
The C Language Reference Manual

Stephen A. Edwards

Columbia University

Fall 2010

Katsushika Hokusai, In the Hollow of a Wave off the Coast at Kanagawa, 1827

Language Design Issues

Syntax: how programs look

Ï Names and reserved words

Ï Instruction formats

Ï Grouping

Semantics: what programs mean

Ï Model of computation: sequential, concurrent

Ï Control and data flow

Ï Types and data representation

Part I

The History of C

C History

Developed between 1969 and 1973
along with Unix

Due mostly to Dennis Ritchie

Designed for systems programming

Ï Operating systems

Ï Utility programs

Ï Compilers

Ï Filters

Evolved from B, which evolved from BCPL

BCPL

Martin Richards, Cambridge, 1967

Typeless

Ï Everything a machine word
(n-bit integer)

Ï Pointers (addresses) and integers identical

Memory: undifferentiated array of words

Natural model for word-addressed machines

Local variables depend on frame-pointer-relative addressing: no
dynamically-sized automatic objects

Strings awkward: Routines expand and pack bytes to/from word
arrays

BCPL Example: 8 Queens
GET "libhdr"
GLOBAL { count:ug; all }

LET try(ld, row, rd) BE
TEST row=all
THEN count := count + 1
ELSE { LET poss = all & ~(ld | row | rd)

WHILE poss DO
{ LET p = poss & -poss

poss := poss - p
try(ld+p << 1, row+p, rd+p >> 1)

}
}

LET start() = VALOF
{ all := 1
FOR i = 1 TO 16 DO
{ count := 0

try(0, 0, 0)
writef("Number of solutions to %i2-queens is %i7*n", i, count)
all := 2*all + 1

}
RESULTIS 0

}

C History

Original machine, a DEC PDP-11,
was very small:

24K bytes of memory, 12K used
for operating system

Written when computers were
big, capital equipment

Group would get one, develop
new language, OS

C History

Many language features designed to reduce memory

Ï Forward declarations required for everything

Ï Designed to work in one pass: must know everything

Ï No function nesting

PDP-11 was byte-addressed

Ï Now standard

Ï Meant BCPL’s word-based model was insufficient

Euclid’s Algorithm in C

int gcd(int m, int n)
{
int r;
while ((r = m % n) != 0) {
m = n;
n = r;

}
return n;

}

“New syle” function
declaration lists number and
type of arguments.

Originally only listed return
type. Generated code did not
care how many arguments
were actually passed, and
everything was a word.

Arguments are call-by-value

Euclid’s Algorithm in C

int gcd(int m, int n)
{
int r;
while ((r = m % n) != 0) {
m = n;
n = r;

}
return n;

}

Automatic variable r

Allocated on stack when function
entered, released on return

Parameters & automatic variables
accessed via frame pointer

Other temporaries also stacked

← Ignored
n
m

FP → PC
r ← SP

Euclid on the PDP-11

.globl _gcd GPRs: r0-r7

.text r7=PC, r6=SP, r5=FP
_gcd:

jsr r5, rsave Save SP in FP
L2: mov 4(r5), r1 r1 = n

sxt r0 sign extend
div 6(r5), r0 r0, r1 = m ÷ n
mov r1, -10(r5) r = r1 (m % n)
jeq L3 if r == 0 goto L3
mov 6(r5), 4(r5) m = n
mov -10(r5), 6(r5) n = r
jbr L2

L3: mov 6(r5), r0 r0 = n
jbr L1 non-optimizing compiler

L1: jmp rretrn return r0 (n)

Euclid on the PDP-11

.globl _gcd

.text
_gcd:

jsr r5, rsave
L2: mov 4(r5), r1

sxt r0
div 6(r5), r0
mov r1, -10(r5)
jeq L3
mov 6(r5), 4(r5)
mov -10(r5), 6(r5)
jbr L2

L3: mov 6(r5), r0
jbr L1

L1: jmp rretrn

Very natural
mapping from
C into PDP-11
instructions.

