CS4118 PROGRAMMING LANGUAGES AND TRANSLATORS

SPIHKE

,_———W

Spoke

A Language for Spoken Dialogue
Management & Natural Language
Processing

Final Report

William Yang Wang, Chia-che Tsai, Xin Chen, Zhou Yu

2010/12/23

(yw2347, ct2459, xc2180, zy2147)@columbia.edu
Columbia University, New York, NY

Table of Content

1.

INTFOTUCTION Lottt st ene s 5
1.1 MOTIVALION ...t et 5
1.2 OVEBIVIBW ..ttt sttt sttt sttt sb st sbe st st e e e e enenaeas 5
1.3 LanNQUage FEALUIESeiiiee ettt ettt ettt e 5
1.3.1 BaSIiC FEAIUIES...ceoiieeeeeresesee e 5
1.3.2 AdvanCed FEALUIEScccvirirenieieieeeeeeeese e 9
=T o LUF=To [= T IV] (o] -1 TSRS 13
2.1 WHALE'S NEW ...ttt 13
2.2 Trails Covering the BASICScccccvcveecieviieeeeceeeeeeeere st 14
222 Learning the sample Spoke Programs.......ccccccveeveveeeeveceenenne. 15
2.2.3 Advanced Sample Spoken Dialogue Program...................... 18
2.3 Compile and RUN.......ooieceecceeeee et 21
Language ManUalcceiieieiecieeee ettt ettt s 21
3.1 LeXiCal CONVENTIONS ..ottt 21
311 COMMENTES .ottt ettt st ee e 21
3.1.2 ldentifiers (NamMeS) ...t 22
313 KEYWOIUS ittt sttt et sttt et ras 22
314 CONSLANTS ittt st e 22
315 SHINGS ciceeee et ettt s 22
3.2 FUNAAMENTAl TYPES oottt ettt s be s re e ae 23
3.3, CONVEISIONS oottt sttt sttt sttt et e seeseenes 23
B4, EXPIrESSIONS...uiiiicteciecteeteete ettt s te et e st e a et e e ra e be s reeaesbeereentens 23
3.4.1 Primary EXPreSSiONS .ttt 23
3.4.2 Additive OPEratorS ...ttt 24
3.4.3 Multiplicative OPEratorsccccceveeceseceece et 25
3.4.4 EQUAlity OPEratorcccicieeecieeeeecteete ettt 26
3.45 Relational OpPeratorS......ciececiieece et 26
3.4.6 AND Expression && EXPressionveeceveeeeseceenene, 27
3.4.7 OR Expression || EXPressionenineneneecenenceeee, 27
3.4.8 Unary OPEratorsSoocoiieiieeeseeeee ettt 27
3.4.9 ASSIGN Expression = EXPressionocveeeenenccenesceneene. 28
3.5 DECIAIAIONS ...ttt ettt sttt ae s 28
3.6 SEALEMENTS ..ottt ettt st st et enae e 28
3.6.1 EXPression Statementcccooeviiieieneneeeee e 28
3.6.2 Compound Statementccceeeeviiieiereeee e 28
3.6.3 Conditional Statement........ccccoecevirieiineeeeeeee e 28
3.6.4 While Statement ..o 29
3.6.5 FOIr StatemMentcooooiiiieeee e 29
3.6.6 Return Statement........coccooiieiiiieniee e 29

3.7 SCOPE RUIES ... 29

371 LeXIiCaAl SCOPE oottt 30

3.7.2 SCOPE Of EXIEINAIS .ceeeiieeeeeeceeteeese et 30
O o T [=Ted B = = T o USRI 30
4.1 ProJECE PrOCESSES ..ottt ettt st 30
o O R = = T oY 1 o Yo [PPSR 30
4.1.2 SPECITICAION .ocveeieeeececeeeee e 31
4.1.3 DeVeIOPMENT ..ottt 31
O S =1 AT o Lo RSP 32
4.2 Programming Style Guideline.......cccoceoeeveviseececeeeeeeee e, 32
4.2.1 INAENTALION .ooveieiiiieieeeeereree e 32
4.2.2 Vertical AligNMENT......cccooieiiiieeeeeeee e 33
e T O 0 - To] = USRS 34
424 TADS e et 34
4.3 ProjeCt TIMEINE. ...t 34
4.4 Roles and ResponsSibilities. ..., 35
4.5 Tools, languages, environments, and reSOUrCescccccocvevenen. 36
4.6 L 0T o o OSSOSO 36
4.6.1 Selected MEELING LOG couiiieiiieeiecieceeese ettt st 36
4.6.2 SVN LOQ ettt ettt sttt ne e eneas 38
B ArChiteCIUIE DESIGN ..oeieieiecteeecteeee ettt bbb be e e 43
5.1 Overview t0o ArChiteCtUIEcceeeerirereeee e 43
5.2 Overview of COMPONENTSccvcciiiiciicieeeeeeee e 44
5.3 Intermediates of COMPONENTSceecveiiecieciceeceeeeee e, 46
531 Scanner to Parser - TOKENS ... 46
5.3.2 Parser / Syntax Checker to IR Translator — Abstract Syntax
Tree 47
5.3.3 IR Translator to Java AST Translator — Spoke Intermediate
Code 49
5.3.4 Java AST Translator to Java Translator —Java AST 51
5.4 Implementation of COMPONENES......ccccveceeviiiececeeece e, 52
541 SCANNET .ttt et sttt et et e bt e sbe e st e eateeeeens 52
5.4.2 PAISEI . et 52
543 SYNEAX CheCKEr ..o e 53
544 IR TranSIatorooieeeee e e 54
545 Java AST TransSlator ... e 56
5.5 CONIIDULIONS ..o e 56
B TEST PIAN ettt 57
6.1 SPOKE TeSt Programcococeeieeeeeeeeeeeee e 57
B.1.1 SYNLAX TEST oo 57
6.1.2 SemMANTIC TOST ..o 61
6.1.3 RUNTIME TOST.ciioiiieieee ettt 62
6.1.4 APPlICAtioON TeST .ot 63
6.2 CONIIDULIONS ..o e 64
T LeSSONS LEAIMEA ...ttt et nas 64

7.1 William Yang Wang......cccceeeeveieeieseeeeseeeeeseese et 64

7.2 Chia-Che TS@i...cc.civieirieiicinee e 65

7.3 XIN CREBN Lttt 66

7.4 ZNOU YU ittt 67
PP EINIA L X I ettiiiiiii it e e e e e e a e 67
el @) o R W 1 o Y PP PPTOR TR 67
SCANNETY cTNL L & ittt e ettt s e s e et ere e s s e e e te e e e e e eeeran s e e eaene 67
PATSEr . MLY I ittt 70
= A (B PP PPPPON 75
ChECKET cIL 1 et e e e e e e e 77
COMPILE ML I ittt s e e e s e e e s s 80
b o Rl % alel e Yo LI 1M S PP P PP PPPPPPPPPPPPPPPPPPPRN 86
JAVAAST cIL T ittt et e e e s e e e s s 88
JAVASTC eI I eiiiiiiiiiiiiiiii ettt e e s a e e e e s s nene 91
SPOKE ML 2 ottt 94
LN =S o N (L PO PP PPPPPPPTN 96
AN S L ate eIl & et e e et r s e e e e eeenaas 97
Bia 6 o N o N PP PTPPPPOT PPNt 103
COMP L LB S ittt 103
A K E L L B it e e e e e e e e e e e aeaeaaens 103
I Y= N S o Lo PP PPPTPPR 104
1 o 3PP PP UPPUPPPPPPRIN 104
10T @ T LS TIPSR PPPPPTOt 105
S el Aol ale A=Y o) =TI SRR PRPR 105
SPOKEBOO L EAN . JAV @A ttitititiiiiiiiiieieietetettteretettetteteeertttteteettttert—.——.—————. 105
SPOKEE X CEP L I0MN . JAVA ttitiiiiiiiiiiiiiiieieittireietetettteteeetteeerrrerreertrerererrrererrerr. 108
SPOKEF L OA T o J AV @ tttiiiiiiiiiiiiitieietiieteteteetreretetetettrererettttteettttttrtrrrettttrerertrertrae 108
SPOKE I N L GO T . J AV ttttititiiiiieietiteteteteteteretettttttterrrttrrttrtrttttertrtttt.. 112
SPOKEANY « JAVA terttititiiiiiieieietttetetetereteteteteretetetetttetettttttttttttttttttt...—.—.————————. 116
SPOKEF L L8 . JAVA tttttttiiiiiiiiiititieieitieteteteeetetetetetetttetettttrtttttettttrttttettttrertrtrerttarerrerm 118
SPOKE LT ST . J AV A ttrttitiiiiiiiiiiiitieieteteteieteettereteteteteteteretttttettettttrtrttatteaterartrtrararerererrarane 121
SPOKEOID T ECE o JAVA terriiiiiiiiiiiieieiiieietetettttrettttertttererrtttrtrtttrtttrtrrrtrtrrrertrrer. 127
SPOKE S LT ING . JAVA tiriiiiiiiiiiiiiiieiiititietetettreterettetteretteeettrrteettertrtttrtttrerttett. 128
SPOKETAG . JAVA tertrrrrrrreieieieietttetetetetetttttetttetetetttttetttttttttttttttttrt......—.——. 132
SPOKEPTOGIAM . JAV ctttttererererereteeerereretererertretttereteetttettt.....—.——.. 137
SPokeRUNTIMEEXCEPTION . JAVA tiiriiiiiieiiiiriiererteetereeeeeeeeeerereereeereeremeresrmmem. 137
MAKE T I L ittt e e st e e e e s s r e e e e e s e s e nnene 138
I - Te (o [N iy - R T T T P U U PP U P PP PP PP PPPPPPPPPP 138
N PP AT SO « JAVA ttttiitiiiiiiiiiiitiettiiieeeteeeeeeeeeeeeeeeeeeeeeeeteeaaeaeeeeeteaeeteateateeeeeeeeeeeeeeeeeeeeeeeees 139
SPOKEAD L « JAVA tertiiiiriieiiieieieittetetttetetetettteretetetttttetetttettttttttttetttet..————.. 141

RETEI BN CES ..ottt ettt e et e e e e ettt eeeseees s aaeeeeesssasesseaereeesssananne 153

1. Introduction

1.1 Motivation

Spoken dialogue management remains one of the most challenging
topics in natural language processing (NLP) and artificial intelligence (Al).
There are various different spoken dialogue management theories and
models (Cole et al., 1997; Pieraccine and Huerta, 2005), but there is no
unified and light-weight programming language to describe them.
Traditional programming languages, including Java, C, Perl and Lisp,
are not designed to deal with natural language applications, and thus are
slow, redundant, and ineffective when implementing spoken dialogue
systems.

1.2 Overview

The Spoke programming language is a domain specific language,
designing for implementing different spoken dialogue management
strategies. The Spoke users can set up their own spoken dialogue
management schemas with very succinct syntax structure. In contrast to
other general purpose languages, Spoke provides basic API support for
dual programming language and natural language parsing, as well
as powerful syntax tree pattern matching methods. Spoke language
enables programmers to perform deep natural language analysis which
can take English text input and give the parts of speech, and mark up
the syntactic structure of sentences. It provides the foundational building
blocks for higher level spoken dialog and natural language applications.

1.3 Language Features

1.3.1Basic Features

1.3.1.1 Basic Syntax

The Spoke language will be written in sequences, with each line
representing one command in the source code. There is no need for
using semicolon to terminate the command and the single expression
argument containing multiple lines is currently not supported. The source
code can be written in a single file, or be typed in by the user through the
command line interactive interface.

1.3.1.2 Data Types, Operators, Expression

The four basic data types that the language supports will be Boolean,
Integer, Float and String. A variable will be defined when it is first
assigned. For each data type there will be several operators provided for
processing. Also the conversion among data types is supported.

1.3.1.2.1 Boolean

A variable of Boolean type can only be assigned by two values: TRUE
and FALSE. Variable of other kind of data type can be converted to
Boolean type by Boolean Expression. Operator supported for Boolean
types include gt (greater than), It (less than), eq (equal), ne (not equal),
ge (not less than), le (not greater than) and logic gates like and, or and
not.

1.3.1.2.2 Integer and Float

A variable of Integer and Float can be assigned by a numeric value.
For simplicity, direct assignment among different numeric types is not
supported. Conversion between Integer and Float can be done by casting
function Int() and Float(). Note that Int() will round the floating-point value.
Operators supported for Integer and Float type include + (addition), -
(subtraction), * (multiplication), / (division), % (modulus division).

1.3.1.2.3 String

There will be no data type representing characters in this language. A
variable of String type will be a sequence of character, and each
character can be retrieved by specifying the position in the string. A
constant of String type can be given by characters wrapped by quotation

marks (“). Two quotation marks (“’) represent empty strings. Variable of
other type can be converted into String type by the casting function Str().
One operator supported for String type will be + (concatenate). By the
way, equality operator (=) is for the comparison of strings, word by word.

1.3.1.2.4 Array

Arrays can be defined by assigning squared brackets (e.g., x = []).
Also using squared brackets with a numeric value can specify the
element in each array (e.g., x[0]) Addition operator (+) on arrays
represents appending elements to the array.

1.3.1.3 Control Flows

1.3.1.3.1 Conditional Structure

The only condition structure supported in this language will be if-else
structure. The structure starts with a keyword “if’ and finishes with
another keyword “fi”. After the “if” keyword, a Boolean variable or a
Boolean argument must be given to specify the condition to execute the
code segment. Figure 2.3.1.1 shows an example for the if-then-else
structure.

if x ne 0
else

fi
Figure 1.3.1.3.1 Sample code for if-else structure

1.3.1.3.2 Loop Structure

Three loop structures will be supported in this language, while-loop,
for-loop and do-while-loop. while-loop and do-while-loop will be given a
condition by which the iteration of the code segment is determined. For
for-loop, we will not provide a C style for-loop like for (i=0; i<10; i++).
Instead, we adopt the common style provided in script languages like
Bash or Python, in which for-loop iterates on an array. Figure 2.3.2.1
shows a sample for while-loop and do-while-loop, and Figure 2.3.2.2
features another sample for for-loop.

while x ne 0 do for x in [O,
1, 2]

x =x -1 x =x -1
done while x ne 0 done
Figure 1.3.1.3.2.1 Sample code for while-loop Figure
1.3.1.3.2.2
and do-while-loop structure Sample code for

for-loop structure

1.3.1.4 Input and Output

Our language provides input and output from standard devices and
file systems. A “Print” command will print all the variables that follow
the keyword (multiple variables have to be separated by comma). A
“Rad” command and “readline” command will read a token or a whole
line from the standard input and stored to the variable that follows. File
I/0 will be features in the style of python language. A Open() function
will declare a file object and “print” or “read” command can be
performed on it. Figure 2.4.1 shows an example of File I/O.

fl = Open “test.txt” “w”

f2 = Open “input.txt” “r”

Readline from f2, buffer Figure
1.3.1.4

Print to fl, buffer Sample

code for File 1/0

1.3.1.5 Functions and APIs

Functions in this language will be defined with a keyword “Func’.
Parameters that follow the keyword consist of the name of the function,
and a sequence of arguments. The argument will not be type-specific
and can only be used as variable locally in the functions. Any other
variable used outside the function will be global variable. At the end of
the function, a “return” keyword will return all the parameters that follow.
These return values are also not type-specific. Figure 2.5.1 shows an
example of function.

Func concat strl str2
str = strl + str2
return str

End
Figure 1.3.1.5
str = concat “Hello” “world”

sample code for function

For the convenience of developers, we will implement a basic set of
APIs in our library. These APIs include string processing, mathematical
calculation, array manipulation and system commands. Table 1.3.1.5
lists all the APIs that we plan to implement.

1. Len Size of array or strings 11. Abs Aboslute value
2. Left Sub-string at the left of strings 12. Floor Round up

3. Right Sub-string at the right of strings 13. Ceil Round down

4. Mid Sub-string at the mid of strings 14. Pow Raise to power
5. Find Position of keyword in string 15. Sqrt Square root

6. Sep Seperate strings into tokens 16. Log Logarithm

7. Rep Replace keyword in strings 17. Exp Exponential

8. Index Index of element in arrays 18. System Run command in
9. Sub Substitution of arrays shell

10. Map Map elements to another type 19. Exit Exit the program

Table 1.3.1.5 Build-in Functions and APIs

1.3.2 Advanced Features
1.3.2.1 Spoken Dialog Management

We present a language by which developers can easily design
their spoken dialog systems. We introduce a series of new data types,
representing spoken dialogs in English, and provide adequate
operators and APIs. Operations will be preformed on a concrete, well-
formed syntax structure, which is produced by some NLP parser either
provided by the standard libraries or designed by developers. The
design of NLP parser must be flexible, and we will not spend time on
implementing more than one NLP parser, since this work is not the
primary goal of this project. Developers can always implement their
own NLP parser using the basic features (mentioned in the previous
chapter) we provide in this language. On the other hand, the NLP
parser provided by the library should also be part of APIs instead of a
feature of the language.

