
Arithmetic Calculation Language
Language Reference

Nathan Corvino

March 21, 2011

1 Introduction

This document describes the Arithmetic Calculation Language (ACL), a
small subset of C that allows numeric colculations to be done in a proce-
dural fashion. The language only allows integer values to be manipultated,
hence the name Arithmetic Calculation Language. It does, however, allow
for arrays of integers to be declared, and provides a language features
that are illustrative of the core procedural constructs: variable declarations,
function definitions, selection, and iteration.

2 Lexcial Conventions

A program consists of a single file, containing global variable declarations
and procedure definitions. Execution begins with the function named main,
which is required.

1

2.1 Comments

Comments are introduced by /* or //. Comments introduced by /* are ter-
minated with */, while comments introduced by // terminate at the next
newline.

2.2 Identifiers

Identifiers consist of letters, digits, and underscores, and must begin with
a letter or underscore; case is significant.

2.3 Keywords

The following identifiers are used as keywords, and may not be used as
identifiers for functions or variables:

• if

• else

• while

• int

• void

2.4 Constants

Integer constants consist of a series of digits, and are treated as decimal
numbers.

2

3 Variables Declarations

Variables are introduced by their type–the only allowed type is int–folowed
by an identifier. If the identifier is followed by an expression in square
brackets— [] —then the variable is treated as an array–a block of con-
tiguous storage ints represented by the expression value. If the identifier
appears without brackets, it stores a single integer value.

variable_declaration:
int ID

| int ID[expression]

Assignment to identifiers is done an expression in the form E1 = E2, where
E1 must be a non-array identifier, or an array identifier with an index ex-
pression in brackets. The expression E1 = E2 also has the value of E2.

Variable declarations can appear outside of all function declarations, in
which case they are available throught the program; or they appear at
the beginning of a block–that is, in a list of statements enclosed in curly-
braces, before the first statement.

4 Function Definitions

Functions are defined by a return type—either int or void, arrays are not
supported—an identifier that names the function, a list of parameters sep-
arated by commas, enclosed in parantheses, and a block of code enclosed
in curly braces. Parameters are optional, but the paranetheses are manda-
tory.

function_return_type:
int

| void

function_definition:
function_return_type ID LEFT_PAREN parameter_opt RIGHT_PAREN compound_statement

3

parameter_opt:
/* nothing */

| parameter_list

parameter_list:
parameter_declaration

| parameter_list, parameter_declaration

parameter_declaration:
int ID

The parameters named are available as identifiers within the block of code;
when the function is called, these parameters are matched with expres-
sions in the calling code–the function call arguments–to supply their val-
ues.

5 Expressions

Expression precedence is the same as the order of the following subsec-
tions, highest order first; the associativity of each operator is specified
within the subsection.

expression:
| ID(optional argument list)
| expression * expression
| expression / expression
| expression + expression
| expression - expression
| expression < expression
| expression > expression
| expression <= expression
| expression >= expression
| expression = expression
| expression != expression
| variable_reference = expression

4

5.1 Function Calls

Function calls consist of an identifier followed by parantheses which con-
tain a comma separated list of arguments to the function call. The identifier
and arguments must match with a declared function, and the type can ei-
ther be int or void; void indicates that the function call cannot be contained
within other expressions, as it does not return a value.

When calling a function, a copy of each argument is made, and assigned
to corresponding parameter in the function definition; the number of argu-
ments must match with the previous declaration. The block of the function
declaration is then exectued with the copied values, with the expression
evaluting to the value returned, if the function returns an int.

5.2 Multiplictive Operators

Multiplication and division are binary operators specified by * and /, re-
spectively. They associate left-to-right.

5.3 Additive Operators

Addition and subtraction are binary operators specified by + and -, respec-
tively. They associate left-to-right.

5.4 Relational Operators

The relational operators perform numeric comparisons: <, >, <=, >=. They
associate left-to-right, and return one of the specified comparison is true,
0 if it is false.