Complex addressing
modes make frame-pointer-relative
accesses easy.

Another idiosyncrasy: registers were
memory-mapped, so taking address of a
variable in a register is straightforward.

Part II

The Design of C

Taken from Dennis Ritchie’s C Reference Manual

(Appendix A of Kernighan & Ritchie)

Lexical Conventions

Identifiers (words, e.g., foo, printf)

Sequence of letters, digits, and underscores, starting with a letter or
underscore

Keywords (special words, e.g., if, return)

C has fairly few: only 23 keywords. Deliberate: leaves more room for
users’ names

Comments (between /* and */)

Most fall into two basic styles: start/end sequences as in C, or until
end-of-line as in Java’s //

Lexical Conventions

C is a free-form language where whitespace mostly serves to
separate tokens. Which of these are the same?

1+2
1 + 2
foo bar
foobar

return this
returnthis

Space is significant in some language. Python uses indentation for
grouping, thus these are different:

if x < 3:
y = 2
z = 3

if x < 3:
y = 2

z = 3

Constants/Literals

Integers (e.g., 10)

Should a leading - be part of an integer or not?

Characters (e.g., ’a’)

How do you represent non-printable or ’ characters?

Floating-point numbers (e.g., 3.5e-10)

Usually fairly complex syntax, easy to get wrong.

Strings (e.g., "Hello")

How do you include a " in a string?

What’s in a Name?

In C, each name has a storage class (where it is) and a type (what it
is).

Storage classes:

1. automatic

2. static

3. external

4. register

Fundamental types:

1. char

2. int

3. float

4. double

Derived types:

1. arrays

2. functions

3. pointers

4. structures

Objects and lvalues

Object: area of memory

lvalue: refers to an object

An lvalue may appear on the left side of an assignment

a = 3; /* OK: a is an lvalue */
3 = a; /* 3 is not an lvalue */

Conversions

C defines certain automatic conversions:

Ï A char can be used as an int

Ï int and char may be converted to float or double and back.
Result is undefined if it could overflow.

Ï Adding an integer to a pointer gives a pointer

Ï Subtracting two pointers to objects of the same type produces
an integer

Expressions

Expressions are built from identifiers (foo), constants (3),
parenthesis, and unary and binary operators.

Each operator has a precedence and an associativity

Precedence tells us
1 * 2 + 3 * 4 means

(1 * 2) + (3 * 4)

Associativity tells us
1 + 2 + 3 + 4 means

((1 + 2) + 3) + 4

C’s Operators in Precedence Order

f(r,r,...) a[i] p->m s.m
!b ~i -i
++l --l l++ l--
*p &l (type) r sizeof(t)
n * o n / o i % j
n + o n - o
i << j i >> j
n < o n > o n <= o n >= o
r == r r != r
i & j
i ^ j
i | j
b && c
b || c
b ? r : r
l = r l += n l -= n l *= n
l /= n l %= i l &= i l ^= i
l |= i l <<= i l >>= i
r1 , r2

Declarators

Declaration: string of specifiers followed by a declarator

static unsigned

basic type︷︸︸︷
int︸ ︷︷ ︸

specifiers

(*f[10])(int, char*);︸ ︷︷ ︸
declarator

Declarator’s notation matches that of an expression: use it to return
the basic type.

Largely regarded as the worst syntactic aspect of C: both pre-
(pointers) and post-fix operators (arrays, functions).

Storage-Class Specifiers

auto Automatic (stacked), default
static Statically allocated
extern Look for a declaration elsewhere
register Kept in a register, not memory

C trivia: Originally, a function could only have at most three
register variables, may only be int or char, can’t use address-of
operator &.

Today, register simply ignored. Compilers try to put most
automatic variables in registers.

