ENGI E1112 Departmental Project Report:
Computer Science/Computer Engineering

Gwen Pfetsch, Ivy Pan, Loren Weng
December, 2012

Abstract

The HP20b Business Consultant is a financial calculator with an
open source code; the hardware as well as the software has been made
public. The project centered on repurposing the functionalities of the
calculator so that it can behave like a RPN (Reverse Polish Notation)
calculator. Knowledge of the calculators hardware, which included its
processor, the LCD display screen, and the keyboard were analyzed
in order to better code the functionalities of the calculator. Using C
programming language and through a series of labs, the team moved
closer to making the calculator behave like that of a normal business
calculator and then, a RPN calculator. With a library of usable func-
tions to build on, the labs involved entering characters and waking
up the display screen, to manipulating a keyboard, to finally entering
and processing keypads and operations. Although the RPN calculator
was never completely achieved, the calculator is able to take one input
of a variable and the user is able to manipulate that variable with a
variety of operations.

1 Introduction

Hewlett-Packard, who published the HP20b Business Consultant, publicized
the source code as well as the hardware makeup, making it possible for users
to reprogram and manipulate the calculator functionalities.

In order to repurpose the calculator, communication between the calcula-
tor and a computer must be established. Professor Stephen Edwards of the
course has provided the team with the means of communication through a
JTAG port, which is a serial pad built onto the back of the HP20b that al-
lowed a connector to be soldered on. The USB-connect was able to transmit
information between the calculator and the computer.



Through a series of lab and using C programming language, the HP20b
gradually behaved more and more like a calculator with a working display
screen, recognizable key presses, and (limited) functioning operations. Pro-
fessor Stephen Edwards had initially provided the team with a library of
working functions that the team later built upon and modified, such as
led_put_char7, which allowed us to put a character on the screen. By building
and modifying code from previous labs, each step made the calculator regain
some of its original functionalities.

2 User Guide

The end result of the project was to make the calculator behave like an RPN
calculator; although the team did not reach that result, the calculator is able
to take a single input variable and the user can performs operations (+, -,
* /) on that variable. The RPN functions works by placing numbers into
storage units called stacks. There are four levels in an RPN stack. When the
user presses a key with an integer value, the value is stored in the first level.
In order to perform an operation on that integer, the user would proceed
to enter another integer, which would then be placed in the first level of the
stack and the previous integer would move up one level. The user then presses
an operation key and the operation is performed. Rather than pressing 2 *
3 = 6, RPN works by inputting 2 3 *. The resultant is then placed in the
first level of the stack and the other two values are popped out.

However, our calculator functions more like a normal business calculator
that is only limited to one variable. The user can take the variable, 4, and
perform operations such as (4, -, *, /) by first pressing the 4, the operation
key, and then the second integer. The team was able to implement the

functions by following a series of labs. The first lab allowed the user to enter
an input and have it displayed on the screen. The second lab involved waking
up the keyboard of the calculator so that it recognizes the location of key
presses and assigning each key on the keyboard with a character. The third
lab included modifying and building on the code of the previous two labs so
that the user could perform operations on a variable. The last lab, although
incomplete, sought to increase the complexity of the HP20b so that it could
behave like an RPN calculator.



3 The Platform

The calculators logic is handled by an Atmel ATmega 91SAMT7L128 micro-
controller clocked at 30 MHz. The SAMT7L128 is a surface-mounted, 144
pin, chip with 128 kB of onboard flash memory. The chip itself is de-
signed around 32-bit Advanced RISC Machines (ARM) architecture, a pop-
ular industry standard. Below is a complete schematic of the 20bs pinout:

i
£

R

Herar

EE!}% L

FTTTES

e

0
i
Ly
i

;i ;i:-ai i i
i

i!zg’is

00000000

Top View o the B

b ssmgen ig HE
1 il
i

-

This seemingly complicated circuit diagram can be simplified into a slightly
easier to interperate function block diagram  found below:



AT91SAM7L128

Block Diagram

TDI > -
DO - «—| ICE Charge
™E Jme [ ARM7TDMI PumD
ToK —f———» SCAN | Processor -
JTAGSEL -
Systam Controller Vtgang o *
— Regulator |a4—»
Ra = > 1.8V
N B | AlC Voltage | —
£ Regulator >
PCKO-PCKZ ] |—] v |
GLKN > Memary Controllar [+
SRAM
PLLRC — PLL PMC EmFb;gﬁsd Address =1 2 Kbytes| Back-up)
x;ﬂ# ;: OBC Contraller Dacoder 4 Kbytes (Core)
| Aban Misalignment
324 RCOSC Status Detection *
Flash
vDDICt =1 BOD 641128 Koyea [T
Supply
VODIOT —i] POR Cantroler
Paripharal Bridge
NRST - -
\mere N Peripheral Data ROM (12 Koytes)
o i Caontroller >
11 Channels Fast Flash
FWUP - Programming |
Intarface -+
VDDIO 1
APB b
- SAM-BA
S PWMC > >
DRXD a—f—=ln - -
DTXD (= - P
Timer Courter | -
PIOA (26 10s), e ] |1
— - o el
PIOB (24 IOs) L 4 il R
PIOC (30 10s) 0
P ] S B
— —_— | ||
SEGOO-SEG3T <+ |« PG |
COMO-COME =% - PDC | <
LCD Controlier : - <+
- sel > -
oo - |- > [eoc — [
scko <] |« »|  usamTo < [Poc] g bl i
ATSD —_— FDC il
CTS0 41— >
RXDT -+ = - PDC - >
TXD! L[ ADG = -
Sok! 2 - — b >
oA = USART1
i e > R )
DCD1 = >
D5R1 <1 >
DTRY | = [Fo5 ]
RiT > 4PDG

CAPP1
CAPM1
CAFFZ
CAPM2
VDDINLCD
VDD3Ve

VDDLCD

vDDI2

VDDIO1
GND
vDDoUT

VDDCORE
vDDIo2

VDDCORE

ERASE

PGMRDY
PGMNVALID
PGMNOE

PGMCK
PGMMO-PGM M3
PGMDO-PGMD15
FGMNCMD
PGMENO-PGMENZ

PWMO
PWM1
PWM2
PWM3
TCLKO
TCLK1
TCLK2
TICAD
TIoBO
TIOAY
TIOBY

TICAZ
TiOB2

TWD
TWCK

NPCS0
NPCS1
NPCS2
NPCS3
MISQ
MOSI
SPCK
ADTRG
ADO
AD1
AD2
AD3

ADVREF



The SAMTL128 receives its input from the calculators 37 tactile keys. Each

key consists of a momentary push button connected to an input matrix of
wires. When the keys are unpressed, the keyboard column is set to high.
When a key is pressed, the inputs corresponding to the buttons row and col-
umn are shorted, sending a voltage through the wires and allowing the micro-
controller to identify which key was pressed by running through each row and
checking for low inputs. Below is a circuit diagram of the keyboard matrix:

mowz Row3 nowa Rows

— L] L L]

— Wi

o

B g
£ i &
&

Bwa

2
i

ROWS

N 1% BV oMT v
count) (i — ot
o g I | = cshFI_:T'n';Dj IRR_O_’EI'_“j NEV *55%1 Bomi_o%_’l‘_;j % ‘?’B%j
e .——] L] INPUT ol ( i ) +/- -
o oo :} —1‘!1'5—} —dm'é—l —55'5—1 —bs'B—l -
ooz g 1] = up | me 7 _app g o 9 = /
—a ——— L 7 o | =% A
S B 1 1 ] ]
=== _a.’!-“g_l DOWN _6.’!..*,,_] § | s 5 | e p - X
oy B A | A% SHIFT| M 1] e 2 | g 3| e _
: ] - ] =) -
UUUUU P I N ,;g%_l ON/CE _aﬂj,_‘ 0 _a:z%_l . % = e .
LAl _] T 5 —F ﬁ
o g ] l

