
1

Cb

Programming for musicians.

Language Reference Manual

Mehmet Erkilic (me2419)

Marcellin Nshimiyimana (mn2587)

Kyle Rego (kar2150)

Cole Diamond (cid2105)

Matthew Cowan (mpc2145)

2

Table of Contents
Introduction ... 4

Lexical Conventions ... 4

Whitespace .. 4

Comments ... 4

Identifiers .. 4

Keywords .. 5

Literals ... 5

Constants ... 5

Integer constant .. 5

Operators ... 6

Punctuators ... 6

Meaning of Identifiers ... 6

Disambiguating Names .. 6

Lexical Uniqueness .. 6

Method Scope .. 6

Types ... 7

Declarations ... 8

Declaration Syntax ... 8

Blocks .. 8

Scope .. 9

Identifier Naming ... 9

Expressions ... 9

Primary expressions .. 10

Identifier ... 10

Constant .. 10

Parenthesized expression ... 10

Postfix .. 10

Function Calls ... 10

Subscripting ... 11

Direct Selection ... 11

3

Unary Operations ... 11

Whole-Step Increment/Decrement Operations .. 11

Octave Increment/Decrement Operations .. 11

Binary Operations .. 12

Add and Subtract .. 12

Multiply, Divide and Modulus .. 12

Augmentation Operator ... 12

Relational Comparisons ... 13

Equality Comparisons .. 13

Logical Operators .. 13

Assignment ... 13

Commas .. 14

Expressions of the form [Operation]-Equals .. 14

Statements ... 14

Expression statement .. 14

Compound statement .. 14

Conditional statement .. 15

While statement ... 15

Foreach statement ... 15

Return statement ... 16

Appendix .. 17

parser.mly .. 19

4

Introduction
The Cb language is designed to be the most intuitive language for a musician to not

only write basic music quickly with a focus on chord creation and manipulation, but

include more algorithmic music compilation as naturally as possible. This manual

describes the syntax for the Cb language.

Lexical Conventions

Whitespace

Spaces, tabs, and newlines (collectively, “white space”) are ignored except when used

as separators. Separators are white space that is needed to separate otherwise

adjacent identifiers, keywords, and constants.

Comments

A comment, whether single or multiline, goes between <- characters, which indicates

the start of it and ->, which indicate the end. The comment can be placed anywhere

in the program as long as it is between these two characters. Comments do not nest

and are ignored.

Ex:

<- create a chord with three notes with a duration of 1/8

 note that the duration of the chord overrides that of the notes->

Note c = (C, 0, HALF);

Note g = (G, 0, HALF);

Note e = (E, 0, HALF);

Chord cr = (c, g, e, EIGHTH)

Identifiers

In Cb language, an identifier is a sequence of letters, digits, and underscores “_”.

An identifier must start with a letter or an underscore and may not start with a

number. There is no limit on how long an identifiers can be.

Below is the list of characters allowed in creating an identifier:

a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z _
0 1 2 3 4 5 6 7 8 9

Ex: nice_note, NICE_note, and _NOTE2 are acceptable identifiers. However,

5

1nicenote and 2nicenote are not acceptable identifiers

Keywords

Keywords are identifiers used for specifying the types of expressions and for including

methods from an external packages. These keywords listed below are reserved for Cb,

which means that they cannot be used as normal identifiers.

Int is isnt

Note if meth

Chord else return

Scale while compose

Stanza foreach end

Score in elsif

and or use

Literals

Cb uses only Integer literals that consist of a sequence one or more digits.

Constants

Integer constant

Cb has a set of Integer constants that are used to represent basic notes and known

durations of notes. These can also note be used as normal identifiers. Below is a list of

Integer constants:

A B C D E F G

A# B# C# D# E# F# G#

Ab Bb Cb Db Eb Fb Gb

A rest pitch constant is "R"

Note rest = (R, 0, HALF); <-Create a half note rest ->

<- the octave here doesn’t matter ->

SIXTEENTH EIGHTH QUARTER HALF WHOLE

6

Operators

An operator specifies an operation to be performed. Operators are described in

depth in the Expressions section.