We adopt the syntax structure of the Penn Treebank designed by
M.P. Marcus, B. Santorini, M.A. Marcinkiewicz at UPenn (Marcus et al.,
1993). The Penn Treebank is a tag-based natural language repository,
primarily but not necessarily designed for English, which can interpret a
sentence into grammatical structures. They use a set of predefined

tags to categorize each word, phrase or punctuation in a sentence,
thus developers can easily perform whatever postprocessing on it. We
assume that developers already know the format of tagged dialog and
provide operation and expression interfaces.

In addition to tagging the sentence, the Penn Treebank uses a
tree structure to describe the semantics of more complicated grammar.
They use brackets to mark and separate each branch in the tree.
Figure 3.1.1 shows an example of tagging and bracketing an
English sentence.

Original sentence:

Battle-tested industrial managers here always buck up

nervous newcomers.

Tagged sentence:

Battle-tested/NNP industrial/JJ managers/NNS here/RB
always/RB buck/VB up/IN nervous/JJ newcomers/NNS ./.

Parsed sentence:

(S (NP Battle-tested/NNP industrial/JJ managers/NNS
here/RB)

always/RB

(VP buck/VB up/IN

(NP nervous/JJ newcomers/NNS)) .)

Figure 1.3.2.1.1 Examples for tagging and bracketing sentences

Table 1.3.2.1.2 features the tags defined in our language. Tags will be
all alphabetic, written in capital. During the development of the
language, the definition of tags will be of 3 stages:

I. Adopt predefined tags of only basic representation like NN(Noun),
VB(Verb), etc.

II. Adopt predefined tags of all grammatical representation in Penn
TreeBank POS tag set.

[ll. Adopt user-defined tags

ok wNPRE

S N

10.
11.
12.
13.
14.
15.
16.
17.
18.

CC Coordinating conjunction 19. PRPS Possessive pronoun

CD Cardinal number 20. RB Adverb
DT Determiner 21. RBR Adverb, comparative
EX Existential there 22. RBS Adverb, superlative
FW Foreign word 23. RP Particle
IN Preposition/subord. 24. SYM Symbol
conjunction 25. TO to
JJ Adjective 26. UH Interjection
JIR Adjective, comparative 27. VB Verb, base form
JIS Adjective, superlative 28. VBD Verb, past tense
LS List item marker 29. VBG Verb, gerund or present
MD Modal participle
NN Noun, singular or mass 30. VBN Verb, past participle
NNS Noun, plural 31. VBP Verb, non-3rd person
NNP Proper noun, singular singular
NNPS Proper noun, plural 32. VBZ Verb, 3rd personA singular
PDT Predeterminer 33. WDT Wh-determiner
POS Possessive ending 34. WP Wh-pronoun
PRP Personal pronoun 35. WPS Possessive wh-pronoun

36. WRB Wh-adverb
Table 1.3.2.1.2 The Penn TreeBank Part-of-speech (POS) Tag Set

The data type we created for representing a semantic sentence
is called Utterance, which means a sentence in the spoken dialog. An
utterance must be well-tagged strings, generated by the default POS
tagger, parser or customized parser. To distinguish utterances with
normal strings, an utterance constant will be wrapped in apostrophe(’)
instead of quotation mark (“) used for wrapping strings. The tags in the
utterance will be wrapped in a pair of less-than mark and greater-than
mark. (To avoid confusion with the less-than and greater-than
operators, we use It, gt instead as Boolean operators.) Figure 1.3.2.1
shows two sample codes for utterance manipulation.

The first sample code, without I/0O and conversion
Utterance = “<NN>I<VB>am<NN>Jerry'

if Utterance eq ~<NN>I<VB>am<NN>* "'

Name = Utterance[2]

print “<UH>Hello<NN>World® + Name
fi

The second sample code, with I/O and conversion

Use Parser default # define a
default parser

readline Input # read a line
from stdin

Utterance = Utter (Input) # conversion

if Utterance eqg ~<NN>I<VB>am<NN>*"
Name = Utterance[2]
Reply = str(<UH>Hello<NN>World + Name)
print Reply + "\n"

fi

Figure 1.3.2.1 Sample codes for utterance manipulation.

The first sample code defines a utterance variable with hard-
coded value. If the utter- ance contains a introduction of the
speaker’s name, the name is retrieved and a Hello World message
is printed.

The second sample code works in a similar way, except the input
is read from the key- board, converted into utterance using
default parser.

The structure of bracketed utterance is actually a tree structure,
we provide the same way as fetching elements from arrays to fetch
branches from the semantic trees. In the first example of Figure 3.3,
the name of the speaker is retrieved from the utterance by specifying
the third branch (The ordering starts from 0.) Note the branches being
retrieved is still of the utterance data type, so the name of speaker here
is in the form of another utterance "<NN>Jerry instead of a string
“derry”. A branch can be appended to the tree structure by using the
addition operator (+).

As the Penn Treebank, we also do bracketing on utterance.
Parenthesis ((and)) can be used in the place of words in the
utterance. Each sub-utterance wrapped in the parenthesis, tagged as
well, represents a phrase in the sentence. From the structural point of
view, bracketing utterance is actually creating branches in tree
structure with additional descendants. We provides the same way as
fetching elements from arrays to fetch descendants from utterances..

Conversion of utterance can be done by simply using casting
functions. Utterances can only be casted into strings, by removing all
the tags from the sentences. Conversion from strings to utterances is

2.1

more complicated. Using keyword “Parser”, a NLP parser is declared,
which is in fact a tagging program. This parser can be used to parse
the semantic structure of a string and build up a utterance structure.
We will provide a default parser which can be inefficient and only target
on sentences in English.

Matching of utterance is done through Boolean operators. eq
(equal) and ne (not equal) can match utterance variable with another
utterance variable or constant. An asterisk (*) in the target means
ambiguous matching. This feature helps developers design the logic of
spoken dialog system. However we provide a even more powerful way
to compare utterances. Using an operation called “Dictionary match”, a
dictionary (e.g. WordNet) will be given by developers, and they can
match utterances by a more flexible way. For example, the phrases ‘I
am”, “My name is” and “Call me” has the same semantic meaning in
English, and all indicate that a name follows. Developers can declare a
dictionary file, with these three phrases linked together and use a few
line of code to describe the whole logic.

Utterance is one of the most powerful features of this language.
It combines natural language and programming language, and can be
used in many domain of computer science. For example, the semantic
structure of utterances can give advantage for development of machine
translation software. Moreover, this feature can be used in domain
which has the requirement of pattern matching or semantic parsing.
(e.g. to represent genetic order in biologic information)

Language Tutorial

The Spoke Tutorial is a practical guide for programmers who
want to use the Spoke programming language to create applications.
It includes several complete, working examples, and dozens of
language features.

What's New

The Spoke programming language is a domain specific
language, designing for implementing different spoken dialogue
management strategies. The Spoke users can set up their own
spoken dialogue management schemas with very succinct syntax
structure. In contrast to other general purpose languages, Spoke

provides basic API support for dual programming language and
natural language parsing, as well as powerful syntax tree pattern
matching methods. Spoke language enables programmers to perform
deep natural language analysis which can take English text input and
give the parts of speech, and mark up the syntactic structure of
sentences. It provides the foundational building blocks for higher level
spoken dialog and natural language applications.

2.2 Trails Covering the Basics

Getting Started — An introduction to Spoke technology and lessons on
installing Java development software and using it to create a simple program.

Learning the Spoke Language — Lessons describing the essential
concepts and features of the Spoke Programming Language.

3.2.1 Getting Started

The Spoke programming language is a high-level language that can be
characterized by all of the following buzzwords:

Simple: the syntax of The Spoke programming language is very similar
with scripting language and the user of the language does not have to be a
professional programmer. We assume that the users of The Spoke Language
have some fundamental knowledge of Natural Language Process such as
tagging and parsing, but they do not have to have intensive knowledge.

Portable: In the Spoke programming language, all source code is first
written in plain text files without any extensions. Those source files are then
translated into Java source file .java and then further compiled in .class files
by the javac compiler. Since a .class file does not contain code that is native
to the processor; it instead contains bytecodes — the machine language of
the Java Virtual Machinel (Java VM). The java launcher tool then runs the
application with an instance of the Java Virtual Machine. All we need to
compile and run the Spoke program are a Spoke compiler and Java VM.

http://download.oracle.com/javase/tutorial/getStarted/index.html
http://download.oracle.com/javase/tutorial/java/index.html
http://download.oracle.com/javase/tutorial/getStarted/index.html
http://download.oracle.com/javase/tutorial/getStarted/intro/definition.html#FOOT

ﬂpoke Program \

greeting = "Hello"

func print_name(name)
global greeting
print(greeting, name, "\n")

WW NSO W R W

if parsed ~ \

10 (N(PRP I))(V(V am)}N *)) then
llname = myobj(match[O][1][1])
12 print_name(name)

13fi

\ J

HelloWorldApp

Figure 1 Spoke Language Architecture

2.2.2 Learning the sample Spoke Programs
This section provides detailed instructions for compiling and

running a simple "Hello World!" application.

Hello World Program:

O 0 J o O b W N

greeting = "Hello"

func print name (name)
global greeting
print (greeting, name, "\n")

end

parsed = nlpparse (readline())

if parsed ~ \"(N(PRP I)) (V(V am) (N *))°

name = myobj (match[0][1][1])
print name (name)
fi

end |———] The Spoke Compiler

parsed = nlpparse(readline()) HelloWorldApp.java

mmmm) HelloWorld javafile

then

This HelloWorldApp Spoke program asks user to record a sentence, such as “l am
Jenny”, and it captures the user’s name and reply “Hello, Jenny” to the user.

In line 1 we define a variable called “greeting” and assign "Hello" to it. The Spoke
language does not have to declare the type of a variable, in this case, the variable
greeting is in String type. Line 3~6 is a function, which prints the greeting message
and the name. We can see that in line 4 we have a “global” keyword, which indicates
that the scoping of greeting variable is a global variable and the value is “Hello”
assigned in line 1. Line 8~10 does the Natural Language Processing operation. In line
8 we use the built-in API to read an input line and then parse it using NLP methods. It
calls nlpparse() which parses the input string into a syntax tree, and assign this tree to
the variable parsed, for example:

input = ‘How much did the Dow Jones drop today?’
parsed = nlpparse (Input)
Parsed = " (ROOT
(SBARQ
(WHADJP (WRB how)
(JJ much))
(SQ (VBD did)
(NP (NN dow)
(NNS jones))
(VP (VB drop)
(NP (NN today))))))

WHADJP

(WRBhow) | [(Wmuch) | [(vBDdid) | [NP] [vP

VB
drop)

(NN
today)

Figure 2 Syntax Tree Representation

Line 8 gives us an example of control flow, and it also demonstrate one of the key
features of The Spoke Language — Partial Matching.

[if parsed ~ V(N(PRP){V(V am)(N *))’ then |

“~ is the symbol of partial matching, which indicates that whether or not the
pattern “(N(PRP 1))(V(V am)(N *))" is part (sub-tree) of the Syntax Tree, if yes the

expression returns true, otherwise it returns false. The syntax tree of the pattern
“(N(PRP D)(V(V am)(N *)) is shown in Figure 3.

L _

[0][00]

Figure 3 Syntax tree of the pattern
“(N(PRP D)(V(V am)(N %))

Let’s go back to the previous example, in which the variable “parsed” represents
the syntax tree of the sentence “How much did the Dow Jones drop today?” Does it
match the pattern “(NP(NN *)(NN *))(VP *) ? The answer is yes. The pattern says
that any sentence that contains the sub-syntax-tree in Figure 3 is matched to the
pattern. See Figure 4.

Root

| wrBhow) | [Wumuch) | [(vBDgef | NP

/N /

(NN dow) || (NNS
jones)

Matching the pattern

VB (NN
drop) today]

Figure 4 The sentence “How much did the Dow Jones drop today?”
matches the pattern "(NP(NN *)(NN *))(VP *)’

Another feature that is indicated in line 9 is that we adopt a data structure in the
form of “(Tag Word)”. We tag each word in a sentence using NLP tagging convention
and we use these tagged word in the syntax tree parsing later. We assume that the
Spoke Language programmer knows some fundamental knowledge of NLP tagging
and parsing. For example, “(NP(NN *)(NN *))(VP *)” indicates that we want a noun
phrase contains 0 to 2 nouns and 0 to 1 adverb describes the previous noun phrase,
such as “dow jones today”.

2.2.3 Advanced Sample Spoken Dialogue Program

Assume we are using Spoke to build a financial market spoken dialogue
system, where users can ask the following questions about stock market price:

TEST 1 =
TEST 2 =
TEST 3 =
TEST 4 =
TEST 5 =
TEST 6 =
POORS’
TEST 7 =
TEST 8 =
TEST 9 =
TEST 10 =
TEST 11
TEST 12 =
TEST 13 =

How

‘DID DELTA AIR LINES DROP TODAY’

‘HOW MUCH DID DOW JONES RISE WEDNESDAY'

‘HOW WAS WALT DISNEY’

‘WHAT WAS THE PRICE OF USAIR GROUP ON FRIDAY’
‘WHICH STOCK CLIMBED ON MONDAY'

‘COULD YOU TELL ME THE PERFORMANCE OF STANDARD AND

‘ARE YOU SURE IBM WENT UP’
‘HOW MANY STOCKS WENT DOWN TODAY’
‘MAY I KNOW IF WALT DISNEY ADVANCED THURSDAY’
‘WHO IS THE BIGGEST WINNER TODAY'’
‘WHEN DID INDUSTRIALS AVERAGE SURGE’
‘WHERE DID DOW JONES CLOSE AT TODAY’
‘AT WHICH POINT DID DELTA AIR LINES OPEN AT THURSDAY'

ever, one of the major challenges of spoken dialogue system is the

front end automatic speech recognition component, which is always noisy. As a

result, som

etime the natural language understanding and spoken dialogue

management component will have problem understand the correct content of
the conversation. In this sample Spoke program, we use Spoke to parse the
users’ utterance, and try to match the question patterns in our database, of

which we k

Input = "
Parsed =
print (Pa

Parsed
did) (NP
today))))

if gquesti
(VBD did)

answer =

fi

print ans

Sample co

now the answer.

How much did the Dow Jones drop today?’

parse (Input)

rsed)
= " (ROOT (SBARQ (WHNP (WRB How) (JJ much)) (SQ (VP (VBD
(DT the) (NNP Dow) (NNP Jones) (NN drop)) (NP (NN
(. 2)))°
on == "~ (ROOT (SBARQ (WHNP (WRB How) (JJ much)) (SQ (VP
(NP * (NN drop)) (NP (NN *)))) (. ?))) then

search database ($1, $2)

wer

de:

func process (s)

parsed = nlpparse(s)
if parsed ~ "SBARQ (* *) (SQ *) then
ques = match[0] [0]
sent = match[0][1]
else
sent = parsed
fi
if sent ~ " (VBD *) (NP *) (VP *) then
target = str(match[0][1])
action = match[0] [2]
if action ~ " (VB *) (ADVP *) then
verb = str (match[0][0])
advb = match[0] [1]
elif action ~ VB *° then
verb = str (match[0])
fi
elif sent ~ " (VBD *) (NP *) then
target = str(match[0][1])
fi

if ques then
if ques ~

type =

fi
fi

day = "today"
if advb then

"WRB *° then
str (match[0])

if advb ~ "RB * then
day = str(match[0])
fi
fi
return [type, target, verb, day]
end
result = process(str(arqg))
if result[0] == "how" then
print ("it dropped 30.34")
elif result[l] == "dow jones" then
print ("30.34")

elif result[2]
print ("It
elif result[l]
print ("It

"rise" then
rised 87.12")
"walt" then
rised 87.12")

elif result[l] == "walt disney" then
print ("It rised 87.12"M)

elif result[2] == "rose" then
print ("It rised 87.12"™)
elif result[2] == "drop" then
print ("It dropped 23.01")
elif result[3] == "wednesday" then
print ("It rised 87.12"M)
elif result[3] == "today" then
print ("it dropped 30.34")
else
print ('"No information available.')
fi

2.3Compile and Run

The Spoke language can be easily compiled by typing
make

In order to run the compiled code, just run:
Ispoke < utterance

3 Language Manual

3.1 Lexical Conventions

The Spoke language will be written in sequences, with each line
representing one command in the source code. There is no need for using
semicolon to terminate the command or expression. The source code can be
written in a single file, or be typed in by the user through the command line
interactive interface.

There are six kinds of tokens: identifiers, keywords, constants, strings,
expression operators, and other separators. In general blanks, tabs, newlines, and
comments as described below are ignored except as they serve to separate
tokens. At least one of these characters is required to separate otherwise
adjacent identifiers, constants, and certain operator-pairs. If the input stream has
been parsed into tokens up to a given character, the next token is taken to include
the longest string of characters which could possibly constitute a token.