Using input from the keyboard, the calculator can then determine the correc-

tion action to take and displays any feedback on its 400 pixel LCD. The screen
itself contains 2 lines of display: the first line includes an 8-character scrolling
display as well as 11 indicators to indicate for functions such as low battery of
showing the unit measurement in degrees or radians; the second line includes
a 1243 digit 7-segment display with spaces in between for commas and deci-
mals.

AMRT

RCL



| INPUT = EB
== BEG STO RCL
RAD 360 RPN

1 0 'nnm oo -088

l-ll-ll-i ) 00 000
0000200000000 lll.ll

C

e e e e e e e e e e e e e e e e e o o o o o o o o o o o o o —
— — _ _ — — _ —
measisnasnannnannindnininbnnnnannnnnsnannansannininininiabnnnannsnnnannnninininininbnini R RnAR RN RR AN
1|HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHBO
Uyl gy g gyl Uiy

The LCD is directly controlled by the SAM7L128 using all 40 proprietary

LCD segment controller pins and an additional 10 general communication
pins. The provided keyboard library allowed us to easily display desired in-
formation without having to individually manipulate each pin. All of this

repurposing is made possible by the fact that the 20b PCB (Printed Cir-
cuit Board) provides access to both JTAG and RS-232 (serial) pads. By
soldering header pins to the JTAG interface we are given direct access to the
microcontroller allowing us to reprogram the onboard flash memory.

4 Software Architecture

The software architecture is made up of the Assembly Library, the LCD Li-
brary, the Keyboard Library, and the Programming level. The Assembly
Library conveys instructions to the computer via the processor. The LCD is
the system that displays strings and characters onto the screen. The Key-
board library is the architecture that we use to determine what key is pressed
and convert that to a character that will be displayed on the screen and ma-
nipulated by the calculator program. Finally, our program will implement
these libraries and interact with the user to make a working calculator.

5 Software Detalils

5.1 Lab 1: Hello World

In this lab we initialized the Hello World program. To do this we edited
Hello.c to display numbers. In the main method you set number to a num-




ber of type integer that you want to display. Then the main method runs
displayNum(number). In the method displayNum(int num), it first runs
clearScreen(), another method that uses a for loop to go through every space
on the display and uses led_put_char7( , i); to put a blank space in each slot.
After this clears the screen, the variable index is set to 11, which is the right
of the screen. The program will put digits in right to left. A new variable
origNum is made and set equal to the input number num, because num will
be manipulated. num becomes the absolute value of itself so that we can
take the modulus of it. An if statement is included so that if the number
is 0, ASCII_ZERO, which is a constant set at 48 because this is the ASCII
value of zero, is put in the index and we can end the method here. However
if the number is not zero, we use a while loop. The modulus of 10 of the
number is taken and put at the right-most index. Then the number becomes
itself divided by 10, and the index moves to the left. This continues until
the number is determined to equal 0. Because num is an integer, it will be
identified as 0 when it is a decimal value less than 1. Before the while loop
ends, an if statement will be read and if the original number was a nega-
tive value, a negative sign will be placed to the left of the number on the
screen. This method makes use of the led command led_put_char7(). main.c:

#include "ATILSAMTLLIZE.R"
#include "lcd.h"

#Finclude "math.h"

#define ASCII_ZERO 48

void displayNumiint’;
void clearScreeni );

int maing
1
led_init{ s
Sinum iz the number to be dizplaved
Aimax num = 2147483647, min num = -2147483647, limitation of C
int number = 18888,
displayNumnumber s

k
keyboard.c:



void displayMum(int num{
clearScreend );
Jindex iz the pozition of the number thaot will be outputted, 11 iz the right
int index = 11;
forignNum iz the original number, later uzed to check if the number was negao