Punctuators

A punctuator is a symbol that adds semantic value to the expression or statement that

it belongs to, but does not perform an actual operation. These punctuators are used

in declaration and assignment of variables. Below is a list of Punctuators:

[] () . ;

Ex:

Note asharp = (A#, 0, QUARTER);

<- do re mi song ->

meth Stanza doremi(Int duration)

Note do = (C, 0, duration);

Note re = (D, 0, duration);

Note mi = (E, 0, duration);

Stanza s = [do, re, mi];

return s;

end

Meaning of Identifiers

Disambiguating Names

A Cb identifier is disambiguated mainly by the following characteristics: lexical

uniqueness and function scope

Lexical Uniqueness

Cb identifiers are created with a combination of Latin characters and the underscore

character as specified (and constrained) in the section, Lexical Conventions. All

identifiers are first disambiguated by its lexical name being different from all other

identifiers in the file.

Method Scope

Cb identifiers have nearly no scope (brackets have no effect on the life of a variable);

all variables are global to the file. However, a single exception is made to any variables

declared within a method to avoid the unintentional manipulation of values. This

decision was made to address the possibility of unwanted variable mutation. For

example:

7

meth Note test()

 Note n = (D, 0, whole*2);

 return n;

end

Note n = (C, 0, 1);

test();

Here, a note is declared twice; once while defining a method and once after defining

the method. Moreover, the method is subsequently called after the second

declaration. In this scenario, having method scope is important since it is likely that the

user does not want to let the method call alter the declaration/initialization of

identifiers he/she makes beforehand. In this situation, ‘n’ will still have a value (C, 0, 1).

Types

There is 1 basic type: integers, and there are 5 derived types: a Note, Chord, Scale,

Stanza, and Score. Their identifiers are listed below:

Type:

Int, Note, Chord, Scale, Stanza, Score

Basic Types

An integer specifies a whole, signed integer denoted by the keyword “Int”

Ex. Int x = 5;

Derived Types

A note is defined by a string representing a note constant, an integer ([-5, 5])

representing octave displacement, and a positive integer representing duration.

The duration value refers to a multiple of 1/64 (the 64th note). So a duration of 2 is

equivalent to a 32nd note and a value of 4 is equivalent to a 16th note. You may also

use the duration constants (SIXTEENTH, EIGHTH, …) to help you with defining the

duration of a note. You can also use the * operator to help ease the 1/64th base

multiples.

Ex. Note n = (A, -3, 72); Note n = (“C”, 2, HALF*2)

A chord is defined by a list of notes and a positive integer representing duration.

Ex. Chord c = ([n1, n2, n3], 70)

A scale is defined by a list of notes

Ex. Scale s = [n1, n2, n3]

8

A stanza is defined by a list of both chords and notes

Ex. Stanza sz = [n1, n2, c1, n3]

A score is defined by a list of stanzas

Ex. Score sc = [sz1, sz2, sz3]

lvalues

Identifiers may serve as an lvalue (short for ‘left value’), an expression referring to an

object. In the expression X1 = X2, the left operand, X1, is the lvalue (represented by

the identifier ‘X1’). Utilizing identifiers as an lvalue means that a user is able to modify

rvalues, the expression residing on the right side of an assignment statement.

Declarations

Declaration Syntax

Function definitions have the form:

function-definition:

 type identifier(parameter-listopt) compound-statement

parameter-list:

type-specifier identifier

parameter-list, type-specifier identifier

Type is one of the following keywords: int, bool, note, chord, stanza, scale, score

Identifier is a non-reserved alpha-numeric sequence as described in section X.X

Compound-statement is any legal code that returns a value of agreeable type with

the declaration.

Blocks

A block is a section of code enclosed by meth and end keywords. Blocks can be

nested within other blocks. Identifiers visible in an outer block are visible in the inner

block, but identifiers declared in the inner block will not be visible in the outer block

when the inner block ends.

9

Scope

The scope of an identifier is the subsequent statements within the block of code

where it is declared including blocks nested in that block. Declarations can appear

after certain keywords that open a block of code. These keywords are meth, while,

and foreach. When identifiers are declared in these expressions, the scope of the

identifiers is the block opened by the keyword. Scope does not extend to the

execution of function calls. At the beginning of a function’s execution, its parameters

will be the only identifiers in scope.

