
	

	

	

	

	

Stint	

Language	
 Reference	
 Manual	

	

	

	

	

	

	

	

	

	

	

Jiang	
 Wu,	
 jw3026	

Ningning	
 Xia,	
 nx2120	

Sichang	
 Li,	
 sl3484	

Tingting	
 Ai,	
 ta2355	

Yiming	
 Xu,	
 yx2213	

	

	

	

	

Oct.	
 25th,	
 2012

Table	
 of	
 Contents	

1.	
 Introduction	
 ...	
 1	

2.	
 Lexical	
 Conventions	
 ..	
 1	

2.1	
 Identifiers	
 ...	
 1	

2.2	
 Comments	
 ...	
 1	

2.3	
 End-­‐of-­‐Statement	
 ..	
 1	

2.4	
 Comments	
 ...	
 1	

2.5	
 Constants	
 ..	
 1	

3.	
 Data	
 Type	
 &	
 Conversion	
 ..	
 2	

3.1	
 Data	
 Types	
 ..	
 2	

3.2	
 Type	
 Conversions	
 ..	
 2	

4.	
 Expressions	
 &	
 Operators	
 ...	
 3	

4.1	
 General	
 Operator	
 ...	
 3	

4.2	
 Numeric	
 Operator	
 ...	
 3	

4.3	
 String	
 Operator	
 ..	
 4	

4.4	
 Boolean	
 Operator	
 ..	
 5	

4.5	
 Precedence	
 ...	
 5	

5.	
 Declarations	
 ...	
 5	

5.1	
 Variable	
 Declaration	
 ..	
 5	

5.2	
 Function	
 Declaration	
 ...	
 6	

6.	
 Statements	
 ..	
 6	

6.1	
 Expression	
 Statement	
 ...	
 6	

6.2	
 If	
 Statement	
 ..	
 6	

6.3	
 While	
 Statement	
 ..	
 6	

6.4	
 Break	
 Statement	
 ..	
 6	

6.5	
 Open	
 Statement	
 ..	
 7	

6.6	
 Close	
 Statement	
 ...	
 7	

6.7	
 Return	
 Statement	
 ..	
 7	

7.	
 Functions	
 ..	
 7	

7.1	
 Function	
 Definition	
 ...	
 7	

7.2	
 Build-­‐in	
 Functions	
 ...	
 8	

8.	
 Scope	
 ..	
 8

	

1	

1. Introduction
The programming language Stint is a text-processing language, which contains a
useful collection of built-in string manipulation functions. Stint provides efficient
solutions for manipulations and conversions between the most common-used data
types: string and int. When processing textual data and test file, Stint shows its
advantages in several aspects:
 Intelligently distinguish between string and int.
 Provide a simple and direct way to do mathematic operations for numbers in

string without extracting them and transferring data type.
 Define more effective text-manipulation via operators. Meanwhile, maintain

traditional string features and functions.
 Make input and output functions more convenient.

2. Lexical Conventions
2.1 Identifiers
An identifier can only include 26 alphabets in lower or upper case (a-z, A-Z), digits
(1-9), and underline (‘ _ ’); the first character must be alphabets in lower case.

2.2 Comments
Double-slash (“ // ”) is the only comment sign, and it only works for single line.

//This is a comment
open “data.txt”; // can append to a statement

2.3 End-of-Statement
Semicolon (“ ; ”) is used to indicate the end of one statement.

2.4 Keywords
The following identifiers are reserved as keywords/special function and may not be
used otherwise:

int string boolean
if else return
while open close
false true std
eof break void

2.5 Constants
In Stint, there are 3 types of constants: integer constant, string constant and boolean
constant.
2.5.1 Integer Constants
An integer constant consists of a sequence of numbers without a decimal point.

int n = 100; // 100 is an integer constant

2.5.2 String Constants
A string constant is enclosed in double quote marks (“ “ ” ”).

// below are examples of string constants
string str = “This is a string”;
string title = “Product Name\tPrince\t\n”;

	

2	

Stint also contains the following escape sequence as constants in order to represent
some special characters such as new line, tab and backslash:

Table 1. Escape Sequence in String Constants
Character Name Escape Sequence

Newline \n
Horizontal tab \t

Double quotation marks \”
Backslash \\

2.5.3 Boolean Constants
The reserved boolean constants are true and false.

boolean a = true;
boolean b = false;

3. Data Type & Conversion
3.1 Data Types
There are three types of data in Stint – integer, string and boolean.
3.1.1 Integer
In Stint, the only supported integer type is int, which represents a sequence of digits.
Integers are signed and with fixed size of 32 bits.
3.1.2 String
The string in Stint is defined as a sequence of ASCII characters enclosed in double
quotes, e.g. “abc”. A string can have potentially unlimited length as long as the
computing resource, e.g. memory, allows.
A string in Stint is a dynamic structure, which keeps a list of sub-strings or integers.
Stint predefined some special operators in order to modify or search the sub-strings
dynamically, e.g. “ .< > ” (extracting), “ | ” (splitting), “ # ” (highlighting), etc.
(See details in Section 4.3)
3.1.3 Boolean
A boolean type can take either true or false as its value, which is used for
condition determination.
Some main features of the three data types are illustrated in the table below.