3.1.1 Comments

The character “#” introduces a comment, which comments out the entire line.
3.1.2 Identifiers (Names)

An identifier is a sequence of letters and digits; the first character must be
alphabetic. The underscore “_” counts as alphabetic. Upper and lower case
letters are considered different. No more than the first eight characters are

significant, and only the first seven for external identifiers.

3.1.3 Keywords

IF ELSE ELIF Fl
FOR IN NEXT WHILE
LOOP BREAK CONTINUE FUNCTION
NATIVE RETURN END IMPORT
EXTERN GLOBAL

3.1.4 Constants
There are several kinds of constants, as follows:
3.1.4.1 Integer Constants
An integer constant is a sequence of digits. All integers are decimal only.
3.1.4.2 Floating Constants

A floating constant consists of an integer part, a decimal point, and a fraction part.
The integer and fraction parts both consist of a sequence of digits. Either the
integer part or the fraction part (not both) may be missing.

3.1.5 Strings

There will be no data type representing characters in this language. A variable of
String type will be a sequence of character, and each character can be
retrieved by specifying the position in the string.

3.1.5.1 Native Strings

Native strings will be wrapped by the single quotation mark
beginning to the end.

symbol from the

3.1.5.2 Escape Strings

st

Escape strings will be wrapped by the double quotation mark symbol from the

beginning to the end.
3.1.5.3 Tagged Strings

Escape strings will be wrapped by the “* ” symbol from the beginning to the end.
3.2 Fundamental Types

Spoke supports three fundamental types of objects: strings, integers, and single-
precision floating-point numbers.

Strings consist of characters (declared, and hereinafter called, char) chosen from
the ASCII set; they occupy the right-most seven bits of an 8-bit byte. It is also
possible to interpret chars as signed, 2’s complement 8-bit numbers.

Integers (int) are represented in 16-bit 2’s complement notation.

Single precision floating point (float) quantities have magnitude in the range
approximately 10£38 or O; their precision is 24 bits or about seven decimal digits.

3.3. Conversions

The spoke language itself does not support conversions at this moment. But it is
possible to call API functions in Java to do conversions.

3.4. Expressions

3.4.1 Primary Expressions

3.4.1.1 LPAREN/RPAREN Expression (Expression)
Description: A parenthesized expression is a primary expression whose type
and value are identical to those of the unadorned expression. The presence of

parentheses does not affect whether the expression is an Ivalue. It does affect
the order of operation.

Rules: If we have “(expression1) expression2”, expression1 will get
computed first.

Example: (1+2)*3=>3*3=9
3.4.1.2 LBRACK/RBRACK Expression [Expression]

Description: A primary expression followed by an expression in square
brackets is a primary expression. It is used to define an array.

Rules: we can have an array of size two with two constants as elements
[constant, constant]; we can also append an array into another array
[constant]+[constant : constant]. Also we can have expression as element in
an array [expression, expression].

Example: array =[]+ [1, 2] =>[1, 2]
array =[]+ [1+2, 3] =>[3, 3]

array[0] =1=>[1]

array = array[0 : 2] => [0, 1, 2]

3.4.1.3 COMMA Expression , Expression

Description: A pair of expressions separated by a comma is evaluated left-to-
right and the value of the left expression is discarded. The type and value of
the result are the type and value of the right operand. This operator groups
left-to-right.

Rules: It should be avoided in situations where comma is given a special
meaning, for example in actual arguments to function calls and lists of
initializers.

Example: lists of initializers : [1, 2]

Function calls: function foo
return 1, 2, 3

3.4.1.4 COLON Expression : Expression

Description: a : expression is used in array
Example: array[0 : 2] => [0, 1, 2]

3.4.2 Additive Operators
The additive operators +and - group left-to-right.

3.4.2.1 PLUS Expression + Expression

Description: The result is the sum of the expressions. If both operands are int,
the result is int. If both are float, the result is float. If both are string, the result
is string. We can also append an array to another array. No other type
combinations are allowed.

Rules: int + int => int; float + float => float; string + string => string;
[1+[1=>1]]
Example: 3+4 =>7
[1,2] +[3, 4] =>[1, 2, 3, 4]
1.2+21=>33
1.2 +1=>error

3.4.2.2 MINUS Expression — Expression

Description: The result is the difference of the operands. If both operands are
int, the result is int. If both are float, the result is float. We can’t use “-”
expression in string or array manipulation.
Rules: int - int => int; float - float => float;
Example: 7-3 =>4

1.2-3.2=>-2.0

3.4.3 Multiplicative Operators
The multiplicative operators *, /, and % group left-to-right.
3.4.3.1 TIMES Expression * Expression
Description: The binary * operator indicates multiplication. The result is the
sum of the expressions. If both operands are int, the result is int. If both are
float, the result is float. No other combinations are allowed.

Rules: int * int => int; float * float => float;

Example: 7*3 => 21
1.2¥2.0=>2.4

3.4.3.2 DIVIDE Expression / Expression
Description: The binary /operator indicates division. The same type

considerations as for multiplication apply.
Example: 7/3 => 2

1.2/2.0=>0.6
3.4.3.3 MODULUS Expression % Expression

Description: The binary %operator yields the remainder from the division of the
first expression by the second. Both operands must be int, and the result is int.
In the current implementation, the remainder has the same sign as the
dividend.

Rules: int % int => int

Example: 7%3 => 1

3.4.4 Equality Operator

The == (equal to) and the != (not equal to) operators are exactly analogous to
the relational operators except for their lower precedence. (Thus “a<b ==
c<d” is 1 whenever a<b and c<d have the same truth-value).

3.4.4.1 EQ Expression == Expression

Description: equal to comparison
Rules: int ==int; float == float
Example: a==b

3.4.4.2 NEQ Expression != Expression

Description: not equal to comparison
Rules: int == int; float == float
Example: al=b

3.4.5 Relational Operators

The relational operators group left-to-right, but this fact is not very useful,
“a<b<c” does not mean what it seems to. The operators < (less than), >
(greater than), <= (less than or equal to) and >= (greater than or equal to) all
yield false if the specified relation is false and true if it is true. Operand
conversion is exactly the same as for the + operator.

3.4.5.1 LT Expression < Expression

Description: less than comparison.
Rules: int < int ; float < float

Example: 1<2 =>true; 1.0<2.0 =>true
3.4.5.2 GT Expression > Expression

Description: greater than comparison.

Rules: int > int ; float > float

Example: 2>1 => true; 2.0<1.0 => true
3.4.5.3 LEQ Expression <= Expression

Description: less than or equal to.

3.4.5.4 GEQ Expression >= Expression
Description: greater than or equal to

3.4.6 AND Expression && Expression

Description: The && operator returns true if both its operands are non-zero,
false otherwise. && guarantees left-to-right evaluation; moreover the second
operand is not evaluated if the first operand is false. The operands need have
the same type, and each must have one of the fundamental types.

Example: (a&&b)

3.4.7 OR Expression || Expression
Description: The || operator returns true if either of its operands is non-zero,
and false otherwise. || guarantees left-to-right evaluation; moreover, the
second operand is not evaluated if the value of the first operand is non-zero.
The operands need to have the same type, and each must have one of the
fundamental types.
Example: (a||b)

3.4.8 Unary Operators
Expressions with unary operators group right-to-left.

3.4.8.1 — Expression

The result is the negative of the expression, and has the same type. The type
of the expression must be int or float.

3.4.8.2 NOT Expression ! Expression

Description: The result of the logical negation operator ! is true if the value of
the expression is false, false if the value of the expression is non-zero. The
type of the result is Boolean. This operator is applicable only to int.

Example: ('a)

3.4.9 ASSIGN Expression = Expression

Description: The assignment operator groups right-to-left. All require an Ivalue
as their left operand, and the type of an assignment expression is that of its left
operand. The value is the value stored in the left operand after the
assignment has taken place.

Rules: lvalue = expression

Example: a=3; a=2.0+3.0;

3.5 Declarations

There will be no declaration for variables and fundamental data types, which
means variables and data types do not need to be declared before they are
used.

3.6 Statements
Except as indicated, statements are executed in sequence.
3.6.1 Expression statement

Most statements are expression statements, which have the form expression;
Usually expression statements are assignments or function calls.

3.6.2 Compound Statement

So that several statements can be used where one is expected, the compound
statement is provided:
compound-statement:
(statement-list)
statement-list:
statement
statement statement-list

3.6.3 Conditional Statement

The three forms of the conditional statement are
1) IF (expression) THEN statement FI
2) IF (expression) THEN statemtent ELSE statement FlI
3) IF (expression) THEN statement
ELIF (expression) THEN statement
ELSE statement
Fi

In all three cases the expression is evaluated and if it is non-zero, the first sub
statement is executed.

3.6.4 While Statement

The while statement has the form

WHILE (expression) statement LOOP

The sub statement is executed repeatedly so long as the value of the
expression remains non-zero. The test takes place before each execution of
the statement.

3.6.5 For Statement

The for statement has the form:

FOR element in [number of iterations]
statement

NEXT

3.6.6 Return Statement

A function returns to its caller by means of the return statement, which has one of
the forms return (expression)

In this case, the value of the expression is returned to the caller of the function. If
required, the expression is converted, as if by assignment, to the type of the
function in which it appears. Flowing off the end of a function is equivalent to a
return with no returned value.

3.7 Scope Rules

A complete Spoke program might not be compiled at the same time: the source
text of the program may be kept in several files, and precompiled routines may be

loaded from libraries. Communication among the functions of a program may be
carried out both through explicit calls and through manipulation of external data.

Therefore, there are two kinds of scope to consider: first, what may be called
the lexical scope of an identifier, which is essentially the region of a program during
which it may be used without drawing “undefined identifier” diagnostics; and
second, the scope associated with external identifiers, which is characterized by
the rule that references to the same external identifier are references to the same
object.

3.7.1 Lexical Scope

Spoke is neither a block-structured language nor a parenthesis-based language.
The lexical scope of names declared in external definitions extends from their
definition through the end of the file in which they appear. It is an error to redeclare
identifiers already declared in the current context, unless the new declaration
specifies the same type and storage class as already possessed by the identifiers.

3.7.2 Scope of Externals

If a function declares an identifier to be extern, then somewhere among the files or
libraries constituting the complete program there must be an external definition for
the identifier. All functions in a given program which refer to the same external
identifier refer to the same object, so care must be taken that the type and extent
specified in the definition are compatible with those specified by each function
which references the data.

4 Project Plan

In this section, we will first introduce the project planning processes that involve in
this project. And then we will discuss how we specify the language designs, and
carry out development and testing.

4.1Project Processes
4.1.1 Planning

During the first planning meeting, we first concentrate on defining the
functionality, domain, and the nature of our language. We agree that our
language must be a light-weight, domain-specific, and user-friendly language
that focuses on spoken dialogue management and natural language processing.
We realize that with the current general-purposed languages, it is very difficult
and inefficient in analyzing the deep syntactic structure of natural language. To

date, in order to derive a syntax tree of natural language, programmers need to
try various APIs, and have to deal with all kinds of problems (e.qg. training a
statistical model, configure the class-path, etc.). Most application developers
and programmers do not have the background in natural language processing,
so if we can provide programmer a full syntax parsing tree with only one line of
Spoke, how cool it is?

In this meeting, we elect Wang as the Project Manager, since he has many
years of research experience in Natural Language Processing and Spoken
Dialogue Systems. We also elect Tsai as the Chief Technical Officer of this
project, as his research is mainly focused on system, security and programming
language. Chen and Yu will be responsible for programming and testing,
especially for backend JAVA functionality.

4.1.2 Specification
After we have a clear picture about our language, we focus on designing the
components of our translator. During the first several meetings, we decide to
implement a compiler, but not an interpreter. We feel that the interpreter
structure is too easy, and might not be robust to handle complex natural
language syntax and semantic representations.

Once we have made up our minds about pursuing the general compiler
structure, we further discuss how we should specify the detail components of
our compiler. During the first development cycle, we agree to use OCAML for
building the scanner, parser, and JAVA source translator, because it is very
efficient. We consider using JAVA as back-end, because we know there are
existing JAVA libraries that have good performance on deep linguistic analysis.

When we actually involve in the compiler implementation, we feel that there is
the need to include the IR code representation, syntax check, semantic check,
and JAVA AST representation to our compiler. The rationale is that if we only do
direct translation, there could be a lot of potential bugs in the JAVA source
translation. For example, we might have problems handling scoping issues.

4.1.3 Development
In our initial responsibility assignment, we have Tsai on building the natural
language components, Chen building the basic features, and Yu focus on
machine learning techniques. However, we realize Tsai is more capable and
efficient in building basic features, so Xin and Yu move to the JAVA backend

development. Wang join Tsai in designing and implementing natural language
features. As the target users of Spoke language are application developers who
might not have machine learning knowledge, we decide to drop this emphasis.

The planned development will contain three main cycles. In the first cycle, we
focus on the development of scanner, parser, and basic features. In parallel, we
also start the development of backend JAVA Spoke data structures. In the
second development cycle, we mainly work on developing advanced natural
language processing feature, which involves support from scanner, parser, as
well as backend special data structures. In the final cycle of development, we
augment the compiler architecture with IR code representation and JAVA AST
translation. We also start to combine and connect all components from the front
end to the back end.

4.1.4 Testing
We plan to have four main sections of testing: syntax test, semantic test,
integration test, and application test. The purpose of syntax test is to check the
robustness of our scanner, parser and syntax checker. We conduct the
semantic test in order to check our semantic checkers (e.g. scoping, types and
variables.) The purpose of compiler integration and application integration tests
is to check the entire compiler and system robustness when processing
advanced natural language syntax data structures.

In the testing, we plan to establish more than 50 test cases. For each
experiment, we first predict the output of the test, and also predict the potential
error types. Then, we run this experiment and see if it matches to our prediction.
In our plan, we hope to handle errors and exceptions in front-end compilers,
rather than the Java backend, as the purpose of this class is to develop our own
compiler that handles errors and exceptions, rather than letting JAVAC to figure
it out.

4.2Programming Style Guideline
In the implementation of Spoke language, we try to follow the official OCAML
guideline’. For the JAVA programming in our back-end, we use a well accepted
JAVA programming style guideline?. In implementation, we try to follow the
guidelines as precise as possible.

4.2.1 Indentation

! http://caml.inria.fr/resources/doc/guides/guidelines.en.html
2 http://geosoft.no/development/javastyle.html

http://caml.inria.fr/resources/doc/guides/guidelines.en.html
http://geosoft.no/development/javastyle.html

In the implementation of Spoke language, we try to follow the official OCAML
indentation law. We also have this law consistent through our implementation.

Landin's pseudo law: Treat the indentation of your programs as if it
determines the meaning of your programs.

Below is a code snippet to represent the indentation style in our code:

targ:
WORD WORD { Tag(String(§1), String($2)) }
WORD STAR { Tag(String(§1), Any) }
STAR WORD { Tag(Any, String($2)) }

|

|

| STAR STAR { Tag(Any, Any) }

| WORD targ list { Tag(String($1), Newlist($2)) }

| STAR targ list { Tag(Any, Newlist($2)) }

| targ list { Tag(Any, Newlist($1)) }
In JAVA back end, we have the following sample code as programming style
guideline.

package org. spoke;

public class SpokeTag extends SpokeObject {
private SpokeObject myTag;
private SpokeObject myObject;

public SpokeTag(SpokeObject tag, SpokeObject object) {
setTag(tag) ;
setObject (object) ;

4.2.2 Vertical Alignment
In OCAML, we carefully align the arrows and bars of a pattern matching

conditional statement, though OCAML official guideline does not recommend this
style. Here is an example:

let £ = function
| Cl1 > 1
| Long name —> 2
| _ -> 3;;

In Java, we follow the official guideline, and use left alignment for the
programming style:

if (a == lowValue) compueSomething () ;
else if (a == mediumValue) computeSomethingElse() ;
else if (a == highValue) computeSomethingElseYet() ;

value = (potential * oilDensity) / constantl +
(depth * waterDensity) / constant2 +
(zCoordinateValue * gasDensity) / constant3;

minPosition = computeDistance (min, X, V, 7);
averagePosition = computeDistance (average, X, v, z);:

switch (phase) {
case PHASE OIL : text = 70il”; break;
case PHASE WATER : text = "Water”; break;

case PHASE GAS : text = "Gas”; break;
}

4.2.3 Spaces
For the use of spaces, we are following the pseudo spaces law for both OCAML
and JAVA implementation:

Pseudo spaces law: never hesitate to separate words of your programs with
spaces; the space bar is the easiest key to find on the keyboard, press it as
often as necessary!

4.2.4 Tabs
We avoid using tabs because it is not recommended by both OCAML and

JAVA official programming style guideline.

4.3Project Timeline

Date Goal Person-in-
Phase charge
1 09/28/2010 Proposal PM
2 10/10/2010 Language Reference Manual CTO
Scanner and Parser

3 11/30/2010 Basic Features CTO
4 12/10/2010 Advanced NLP Features PM
5 12/15/2010 Integration of Translator CTO
6 12/20/2010 Final Language Implementation CTO
7 12/21/2010 Testing and Debugging CTO
8 12/22/2010 Demo and Presentation PM
9 12/22/2010 Final Report PM

4.4Roles and Responsibilities

Person

Role

Responsibilities

Wang

Project
Manager

1.