Identifier Naming

All identifiers within a block of code must be unique and a nested block’s identifiers

must not conflict with the identifier names in its parent block. This means that an

identifier is visible over its entire scope and cannot be hidden by a subsequent re-

declaration of the identifier.

Expressions
In Cb, expressions consist of one or more operators in tandem with operands.

Associativity rules determine precedence, but parentheses can override the default

orderings. The two most pervasive expressions in Cb are assignment expressions and

operation expressions. The table below outlines the associativity rules of the Cb’s built

in functions.

Tokens

 (Descending Priority)

Operators Class Associativity

Identifiers, constants,

parenthesized expression

Primary expression Primary

() [] . Function calls, subscripting,

direct selection

Postfix L-R

+ - * / % ^ Arithmetic and augmentation Binary L-R

is isnt Equality comparisons Binary L-R

< <= >= > Relational Binary L-R

and Logical And Binary L-R

or Logical Or Binary L-R

= += -= *= /= Assigment Binary R-L

10

Primary expressions

Identifier

An identifier typifies a primary expression. Its declaration calls for the specification of a

type of the identifier followed by the value of the identifier. It can refer to an lvalue or

a function designator.

Constant

An integer, decimal, character, or floating constant is a primary expression of constant

value. The capitalized letters A-G are constant expressions that each represent Notes

of default duration having pre-defined values associated with the notes A-G,

respectively. Naturally, Note constants are the most frequent example of constants in

Cb.

Parenthesized expression

A parenthesized expression is a primary expression of the form (expression). It can

be used to override precedence. For example, consider the two expressions below.

Expression 1: (note1 > note2) and (note3 < note2 or note3 < note1)

Expression 2: (note1 > note2 and note3 < note2) or (note3 < note1)

While the former will “and” the two subexpressions together, the latter will instead

apply the “or” operator to the result.

Postfix

Postfix calls can be function calls, subscripts or direct selection. An example of each,

respectively:

Note1.arpeggiate(2, 3);

Chord1[3] = Note1;

Chord1.length;

Function Calls

A function call is characterized by a primary expression followed by parentheses

enclosing an optional comma-seperated list of expressions. These expressions form

the arguments to the function. Each and every function in Cb must be declared

before it is called. The method signature must consist of [meth return_type

method_name (argument-expression-list). The argument expression list may either be

11

a single argument or a list of arguments. Additionally, the return argument must

match the return type in the method signature.

A copy of each parameter is created in advance of the function call. As result, Cb uses

argument-passing by value. Although a function may change the values of the

parameters, the changes will not affect the values of the parameters. Recursive

function calls are honored in Cb.

Subscripting

Only Chords and Stanzas can be operated on using the subscripting operation. For

example, subscripting applied to a Chord can be used to select a particular note. The

subscript operator allows both retrieval and mutation of elements.

Direct Selection

Pitch and duration in objects of type Note and Chord can be changed through

directly accessing the objects. For example, A.pitch += 2 will result in C. The same

paradigm applies to duration objects as well. Direct selection can be applied to Stanza

as well to access the length.

Unary Operations

Whole-Step Increment/Decrement Operations

Plus-plus (++) and minus-minus (--) operations of the form (expression)++ or

(expression)-- can be used for a variety of purposes. When applied to a Note, the

plus-plus or minus-minus operator will augment or diminish the Note, respectively.

Analogously, the plus-plus or minus-minus operator applied to a Chord will augment

or diminish each of the constituent Notes.

Ex:

Note n = (G, 0, 1);

n = n++;

<- Now n is the note with pitch of A ->

Octave Increment/Decrement Operations

Carrot-plus (^+) and Carrot-minus (^-) operations of the form (expression)^+ or

(expression)^- will shift a single Note or all constituent Notes of a Chord or Stanza up

12

or down an octave. Specifically, carrot-plus will shift up an octave while carrot-minus

will shift down an octave.

Ex:

Note n = (G, 0, 1);

n = n^+;

<- Now n is the note with pitch of G transposed up one octave ->

Binary Operations

Add and Subtract

Add and subtract binary operations can be applied to a multitude of objects. In

general, any object added to another object of the same type will result in the

concatenation of the two objects. For example, the plus operator applied to a Chord

or Stanza, the result is a concatenated or reduced sequence. When applied to a Note,

the Note is augmented or diminished by the argument of the expression. Chords can

be added to Stanzas through the add and subtract methods but number literals

cannot be added to chords, notes or stanzas.

