

GAQ Language Reference Manual

1. Introduction

The GAQ language was invented to allow for easy, flexible survey creation and is

intended to have a broad range of applications. The Reference Manual is intended to

describe the GAQ Standard and is based off of the C Reference Manual. Since there are

many elements of GAQ that coincide with C, there will be parts of the C Reference

Manual quoted verbatim.

2. Lexical Conventions

The GAQ language is designed for readability and ease-of-use in mind and meant to be

quickly taught to non-programmers. Thus, each program will be stored in one file. There

is no concept of including separate translation units in separate files and linking them

together at this time, although that would be a useful feature to add in a future edition.

2.1 Tokens

There are six classes of tokens: identifiers, keywords, constants, string literals, operators,

and other separators. White space, as described below, is ignored except as it separates

tokens. Some white space is required to separate otherwise adjacent identifiers,

keywords, and constants. If the input stream has been separated into tokens up to a given

character, the next token is the longest string of characters that could constitute a token.

2.2 Comments

The characters /* introduce a comment, which terminates with the characters */

Comments do not nest, and they do not occur within string literals.

2.3 Identifiers

An identifier is a sequence of letters, digits, and the underscore, beginning with a letter.

Identifier names are case-sensitive and may have any length.

2.4 Keywords

The following identifiers are reserved for use as keywords, and may not be used

otherwise:

default

repeat

response

results_to_file

results_to_stdout

print

int

float

bool

string

yes

no

2.5 Constants

There are several kinds of constants. Each has a datatype.

· Integer-constants

· String Literals

· Floating-constants

· Boolean-constants

2.5.1 Integer Constants

An integer constant consists of a series of digits, taken to be decimal. It may be preceded

by a – character to represent negative integers. Its type is an int.

2.5.2 String Literals

A string literal, also called as string constant, is a sequence of characters surrounded by

double quotes. It is of type string and initialized with the given characters. The literals

are immutable and two identical string literals are not necessarily equal.

2.5.3 Floating constants

A floating constant consists of an integer part, a decimal point, a fraction part, and e or E,

and an optionally signed integer exponent. The integer and fraction parts both consist of

a sequence of digits. Either the integer part or the fraction part (not both) may be

missing; either the decimal point or the e and the exponent (but not both) may be

missing. The type is float.

2.5.4 Boolean constants

There are 2 boolean constants that are reference via keywords – true and false. Their

type is bool.

2.6 Whitespace

Whitespace is defined as the ASCII space, horizontal tab and form feed characters, as

well as line terminators and comments.

3 Syntax Notation
The syntax for specifying a full GAQ program is as follows:

 Program:
 declarationsopt questionopt footeropt

Thus, an empty program is an acceptable, though admittedly useless, program.

3.1 Meaning of Identifiers

Identifiers are used to refer to objects, also called variables. A variable is a location in

storage, and its interpretation depends on the type of the variable. The valid types for

variables are int, float, bool, and string. Variables must be assigned to when they are

declared.

3.2 Variable Declarations

Variable declarations are only allowed at the beginning of the program. Once the next

section, the question specification, begins, no further declarations are allowed.

Variable declarations are of the form

 variable-declarations:

 type identifier = constant;

where the constant needs to be of the same type as the variable type. The valid types for

variable declarations are int, float, and bool.

3.3 Question Specifications

3.3.1 Question Syntax

The questions in a GAQ program are specified in a nested fashion. Only one root

question is currently allowed.

Each question that will be asked to the user is represented as a string followed by the type

that it will be cast to. The response to each question will be stored in the implicitly-

declared response variable of type opt-type. Each answer will be able to access that

variable. When a new nested question is asked, a new response variable will be in the

scope, shadowing the one available for the previous question. The scope of the response

variable will begin after the response opt-type declaration and will be available for the

rest of the question, except when a nested question is in scope. For discussions about

how casting is done from the string response into the response variable, see the section on

casting below.

question:

 string-literal typeopt answer

3.3.1.1 Strings

A string is a sequence of characters surrounded by double quotes. It is of type string and

initialized with the given characters. The string can have references to variables in it

which will be evaluated at runtime. To reference a variable from within a string, the

variable identifier will be preceded by ${ and followed by }. To print the actual

characters of ${ and not have them interpreted as enclosing an identifier, they can be

preceded by a backslash. Thus, the question of “${hello}” would print the contents

of the variable identified by hello. Whereas the question of “\${hello}” would print

the string of characters: ${hello}. In order to print non-string variables inside

questions, they will implicitly be cast into strings. See the casting section below for the

exact definitions.

3.3.2 Answer Syntax

Each question is followed by a series of expressions enclosed in square braces.

 answer:
 [expression] answer

{answer-block}

3.3.2.1 Expressions

An expression can be either a constant, which is compared to the answer, or it can be an

expression based on other variables, in which case the response is saved as a string-literal

in the reserved identifier response.

expression:

 constant

 variable

 (type) variable

 expression operator expression

3.3.2.2 Operators

The following operators are available for use in expressions. Their use is the same as in

expressions in the C language.

Relational operators: < = , < , >= , > , == , !=

Logical operators: & (and), | (or) - apply only to float or int

Mathematical binary operators: + , -, *, / - apply only to float or int

3.3.2.3 Casting

Casting is allowed inside expressions. Explicit casts must be performed between each

type – bool, int, float, and string.
Casting to string

· bool will be cast to the strings “yes” and “no”.

· int will be cast to a string representation of an int, with an optional – followed by

a series of digits.

· float will be cast in the notation of optional negative sign followed by the integer

part, followed by a decimal, followed by the fractional part to the 4
th

 decimal

place.

Casting to an int

· bool will cast yes to 1 and no to 0.

· float will cast to the integer part of the float.

· string will cast to an integer in the same format as the C function atoi. Invalid

strings will cast to 0.

Casting to a bool

· int will cast to yes if they are non-zero, no otherwise.

· Casting of float to bool is not allowed.

· Casting a string to a bool will cast to yes if the string is “yes”, to no otherwise.

After each group of expressions in square braces, there will be a block of code called the

answer-block, discussed next. This block of code will be entered into only if the user‟s

response to the questions matches the constant in the square braces, if it is a constant, of

if the expression evaluates to true, if it is an expression.

3.3.3 Answer Block
Each block of code in the answer-block will consist of answer expressions, separated by „;‟

characters and further nested questions. An answer block can be empty, in the case of the final

answer block in the tree.

 answer-block :

 answer-expression;opt answer-block

 question

3.3.4 Statement
Expressions can take two forms. They can either be a variable identifier assigned an expression,

such as hello = 5+2; or a print output statement, described below.

 statement:

 identifier = expression;

 print (string);

3.3.5 Answer Expression
Expressions that are allowed inside the answer-block can take two forms. They can either be a

variable identifier assigned an expression, such as hello = 5+2; or a print output statement,

described below, or they can be the keyword repeat. Repeat must be the last expression in the

Answer Expression.

 answer-expression:

 statement

 repeat;

3.4 Program Footer

The program footer will be run after all questions are evaluated. This will be the place

where further variable assignments can be done and output operations will be performed.

It consists of a list of statements. The program footer is optional.

 footer:

 statementopt footer

4 Output

There is one way to print output in a GAQ program.

print (string);

This syntax will print the string inside of the parenthesis to stdout. The format of the

string is the same as in the question syntax and will do variable substitution before

printing the results. This form of printing can be done anywhere in the program –

following variable declarations, inside an answer-block, or following any question.