Arfind the abzolute value of the number =zo that taking the modulus of the numt
hum = abs(num ) ;
Jfccount for the case if the number is B
if {num==8 1
led_put_char?{ASCII_ZERO, index ) ;

b
AAf ot B, use X108 to find individual digits and output them
elaef
while{hum! =83
led_put_char? {num’%18+4SCTI_ZERD , index ) ;
hnum = hum/18;
ihdex—=1;
if{num==A && or ighum-{
led_put_char?{ '~ ', index);
T
b
T

¥

Jrfinsert a space in all the spaces on the screen
void clearScreen( if
int i;
for{i =A;i=12;i++){
led_put_char?( ' ',i);
T
H

5.2 Lab 2: Listening to the Keyboard

To display numbers that are pressed by keys, we needed to write modifica-
tions to keyboard.c and main.c. First, we had to initialize all keys as being
high so that it can detect when a key is pressed. This was done by the
method all_columns_high() which uses a for loop to go through each column
and implements the method all keys_high() given to us in each column. Then
we created the method keyboard key() which returned a number that rep-
resented which key was being pressed. The method detected which key was
being pressed with nested for loops. The outer for loop goes through each

8



column. First all columns are reset to high with the method all

textunderscore columns_high(). Then one column was lowered using the
given method keyboard_column_low(i). Then it goes through each row to
see if the key being pressed is in the intersection of the lowered row and
the column it is reading. If it is, there is an if statement that returns the
number and exits the loop. If this if statement is never executed, 0 is re-
turned because this is what num is initialized as. This would mean that no
key is being pressed. For a nonzero number, the number is calculated by
the equation num = ((i+1)*10) + (j+1), where i would be the column of
the pressed key and j is the row. The last method that we implemented was
convert_to_char(int tempNum), which is called in main.c. This converts a
number to a character using a key map that we constructed. This map is a
list of arrays that mimics the keyboard. Using the number that was returned
in keyboard key(), this method determines its column by dividing it by 10
and subtracting 1, and its row by finding its modulus of 10 and subtracting 1.



void all_columns_khigh( f
int 1;
for{i =A;i<7;i++0f
kevboord_column_high{i};
b
}

int keyboord_key({
int ii;int jiint num=8;
for{i =A;i<7;i++ ) fcolunns
all_columns_bigh s
kevboard_co Lumn_ Lowd i
for(j =8;j=6;j++ { frows
if {lkeyvboord_row_read{j )
tiLn= o { 141 LA 4105
return num;

¥
¥

return num;

¥

char conwvert_to_char(int temphum)d

int column = tempNums18-1;

int row = temphum®l8-1;

char kevMap[?][6]={{'N','1",'p",'"P",'F' "'}, {'C",'T",'n",'B", "%, 'R},
{ITI’ITI’I{I’I}I’IHI’I{I}’{I'ﬁ'l’I?I’IEI’IQI’III"II’I I},{"‘."‘,‘q“,‘EI’IEI’I:’:I’I I}’
{ISI!Ij'I!IEI!ISI!I_I!I I}!{IfI!IEI!I'I!I=I!I+I!I I}};

return keyMap [column] [row];
1

In the main method, we added an infinite for loop. A variable x is set to the

value returned by keyboard key() and then convert_to_char(x) is run on x.
Unless x is 0, in which case no key was pressed, we use led_put_char7() to dis-

10



#include "ATILSAMTLLIZE.R"
#include "lecd k"

#include "kevboard.h"
#include "math.h"

#define ASCII_ZERO 45

void displayNumdint;
void clearScreend ;
int maing

d

int i;

A4 Dizable the watchdog timer
RATIIC_WDTC_WOMR = ATC_WDTC_WODIS;

led_init s
kevboard_init(;

led_print?{"SEE" y;

for (330 4
int x = keyboard_key{;
char keyChar = convert_to_char{x);
if (x1=0)
led_put_char?{keyChar, 43;
H

F

return A;

o dend main
play the character.