The syntax is as follows:

Add-expression: add-expression + add-expression

Subtract-expression: subtract-expression – subtract-expression

Multiply, Divide and Modulus

Multiply can applied to Note, Chord, Scale and Stanza objects to create copies of the

instance as well as to numbers to apply regular multiplication rules. Division and

modulus can only be applied to real numbers.

The syntax for each of these expressions is analogous:

Multiply-expression: multiply-expression * multiply-expression

Divide-expression: divide-expression / divide-expression

Modulus-expression: modoulus-expression % modulus-expression

Augmentation Operator

The augmentation operator (^) can be applied to a note to augment the note by a

number of octaves or to a chord to transpose every constituent note by a number of

octaves. Note ^ (Number) or Chord ^ (Number) exemplifies the syntax of the carrot

operator. The range of allowable octaves for any note to assume the value of is -5 to

+5.

13

Relational Comparisons

Yields a Number result (1 if true, 0 if false) that uses the following syntax:

Relational-expression:

relational-expression < relational-expression

relational-expression > relational-expression

relational-expression >= relational-expression

relational-expression <= relational-expression

Equality Comparisons

Determines if two values are equal. Cb uses 1 to denote true and 0 to denote false.

The token “is” denotes equality while “isnt” denotes inequality.

The following rules govern equality relations:

Two Number objects are equal if they have the same value.

Two Note objects are equal if they have the same duration and pitch.

Two Chord objects are equal if they consist of the same notes for the same duration

Two Stanza objects are equal if they have the same chords and notes in the same

order.

Equality Comparisons take the following form:

Equality-expression is equality-expression

Equality-expression is not equality-expression

Logical Operators

The symbols “and” and “or” perform a logical and, or operation on two expressions,

respectively. If the expression evaluates to false, then a zero is returned. Otherwise, 1 is

returned. Lazy evaluations or “short-circuiting” is supported.

Logical-expression:

logical-and-expression and logical-and-expression

logical-or-expression or logical-or-expression

Assignment

Assignment is a right associative operation – the expression on the right is evaluated

and then used to set the lvalue. The rvalue must have the same type as the lvalue

since no casting is implicitly done.

14

Commas

Commas are used to separate list elements like parameters in a function or Notes in a

Chord. Consider, for example, Chord chord = ([noteA, noteB], dur). Moreover, a pair of

expressions separated by a comma is evaluated left-to-right and that the type and

value of the result are identical to the type and value of the right operand.

Expressions of the form [Operation]-Equals

The tokens “+=”, “-=”, “/=”, “*=” can be used to modify the state of a variable by a

given amount. For example, A += 2 will return a Note of value C with a default

duration. Each of the operators uses the pre-defined operations of addition,

subtraction, division and multiplication to compute the result.

Statements
Except as indicated, statements are executed in sequence. Statements are executed

for their effect, and do not have values. They fall into the following categories:

statement:

 expression;

 return expression;

 conditional-statement;

 while-statement

 foreach-statement

Expression statement

expression ;

Most statements take this form, as assignments or function calls. All side effects from

the expression are completed before the next statement is executed.

Compound statement

statement-list:

 statement

 statement-list statement

Inside methods and other structures there is the concept of multiple statements.

15

Conditional statement

elsif-statement:

 /* nothing */

 elsif-statement elsif (expr) statement-list

if (expr) statement-list elsif-statement END

if (expr) statement-list elsif-statement ELSE statement-list END

In both cases the expression is evaluated and if it is nonzero or the bool value of true,

the first substatement is executed. The elsif part is entirely optional. If included the

program will continue evaluating the expression specified for each elsif statement and

execute the statements of the block that evaluates to true or a nonzero number. If an

else clause is included its code will be executed if none of the prior elsif conditions or

the if condition were accepted.

While statement

while (expr) statement-list END

The while statement allows for looping over the statement-list as long as the expr

evaluates down to true. This means the expr evaluates to either a nonzero integer or

the bool value true.