Table 2. Summary of Data Type in Stint

Primitive Types Length Range Default Value

int 32 bits -2147483648 to 2147483647 0

string >= 8 bits Any permutation of ASCII
characters “” (empty)

boolean 8 bits true or false false

3.2 Type Conversion
In Stint, there are two types of conversions, i.e. from integer to string and from
boolean to string, both of which are done implicitly. No explicit conversion is allowed.
All other invalid type conversions, e.g. from string to integer or from integer to
boolean, will lead to a compilation error.

	

3	

3.2.1 Integer-to-String
An integer can be converted to a string implicitly, but not vice versa. After casting,
the new variable name cannot be the same as the original one; otherwise there will be
a compilation error.

int num = 12;
string snum = num; // snum = “12” after conversion.

string snum = “12”;
int num = snum; // this assignment is invalid

Besides assigning, the implicit conversion can be done automatically as well when an
integer is used in a string operation.

int num = 12;
string snum = “abc” + num; // snum = “abc12”

Even though a string cannot be converted into an integer directly, this conversion can
be done by using a special operator defined in Stint, i.e. “ .< > ”. (See details in
Section 4.3)
3.2.2 Boolean-to-String
A boolean value can be converted to a string, but not the other way around.

boolean b = true;
string s= b; // s = “true” when b is true

Trying to convert an integer or a string to a boolean will lead to a compilation error
though it seems make sense.

int n = 1;
boolean b = n; // Compilation error.

4. Expressions & Operators
4.1 General Expression
4.1.1 Assignment: destin = source

Copy and assign the value of source to destin.
4.1.2 Parenthesis: (expression)

Expression in parenthesis will be assigned a higher precedence than those isn’t in.
4.1.3 Equality: expr1 == expr2 expr1 != expr2

Check whether expr1 and expr2 have the same value.
4.1.4 Input Stream: >> source expr
4.1.5 Output Stream: << destin expr

The subject of stream is indicated by source/destin that can be file name or std
for standard I/O. Read a whole line from source to expr or write the content of
expr to destin.

4.1.6 Function Call: func-name (arg1, arg2, …)

4.2 Numeric Operator
4.2.1 Arithmetic Operator: expr1 + expr2 expr1 – expr2
 expr1 * expr2 expr1 / expr2

Basic arithmetic operation for integer: add, subtraction, multiplication, and
division.

	

4	

4.2.2 Relational Operator: expr1 > expr2 expr1 >= expr2
 expr1 < expr2 expr1 <= expr2

Compare expr1 and expr2 with above relations. Return a Boolean value.

4.3 String Operator
4.3.1 Position Indicator: @ position

Indicate specific position where the operation will be done. Use with string
operator “+” and “-” (See examples in 4.3.2/4.3.3).

4.3.2 Append (Insert): expr1 + expr2
expr1 + expr2 @ pos

Append expr2 to the end of expr1. When using “@”, append expr2 after the
character indicated by pos of expr1 (use as insert).
Use a number smaller than the lowest index (negative number) or larger than the
highest index will put expr2 at the head/tail of expr1.

str = “ab” + “c”; // str = “abc”
str = “ab” + “c” @ 0; // str = “acb”

4.3.3 Delete: expr1 – expr2
expr1 – expr2 @ pos

Delete the first expr2 in expr1. When using “@”, delete the first expr2 occurring
after the character indicated by pos in expr1 (not include this character).
The operator will give expr1 back if no matching of expr2 found in expr1.

str = “cabc” - “c”; // str = “abc”
str = “cabc” - “c” @ 1; // str = “cab”

4.3.4 Sub-string Extractor: [index]
[index , length]

Get the sub-string of a single character at index, or starting from index of length.
str = “abcd”; str = str[0]; // str = “a”
str = “abcd”; str = str[1, 2]; // str = “bc”

4.3.5 Integer Set Extractor: .< index >
Get the set of integer with index.

string str = “a12b56c”;
int integer = str.<0>; // integer = 12

4.3.6 String Set Extractor: < index >
Get the set of string with index. Set of string may vary with user’s setting (see
detail in 4.37/4.38).

4.3.7 String Splitter: string | sep
Change the set of string as sub-strings separated by sep. Return the amount of sets
having been split.

string str = “this is a sentence in string”;
int num = str | “ ”; // num = 6
string temp = str<0>; // temp = “this”
temp = str<4>; // temp = “sentence”

	

5	

4.3.8 String Finder: string # substr
Change the set of string as all sub-strings equaling substr. Return the number of
substr in string.

string str = “this is his thesis”;
int num = str # “is”; // num = 4
str<2> = “er”; // str = “this is her thesis”

4.3.9 String Remover: ~ expression
Remove expression from the string it belongs to.

string str = “a12b56c”;
~str.<0>; // str = “ab56c”
~str[0, 3]; // str = “6c”

4.4 Boolean Operator
4.4.1 And: expr1 && expr2
4.4.2 Or: expr1 || expr2
4.4.3 Not: ! expression

4.5 Precedence
The precedence of above operators is typically in the following order from high to
low. All three boolean operators are in the same order, so they are not included in the
table below.