Create, maintain, and update schedules and
progress, and coordinate with team members
and the teaching staff.

Design and implement natural language parsing,
tagging and advanced features throughout the
front-end translator to backend implementation.
Design language scenarios, samples and
integrate and test spoke language application.
Organize and document meetings.

Responsible for Proposal, LRM, Demo and final
report.

Tsai

Chief Technical
Officer

Augment MicroC scanner and parser with basic
features of Spoke language.

Responsible for the implementation and
integration of front end translator, including
Bytecode IR, Java AST translation.

Implement basic syntax, grammar and semantic
checkers.

Coordinate back-end JAVA data structures and
APl implementation with front-end designs.
Collaborate with other members on advanced
feature design and implementation.

Chen

Programmer

Implementation of JAVA source code translation.
Responsible for JAVA back-end data structures.

3. Collaborate with other members on back-end
integration.
4. Responsible for syntax test.

=

Yu Programmer Implementation of JAVA backend.

2. Collaborate with other members on back-end
advanced features integration.

Responsible for back-end APIs.

4. Responsible for semantic test.

w

4.5Tools, languages, environments, and resources

We use Linux as official environment, since it has great command line support.

In our implementation, OCAML is the front end compiler implementation language,
and JAVA is the back end implementation language. We use the following tools and
resources in our implementation:

SUBVERSION

4.6Project Log
4.6.1 Selected Meeting Log
In this semester, the project leader has sent out 163 emails to all team
members. Here | post two selected meeting logs that represent different
development cycles of our project:

(1) 12/02/2010

William Y. Wang <yw2347@columbia.edu> Thu, Dec 2, 2010 at 12:51 PM
To: Chia-che Tsai <ct2459@columbia.edu>, Wang Yang
<yw2347@columbia.edu>, Xin Chen <xc2180@-columbia.edu>, Zhou Yu
<zy2147@columbia.edu>
Reply | Reply to all | Forward | Print | Delete | Show original
Hi guys,

Just a quick summary of today's meeting:

1. TA mentioned that there will be a final demo session 3-4 days before the final
report due.

The final demo will probably consist of three sections:

1) Presentation

2) Code Demo: partl. Compilation part2. Demo of application

3) Q&A part
2. We will need to form a concrete schedule and have new job assignment to
wrap up the project.
3. We decide to finish the main compiler a week before the demo, so that we
could have a week to integrate all the parts.
4. That will be a group meeting Friday (tomorrow) at 10am to check progress
and assign new roles.

Thanks,
William

(2) 10/21/2010

William Y. Wang <yw2347@columbia.edu> Thu, Oct 21, 2010 at 1:28 PM
To: Chia-che Tsai <ct2459@columbia.edu>, Xin Chen
<xc2180@columbia.edu>, zy2147@columbia.edu
Reply | Reply to all | Forward | Print | Delete | Show original
Hi all,

Here's a brief summary of Thursday meeting with TA:

1. Finalized our language architecture with our TA:
For the architecture of our language, we decide to use the following one:

Our source code ----> Scanner + Parser in OCaml ----> AST ---> Java file ---
> Java complied classes ---> executable files

In this case, the intermediate code is java. And it's much easier for us to
consider JAVA nlp APIs.

2. ldentified the timeline and jobs of the LRM due on Nov. 3rd

Note that we have a LRM due on Nov. 3rd. So basically, we have three tasks:

1) The development of scanner, parser and a demo of sample hello world
program (2 persons)

2) The documentation of LRM (1 person)

3) The design of NLP API. Namely, how we can incorporate the parser or the
part-of-speech tagger in our language. (1 person)

Tsai, our CTO, will lead the development of scanner, parser and the hello world
program. He needs one person to help him.

| will focus on documentation of the LRM and | can also help in developing NLP
APIls into our language.

Xin and Yu, please let me know what sub-task you would like to work on or any
suggestions you have.

Thanks,
William

4.6.2 SVN log

159 | chiache.tsai | 2010-12-21 23:27:57 -0500 (Tue, 21 Dec 2010) | 1 line

r54 | wangwilliamyang | 2010-12-21 07:16:39 -0500 (Tue, 21 Dec 2010) | 2 lines
add the docs

r53 | chiache.tsai | 2010-12-21 07:09:17 -0500 (Tue, 21 Dec 2010) | 2 lines
Working version

r52 | chiache.tsai | 2010-12-21 03:58:14 -0500 (Tue, 21 Dec 2010) | 1 line
readme

r51 | chiache.tsai | 2010-12-21 03:57:46 -0500 (Tue, 21 Dec 2010) | 2 lines
good not enough

r50 | chenxinivy@gmail.com | 2010-12-20 21:44:26 -0500 (Mon, 20 Dec 2010) |
2 lines
add the test parser and scanner

r48 | chiache.tsai | 2010-12-20 20:52:33 -0500 (Mon, 20 Dec 2010) | 1 line
no isEmpty

r47 | wangwilliamyang | 2010-12-20 20:29:51 -0500 (Mon, 20 Dec 2010) | 2
lines

add the NLP tagger

r46 | wangwilliamyang | 2010-12-20 20:06:36 -0500 (Mon, 20 Dec 2010) | 2
lines

update nlp parser

r45 | wangwilliamyang | 2010-12-20 19:50:43 -0500 (Mon, 20 Dec 2010) | 2
lines

NLPPARSER modified

good

good

new API

rm api

r40 | chiache.tsai | 2010-12-20 05:57:54 -0500 (Mon, 20 Dec 2010) | 1 line
Good code

rm org

r29 | wangwilliamyang | 2010-12-19 15:05:20 -0500 (Sun, 19 Dec 2010) | 2 lines
add changes

r28 | chiache.tsai | 2010-12-17 06:51:30 -0500 (Fri, 17 Dec 2010) | 2 lines
good version

r25 | chiache.tsai | 2010-12-16 22:14:49 -0500 (Thu, 16 Dec 2010) | 1 line
tokenbuf

r24 | chiache.tsai | 2010-12-16 16:23:01 -0500 (Thu, 16 Dec 2010) | 1 line
good parser

r23 | chiache.tsai | 2010-12-11 20:56:08 -0500 (Sat, 11 Dec 2010) | 1 line
javaast

r21 | chiache.tsai | 2010-12-03 11:22:25 -0500 (Fri, 03 Dec 2010) | 3 lines
remove op = bop | uop

r20 | chiache.tsai | 2010-12-03 11:19:58 -0500 (Fri, 03 Dec 2010) | 3 lines
all new codes

r19 | chiache.tsai | 2010-11-09 13:21:13 -0500 (Tue, 09 Nov 2010) | 2 lines
new interface

r18 | chiache.tsai | 2010-11-03 17:46:43 -0400 (Wed, 03 Nov 2010) | 2 lines
Good Java

r17 | chiache.tsai | 2010-11-03 15:50:24 -0400 (Wed, 03 Nov 2010) | 1 line
Good Parser

r16 | chiache.tsai | 2010-11-03 14:26:07 -0400 (Wed, 03 Nov 2010) | 1 line
reorganize java backend

r15 | chiache.tsai | 2010-11-03 10:35:25 -0400 (Wed, 03 Nov 2010) | 2 lines
Working Parser

r14 | chiache.tsai | 2010-11-02 23:27:34 -0400 (Tue, 02 Nov 2010) | 1 line
compilable version

test

r10 | chiache.tsai | 2010-11-01 19:24:12 -0400 (Mon, 01 Nov 2010) | 1 line
test backend

r4 | chiache.tsai | 2010-10-28 15:21:54 -0400 (Thu, 28 Oct 2010) | 2 lines
initial scanner

r3 | chiache.tsai | 2010-10-28 13:57:25 -0400 (Thu, 28 Oct 2010) | 2 lines
migrate from micro C

r2 | chiache.tsai | 2010-09-26 21:39:06 -0400 (Sun, 26 Sep 2010) | 2 lines
Sample code

rl | (no author) | 2010-09-23 18:27:52 -0400 (Thu, 23 Sep 2010) | 1 line
Initial directory structure.

5 Architecture Design
5.1 Overview to Architecture

The architecture of Spoke compiler contains both sufficient implementation of
general-purpose compilers and specific design on the purpose of natural language
processing. We assume the users of Spoke language are non-professional
developers in need of implementing spoken dialog systems in industries. Users of
Spoke language may implement they own spoken dialog system without deep
understanding to natural language processing. In some other cases, Spoke
language can be used to develop general-purposed application, since we provides
adequate data types, operators and built-in APIs.

The following figure shows the architecture of our expectation where the Spoke
language can be used in common spoken dialogue system. In most spoken dialog
solutions, the system is wrapped by two components of speech processing
separately. The two components are Automatic Speech Recognizer and Speech
Synthesizer. The task of Automatic Speech Recognizer is to use voice recognition
technology to adaptively convert speeches into correspondent texts. Speech
Synthesizer works in the opposite way, in which texts are converted into speeches
that users may understand.

Working as an intermediate component, a Spoke program is capable of doing text-
to-text processing on natural languages. Although Spoke is not designed as a
language that implements applications on data sources others than text (for
example, speech or vision), the generosity of Spoke language must make it
applicable on processing or translation of other form of data.

Automatic Question

Speech

>

Speech
Recognizer Text

Synthesizer

Make an example of spoken dialog system in the real world. A financial company
may be in need of a system that automatically responds to clients’ requests for
retrieval of financial information. Assuming clients may request information through

phones, the questions or commands are submitted by clients in the form of speech.
Suppose that the company already owns solutions of speech recognition and
speech synthesizing, the developers working for the company can use Spoke
language to write a responding system that waits for questions or commands in

text and provides satisfactory answers or reactions.

Since Spoke owns a mature library of natural language processing, developers
need not to preprocess the text by any other natural language analyzers. We
provide natural language taggers and parsers as part of the built-in APIs.

The concentration on spoken dialog systems determines the principal of design of
this language and its compilers. A spoke program is expected to run as a daemon
or an application that serves on one or multiple inputs. The design of data types,
operators and APIs will focus on string manipulation and tree structure construction.

5.2 Overview of Components

The implementation of Spoke compiler is divided into components that either does
translation from one language to another or perform analysis on a specific
language. Components are connected in sequence, and each component shares a
form of languages with the one prior to it. Each component should not translate the
incoming language as less concrete or more information, or it cannot be part of a
good compiler.

Spoke uses Java language as the backend of the compiler. Instead of directly
compiling Spoke source codes into machine codes, Spoke compiler translates
source code into a well-structured, syntax-correct java source code. Later the
Spoke compiler calls Java compiler as an external component to compile the
generated Java source codes into Java byte codes, which can be loaded and
executed in Java Virtual Machine.

The translation of Java languages determines the principal of design of Spoke
compiler. We followed the following principals in the process of implementation of
Spoke compiler:

1. The language of Spoke language and its intermediate languages must be
more preferable for translation to Java that other languages. In order word,
the design of the language shared by component must bring advantages to
Java translation.

2. The generated Java source codes must be robust enough to survive all the
syntax checks of Java compilation. Any possible syntax error semantic error
that can be caught or complained by Java compiler must be handled by one
of the components of Spoke compiler.

3. Suppose the generated Java source codes can be explicitly compiled by Jav
compiler. The Java byte codes must not cause the Java internal library to
throw any exception in the runtime. For those errors that can only be
dynamically detected during execution, they must only be caught and issued
backend implementation of Spoke compiler.

The following figure shows the components the forms the compiler.

(s
Spoke j{
Langquage {q;!/
Scanner JAVA
— <>
Parser
~ IR Translator Java AST Tra;]nas\igtor
Syntax Translator
Chacker

Each of the components in the Spoke compiler is given a specific task, based on
processing of certain form of language:

1. Scanner:
The task of scanner is to match the source character by character and
determine whether the source satisfied the regular expression of the
language. The result of scanning is a sequence of tokens, each of which
represents a key word, a special character or a constant in the language. A
error in the scanner indicate that the source contains key words that the
language does not recognize, or data format that mismatches the rule.

2. Parser:
The task of parser is to match tokens with grammar of the language. If the
tokens failed to arrive at a terminated state of the deterministic finite

automata representing the grammar, the parser complains that parsing fails.
In addition, the parser will perform initial analysis on the variable usage and
provides information for memory allocation at the runtime. The result of the
parser is a tree structure, Abstract Syntax Tree, that shows the syntax of the
source codes.

3. Syntax Checker:
The Syntax tree that the parser accepted might not be necessary correct.
The parser is responsible for analysis the basic structures of the source
codes, but not to check if every rule of the language. Some of rule is less
representative, and more difficult to check. A syntax checker will focus on
those rules one by one, either issue a warning or fix the source code. The
detail of the syntax checks in Spoke compiler will be mentioned in a later
section.

4. Intermediate Representation (IR) Translator:
The syntax tree will be translated to a less structural, less readable language
that is neutral to the source language and the target language of the whole
compiler. The characteristic of the intermediate representation is that it is
commonly sequential instead of hierarchical. All the blocks, statement and
expressions will be break into a sequence of instructions. The identifiers and
keywords in source codes will be replaced by numerical representations.

5. Java Abstract Syntax Tree (AST) Translator:
Before translating intermediate code into Java source code, the compiler
goes through a process of translating it into a former representation of Java
classes. A Java class is a strictly constructed hierarchical structure, with
definition of methods and fields. The Java AST defined the scopes of class
members. For those statements in the methods, we designed a way of
representation to define them. The Java AST we defined is similar enough to
formal Java AST representation, except we only provide definition of
statements to the least level.

6. Java Translator:
The Java AST can be easily translated to Java source code, just using a
line-by-line approach.

5.3 Intermediates of Components

5.3.1 Scanner to Parser - Tokens

Tokens represent individual units of words, constants or special characters. Some
of the tokens represent an explicit unit (in other words, “a terminal”) while the
others wrap up a value. The following table shows all the tokens recognizable by
the Spoke compiler.

LPAREN Left Parenthesis ELIF Key word “elif”’
RPAREN Right Parenthesis FI Key word “fi”
COMMA Comma FOR Key word “for”
LBRACK Left Bracket IN Key word “in”
RBRACK Right Bracket NEXT Key word “next”
COLON Colon WHILE Key word “while”
PLUS Plus LOOP Key word “loop”
MINUS Minus CONTINUE Key word “continue”
TIMES Time (*) BREAK Key word “break”
DIVIDE Division (/) FUNCTION Key word “func”
MODULUS Modulus Division (%) END Key word 0
ASSIGN Assignment (=) RETURN Key word “return”
EQ Equal to (==) GLOBAL Key word “global”
NEQ Not equal to (I=) BOOL(b) Boolean Value b
LT Less than (<) INTEGER(i) Integer Value i
LEQ Less than or equal (<=) FLOAT(f) Float Value f
GT Greater than (>) ID(s) ID as string s
GEQ Greater or equal (>=) STRING(s) String s
BELONG Belongs to (~) LTPAREN Left Parenthesis
AND And (&&) RTPAREN Right Parenthesis
OR Oor (ID WORD Word as string s
NOT Not (1) NULL Key word “null”’
IF Key word “if” STAR Wildcard character
THEN Key word “then” EOL End of Line
ELSE Key word “else” EOF End of File

5.3.2 Parser / Syntax Checker to IR Translator — Abstract Syntax Tree

AST is constructed by nodes that represent each unit of statement or expression of
the easiest form. A node of expression may be a leaf of the tree or be parent of
nodes of expressions. A node of statement may be a leaf, or a parent of nodes that
can be either of expressions or of statements.

5.3.2.1 Top Level Syntax

The top level of Abstract Syntax Tree is a main program and a multiple number of
functions. The syntax of spoke language allows function definition insides
statements. Therefore one of the task of Parser is to separate the body of each
function from the main program. These functions are stored in a lists, in the order
that they are declared.

The definition of the top level of AST is as follows.

Program := Main Program * List of Function
Main Program := { Names of Global Variables: List of String;
Names of Local Variables: List of String;
Code Body: List of Statement }
Function := { Name: String;
Name of Arguments: List of String;
Names of Global Variables: List of String;
Names of Local Variables: List of String;
Code Body: List of Statement }

5.3.2.2 Statement Syntax

Statements in a Spoke code are individual representation of instructions that are
terminated by end-of-line. Some statements are non-recursive, which contains no
statements in its descendents. The others, such as loops or branches, contain one
or more blocks of statements.

The definition of statement syntax is as follows.

Statement := Expression: Expression

Return: Expression

Continue

Break

Branch: Expression * List of Statement * List of Statement
For Loop: String * Expression * List of Statement

While Loop: Expression * List of Statement

No Expression

5.3.2.3 Expression Syntax

Expressions are the smallest units in the Spoke language. Unlike statements, each
expression should have a value of specific type. Expressions with operators may
wrap up other expressions as their descendent.