Type Specifiers

int

char

float

double

struct { declarations }

struct identifier { declarations }

struct identifier

Declarators

identifier
(declarator) Grouping
declarator () Function
declarator [optional-constant] Array

* declarator Pointer

C trivia: Originally, number and type of arguments to a function
wasn’t part of its type, thus declarator just contained ().

Today, ANSI C allows function and argument types, making an even
bigger mess of declarators.

Declarator syntax

Is int *f() a pointer to a function returning an int, or a function
that returns a pointer to an int?

Hint: precedence rules for declarators match those for expressions.

Parentheses resolve such ambiguities:

int *(f()) Function returning pointer to int
int (*f)() Pointer to function returning int

Statements

expression ;
{ statement-list }
if (expression) statement else statement
while (expression) statement
do statement while (expression);
for (expression ; expression ; expression) statement
switch (expression) statement
case constant-expression :
default:
break;
continue;
return expression ;
goto label ;
label :

External Definitions

“A C program consists of a sequence of external definitions”

Functions, simple variables, and arrays may be defined.

“An external definition declares an identifier to have storage class
extern and a specified type”

Function definitions

type-specifier declarator (parameter-list)
type-decl-list
{

declaration-list
statement-list

}

Example:

int max(a, b, c)
int a, b, c;
{

int m;
m = (a > b) ? a : b ;
return m > c ? m : c ;

}

More C trivia

The first C compilers did not check the number and type of
function arguments.

The biggest change made when C was standardized was to require
the type of function arguments to be defined:

Old-style

int f();

int f(a, b, c)
int a, b;
double c;
{
}

New-style

int f(int, int, double);

int f(int a, int b, double c)
{
}

Data Definitions

type-specifier init-declarator-list ;

declarator optional-initializer

Initializers may be constants or brace-enclosed, comma-separated
constant expressions. Examples:

int a;

struct { int x; int y; } b = { 1, 2 };

float a, *b, c;

Scope Rules

Two types of scope in C:

1. Lexical scope
Essentially, place where you don’t get “undeclared identifier”
errors

2. Scope of external identifiers
When two identifiers in different files refer to the same object.
E.g., a function defined in one file called from another.

Lexical Scope

Extends from declaration to terminating } or end-of-file.

int a;

int foo()
{
int b;
if (a == 0) {

printf("A was 0");
a = 1;

}
b = a; /* OK */

}

int bar()
{
a = 3; /* OK */
b = 2; /* Error: b out of scope */

}

External Scope

file1.c:
int foo()
{
return 0;

}

int bar()
{
foo(); /* OK */

}

file2.c:
int baz()
{
foo(); /* Error */

}

extern int foo();

int baff()
{
foo(); /* OK */

}

The Preprocessor

Violates the free-form nature of C: preprocessor lines must begin
with #.

Program text is passed through the preprocessor before entering
the compiler proper.

Define replacement text:

define identifier token-string

Replace a line with the contents of a file:

include " filename "

C’s Standard Libraries

<assert.h> Generate runtime errors assert(a > 0)
<ctype.h> Character classes isalpha(c)
<errno.h> System error numbers errno
<float.h> Floating-point constants FLT_MAX
<limits.h> Integer constants INT_MAX
<locale.h> Internationalization setlocale(...)
<math.h> Math functions sin(x)
<setjmp.h> Non-local goto setjmp(jb)
<signal.h> Signal handling signal(SIGINT,&f)
<stdarg.h> Variable-length arguments va_start(ap, st)
<stddef.h> Some standard types size_t
<stdio.h> File I/O, printing. printf("%d", i)
<stdlib.h> Miscellaneous functions malloc(1024)
<string.h> String manipulation strcmp(s1, s2)
<time.h> Time, date calculations localtime(tm)

Language design

Language design is library design.
— Bjarne Stroustroup

Programs consist of pieces connected together.

Big challenge in language design: making it easy to put pieces
together correctly. C examples:

Ï The function abstraction (local variables, etc.)

Ï Type checking of function arguments

Ï The #include directive

	The History of C
	The Design of C