5.3 Lab 3: Entering and Displaying Numbers

In this lab we started to get the calculator actually working. Because we
never got to doing stacks, our calculator works by having one number that
we could manipulate with another by doing operations on the original. In
keyboard.c, we kept everything from lab 2 and added a few more meth-
ods. Omne such method is keylsOperator(), which acts as a Boolean to test
if the key pressed is an operator. We also have keylIsInt() which returns
true if the key is an integer. If the key is an integer, keyTolnt() is run

11



which converts the value of key to its integer value as it corresponds to the
keyboard. The handler generates the stored value that is being operated
on. The method starts with an if statement checking doSomething, which
is set to true in another method if an operator is pressed. A few if else
statements follow adjusting the value of finallnt for the case of the oper-
ator being an addition sign, subtraction, multiplication, division, or equal
sign. It then returns finallnt. keyboardget_entry() is used whenever a key
is pressed that will manipulate the stored value. It runs keyboard key()
and, if a key is pressed, checks if it is an operator or integer and assigns
the correct character value. If the key is an operator, Boolean whatHappen
is set to false. The else statement in this method is if no key was pressed.
If this is run and whatHappen is true, then doSomething is set to false.

12



#include "ATI1LSAMTLIZE .h"

#def ine KEYBOARD_COLUMMS Bx7f
#def ine KEYBOARD_ROWS Bx4B08fcAA
#define INT_MAX 21474535647

cohst unzigned chor kevboord_row_index[] = {11,12,13,14,15,26};
int tempInt=8;

char tempChar='+"';

int resultlnt=8;

char resultChar='+"';

int doSomething = 8;

int whatHappen = B;

int finallnt= A8;

Hztruct entry{

char operation="'";
int number=H;

add

void keyboord_initi)

d

tempInt=A;

resultInt =8;

finallnt =8;

resultChar = '+';

tempChar = '+';

doSomething =8;
A Initialize the kevboard: Columns are outputs, rows are inputs
ATI1C_BASE_PMC-=PMC_PCER = (uint32) 1 == ATY1C_ID_PIOC; /4 Turn on PIOC clock
ATIC_BASE_PIOC-=PI0_PER = KEYEBOARD_ROWS | KEYBOARD_COLUMNS; #/ Enoble control
ATILC_BASE_PIOC—=PI0_PPUDR = KEYBOARD_COLUMWS; /¢ Disable pullups on columns
AT91C_BASE_PIOC—=PIO_DER = KEYBOARD_COLUMNS; /¢ Make columns outputs
AT91C_BASE_PIOC—=PIO_PPUER = KEYEDARD_ROWS; ¢ Enable pul lups on rows

ATIIC_BASE_PINC-=PI0_ODR = KEYBOARD_ROWS; A Make rows inputs

ATI1IC_BASE_PIOC—=PI0_SO0DRE = KEYBOARD_COLUMNS; // Driwe all columns high

13



int handler{

S
if {addStack
addStack = 8;
stack .odd({resultInt};

if {doSomething )y

doSomething =8;
tempInt = 8;

Afoode if Lime to uze stacks; we didn't get to that point

F

pEe
templnt2=stack .pop( );
tempIntl = stack.pop s
if{resultChar =="+"')
stack .odd{tempIntl+tenpInt2h;

T
elze if{resultChar =='-"3{

stack .odd{tempIntl-tempInt2};
T

elze if{resultChar =='#"'3{

stack .odd{tempInti*tenpInt2};
T
elze if{resultChar =='/"{

stack .odd{tempIntl tempInt2h;
T
*
if{resultChar =="+"'}

finallnt +=rezsultlnt;

F

elze if{resultChar =='-"3
finalInt -=resultlnt;