The definition of expression syntax is as follows.

Expression := Boolean | Integer | Float | String

Variable: string

New List: List of Expression

Call Function: String * List of Expression

Binary Operation: Operator * Expression * Expression
Tag: Expression * Expression

Unary Operation: Operator * Expression

Assign to Variable: String * Expression

Assign to Element: Expression * Expression * Expression
Value of Element: Expression * Expression

Partition of List: Expression * Expression * Expression
Any | Null

5.3.3 IR Translator to Java AST Translator — Spoke Intermediate
Code

In order to translate Abstract Syntax Tree to a form of language that is neutral to
any language, we design the intermediate syntax, named as Spoke Intermediate
Code. Spoke Intermediate Code looks similar to byte codes of several languages
on virtual machines or Assembly as the representation of machine codes. However
the syntax of Spoke Intermediate Code is different from those languages in some
details, since it is designed to target Java Code Translation.

There are four characteristics of the syntax of Spoke Intermediate Code:

1. Spoke Intermediate Code is not strictly enumerated. In some cases, the
syntax allows assignment of strings or Booleans. The reason that we didn’t
define it strictly enumerated is that Spoke Intermediated Code is not
designed to be byte codes.

2. Spoke Intermediate Code does not restrict the number of attribute of each
instruction. Some of them might have no attribute, while others have as
much as four attributes. The reason of this design is the same as the
previous one: Spoke Intermediate Code is not Byte Code.

3. Java does not have a convenience structure for stack manipulation. Unlike C
language, in which programmers can manipulate pointers, Java language
has no reference on address. Although Java does provide a Stack class in
library, it is less reliable and efficient to use. In fact, Java is designed with
scoping as stack-based. All the local variables of Java are located on stacks.
What is more, Java has very good garbage collecting mechanism, so that
we do not need to worry about memory leaks of local variables.

As a result, we design operations in Spoke Intermediate Code using
temporary local variables. Only instructions like “Load” or “Store” will touch
real variables (no matter local or global). The others will performance
operations on temporary variables. We keep recording the usage and
temporary local variables, and to make sure wanted variables are not
overwritten and unwanted variables are reused.

In fact, this design is much more like byte code of LLVM (Low Level Virtual
Machine). In fact, we can make an assumption that this design rarely
exhausts stacks. The number of temporary variables required will be O(n)
for n-level branches or loops.

4. Java has no Jump statement. It is not possible to translate branching or
loops into conditional jumps as other translators do. As an alternative,
branches and loops in Spoke Intermediate Code are represented by number
of lines contained in the blocks instead of distance to jump. For example, an
instruction Br(1,10,5) indicates that when templ is true the following ten
instructions will be executed, otherwise, another five lines will be executed.
This is also an advantage on translation into Java codes, since the compiler
can easily translate this instruction into structures with blocks.

The following shows a list of the syntax of Spoke Intermediate Code:

Gl Integer (* Global variables *)

Lc Integer (* Local variables *)

Cb Integer * bool (* Constant bool *)

Ci Integer * Integer (* Constant Integereger *)
Cf Integer * float (* Constant float *)

Cs Integer * String (* Constant String *)

Ay Integer (* Any Object *)

NI Integer (* Null Object *)

Wp Integer * Integer (* Wrap list *)

Pt
El
St
LI
Sl
Lg
Sg
Bn
un
Fn
Rt
Cl
Tg
Br
Lp
Bk
Ct

Integer * Integer * Integer * Integer
Integer * Integer * Integer
Integer * Integer * Integer
Integer * Integer

Integer * Integer

Integer * Integer

Integer * Integer

Integer * Op * Integer * Integer
Integer * Op * Integer

Integer

Integer

Integer * Integer * Integer
Integer * Integer * Integer
Integer * Integer * Integer
Integer

(* Get partition *)

(* Get element *)

(* Set element *)

(* Load local variable *)
(* Store local variable *)
(* Load global variable *)
(* Store global variable *)
(* Binary operation *)

(* Unary operation *)

(* Function *)

(* Return *)

(* Call Function *)

(* Tag Object *)

(* Branch *)

(* Loop *)

(* Break *)

(* Continue *)

5.3.4 Java AST Translator to Java Translator — Java AST

We define Java Abstract Syntax Tree as the formal definition of Java Class. Our
definition of Java Class is a partial implementation of the official Java Abstract
Syntax Tree. In fact, we do not intend to translate out intermediate code into Java
Byte Code. Therefore we only define the least syntax necessary for the Spoke
compiler.
The following is a formal definition of our Java AST.

JClass := { Package : JID;

Accessor : JACCESS;
Name : JID;

Super Class : JID;

Fields : List of JField;
Methods : List of JMethod; }

JFiled := { Name : JID;

Accessor : JID;
Type: JID; }

JMethod := { Name : JID;

Accessor : JID;
Static : Boolean;

Argument : List of JID * JID;
Return Type: JID;
Body : List of JStatement }

JID : = String
JACCESS : = Public | Private | Protected | None
JStatement := JDef : jtype * JID (* Type Declaration *)
| INew : jtype * String list * JID (* Allocation *)
| Jinvoke : JID * String list * JID (* Function Call *)
| JThrow : JID * String list (* Exception Throw *)
| Jinstance: : JID * JID * JID (* Instance Of *)
| JIf : String * jstmt list * jstmt list (* Branch *)
| JFor : JID * String * jstmt list (* For *)
| IWhile : String * jstmt list (* Loop *)
| JBreak (* Break *)
| JContinue (* Continue *)
| JReturn : JID (* Return *)

5.4 Implementation of Components
In this section we will discuss the detail of implementation of each component.
5.4.1 Scanner

We keep Implementation of scanner as simple as possible. The only tricky thing is
the scanning of tagged syntax tree for natural language processing. We make
special rules to recognize the tagged syntax tree (wrapped by apostrophes) as
early as in the scanner.

5.4.2 Parser

Two important tasks are performed by parsers. The first is to separate functions
with main programs. The second is to recognize the declaration of local
variables on first assignments. The parser will pass out the information of
functions and local variables at the meanwhile of syntax parsing. The order of
function names and variables will be kept as their declarations or first
assignments.

5.4.3 Syntax Checker

The syntax checker will perform six checks on the incorrectness of syntaxes
that parser may not detect. The six checks are as follows.

5.4.3.1

5.4.3.2

5.4.3.3

5.4.3.4

5.4.3.5

Duplicated Definition of Built-in Variable

In Spoke language, we define three built-in variables, one is local variable
and two is global variables. The local variable “arg” will be assigned as list of
arguments passed at the beginning of function calls. “arg” also exists in main
program as reference to command-line arguments. As well, global variables
“‘match” and “star” is manipulated by built-in APIs. Those variables should
not be declared as arguments of function or another global variable, or an
error is issued in the compilation.

Assignment to Built-in Variable

The three built-in variables should not be assigned variable in the user
program. Any assignment to these variables will cause an error in the
compilation.

Return Statement outside Functions

A return statement should be written in a function. The checker goes through
the statements of the main program and issues an error if find a return
statement.

Continue / Break Statement outside Loops

A continue statement or a break statement should not be written outside
loops. The checker goes through the statements of the main program and
function, holds their step when seeing a loop, and issues an error if find a
continue statement or break statement.

Functions not Closed by Return Statement

Java has a concrete definition of its language and performs sufficient syntax
check on source codes. A function with non-void return type will be
complained by Java compiler if the user forgets to put return statement at

the end. Here syntax checker perform an easy analysis statically on
functions, and detect the missing of return statements. This error will be
automatically fixed without warning or exception. The checker fixes it by
putting a return statement at the end of function.

5.4.3.6 Statement after Return Statement

Java Syntax Checker also complains about the existence of statement after
a return statement. This condition is warned as “Unreachable statements”. In
order to quit Java Syntax Checker, we perform checks on unreachable
statements and warned it in the compilation time.

This checking is more like a static analysis. In fact, checking for unreturned
function encounters the same problem. The issue is on branches. A
branching with both blocks containing return statement will be considered
returning in the function. The following example will be considered a
returning function.

func foo(test) public boolean foo(Boolean test)
if test then {
return true If (test) {
else return true;
return false } else {
fi return false
end }
(Spoke) } (Java)

The analysis checker does on these condition is to pass flags in blocks of
code to indicate if the block contains return statements. A branch will pass a
flag of true if both of its blocks contain return statements.

5.4.4 IR Translator

The main task of compiler is on Intermediate representation Translator. IR
Translator has to perform three most important tasks. The first is to handle
scoping and naming. The second is to transform expression in trees as the
simplest form of operation, with proper usage of temporary variable. The third is
to translate statements into instructions that match the semantics.

5.4.4.1

5.4.4.2

5.4.4.3

Scoping and Naming

The IR Translator maintains a String Map for the matching of numeric
representation and string representation, for local variable global variables
and functions. An access to a variable name not matched in either global
variable list or local variable list will be considered not semantically corrected.
The translator will issue an exception for undeclared variables.

Note that we have three built-in variables, two global ones and one local one,
which should be put to the String Map for every function. These variables

will be numbered statically. For example, the built-in local variable will

always be numbered as 0.

We do the same static scoping on built-in APIs. We adopt the concept of
system calls in operating systems. Each API is numbered as a fixed function
number, so can be translated into enumerated form. Later the Java AST
translator will translate it back to the real name of functions, which might be
inconsistence at the first place where developers use them.

Transformation of Expressions

Most of the operation of expressions needs usage of temporary variable. We
have to keep a list of the used variables and recycle those variables not
needed any more.

This problem is not actually difficult to solve. For every expression, it is for
sure that exactly one value will be returned, stored in a temporary variable
on the top of variable list. For retrieving this value, simply grab the first
variable name on the list and use it in next operation.

Translation of Statements

The translation of statements may be either simple or complex, depending
on the semantic meaning of the statements. Take For loop in Spoke
language as example. The For loops in Spoke Language is more like
usages in scripting language like Bash or Python. The For loop works like an
iterator on a list of objects. The translation of this statement may be very
complex. The following codes shows how For loops are translated.

Load list to tmpl
For a in list Settmp2 as -1
Begin to Loop
Settmp3 as 1
Set tmp2 as tmp2 + tmp3

next Set tmp3 as len(list)
(Spoke) Set tmp3 as tmp3 <= tmp2
Branch on tmp3
Break

Set tmp3 as tmpl[tmp2]
Store a as tmp3
(Java)

5.4.5 Java AST Translator

It appears to be straightforward to translate Spoke Intermediate Code into Java
AST. The format of Spoke Intermediate Codes is designed specifically for Java
Translation and theoretically can be matched into Java AST line to line.

However we want to put more works to make this translation robust. In a direct
translation, the Java source codes generated will suffered exception thrown by
the backend. In order to prevent type mismatch on assignment, the generated
code has to allocate new object for each assignment, which is not really
economic. In fact, checks can be placed in the generated code an perform
direct assignment of value instead of allocating a new object, in the case that
the type is matched.

In fact, there are still several checks of these kinds placed in generated Java
codes. For example, a non-enumerated variable being given to mathematical
computation like subtraction, multiplication, divisions will throw a runtime
exception rather than wait for backend to detect it. This reaction to the runtime
failure is actually smarter than simply relies on the backend.

5.5 Contributions

William Yang Wang collaborated with all teammates and mainly contributed to the
design and implementation of the natural language parsing and tagging features

throughout the front end scanner, parser to JAVA back end. And he is also
responsible for implementation and integration of the entire application system.

Chia-che Tsai implemented the front end scanner and parser based on MicroC
language. He also implemented the Bytecode and Java AST parts of the translator.
He designed, set up and improved the JAVA backend data structures according to
the frontend. He collaborated with William on the design and implementation of
advanced natural language features, and revised the implementation of JAVA
backend.

Xin Chen is responsible for the implementation of JAVA source code translation.
He also collaborated with Chia-che and Zhou on the implementation the JAVA
backend data structures and APIs.

Zhou Yu is responsible for the JAVA backend implementation. He collaborated with
all team members on the backend implementation of advanced natural language
features.

6 Test Plan

This is our test plan for the Spoke language and our compiler. Our test plan
consists of syntax test, semantic test (IR test), run time test and application test.

The plan will have two levels of testing, First is unit testing to check whether our
scanner, parser, java AST, semantic checking system and java backend works
normally. The second level is to check whether our system works normally in dialog
management and Natural language processing.

6.1Spoke Test Program
6.1.1 Syntax Test
(1) scanner

Code ID Test case Expected Result Problem
result
1. # operators a7 #pass
and operants
+-*1% #pass
= #pass
== #pass
I= #pass
< #pass
<= #pass

>= #pass

#pass

&& #pass
! #pass
1 #pass
: #pass
(a,b) #pass
2. # keywords global true false if #pass
then ilif else fi for
in next while loop
break continue
func retun end
3. #ID a9 #ID(a9) EOL
a9 #ID(a)
INTEGER(9)
EOL
a.a.a.a #compile error
4. #Value float 0.0.0 #compile error
01.1
float sss #ID(float)
float1 1 #ID(float)
INTEGER(2)
ID(_1)
5. #String
6. # estring: \" #compile error
" #compile error
[I\tl l\rl]
7. # nstring: \" #compile error
" #compile error
_ #ID() EOL
" #STRING(_\\t)
EOL
string SSS = #1D(string)
"'string"" ID(SSS) EOL
string ™" #1D(string)
STRING() EOL
'string’ "\t\r\n" #STRING(string)
\t\r\n' STRING(\t\r\n)
STRING(\\r\\n)
EOL
"1.2" #pass
8. # tstring “string’ #pass
> #pass
0 #pass
("ssd" ™)

#LPAREN

STRING(ssd)
STRING()
RPAREN EOL

(sd sdf) #LPAREN
ID(sd) ID(sdf)

RPAREN EOL
9. #tag: (NN 1)’ #LTPAREN
TAG(NN)
WORD(I)
RTPAREN EOL
("aa" a)’ #compile error
(2) parser
Code ID Test case Expected Result Problem
result
1. IF expression a=1 #pass
IF expr THEN eol if a == 1 then
stmt_opt %prec a=2
NOELSE FI { If(fst | fi
$2, fst $5, []), snd
$5 @ snd $2}
#1) IF
(expression)
THEN statement
#2) IF
(expression)
THEN statemtent
ELSE statement
#3) IF
(expression)
THEN statement
ELIF
(expression) THEN
statement
ELSE
statement
Fl
a=1 #compile error
if a==1then #pass
a=2
elif a ==1.5 then
Return statement
a=3
elsea=5
fi
2. # FOR element a=1 #pass
in [number of forain [1,2,3]
iterations] a=2
statement next
NEXT
forain [1,2,3] #pass

next

forain #pass
[1,","hello"]
a=1
next
3.# WHILE while (a<= "hello" #compile error compile
(expression) && a>1 && a) bug: (a<=
statement LOOP a=3 "hello" &&
WHILE expr eol a=a-l
stmt_opt LOF<J)P loop a>1&&3)
{ While(fst $2, fst
$4), snd $4 @ snd
$2}
while (a<="hello" #compile error
&& a>1 && a=1)
loop
4. # Return func foo(a , b) #pass
statement return 1
RETURN end
{ Return(Nulh, []}
targ: (a’(ah)) # scanner :
LTPAREN
TAG(a) LPAREN
ID(a) ID(b)
RPAREN
RTPAREN EO
(ab) # scanner :
LTPAREN
TAG(a)
WORD(b)
RTPAREN EOL
5. # Integretion test | a =[1,2,3] #Expr(Assign(a
forain[2,3,4] List(Int(1) Int(2)
azatl Int(3))))
next
if a ==1 then # compile error,
func print(a) bug might exist
end here
fi
while (a<="hello" # compile error # have
&& a>1 && a) compile
func print(a) bug: (a<=
g;dp "hello” &&
a>1 && a)
function
call can't
be nested
in while
loop

func print(a)
end

#pass

foriin range(0, 2)

#pass

next

print(i)

6.1.2 Semantic Test

ID Test case Expected Result Problem
result
1. # function | func print(a) #pass
definition end
b= print (4)
b=a(4) #Fatal error: exception
Failure("undefined
function: a")
2. # variable =" #pass
definition b=a
b=a #Fatal error: exception
Failure("undefined
variable: a")
3. # main if a==1then #pass
function return
else
return
fi
if a ==1 then #Fatal error: exception
return Failure("return’ in main
else function")
return
fi
a=1
4. #returnin | func print(a) #pass #
function return Gl2
end En 6
Lc2
LIoo
Cilo
El201
Si21
Rt-1
Lc1
func print(a) #pass #automatically add

end

return in function (Rt is
return in our
intermediate code)

Gl 2

Fn 6

Lc2

LIOO

Cilo

El201

Si21
Rt-1
Lc1
5.#returnin | a=1
main
function
a=1 #pass #Fatal error: exception
return Failure("'return’ in main
function™)
6. # continue | a=1
while (a<= 10)
a=a+l
continue
loop
continue #Fatal error: exception
Failure("continue’
outside loops™)
7. # break a=1 #pass
while (a<= 10)
a=a+l
break
loop
break #Fatal error: exception
Failure("continue’
outside loops™)
6.1.3 Runtime Test
ID Test case Expected Result Problem
result
1. # type a=1 #pass
matching b=2
c=a+b
a=1 #Operation on
b="1" incompatible
c=a+tb types
2. # get list a=[1,2,3] #pass
element b=a[1]
a="a" #Get element on
b=af[1] a non-list
variable
3. # wet list a=[1,2,3] #pass
element a[l]=2
="a" #Set element on
a[1]=2 a non-list
variable
4. # equal type a=1 #pass
check b=2
if a==b then
fi

a=5

b:"C"

if a==b then
fi

#Operation on
incompatible

types

5. # equal type

check

a=1

b=2

if al=b then
fi

a=6
b:IItII
if al=b then

fi

#Operation on
incompatible

types

6.1.4 Application Test

ID

Test case

Expected
result

Result

Problem

1. #
application
sample 1

Utterance = Utter(Input) #
conversion

if Utterance eq
"<NN>I<VB>am<NN>*'
Name = Utterance[2]

Reply =
str(<UH>Hello<NN>World
+ Name)

print Reply + "\n"

fi

#pass

2. #
application
sample 2

Utterance =
"<NN>I<VB>am<NN>Jerry"
if Utterance eq
"<NN>I<VB>am<NN>*
Name = Utterance[2]

print
‘<UH>Hello<NN>World" +
Name

fi

#pass

3. #
application
sample 3

Input = ‘How much did the
Dow Jones drop today?’