Table 3. Precedence of Stint Operators
Precedence Operator

1 (highest) ()
2 | , #
3 [], < >, .< >
4 *, /
5 +, -
6 >, >=, <, <=, ==, !=

7 (lowest) =, <<, >>

5. Declarations
5.1 Variable Declaration
Variables must be declared before they are used in the program. A variable
declaration has the following form:

var_type var_name;
The var_type can be int, boolean or string. The var_name can be any valid
identifier. If a variable is declared, in the following assignment, value assigned to the
variable must have exactly the same type as declared. Otherwise, it’s a syntax error. A
single semicolon must be followed by the declaration.
Variables can also be initialized during the declaration. A declaration with
initialization has the following form:

var_type var_name = expression;

	

6	

The expression must have exactly the same type as var_type. Otherwise, it’s a syntax
error.

5.2 Function Declaration
A function declaration has the following form:

return-type function-name (type parameter1, type_parameter2….)
The detail of this part is talk in section 7.1.

6. Statements
6.1 Expression Statement
An expression statement is composed of primary expressions separated by a single
semicolon at the end of each expression.

6.2 If Statement
If statement consists of keywords if and else. It has the following two varieties:

if (expression) {
 statement

}
if (expression) {

statement1
} else {
 statement2
}

The expression must be of boolean. Statements must be surrounded by open and
closed curly bracket. In the first case, if the expression is evaluated to true, then
statement is executed. Otherwise statements after the if statement is executed. In the
second case, if the expression is evaluated to true, then statement1 is executed,
otherwise statement2 is executed.

6.3 While Statement
While statements consists of keyword while and it allows a statement to be executed
for any number of times. It has the following format:

while (expression) {
 statement
}

The expression must be boolean. Statements must be surrounded by open and
closed curly bracket. The expression is evaluated before the execution of the
statement and statement will be executed until the expression is evaluated to false.

6.4 Break Statement
Break statement consists of keyword break. It’s used to jump out of the while loop.
It’s followed by a single semicolon. The following is an example of using break
statement:

while (true) {
 break;
}

	

7	

6.5 Open Statement
Open statement consists of keyword open. It’s used to open a file. It takes a string as
the file name. It has the following format:

open filename

6.5 Close Statement
Close statement consists of keyword close. It’s used to close a file. It takes a string
as the file name. It has the following format:

close filename

6.7 Return Statement
Return statement consists of keyword return. A function must have a return
statement to return its value to its caller. It can return an expression that is evaluated
to type int, bool or string, or it can return nothing when the function uses void
as its return type.

return expression;
return;

The return statement must be followed by a single semicolon.

7. Functions
7.1 Function Definition
A function in Stint is typically the same as a function in C or a method in Java. It
takes a series of parameters and returns a value after execution of the code within the
function.
The signature of a function is as follows:

return-type function-name (type parameter1, type_parameter2….)
{
 statements
 ……
 return value;
}

All functions have global scope within the program it was create. And the names of
functions are unique among all the functions and variables.
The return type must be one among void, int, string, and boolean. We
suggest to use boolean as the return type to replace void, true indicating
execution success, otherwise false.
The body of a function must be included in a “ { } ” just like C and Java do. The
variables defined within the body of a function have local scope. That’s to say, all
variables have the same local scope. We don’t recommend creating variables in the
body of a function except for temporary variables. If a function with variable
definitions within its body gets called multiple times, these variables will be
reinitiated.
All program will start from boolean main() function. Return true means
program terminates successfully.

	

8	

7.2 Build-in Functions
- string ReadFile(string filenme)

This function is used to get a line of content from a file certain opened. A pointer
variable will add itself every time after this function is executed. If it has reached
the end of a file, the return value became eof.

- boolean PrintFile(string s, string filename)
This function is used to print String s to the end of a text file. It can be a file that
hasn’t been opened yet, the function will automatically do the rest of work.

- string toUpperCase(string s)
The return string will be the same as input screen but in all upper case.

- string toLowerCase(string s)
Similar as toUpperCase(), this one return string s with all characters in lower case.

- boolean replceAll(string dest, string s)
This function is used to replace all the matched sections in dest to s.

8. Scope
In Stint, the scope is defined as the region within a program in which a certain
identifier/function can be accessed.
All identifiers are of local scope, i.e. they can only be accessed within the function
body in which it is declared. The local scope is confined by the nearest pair of curly
brackets. Identifiers/variables cannot be accessed until declared.
Functions are of global scope from the position they are defined till the end of code.
Function calls are possible as long as the target function has been defined before the
current position.