Foreach statement

param-decl:

 DATATYPE ID

foreach (param-decl IN ID) statement-list END

The foreach statement allows for looping over all elements of the specified datatype

in the specified item.

16

Return statement

return expression ;

A function returns to its caller by means of the return statement, which must be of the

form expressed above. In Cb a value must be returned by all methods.

17

Appendix

Required built in method “compose”

The compose method on a score object terminates the program and allows the

compiler to write all of the contents of the score to the MIDI file. The compose

method takes an integer as its only parameter to represent the tempo (beats per

minute). All lines of code after this statement are ignored.

Example use of a package:

Assume there is a package called practice.pcb

<- create a scale that repeats n times, with increasing pitches.

 return a stanza with all scales comined.

 ->

meth Stanza doremi(Int octave, Int duration, Int n)

 Int o = octave;

 if (o == 5)

 o = 4;

 end

Note do = (C, o, duration);

Note re = (D, o, duration);

Note mi = (E, o, duration);

 Note fa = (F, o, duration);

 Note so = (G, o, duration);

 Note la = (A, o, duration);

 Note ti = (B, o, duration);

 Note upper_do = (C, o+1, duration);

 s = [do, re, mi, fa, so, la, ti, upper_do];

 Stanza st = [];

 Int c = 0;

 Note rest = (R, 0, whole);

 While(c < n)

 st.put(s);

 st.put(rest);

 s^+;

 c = c +1;

end

18

return st;

end

In a program called practice.cb:

<- include package.pcb->

use package.pcb

Int dur = quarter;

Int oct = 1;

Stanza drm = doremi(oct, dur, 3);

drm.compose();

19

parser.mly

%{ open Ast %}

%token <int> INTLITERAL
%token <int> OCTAVE /* integer between -5 and 5 */
%token <int> DURATIONINT /* positive intege x>0 */

%token <string> DURATIONCONST /* whole half etc. */
%token <string> DATATYPE
%token <string> NOTECONST /* Goes to string A or B or any note*/
%token <string> ID

%token IN
%token IF
%token ELSE NOELSE
%token WHILE FOREACH
%token ASSIGN
%token PLUSEQ
%token MINUSEQ
%token TIMESEQ
%token DIVIDEEQ
%token MOD
%token MODEQ
%token PLUS
%token MINUS
%token TIMES
%token DIVIDE
%token IS
%token ISNT
%token LT
%token LEQ

20

%token GT
%token GEQ
%token PLUSPLUS
%token MINUSMINUS
%token SHARP
%token FLAT
%token RAISE
%token LOWER

%token LEFTPAREN RIGHTPAREN LBRAC RBRAC
%token INT NOTE CHORD SCALE STANZA SCORE

%token METH RETURN END
%token PLUS MINUS TIMES DIVIDE

%token ASSIGN
%token VASSIGN /* Variable Assign only used for variable declaration */
%token SEMICOLON
%token COMMA DOT

%nonassoc NOELSE
%nonassoc ELSE
%nonassoc ELSIF
%left PLUSEQ MINUSEQ
%left TIMESEQ DIVIDEEQ MODEQ
%right ASSIGN
%left IS ISNT
%left LT GT LEQ GEQ
%left PLUS MINUS
%left TIMES DIVIDE MOD
%left PLUSPLUS MINUSMINUS RAISE LOWER
%left SHARP FLAT

21

%start program
%type <Ast_tmp.program> program /* ocamlyacc: e - no type has been declared for the start symbol `program'*/
%%

program:
{ [], [] }
| program vdecl { ($2 :: fst $1), snd $1 }
| program methdecl { TODO() }

methdecl:
 METH DATATYPE ID LEFTPAREN meth_params RIGHTPAREN statement_list END { create() }

meth_params:
 { [] }
 | param_list { List.rev($1) }

param_list:
 param_decl { [$1] }
 | param_list COMMA param_decl { $3 :: $1 }

param_decl:
 DATATYPE ID { TODO() }

statement_list:
 { [] }
 | statement_list statement { $2 :: $1 }

statement:
 expr SEMICOLON { TODO() }
 | RETURN expr SEMICOLON { Return($2) }
 | IF LEFTPAREN expr RIGHTPAREN statement_list elsif_statement %prec NOELSE END { TODO() }
 | IF LEFTPAREN expr RIGHTPAREN statement_list elsif_statement ELSE statement_list END { TODO() }
 | WHILE LEFTPAREN expr RIGHTPAREN statement_list END { TODO() }

