainer=new LinkedList<Object>();

}

public cCollection(Object[] args){

for (int i=0; i< args.length; i++){

this.collectionContainer.add(args[i]);

}

}

public cCollection(int low, int high){

for (int i=low; i<high; i++){

this.collectionContainer.add(i);

}

}

//append(x) - Adds x to the end of the collection.

public void append(Object x) {

this.collectionContainer.add(x);

}

//push(x) -- Adds x to the head of the collection.

public void push(Object x) {

this.collectionContainer.push(x);

}

//pop() - Removes the first element of the collection and

returns it.

public Object pop() {

return this.collectionContainer.poll();

}

//peek() -- Returns but does not remove the first element

of the collection

public Object peek() {

return this.collectionContainer.peek();

}

//popLast() -- Removes and returns the last element of the

collection.

public Object popLast() {

return this.collectionContainer.pollLast();

}

//size() -- Returns the size of collection

public int size(){

return this.collectionContainer.size();

}

//get(index) -- Returns the element in collection

public Object find(int index){

return this.collectionContainer.get(index);

}

public void shuffle(){

Collections.shuffle(this.collectionContainer);

}

}

cEnum.java

import java.util.HashMap;

public class cEnum {

public HashMap<String, EnumType> enumContainer = new

HashMap<String, EnumType>();

public void add(String p, String id){

EnumType enumType = new

EnumType(this.enumContainer.size()+1, id);

this.enumContainer.put(p, enumType);

}

public EnumType find(String k){

return this.enumContainer.get(k);

}

}

cFunction.java

public interface cFunction {

Object function();

}

cInput.java

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

public class cInput {

public int cInputInt(){

int result = 0;

boolean valid = false;

InputStreamReader isReader=new

InputStreamReader(System.in);

String input = "";

try {

while(!valid){

input=new

BufferedReader(isReader).readLine();

try{

result=Integer.parseInt(input);

valid=true;

}catch(NumberFormatException e){

System.out.print("Invalid input, please

try again!\n");

}

}

} catch (IOException e) {

}

return result;

}

public float cInputFloat(){

float result = 0;

boolean valid = false;

InputStreamReader isReader=new

InputStreamReader(System.in);

String input = "";

try {

while(!valid){

input=new

BufferedReader(isReader).readLine();

try{

result=Float.parseFloat(input);

valid=true;

}catch(NumberFormatException e){

System.out.print("Invalid input, please

try again!\n");

}

}

} catch (IOException e) {

}

return result;

}

public String cInputString(){

String result="";

InputStreamReader isReader=new

InputStreamReader(System.in);

try {

result=new BufferedReader(isReader).readLine();

} catch (IOException e) {

}

return result;

}

public boolean cInputBool(){

boolean result = false;

boolean valid = false;

InputStreamReader isReader=new

InputStreamReader(System.in);

String input = "";

try {

while(!valid){

input=new

BufferedReader(isReader).readLine();

if(input.equals("true")||

input.equals("false")){

result = Boolean.parseBoolean(input);

valid = true;

}

else{

System.out.print("Invalid input, please

try again!\n");

}

}

} catch (IOException e) {

}

return result;

}

}

cStruct.java

import java.util.HashMap;

public class cStruct {

public HashMap<String, Object> propertyContainer = new

HashMap<String,Object>();

public HashMap<String, cFunction> functionContainer = new

HashMap<String,cFunction>();

public void addProperty(String name, Object value){

this.propertyContainer.put(name, value);

}

public Object findProperty(String name){

return this.propertyContainer.get(name);

}

}

EnumType.java

public class EnumType {

public int enumValue;

public String enumIdentifier;

public EnumType(int value, String id) {

// TODO Auto-generated constructor stub

this.enumValue = value;

this.enumIdentifier = id;

}

}

9.7 Cardigan script (compilation)
#!/bin/sh

CARDIGAN="./cardigan_"

Set time limit for all operations

ulimit -t 30

Set script to exit immediately upon failure

set -e

Usage() {

 echo "Usage: testall [options] [.crd files]"

 echo "-k Keep intermediate files"

 echo "-h Print this help"

 exit 1

}

filename="$1"

basename=`echo $1 | sed 's/.*\\///

 s/.crd//'`

reffile=`echo $1 | sed 's/.crd$//'`

basedir="`echo $1 | sed 's/\/[^\/]*$//'`/"

javafile=`echo $basename |sed -e 's/^//g' -e 's/-/_/g'`

ajavafile=`echo $javafile | perl -pe 's/\S+/\u$&/g'`

newjavafile=`echo $ajavafile | perl -pe 's/([^])_([a-z])/

\\1\\u\\2/g'`

rawjava=$newjavafile.java

make clean

make cardigan_

$CARDIGAN $filename

cd $basedir

echo $rawjava

echo `javac $rawjava`

echo `java $newjavafile`