5

5.5 Equality Operators

Equality comparisons test for numeric equality, == test for equality, and !=
tests for inequality. They associate left-to-right, and return 1 if the relation
holds, 0 if it does not.

5.6 Assignment

The assignment operation, =, groups right-to-left. It requires a declared
identifier as its left operator (lvalue), and that identifier must not have been
declared an array, or must have an index expression contained in brackets.
In the expressions E1 = E2, E2 is stored into the lvaue E1, and the value
of the expression is E2.

6 Statements

In addition to expresions, there are statements for selection—if; iteration—
while; and the statement to return a value form a function. In addition,
curly-braces can contain a list of variable declarations, followed by a list of
statements, is a statement.

statement:
expression;

| RETURN expression;
| compound_statement
| if (expression) statement
| if (expression) statement else statement
| while (expression) statement

compound_statement:
{ declaration_opt statement_opt }

declaration_opt:
/* nothing */

| declaration_list

declaration_list:
/* nothing */

| declaration_list variable_declaration

6

6.1 if Statement

The if statement performs selection, and takes the form:

if (expression) statement
| if (expression) statement else statement

The else statement binds with the closest if statement. If the expression
evaluates to 0, the else statement is evaluated if present; if the expression
evaluates to anything else, then the if statement is executed.

6.2 while Statement

The while statement performs iteraion, and takes the form:

while (expression) statement

The while statement evaluates the specified expression, and if it evalutes
to 0, skips its specified statement and proceeds to the subsequent state-
ment. If the specified statement evaluates to anything but 0 then the spec-
ified statement is executed and this process is repeated; that is, the ex-
pression is evaluated again, and either the while statement is finished, or
the process continues.

6.3 return Statement

From within a function, the return statement ends execution of the function
block, returning to the calling code; the specified statement provides the
return value. The return statement is required in a function that declares
itself to return an int.

7

7 Compiler Front End

7.1 scaner.mll

{ open Parser }

rule token = parse
[’ ’ ’\t’ ’\r’ ’\n’] { token lexbuf }

| "/*" { comment lexbuf }

| ";" { SEMICOLON }
| "," { COMMA }

| "(" { LEFT_PAREN }
| ")" { RIGHT_PAREN }
| "{" { LEFT_BRACE }
| "}" { RIGHT_BRACE }
| "[" { LEFT_BRACKET }
| "]" { RIGHT_BRACKET }

| "+" { PLUS }
| "-" { MINUS }
| "*" { TIMES }
| "/" { DIVIDE }
| "=" { ASSIGN }

| "==" { EQUAL }
| "!=" { NOT_EQUAL }
| "<" { LESS_THAN }
| ">" { GREATER_THAN }
| "<=" { LESS_EQUAL }
| ">=" { GREATER_EQUAL }

| "if" { IF }
| "else" { ELSE }
| "while" { WHILE }

| "int" { INT }
| "void" { VOID }

| eof { EOF }

| [’0’-’9’]+ as lit { LITERAL(int_of_string lit) }
| [’a’-’z’ ’A’-’Z’][’a’-’z’ ’A’-’Z’ ’0’-’9’ ’_’]* as lit { ID(lit) }

| _ as char { raise (Failure("illegal character " ^ Char.escaped char)) }

and comment = parse
"*/" { token lexbuf }

| _ { comment lexbuf }

and line_comment = parse
[’\r’ ’\n’] { token lexbuf }

8

| _ { comment lexbuf }

7.2 ast.ml

type operator = Add | Sub | Mult | Div | Equal | NotEqual | LessThan | GreaterThan
| LessEqual | GreaterEqual

type return_type =
Int

| Void

type variable = string * string

type variable_ref =
Id of string

| Array of string * expression
and expression =

Literal of int
| VarRef of variable_ref
| Binop of expression * operator * expression
| Assign of variable_ref * expression
| Call of string * expression list
| Noexpr

type statement =
Block of variable list * statement list

| Expression of expression
| Return of expression
| If of expression * statement * statement
| While of expression * statement

type function_definition = {
fname : string;
formals : string list;
body : statement list