22

 | FOREACH LEFTPAREN param_decl IN ID RIGHTPAREN statement_list END {TODO()}

elsif_statement:
 /* nothing */ { [] }
 | elsif_statement ELSIF LEFTPAREN expr RIGHTPAREN statement_list { TODO() }

vdecl:
 DATATYPE ID SEMICOLON {{ vartype = $1; varname = $2}}
 | NOTE ID VASSIGN LEFTPAREN NOTECONST COMMA OCTAVE COMMA duration_expr RIGHTPAREN SEMICOLON { TODO() }
 | INT ID VASSIGN INTLITERAL SEMICOLON { create($2) }/* int x = 5; */
 | CHORD ID VASSIGN LEFTPAREN LBRAC generic_list RBRAC COMMA duration_expr RIGHTPAREN SEMICOLON { TODO() }
 | SCALE ID VASSIGN LBRAC generic_list RBRAC { TODO() }
 | STANZA ID VASSIGN LBRAC generic_list RBRAC { TODO() }
 | SCORE ID VASSIGN LBRAC generic_list RBRAC { TODO() }

generic_list:
 { [%1] } /* cannot have empty */
 | generic_list COMMA ID { $3 :: $1 } /* Depends on the type of id */
 | generic_list COMMA ID TIMES INTLITERAL { TODO() }

duration_expr:
 DURATIONINT { $1 }
 | DURATIONCONST { $1 }
 | duration_expr PLUS duration_expr { Binop($1, Add, $3) }
 | duration_expr MINUS duration_expr { Binop($1, Sub, $3) }
 | duration_expr TIMES duration_expr { Binop($1, Mult, $3) }
 | duration_expr DIVIDE duration_expr { Binop($1, Div, $3) }

expr:
 ID { Id($1) }
 | ID DOT ID { TODO() }
 | INTLITERAL { TODO() }

| ID LBRAC expr RBRAC { ElemOp($1, $3) }

23

| ID LBRAC expr RBRAC ASSIGN expr { LElemOp($1, $3, $6) }
 | ID ASSIGN expr { TODO() }
 | expr PLUSEQ expr { Assign($1, BinOp($1, Add, $3)) }
 | expr MINUSEQ expr { Assign($1, BinOp($1, Sub, $3)) }
 | expr TIMESEQ expr { Assign($1, BinOp($1, Mult, $3)) }
 | expr DIVIDEEQ expr { Assign($1, BinOp($1, Div, $3)) }
 | expr MODEQ expr { Assign($1, BinOp($1, Mod, $3)) }
 | expr PLUS expr { BinOp($1, Add, $3) }
 | expr MINUS expr { BinOp($1, Sub, $3) }
 | expr TIMES expr { BinOp($1, Mult, $3) }
 | expr DIVIDE expr { BinOp($1, Div, $3) }
 | expr MOD expr { BinOp($1, Mod, $3) }
 | expr IS expr { BinOp($1, Eq, $3) }
 | expr ISNT expr { BinOp($1, NEq, $3) }
 | expr LT expr { BinOp($1, Less, $3) }
 | expr LEQ expr { BinOp($1, LEq, $3) }
 | expr GT expr { BinOp($1, Greater, $3) }
 | expr GEQ expr { BinOp($1, GEq, $3) }
 | expr PLUSPLUS { Assign($1, BinOp($1, Add, IntLiteral(1))) }
 | expr MINUSMINUS { Assign($1, BinOp($1, Sub, IntLiteral(1))) }
 | expr SHARP { TODO() }
 | expr FLAT { TODO() }
 | expr RAISE { TODO() }
 | expr LOWER { TODO() }
 | LEFTPAREN expr RIGHTPAREN { $2 }
 | ID LEFTPAREN actuals_opt RIGHTPAREN { TODO() }

actuals_opt:
 { [] }
 | actuals_list { List.rev $1 }

actuals_list:
 expr { [$1] }

24

 | actuals_list COMMA expr { $3 :: $1 }

25