F

elze if{resultChar =='#'3f
finallnt =resultInt*finallnt;
F
elze if{resultChar =='/"3
finalInt = 1888;//{int){{{double)finalInt ) resultInt’y;

F
elze if{resultChar =='="3{

finalInt = 1888;//{int){{{double)finalInt ) resultInt’y;
F

rezsultint = 8; 14
return finallnt;//stack.peek(;

return finallnt;



int keyboord_get_entry 3
int getkevy = kevboard_kew(;
if{getkey 1=A)S
if(keylzInt{getkey) && templnt == resultInt)d
tempInt*=18;
tempInt +=keyTolnt{getkey);
T
elze if {kevIslperator (getkey iy
tempChar = conwvert_to_char{getkey);
whatHappen = 1;
b
A¥elze if (keyIsENTER{getkey i
addStack =1;

Fad
s
glzef
rezsultInt = templnt;
AAif(finalInt ==B3{finallnt = resultInt;}
resultChar = tempChar;
if {whatHoppen )doSomething =1 ;whatHappen=A;%
s

return resultlnt;
¥

In main.c we first changed the infinite for loop. There are two values x and z;

z is the stored value and x is the value that changes z. Display num is first run
for z, the display number, then for X.

15



#include "ATILSAMTLLIZE.R"
#Finclude "lcd.h"

#include "kevboard.h"
#include "math.k"

#define ASCII_ZERD 43

void displayNumiint, int};
void clearScreen( ;
int maing

d

int 1i;

A7 Dizable the watchdog timer
EATOLC_WDTC_WOMRE = ATOLC_WDTC_WDDIS;

led_init;
kevboard_init( ;

led_print?{"SEE" y;//test print

int w=8;
for (30 4
int x = keyboard_get_entry( )/ temporary walue to perform operation on z
int z = handler(;//stored wariable to represent current number

displavbum{z,55;
if{xl=A0
L (!l =]
W=xy
displayNum(x,95;
A Aprevents from displaving @
¥
I
return 8;

F

16



void displayMum{int num, int lala)f

Ao learScreent );

Sfindex 11 is the right of the zcreen

int index = lala;

Jforighlum iz the original number, later uszed to check if the number was negat:

int or ighun=nun

A/find the agbzolute value of the number zo that taking the modulus of the numb
Hfhnt rezult in g negative number

b = abs(num ) ;

J/account for the case if the number iz B

if {rum==8 1
led_put _chor? {ASCII_ZERO, index ) ;

b
AAT not B, uze %18 to find individual digits and output them
elzef
while{hum!=83f
led_put_char? {num%18+45SCII_ZERD , index
num = humS18;
ihdex—=1;
if (num==8 &2 orighum=A){
led_put_char?( ="', index ) ;
T
T
b

¥

AAinzert g zpace in all the spaces on the screen
woid clearScreen( )d
int 1i;
for{i =8;i=12;i++3f
led_put_char?( ' ',i0;
T

6 Lessons Learned

This lab was a great experience for us. As aspiring engineers we were able
to see how to implement a program that has a real purpose. All of us are
currently studying computer programming, and to have this project while
studying Java or Python was interesting, because we could compare lan-
guages and see a good application of our programming skills. Group work

17



was also a learning process in this lab. We had to split up the work so that
everyone was working easily, so those who didn’t necessarily have a huge part
in writing the code would in turn work on the presentation, hardware, etc.

7 Criticism of the Course

A criticism we have is the difficulty of the project. Because none of us could
code in C we had a hard time with the learning curve. We weren’t able
to finish the last lab as well. It was also hard to complete a lab of this
magnitude in a group of four only meeting once a week. We also had a group
member drop out of the course, and so the inconsistency of a group member
not being there was tough. Otherwise we enjoyed the lab. It was a good,
although difficult, introduction and we all enjoyed learning matlab as well.

18