Parsed = parse (Input)
print (Parsed)

Parsed = (ROOT
(SBARQ (WHNP (WRB
How) (JJ much)) (SQ (VP
(VBD did) (NP (DT the)
(NNP Dow) (NNP Jones)
(NN drop)) (NP (NN
today)))) (. ?)))’

if question == (ROOT
(SBARQ (WHNP (WRB

#pass
Print “"Dow
Jones drop

30 points”

How) (JJ much)) (SQ (VP

(VBD did) (NP * (NN drop))

(NP (NN %)) (. 7)) then

answer =

search_database($1, $2)

fi

print answer
4. # 'How much did the Dow Jones #pass
application drop yesterday’ “’Dow Jones
sample 4 (Dialog is input by person) drop 30
dialog points”
management

'How much is the Dow #pass

Jones today' “Dow Jones

(Dialog is input by person) is 11559

points”

input = 'What is the Dow #pass

Jones today' “Dow Jones

(Dialog is input by person) Industrial

Average”

6.2Contributions
Out test plan contributes greatly to the reliability and stability of our system. We
detected at least 25 bugs in our scanner, 12 bugs in our parser, 12 bugs about out
Java AST and more than 30 bugs in our Java backend.

Since we do enough tests on semantic problems when using the Spoke, we
avoid semantic conflicts causing by semantic problems. We detect more than 10
bugs add about 10 types of semantic checking to avoid these bugs. We do
carefully runtime checking. Our system based on compiler from Ocaml front end
and Java backend. The interface between our front end and backend is a big
problem when we developing our system. To handle this point, we press on
runtime checking and greatly improve our java backend to solve all kinds of
situations which might be caused by frontend input.

Lessons Learned

7.1William Yang Wang

It really feels good that we finally manage to put all things together and have our
own tiny language running within three months. 1 am also glad to learn my second
functional programming language, OCAML, which certainly brings both of tears of
pain and tears of joy to me. The learning curve of OCAML is flat, but worthy.

As the Project Manager, | believe three factors are essential to the success of a
PLT project.

(1) People. Choosing the right teammates is *not* half done. Understanding the
advantages of each team member is the key to the success of this project. | am
very fortunate to have Chia-che Tsai in charging of the front-end translator
implementation details. As a system person, Tsai carried his high standards
and requirements into this project. | am also fortunate to work with Xin Chen,
who is a reliable and responsible teammate. He mainly works on the Java
back-end and testing, and has made contribution to this project.

(2) Ideas and Design. In retrospect, | am glad we have a very clear blueprint of
this project in the very beginning. The motivation of spoke language is well
defined, and our goal of this project is clear: design and implement a light
weight but powerful language that focuses on spoken dialog management. We
also revise the detail features of our language to adapt the necessary changes
in all different lifecycles of this project.

(3) Implementation and Execution.
It is crucial to understand what can be done and what cannot be done within a
limited time. We first implement the scanner and parser for the basic features,
then, we start to translate the AST into Bytecode and Java AST. We also have
two people working on the Java backend in parallel. After we have the basic
features, then we immediately augment them with advanced features, for
example, the joint parsing of natural language and programming language, and
the natural language syntax tree matching.

7.2Chia-che Tsai
The lessons | have learned in this project are two:

1. Why applying functional languages on system designs?

During this project, | come to a deep understanding to the core of functional
language. Functional language has a more strict definition of its functions,
that each of them have to be make recursive. This actually makes the code
less readable and easy to implement. However, when | began to master the
languages, | found it provides a even stronger interpretion to algorithm. The
reason why Functional Language is better on the implementation of
algorithm is that it make developers thinks in recursive way, instead of the

traditional sequential way. A traditional language actually not only makes the
code sequential but makes memory / object access sequential. The
sequential access make the access vulnerable since it is hard to guarantee
the memory contains data of consistent type. This problem is explicitly
solved by functional languages.

2. The design of system from high-level to low-level, from front-end to back-
end.
| participated the whole implementation and design of this compiler from
high level to low level, and from front-end to back-end. This makes an
interesting fact: whenever we encounter some problem, we go back to the
definition of languages and make the design a little be more concrete. Also
we translate the language into Java source code. In order to fulfill this, we
design our system, including intermediate code format, based on
characteristic of Java.

7.3Xin Chen

| feel excited that we have finally managed our programming language work out,
and not only for a small Hello World application, but also for the more advanced
feature of The Spoke Language. Also, this is my first time to learn a functional
language— Ocaml. | didn’t like Ocaml very much at the beginning, because I think a
good programming language should be at least easy to read, and Ocaml always
confused me, as a reader and a learner. Gradually, when | felt like that | had to
learn it in order to do the project, and | began to know this language better. Right
now, | have to acknowledge that Ocaml is really a great language in writing compiler.

Throughout the project, | think the most important thing that | have leant is that
how to design a language. It is definitely not an easy question. From the very front
end scanner to the backend Java source code, for each step we have to make a
design decision, such as how many string types, how to deal with scoping and how
to translate into Java code. | mainly worked on the middle layer, build JavaAST and
translate the intermediate code into Java as well as backend implementation. |
would like to thank Tsai, our CTO, who came up with the most design ideas and
decisions, and | have learned a lot of things from him. Also, William is a very
responsible project manager in the team, and he is mainly focusing on NLP part, if it
was not him, we couldn’t make the whole NLP dialog system work. Zhou has
collaborated with me the backend implementation and testing, and | would thank
him for his major contribution to the backend.

Additional credit: Before this project, | have no idea of how complex Natural
Language Processing is. | would like to thank William who started this great project

idea and shared the background NLP knowledge with me. | would take it as an
additional credit because right now | am becoming professional in NLP.

7.4Zhou Yu

The most valuable lesson | learned in PLT course is how to design and implement
a compiler. Another lesson is that | learned Ocaml, which is a powerful functional
language in implementing compiler.

(1) Ideas about how to design a compiler focusing on specific task.

Compiler is a complex system with several components. To design an efficient and
effective compiler for specific task, we have to carefully design the component
interfaces at the first place. Moreover, a good compiler is able to provide certain
advanced feature to handle specific problem rather than trying to face all kinds of
situations. In our system, it's partial and wildcard matching between different NLP
syntax trees.

(2) Detail about implementation of a compiler, specially the backend of a compiler.
After finishing this project, | have profound understanding about the
implementation of a compiler. My work focuses on backend and java APIs.
Because our backend depends on input of Ocaml frontend, it should be flexible
enough to handle different situations and tolerate mistakes. We need to modify the
design and code time by time to adapt to new changes so that we can realize a
more flexible and stable backend

(3) knowledge and practice of Ocaml

Ocaml is succinct and strong functional language. It's my first time using a
functional language, so at first it’s a little difficult for me to understand Ocaml code.
After finishing this project, | know not only how to use Ocaml but also how to think
in functional language.

Appendix:

Front End:

scanner.mll:

{ open Parser }

let letter = ['a'-"z'" '"A'-'Z"] (* english letters ¥*)
let digit = ['0'-"9"] (* numerics *)
let space = [' ' "\t'] (* whitespace *)
let break = ['\r' '"\n'] (* breaklines *)
let punct = ['." ', " ‘'2"v vivovpnovan] (* punctuation *)
rule token = parse

space { token lexbuf } (* split statement *)

| '\\'space*break { token lexbuf } (* connect splitted statements *)
| break { [EOL] }

| "#" { comment lexbuf } (* comments: start at pound and
end at EOL *)

' (" { [LPAREN] } (* wrap expressions *)
| ") { [RPAREN] } (* EX: (1 + 2) * 3 %)
[, { [COMMA] }
| "+ { [PLUS] } (* arithmetic operators
addition (1 + 2) *)
| = { [MINUS] } (*
substraction (1L - 2) *)
| ! { [TIMES] } (*
mulitplication (1 * 2) *)
| '/ { [DIVIDE] } (*
division (1 / 2) *)
| '%! { [MODULUS] } (*
modulus (1 % 2) *)
| =" { [ASSIGN] } (* arithmetic assignment : x =
y=1%)
| "==" { [EQ] } (* comparation : equal
(a == b) *)
| "i=" { [NEQ] } (* : not equal
(a = Db) *)
| <! { [LT] } (* : less than
(a < Db) *)
| "<=" { [LEQ] } (* : less than or
equal (a <= b) *)
| "> { [GT] } (* : greater than
(a > Db) *)
| ">=" { [GEQ] } (* : greater than
or equal (a >= b) *)
| "~ { [BELONG] '} (* : Belongs to
(a ~ Db) *)
| "&&" { [AND] } (* boolean operators

intersection (a && b) *)

u||u
b) *)
wn

*)

"] "

array[0:1] *)

*)

"global"

"true"
"false"

"if"
*)
"then"
*)
"elif"
"else"
"fil'
"for"

*)

LU

ln"
"next"

"while"

"loop"

CONTINUE *)

*)

"break"

"continue"

"func"

"return"

"end"

"null"

{

digit+ as 1lxm
integer *)

digit+'.'digit+ as lxm {

float *)

[OR] } (* union
[NOT] } (* negation
[LBRACK] } (* array definition [1 [1,2]
[RBRACK] } (* array[0]
[COLON] }

[GLOBAL] } (* local variable *)

[BOOL (true)] } (* boolean value true *)

[BOOL (false)] } (* boolean value false *)

[IF] } (* if-then-else: IF a==0
[THEN] } (* ELIS a==-1
[(ELIF] } (* ELSE

[ELSE] } (* FI

[(FI] }

[FOR] } (* for-loop: FOR a in [0, 1,
[IN] } (* NEXT

[NEXT] }

[WHILE] } (* while-loop: WHILE a > O
[LOOP] } (* BREAK |
[BREAK] } (* LOOP

[CONTINUE] }

[FUNCTION] '} (* function: FUNCTION foo
[RETURN] } (* RETURN
[(END] } (* END

[NULL] 1}

{ [INTEGER (int of string lxm)] }

[FLOAT (float of string 1lxm)] }

| (letter|' ") (letter|digit|' '")* as lxm { [ID(lxm)] }
(* ids *)

| "\'""' { [STRING(nstring lexbuf)] } (* native strings:
'string' *)
[' { [STRING (estring lexbuf)] } (* escapable string:

"\t\r\n" *)

[' { []1 @ tstring lexbuf }

| eof { [EOF] }

| as char { raise (Failure("illegal character " »~ Char.escaped
char)) }

and nstring = parse
l\l' { mwwn }

| as char { Char.escaped char ”* nstring lexbuf }

and estring = parse
Ty

mwn }

{
| ['\t" "\r'" '"\n'] { ™ " ~ estring lexbuf }
I "\\'_ as lxm { 1xm ~ estring lexbuf }
| as char { Char.escaped char ©* estring lexbuf }

and tstring = parse
T (1}

tstring lexbuf }

[WORD (Char.escaped char)] @ tstring lexbuf }

WORD (1xm)] @ tstring lexbuf }

LTPAREN] @ tstring lexbuf }

RTPAREN] @ tstring lexbuf }

STAR] @ tstring lexbuf }

space

punct as char
letter+ as 1lxm
|l (|l

|l) |l

T %1

e e e e N N M)

and comment = parse
break (space*break)* { [EOL] 1}
| { comment lexbuf }

parser.mly:

%{ open Ast;; %}

%{ let unique e =
let check unique res e = if List.mem e res then res else
e::res
in List.fold left check unique [] e;;

let comple e 1 =

let check not belong res e = if List.mem e 1 then res else
e::res
in List.fold left check not belong [] e;;

o°
-

$token LPAREN RPAREN

$token COMMA

$token LBRACK RBRACK

%$token COLON

$token PLUS MINUS TIMES DIVIDE MODULUS
%$token ASSIGN

$token EQ NEQ LT LEQ GT GEQ BELONG
%$token AND OR NOT

$token IF THEN ELSE ELIF FI
$token FOR IN NEXT

%$token WHILE LOOP

$token CONTINUE BREAK
$token FUNCTION END

$token RETURN

$token GLOBAL

$token <bool> BOOL

$token <int> INTEGER

$token <float> FLOAT

$token <string> ID

$token <string> STRING
%$token LTPAREN RTPAREN
$token <string> WORD

$token NULL

$token STAR

$token EOL EOF

$nonassoc NOELSE
%$nonassoc ELSE
$nonassoc ELIF

%$right ASSIGN

%$left AND OR

$left EQ NEQ LT GT LEQ GEOQ
$left PLUS MINUS

%$left TIMES DIVIDE MODULUS

%$start program
Stype <Ast.program> program

o°
o

program:
program rec EOF
{ (let g = unique (List.rev (List.concat (List.map (fun f ->
f.global) (snd $1))))
and 1 = List.rev (unique (snd (fst $1)));

in { gvar = g; lvar

$1)) 1),

List.rev (snd $1) }
program rec:
/* nothing */ {
| program rec stmt {
snd S1 }
| program rec fdec { fst $1,

(1, 1y
((fst s$2

$1)),

eol:
EOL {}

stmt:
stmt unit eol { S$1 }

stmt unit:
/* empty */
| stmt inline

[]

{ Noexpr,

{ 81}

| IF expr THEN eol stmt opt $prec NOELSE FI { If(fst $2,

[1), snd $5 @ snd $2 }

| IF expr THEN eol stmt opt stmt else FI
snd $6 @ snd $5 @ snd $2 }
| FOR ID IN expr eol stmt opt NEXT

fst $o6),

snd $6 @ snd $4 @ [$2] }

| WHILE expr eol stmt opt LOOP

snd $4 @ snd $2 }

stmt else:

ELSE eol stmt opt
| ELIF expr THEN eol stmt opt
snd $5 @ snd $2 }
| ELIF expr THEN eol stmt opt
fst $6)], snd $6 @ snd $5 @ snd $2

(11,

stmt inline:

comple 1 g;

($2

expr assign {
expr call {

Expr (fst $1),
Expr (fst $1),

List.rev (fst (fst

code

(1}

fst (fst $1)), snd $2 @ snd (fst

snd S$1) }

}

fst $5,

{ If(fst $2, fst $5,

{ For($2, fst $4, fst $o0),

{ While(fst $2, fst $4),

{ $3 1}
$prec NOELSE { [If(fst $2, fst $5,

stmt else { [If(fst $2, fst $5,

}

snd S$S1 }
snd S$S1 }

, [1})
2), snd $2 }
}

RETURN {

|

| Return (Null
| RETURN expr {

|

|

|

)
)
)
Return (fst $
CONTINUE { Continue, I[]
BREAK { Break, [] }
IF expr THEN stmt inline %prec NOELSE
snd $4 @ snd $2 }
| IF expr THEN stmt inline ELSE stmt inline { If(fst $2,

{ If(fst $2, [fst $4],

(1),
[fst $4]1,

[fst $6]), snd $6 @ snd $4 @ snd $2 }
stmt opt:
/* nothing */ { [], [] }
| stmt rec { List.rev (fst $1), snd $1 }

stmt rec:

stmt { [fst $1], snd $1 }

| stmt rec stmt { fst $2 :: fst $1, snd $2 @ snd S1 }
expr:
expr assign
| expr com { $1

expr assign:

ID ASSIGN expr { Assign($1, fst $3),
[$1] @ snd $3 }
| var LBRACK expr RBRACK ASSIGN expr { AssignElement (fst $1,

fst $3, fst $6), snd $6 @ snd $3 @ snd $1 }

expr call:

ID LPAREN arg opt RPAREN { Call($1l, fst $3), snd $3 }
arg opt:

/* nothing */ {01, 13

| arg rec { List.rev (fst $1), snd $1 }

targ

WORD WORD Tag (String($1), String($2)) }

WORD STAR Tag (String(s1l), Any) }

STAR WORD Tag (Any, String($2)) }

STAR STAR

Tag (String ($1), Newlist($2)) }
Tag (Any, Newlist ($2)) }
Tag (Any, Newlist($1l)) }

STAR targ list
targ list

e e e i N N N

(
| (
| (
| Tag (Any, Any) }
| WORD targ list (
| (
| (

targ list:
targ rec { List.rev $1}

targ rec:
LTPAREN targ RTPAREN { [$2] }
| targ rec LTPAREN targ RTPAREN { $3 :: S1 }
arg rec:
expr { [fst $1]1, snd $1 }
| arg rec COMMA expr { fst $3 :: fst $1, snd $3 @ snd $1 }

expr_com:

expr prefix { $1}
| expr unit { $1 1}
| expr com PLUS expr unit { Binop (Add, fst $1, fst $3), snd

$3 @ snd S$1 }

| expr com MINUS expr unit { Binop (Sub, fst $1, fst $3), snd
$3 @ snd S$1 }

| expr com TIMES expr unit { Binop(Mult, fst $1, fst $3), snd
$3 @ snd $1 }

| expr com DIVIDE expr unit { Binop (Div, fst $1, fst $3), snd
$3 @ snd $1 }

| expr com MODULUS expr unit Binop (Mod, fst $1, fst $3), snd
$3 @ snd $1 }
| expr com EQ expr unit Binop (Equal, fst $1, fst $3), snd
$3 @ snd $1 }
| expr com NEQ expr unit Binop (Neq, fst $1, fst $3), snd
$3 @ snd $1 }
| expr com LT expr unit Binop(Less, fst $1, fst $3), snd
$3 @ snd $1 }
| expr com LEQ expr unit Binop (Leq, fst $1, fst $3), snd
$3 @ snd $1 }
| expr com GT expr unit Binop (Greater, fst $1, fst $3),
snd $3 @ snd $1 }
| expr com GEQ expr unit Binop (Geq, fst $1, fst $3), snd
$3 @ snd $1 }
| expr com AND expr unit Binop (And, fst $1, fst $3), snd
$3 @ snd $1 }
| expr com OR expr unit Binop (Or, fst $1, fst $3), snd
$3 @ snd $1 }
| expr com BELONG expr unit Binop (Has, fst $1, fst $3), snd
$3 @ snd $1 }
expr prefix:
MINUS expr unit { Unaop (Minus, fst $2), snd $2 }
| NOT expr unit { Unaop (Not, fst $2), snd $2 }
expr unit:
BOOL { Bool($1), [] }
| INTEGER { Int($1), [] }
| FLOAT { Float(s$1), [1 }
| STRING { String($1), [] }
| STAR { Any, [] }
| NULL { Null, [] }
| var { s1 }
| targ { S1,101 }
| expr call { $1 }
| LPAREN expr RPAREN { 82 }
| LBRACK arg opt RBRACK { Newlist (fst $2), snd $2 }
var:
ID { var(s1), [1 }
| var LBRACK expr RBRACK { Element (fst $1, fst $3), snd
$3 @ snd S$1 }
| var LBRACK expr COLON expr RBRACK { Sublist(fst $1, fst $3, fst
$5), snd $5 @ snd $3 @ snd $1 }
fdec:
FUNCTION ID LPAREN id_opt RPAREN eol gdec stmt opt END eol
{ let g = List.rev (unique $7) and 1 = List.rev (unique (snd $8))
in { name = $2; args = $4; global = g; local = comple (comple
1 g) $4;
body = fst $8 } }

gdec:

/* nothing */ { [] }
GLOBAL id list eol { $2 }

id opt:
/* nothing */ { [1 1}
| id rec { List.rev $1 }
id list:
id rec { List.rev $1 }
id rec:
ID { [$1]1 }
| id rec COMMA ID { 83 :: S1 }
ast.ml

type binop = Add | Sub | Mult | Div | Mod | Equal

| Greater |

type unaop
type debug

}

Geq | And | Or | Has
Minus | Not

{

indent : string;

type expr =

Bool of bool | Int of int | Float of float
String of string | Var of string
Newlist of expr list

Call of string * expr list

Binop of binop * expr * expr

Tag of expr * expr

Unaop of unaop * expr

Assign of string * expr
AssignElement of expr * expr * expr
Element of expr * expr

Sublist of expr * expr * expr

Any

Null

type stmt =

Expr of expr

Return of expr

Continue

Break

If of expr * stmt list * stmt list
For of string * expr * stmt list

Neqg

Less

Leg

| While of expr * stmt list

| Noexpr
type main = {
gvar : string list;
lvar : string list;
code : stmt list;

}

type func = {

name : string;

args : string list;
global : string list;
local : string list;

body : stmt list;

type program = main * func list

let rec string of expr = function
Bool b -> "Bool (" ~ string of bool b ~ ")"
| Int 1 -> "Int(" ”~ string of int 1 ~ ")"
| Float £ -> "Float(" * string of flocat £ ~ ")"
| Var s -> "Var(" ~ s ~ ""
| Newlist el -> "List (" »~ String.concat " " (List.map

string of expr el) ~ ")"
| Call (s, el) ->

"Call(" ~ s ~ " " ”~ String.concat " " (List.map string of expr
el) ~")"
| Element (a, i) ->
"Element (" ~ string of expr a ~ " " ~ string of expr i ©~ ")"

| String s -> "String(\"" ~ s ~ "\")"
| Sublist (1, el, e2) ->
"Sublist (" ~ string of expr 1
string of expr ez ~ ")"
| Tag (el, e2) ->
"Tag (" * string of expr el ~ " " ” string of expr e2 ~ ")"
| Any -> "Any"
| Null -> "Null"
| Binop (o, el, e2) ->
(match o with

A \AJ ALl A A ALl ALl

string of expr el

A

Add -> "Add" | Sub -> "Sub" | Mult -> "Mult" | Div -> "Div" |

Mod -> "Mod" | Equal -> "Equal" | Neg -> "Neq" | Less ->
"Less" |

Leg -> "Leqg" | Greater -> "Greater" | Geg -> "Geq" | And ->
"And" |

Or -> "Or" | Has -> "Has") © "(" ” string of expr el ~ " " *
string of expr ez ~ ")"

| Unaop (o, e) ->
(match o with Minus -> "Minus" | Not -> "Not") *

"(" ~ string of expr e ~ ")"
| Assign (s, e) —->

A

"Assign (" s ~" " 7 string of expr e ~ ")"
| AssignElement (el, e2, e3) ->

"AssignElement (" * string of expr el ~ " " " string of expr e2

A ") ALl

string of expr e3

let rec string of stmt debug = function
Expr expr ->

\AJ \n"

"

debug.indent »~ "Expr(" ~ string of expr expr ~ ")\n";
| Return expr ->
debug.indent ~ "Return(" * string of expr expr ~ ")\n";
| If (e, sl, s2) ->
debug.indent ~ "If(" ” string of expr e ~ ",\n" *
(String.concat "" (List.map (string of stmt { indent =
debug.indent ~ " " }) sl)) *
debug.indent ~ ",\n" *
(String.concat "" (List.map (string of stmt { indent =
debug.indent ~ "™ " }) s2)) *
debug.indent ~ ")\n"
| For (v, e, s) —>
debug.indent * "For(" ~ v ~ " " % string of expr e ©
(String.concat "" (List.map (string of stmt { indent =
debug.indent ~ "™ " }) s)) *
debug.indent ~ ")\n"
| While (e, s) ->
debug.indent ~ "While(" » string of expr e ~ "\n" "
(String.concat "" (List.map (string of stmt { indent =
debug.indent ~ " " }) s)) ~°
debug.indent ~ ")\n"
| Break -> debug.indent ~ "Break" ~ "\n"
| Continue -> debug.indent ~ "Continue" ~ "\n"
| Noexpr -> "
let string of func f =
f.name ~ ": args=[" ~ (String.concat " " f.args) ~ "]" %
" global=[" ~ (String.concat " " f.global) ~ "]" ~
" local=[" ©~ (String.concat " " f.local) ~ "]J\n" *
(String.concat "" (List.map (string of stmt { indent = "
f.body))
let rec string of program (main, funcs) =
(String.concat "\n" (List.map string of func funcs)) ~ "\n"
" global : "™ ~ (String.concat " " main.gvar) ~ "\n" *
" local : " ~ (String.concat " " main.lvar) ~ "\n"
" main_ :\n" "
(String.concat "" (List.map (string of stmt { indent ="

main.code))

checker.ml:

A

open Ast
open Backend

let rec check stmt iter stmt =
iter stmt; (match stmt with
If (, sl, s2) —-> List.iter (check stmt iter) (sl @ s2)
| For (, _, s) -> List.iter (check stmt iter) s
| While (, s) -> List.iter (check stmt iter) s
> 0)
let rec check stmt flag iter flag stmt =
let flag = iter flag stmt in (match stmt with

If (, sl, s2) —-> List.iter (check stmt flag iter flag) (sl @
s2)
| For (, , s) —-> List.iter (check stmt flag iter flag) s
| While (_, s) -> List.iter (check stmt flag iter flag) s
[=> 0)
let rec check stmt fold iter flags stmt =
[iter (match stmt with
If (, sl, s2) -> List.concat (List.map (List.fold left
(check stmt fold iter) flags) [sl; s2])
| For (., _, s) -> List.fold left (check stmt fold iter) flags s
| While (, s) -> List.fold left (check stmt fold iter) flags s
| -> flags) stmt]
let rec check expr iter expr = iter expr;
(match expr with
Call (s, el) -> List.iter (check expr iter) el
| Element (a, 1) -> List.iter (check expr iter) [a; 1]
| Sublist (1, el, e2) -> List.iter (check expr iter) [1l; el; e2]
| Tag (s, e) —-> check expr iter e
| Binop (o, el, e2) -> List.iter (check expr iter) [el; eZ2]
| Unaop (o, e) -> check expr iter e
| Assign (s, e) —-> check expr iter e
| AssignElement (el, e2, e3) -> List.iter (check expr iter) [el;
e2; e3]
> 0)
let rec check expr in stmt iter stmt =
(match stmt with
Expr e -> check expr iter e
| Return e -> check expr iter e
| If (e, sl, s2) -> check expr iter e;
List.iter (check expr in stmt iter) (sl @ s2)
| For (v, e, s) —> check expr iter e; List.iter
(check expr in stmt iter) s
| While (e, s) -> check expr iter e; List.iter

(check expr in stmt iter) s

' =>0)

let iter body iter funcs = List.iter (fun f -> iter f.body) funcs
let check syntax (main, funcs) =
let result = (main, funcs)

in let result =
let check var has builtin (main, funcs) target =
let check has arg al = List.mem target al in
let check func has arg func =
if check has arg func.args then
raise (Failure ("\'" ”~ target ~ "\' used in argument of

function " ~ func.name))
else if check has arg func.args then
raise (Failure ("\'" ~ target ~ "\' declared as global in
function " ~ func.name))
else ()

in List.iter check func has arg funcs
in List.iter (check var has builtin result) (built in globals @
built in locals); result

in let result =
let check has assign to builtin (main, funcs) target =

let check is assign to arg = function
Assign (var,) when var == target
-> raise (Failure ("\'" »~ var ~ "\' is assigned")) | ->

0
in List.iter (check expr in stmt check is assign to arg)
main.code;
iter body (List.iter (check expr in stmt
check is assign to arg)) funcs
in List.iter (check has assign to builtin result)
(built in globals @ built in locals); result

in let result =
let check return in main (main, funcs) =
let check is return = function
Return -> raise (Failure "\'return\' in main function") |

> () B

in List.iter (check stmt check is return) main.code
in check return in main result; result

in let result =
let check continue break in loop (main, funcs) =
let check is loop and set flag flag = function
For (, ,) —-> false | While (,) -> false
| Continue ->
if flag then raise (Failure "\'continue\' outside loops")
else false
| Break ->
if flag then raise (Failure "\'continue\' outside loops")
else false

| -> flag
in List.iter (check stmt flag check is loop and set flag true)
main.code;
iter body (List.iter (check stmt flag
check is loop and set flag true)) funcs
in check continue break in loop result; result

in let result =
let check return in function (main, funcs) =
let check function is returned func =

let check is returned flags = function
Return () -> true
| I£f (, ,) —> (List.nth flags 0) && (List.nth flags 1)

| -> List.hd flags
in List.hd (List.fold left (check stmt fold
check is returned) [false] func.body)
in main, List.map (fun f -> if check function is returned f
then £
else { f with body = f.body @
[Return(Null)] }) funcs
in check return in function result

in let result =
let check has stmt after return (main, funcs) =
let check function has stmt after return func =

let check is returned flags = function
Return () -> true
| I£f (, ,) -> (List.nth flags 0) && (List.nth flags 1)
| For (, ,) —> false
| While (,) -> false
| -> if List.hd flags then raise (Failure "statement
after return") else false

in List.hd (List.fold left (check stmt fold
check is returned) [false] func.body)
in List.iter (fun £ -> ignore
(check function has stmt after return f)) funcs
in check has stmt after return result; result

in result

compile.ml:

open Ast
open Intercode
open Backend

module StringMap = Map.Make (String)

type env = {
(* Function Reference *)
fun ref : int StringMap.t;
(* Local Variable Reference *)
loc ref : int StringMap.t;
(* Global Variable Reference *)
glb ref : int StringMap.t;
(* Temporary Variable List *)
tmp lst : int list;
}

let available 1 =
let rec find available index 1 e =
if List.mem e 1 then find available index 1 (e+l) else e
in find available index 1 0

let rec remove s = function
[] => [] | e :: el => 1if e == s then remove e el else e

remove e el

let unique e =

let check unique res e = if List.mem e res then res else res @
[e]
in List.fold left check unique [] e
let comple e 1 =
let check not belong res e = if List.mem e 1 then res else res @
[e]
in List.fold left check not belong [] e
let rec enum stride n = function
(1 -> [
| hd::tl -> (n, hd) :: enum stride (n+stride) tl

let string map palrs map palrs =
List.fold left (fun m (i, n) -> StringMap.add n i m) map pairs

let intersect map map el =
let check belong map new map e =
if StringMap.mem e map then StringMap.add e (StringMap.find e
map) new map
else new map
in List.fold left (check belong map) StringMap.empty el

let translate (main, funcs) =
let rec intercode env stmts =
let rec expr (code, env) = function
Bool (b) -> let t = available env.tmp lst

in code @ [Cb(t,b)], { env with tmp lst = t
env.tmp 1lst }

| Int (i)

env.tmp lst }
| Float (f)

let t
in code @

let t

= available env.tmp 1st
[Ci(t,1)]1,

= available env.tmp lst

{ env with tmp lst

env.tmp 1lst }
| String(s)

env.tmp 1lst }
| Newlist (el) -
let t = ava
let add exp
let s =
e in
let 1 =
and t' =
in fst s
in code @ [
{ env wi
| Sublist (e, el
let s = exp
let i1 = Li
and i2 = Li
and i3 = Li
and t = ava
in fst s @
env.tmp 1lst }

env.tmp 1lst })

| Element (e, el
let s = exp
let i1 = Li
and i2 = Li
and t = ava
in fst s @

env.tmp lst }

| Binop (And, el
let sl = ex
let s2 = ex
let i1 = Li
and i2 = Li
and t = ava

in fst sl @

in code @

[CE(t, £)],

{ env with tmp lst

{ env with tmp lst

Il
o+

(List.map add expr el),

e2 in

let t = available env.tmp lst
in code @ [Cs(t,s)],
>
ilable env.tmp lst in
re=
expr ([],{ env with tmp lst =t
List.hd (snd s).tmp 1lst
available (snd s).tmp 1lst

@ [Wp (t',1); Bn (t,Add,t,t")]
Wp (t,-1)] @ List.concat
th tmp 1st =t env.tmp lst }
, e2) —>
r (expr (expr (code, env) e) el)
st.nth (snd s).tmp 1lst 2

st.nth (snd s).tmp 1lst 1

st.nth (snd s).tmp 1st O

ilable (snd s).tmp 1lst

[Pt (t,11,12,1i3)1],

y >

r (expr
st.nth (
st.nth (snd s)
ilable (snd s)
[El(t,11,12)],

env) e)
.tmp 1st 1
.tmp 1st O
.tmp 1lst

(code,
snd s)

, e2) —>

pr (code, env) el in
pr ([1, snd sl) e2 in
st.hd (snd sl).tmp 1lst
st.hd (snd s2).tmp 1lst
ilable (snd s2).tmp lst