}

type program = variable list * function_definition list

8 parser.mly

%{ open Ast %}

%token SEMICOLON COMMA
%token LEFT_PAREN RIGHT_PAREN LEFT_BRACE RIGHT_BRACE LEFT_BRACKET RIGHT_BRACKET

9

%token PLUS MINUS TIMES DIVIDE ASSIGN
%token EQUAL NOT_EQUAL LESS_THAN GREATER_THAN LESS_EQUAL GREATER_EQUAL
%token RETURN IF ELSE WHILE INT VOID
%token <int> LITERAL
%token <string> ID
%token EOF

%nonassoc NOELSE
%nonassoc ELSE
%right ASSIGN
%left EQUAL NOT_EQUAL
%left LESS_THAN GREATER_THAN LESS_EQUAL GREATER_EQUAL
%left PLUS MINUS
%left TIMES DIVIDE

%start program
%type <Ast.program> program

%%

program:
/* nothing */ { [], [] }

| program variable_declaration { ($2 :: fst $1), snd $1 }
| program function_definition { fst $1, ($2 :: snd $1) }

function_return_type:
INT { INT }

| VOID { VOID }

function_definition:
function_return_type ID LEFT_PAREN parameter_opt RIGHT_PAREN compound_statement
{ {
fname = $2;
formals = $4;
body = $6;

} }

parameter_opt:
/* nothing */ { [] }

| parameter_list { List.rev $1 }

parameter_list:
parameter_declaration { $1 }

| parameter_list COMMA parameter_declaration { $3 :: $1 }

parameter_declaration:
INT ID { Id($2) }

variable_declaration:
INT ID { Id($2) }

| INT ID LEFT_BRACE expression RIGHT_BRACE { Array($2, $4) }

variable_reference:
ID { Id($1) }

| ID LEFT_BRACKET expression RIGHT_BRACKET { Array($1, $3) }

compound_statement:

10

LEFT_BRACE declaration_opt statement_opt RIGHT_BRACE { Block($2, $3) }

declaration_opt:
/* nothing */ { [] }

| declaration_list { List.rev $1 }

declaration_list:
/* nothing */ { [] }

| declaration_list variable_declaration { $2 :: $1 }

statement_opt:
/* nothing */ { [] }

| statement_list { List.rev $1 }

statement_list:
/* nothing */ { [] }

| statement_list statement { $2 :: $1 }

statement:
expression SEMICOLON { Expr($1) }

| RETURN expression SEMICOLON { Return($2) }
| compound_statement { $1 }
| IF LEFT_PAREN expression RIGHT_PAREN statement %prec NOELSE { IF($3, $5, Block([], [])) }
| IF LEFT_PAREN expression RIGHT_PAREN statement ELSE statement { IF($3, $5, $7) }
| WHILE LEFT_PAREN expression RIGHT_PAREN statement { While($3, $5) }

expression:
LITERAL { Literal($1) }

| variable_reference { VarRef($1) }
| expression PLUS expression { Binop($1, Add, $3) }
| expression MINUS expression { Binop($1, Sub, $3) }
| expression TIMES expression { Binop($1, Mult, $3) }
| expression DIVIDE expression { Binop($1, Div, $3) }
| expression EQUAL expression { Binop($1, Equal, $3) }
| expression NOT_EQUAL expression { Binop($1, NotEqual, $3) }
| expression LESS_THAN expression { Binop($1, LessThan, $3) }
| expression GREATER_THAN expression { Binop($1, GreaterThan, $3) }
| expression LESS_EQUAL expression { Binop($1, LessEqual, $3) }
| expression GREATER_EQUAL expression { Binop($1, GreaterEqual, $3) }
| variable_reference ASSIGN expression { Assign($1, $3) }
| ID LEFT_PAREN argument_opt RIGHT_PAREN { Call($1, $3) }
| LEFT_PAREN expression RIGHT_PAREN { $2 }

argument_opt:
/* nothing */ { [] }

| argument_list { List.rev $1 }

argument_list:
expression { [$1] }

| argument_list COMMA expression { $3 :: $1 }

11