[Br(il, fst s2 @

{ env with tmp 1lst = t

el in

{ env with tmp 1lst =t

[Br(i2, [Cb(t,true)], [Cb(t,false)])], [Cb(t, false)])],
{ env with tmp 1lst =t

env.tmp lst }

| Binop (Or, el, e2) ->

let sl = expr (code, env) el in

let s2 = expr ([], snd sl) e2 in

let i1 = List.hd (snd sl).tmp lst

and i2 = List.hd (snd s2).tmp lst

and t = available (snd s2).tmp lst

in fst sl @ [Br(il, [Cb(t,true)],fst s2 @
[Br(i2, [Cb(t,true)], [Cb(t,false)])])],

{ env with tmp lst =t
env.tmp lst }
| Binop (o, el, e2) ->
let s = expr (expr (code, env) el) e2 in
let 11 = List.nth (snd s).tmp lst 1
and i2 = List.nth (snd s).tmp lst O
and t = available (snd s).tmp lst
in fst s @ [Bn(t,o0,1i1,12)], { env with tmp lst = t
env.tmp 1lst }
| Unaop (Not, e) ->
let s = expr (code, env) e in
let 1 = List.hd (snd s).tmp 1lst
and t = available (snd s).tmp 1lst
in fst s @ [Br (i, [Cb(t, false)], [Cb(t,true)])],
{ env with tmp lst = t

env.tmp 1lst }

| Unaop (o, e) —->
let s = expr (code, env) e in
let 1 = List.hd (snd s).tmp lst

and t = available (snd s).tmp lst
in fst s @ [Un(t,o,1)], { env with tmp lst = t
env.tmp 1lst }

| Assign(v, e) ->
let s = expr (code, env) e in
let 1 = List.hd (snd s).tmp 1lst
in fst s @
(try [Sg(i,StringMap.find v env.glb ref)] with Not found
->
try [S1(i,StringMap.find v env.loc ref)] with Not found
->
raise (Failure ("undeclared variable: " ~ v))),
{ env with tmp 1lst = 1 :: env.tmp lst }
| AssignElement (e, el, e2) ->
let s = expr (expr (expr (code, env) e) el) e2 in
let i1l = List.nth (snd s).tmp lst 2
and i2 = List.nth (snd s).tmp lst 1
and i3 = List.nth (snd s).tmp lst O
]

in fst s @ [St(il,i2,13)
env.tmp 1lst }
| Var(v) ->
let 1 = available env.tmp lst
in code @
(try [Lg(i,StringMap.find v env.glb ref)] with

, { env with tmp 1lst = i3

Not found ->
try [L1(i,StringMap.find v env.loc ref)] with
Not found ->
raise (Failure ("undeclared variable: " ©~ wv))),
{ env with tmp 1lst =1 :: env.tmp 1lst }
| Call (f, el) ->
let s = expr (code, env) (Newlist el) in
let 1 List.hd (snd s).tmp lst
and t = available (snd s).tmp lst

in fst s @
(try [Cl (t, (StringMap.find f env.fun ref), i)] with
Not found ->

raise (Failure ("undefined function: " ~ £f))),
{ env with tmp lst = t :: env.tmp lst }
| Tag (el, e2) ->
let s = expr (expr (code, env) el) e2 in

let 11 = List.nth (snd s).tmp 1lst 1

and i2 = List.nth (snd s).tmp lst O

and t = available ((snd s).tmp lst)

in fst s @ [Tg (t, i1, i2)], { env with tmp 1st =t
env.tmp lst }

| Null ->
let 1 = available env.tmp 1lst
in code @ [Nl i], { env with tmp lst = i env.tmp 1st }
| Any ->
let 1 = available env.tmp lst
in code @ [Ay 1], { env with tmp 1lst = 1 env.tmp 1lst }
in
let rec stmt (, env) = function
Noexpr -> [], env
| Expr(e) -> let s = expr ([], env) e in fst s, env
| If(e, sl, s2) —->
let p = expr ([], env) e in
let 1 = List.hd (snd p).tmp lst in
let pl = List.concat(List.map fst (List.map (stmt ([],
env)) sl))
and p2 = List.concat(List.map fst (List.map (stmt ([],
env)) s2))
in fst p @ [Br (i, pl, p2)], env
| For(v, e, s) —>
let p = expr ([], env) e in
let 1 = List.hd (snd p).tmp 1lst
and tl = available (snd p).tmp lst in
let t2 = available ([tl] @ (snd p).tmp 1lst) in
let t' = available ([t2; tl] @ (snd p).tmp lst) in
let p' = List.concat(List.map fst (List.map (stmt ([],
{ env with tmp 1lst = ([t2; tl; 1] @ (snd

p) .tmp 1st) })) s))
in fst p @
[Wp (t',1); Cl1 (tl, (StringMap.find "len" env.fun ref),

t'); Ci (t2,-1);
Lp ([Ci (t ,1) n(t2,Add,t2,t'); Bn (t',Leq,tl,t2);
Br (t', [Bk] [1); E1 (t',1,t2)] @
(try [Sg(t',StringMap.find v env.glb ref)] with

Not found ->
try [S1(t',StringMap.find v env.loc ref)] with
Not found ->
raise (Failure ("undeclared variable: " ©~ v))) @
p')]l, env
| While(e, s) ->

let p = expr ([], env) e in

let 1 = List.hd (snd p).tmp 1lst
and p' = List.concat(List.map fst (List.map (stmt ([],
env)) s))
in [Lp (fst p @ [Br (i, [], [Bk])] @ p')], env
| Return (Null) -> [Rt (-1)], env
| Return(e) ->
let p = expr ([], env) e in
let 1 = List.hd (snd p).tmp 1lst
in fst p @ [Rt i], env
| Break -> [Bk], env
| Continue -> [Ct], env
in List.concat (List.map fst (List.map (stmt ([], env)) stmts))
in

let glb var = built in globals @ main.gvar in
let glb ref = string map pairs StringMap.empty (enum 1 0 glb var)
in

let loc_var = unique (built in locals @ main.lvar) in
let loc ref = string map pairs StringMap.empty (enum 1 0 loc_ var)
in

let plugin fun ref = string map pairs StringMap.empty
built in functions

and fun nam = List.map (fun £ -> f.name) funcs in

let fun ref = string map pairs plugin fun ref (enum 1 0 fun nam)
in

let main code [Lc (List.length loc var)] @
(intercode { fun ref = fun ref; loc ref = loc ref;

glb ref = glb ref; tmp 1lst (1 }

main.code) in

let func code =
let translate func func =
let glb ref = intersect map glb ref (built in globals @
func.global) in

let loc var = unique (built in locals @ func.args @ func.local)
in

let loc ref = string map pairs StringMap.empty (enum 1 O
loc _var) in

let arg ref = string map pairs StringMap.empty (enum 1 O
func.args) in
let arg lod = [L1(0,0)] @ List.concat (List.map

(fun s -> [Ci (1,StringMap.find s arg ref);
E1(2,0,1);
S1 (2,StringMap.find s loc ref)])
func.args) in

[Fn([Lc (List.length loc var)] @ arg lod @

intercode { fun ref = fun ref; loc ref = loc ref;
glb ref = glb ref; tmp 1lst [] } func.body)]

in List.concat (List.map translate func funcs)

in [Gl (List.length glb var)] @ func code @ main code

intercode.ml:

type intercode =

Gl of int (* Global variables *)
| Lc of int (* Local variables *)
| Cb of int * bool (* Constant bool *)
| Ci of int * int (* Constant integer *)
| C£f of int * float (* Constant float *)
| Cs of int * string (* Constant string *)
| Ay of int (* Any Object ¥*)
| N1 of int (* Null Object *)
| Wp of int * int (* Wrap list ¥*)
| Pt of int * int * int * int (* Get partition *)
| E1 of int * int * int (* Get element *)
| St of int * int * int (* Set element *)
| L1l of int * int (* Load local variable *)
| S1 of int * int (* Store local variable *)
| Lg of int * int (* Load global variable ¥*)
| Sg of int * int (* Store global variable *)
| Bn of int * Ast.binop * int * int (* Binary operation ¥*)
| Un of int * Ast.unaop * int (* Unary operation ¥*)
| Fn of intercode list (* Function *)
| Rt of int (* Return *)
| Cl1l of int * int * int (* Call Function *)
| Tg of int * int * int (* Tag Object *)
| Br of int * intercode list * intercode list (* Branch *)
| Lp of intercode list (* Loop *)
| Bk (* Break ¥*)
| Ct (* Continue *)

let line of intercode codes =
let add line = fun £ a b -> a + (f b) in
let rec line of code = function
Br(, i1, 12) -> (List.fold left (add line line of code) 0 il)
(List.fold left (add line line of code) 0 1i2)
| Lp(i) —-> List.fold left (add line line of code) 0 i

| Fn(i) —-> List.fold left (add line line of code) 0 1
| > 1
in List.fold left (add line line of code) 0 codes

let rec string of intercode = function
Gl(i) -> ["Gl ™ ”~ string of int 1]
| Lc(i) —=> ["Lc " * string of int 1]
| Cb (i, true) -> ["Cb " ~ string of int i ~ " 1"]
| Cb(i, false) -> ["Cb " ~ string of int i ~ " 0"]
| Ci(i, il) -> ["Ci " ~ string of int i ~ " " » string of int il]
| C£(i, il1l) -> ["CEf " 7 string of int 1 ~ " " % string of float il]
| Cs(i, 1i1) -> ["Cs " » string of int i ~ ™ \"" 7~ il ~ "\""]
| Ay(i) —-> ["Ay " * string of int 1i]
| N1(i) -> ["N1 "™ #* string of int 1i]
| Wp(i,1i1) -> ["Wp " © string of int i1 ~ " "™ * string of int il]
| pt(i, i1, i2, i3) -> ["Pt " ~ string of int i ~ "™ " ~©

A

string of int il

" "~ string of int i2 ~ " " %

string of int i3]

| E1(i, i1, 12) -> ["El " © string of int 1 ~ "™ " * string of int
i1 ~»

" "~ string of int i2]

| st(i, il, i2) -> ["sSt " ” string of int 1 ~ " " * string of int

i1 ~»
" "~ string of int i2]

| L1(i, il) -> ["L1 " ~ string of int i ~ " " ” string of int il]

| S1(i, il) -> ["S1 " ~ string of int i ~ " " ” string of int il]

| Lg(i, 1i1) -> ["Lg " ~ string of int i ~ "™ " 7 string of int il]

| Sg(i, 1i1l) -> ["Sg " ~ string of int i ~ " " 7 string of int il]

| Bn (i, Ast.Add, il, 1i2) -> ["Ad " ~ string of int 1 ~ " "™ %
string of int i1 ~ " " © string of int 1i2]

| Bn(i, Ast.Sub, il, 12) -> ["Sb " ” string of int 1 ~ " " %
string of int i1 ~ " " 7 string of int 1i2]

| Bn(i, Ast.Mult, il, i2) -> ["M1 "™ * string of int 1 ~ " " %
string of int i1 ~ " " » string of int i2]

| Bn(i, Ast.Div, il, i2) -> ["Dv " % string of int 1 ~ " " %
string of int i1 ~ " " » string of int i2]

| Bn (i, Ast.Mod, il, i2) -> ["Md " * string of int 1 ~ " " %
string of int i1 ~ " " » string of int i2]

| Bn(i, Ast.Equal, il, i2) -> ["Egq " © string of int 1 ~ " " %
string of int i1 ~ " " 7 string of int 1i2]

| Bn(i, Ast.Neq, il, 12) -> ["Ne " » string of int 1 ~ " "™ *
string of int i1 ~ " " 7 string of int 1i2]

| Bn(i, Ast.Less, il, i2) -> ["Ls " * string of int 1 ~ " " %
string of int i1 ~ " " 7 string of int i2]

| Bn(i, Ast.Leq, il, i2) -> ["Le " » string of int i ~ "™ " 7
string of int i1 ~ " " » string of int i2] -

| Bn(i, Ast.Greater, il, i2) -> ["Gt " ” string of int i ~ " " *

string of int i1 ~ " " ” string of int i2]

| Bn(i, Ast.Geq, il, i2) -> ["Ge " * string of int 1 ~ " " %

string of int i1l ~ " " % string of int 1i2]

| Bn(i, Ast.And, il, i2) -> ["An " * string of int 1 ~ " " *
string of int i1l ~ " " * string of int 1i2]

| Bn(i, Ast.Or, il, i2) -> ["Or " * string of int 1 ~ " " *
string of int i1 ~ " " » string of int 1i2]

| Bn(i, Ast.Has, il, i2) -> ["Hs " * string of int 1 ~ " " *
string of int i1 ~ " " * string of int 1i2]

| Un(i, Ast.Minus, il) -> ["Mn " » string of int 1 ~ " " *
string of int 1il]

| Un(i, Ast.Not, il) -> ["Nt " » string of int i ~ " " *
string of int il]

| Rt (i) -> ["Rt " ~ string of int i]

| Cl(i, i1, 1i2) -> ["Cl " »~ string of int i ~ " " #

string of int il *
" " 7~ string of int i2]
| Tg(i, il, 1i2) -> ["Tg " ”~ string of int 1 ~ " "™ *
string of int il *
" " % string of int 1i2]
| Br(i, 11, 12) -> ["Br " ” string of int 1 ~ " " %
string of int (line of intercode il) ~ " "

string of int (line of intercode 1i2)] @
List.concat (List.map string of intercode
il) @
List.concat (List.map string of intercode
i2)
| Lp(i) -> ["Lp " * string of int (line of intercode 1i)] @
List.concat (List.map string of intercode 1)
| Fn(i) -> ["Fn " ~ string of int (line of intercode 1i)] @
List.concat (List.map string of intercode 1)
| Bk -> ["Bk"]
| Ct -> ["Ct"]

let string of prog code =
let translate = List.concat (List.map string of intercode code)
in String.concat "\n" translate ~ "\n"

javaast.ml:

type jid = string
type jvalue = string

type jtype = string

type jname = string

type jaccess = Public | Private | Protected

type jarg = {
a_type
a_name

jtype;
Jid;
}

type jstmt =
Jdef of jtype * jid
| Jnew of jtype * jvalue list * jid
| Jinvoke of jid * jvalue list * jid
| Jthrow of jid * jvalue list
| Jinstanceof of jid * jid * jid
| Jif of jvalue * jstmt list * jstmt list
| Jfor of jid * jvalue * jstmt list
| Jwhile of jvalue * jstmt list
| Jbreak
| Jcontinue
| Jreturn of jid

type jmethod = {

m name Jid;

m access jaccess;

m static bool;

m arg jarg list;

m return Jjtype;

m body Jjstmt list;
}

type jfield ={
f access
f static
f type
f name

jaccess;
bool;
Jtype;
jid;
}

type jclass = {
c_package
C_access
C_name jid;
c _parent jid;
c fields
c_methods

Jid;
jaccess;

jfield list;
jmethod list;
}

type debug = {
indent string;
}
A " AS " A

let string of arg ag = ag.a name

L . T S D D S N

ag

None

Type Declaration *)
Type Defination *)
FunctionCall *)
ExceptionThrow ¥*)
InstanceOf *)
Branch *)

For *)

Loop *)

Break *)

Continue *)

Return *)

.a _type

let rec string of stmt dbg = function
Jdef (t, 1) ->

dbg.indent ~ String.concat " "™ (["Def"; i; "As"; t])
| Jnew(t, al, i) ->
dbg.indent ~ String.concat " " (["New"; 1i; "As"; t; "With"] @
al)
| Jinvoke (i, al, "") ->
dbg.indent ~ String.concat " " (["Invoke"; i; "With"] @ al)
| Jinvoke (i, al, t) ->
dbg.indent ~ String.concat " " (["Invode"; i; "With"] @ al d
["TO",’ t])
| Jthrow(t, al) ->
dbg.indent ~ String.concat " " (["Throw"; t; "With"] @ al)
| Jinstanceof(a, t, i) ->
dbg.indent ~ String.concat " " (["Check"; a; "Instance Of"; t;
"To"; tl])
| Jlf(ll Sll []) ->
dbg.indent ~ String.concat ("\n" *~ dbg.indent)
(["If " ~ 1] @ List.map (string of stmt { indent =" " }) sl)
| Jif(i, sll, sl2) ->
dbg.indent ~ String.concat ("\n" *~ dbg.indent)
(["If " ~ 1] @ List.map (string of stmt { indent =" " }) sll
@
["Else"] @ List.map (string of stmt { indent =" " }) sl2)
| Jfor (i, a, sl) ->
dbg.indent *~ String.concat ("\n" » dbg.indent)
(["For " ~ 1 ~ "™ In " * a] @ List.map (string of stmt { indent
—_n " }) Sl)
| Jwhile (a, sl) ->
dbg.indent ~ String.concat ("\n" *~ dbg.indent)
(["While " ~ a] @ List.map (string of stmt { indent =" " })
sl)
| Jbreak ->
dbg.indent ~ "Break"
| Jcontinue ->
dbg.indent ~ "Continue"
| Jreturn("") ->
dbg.indent ~ "Return"
| Jreturn (i) ->
dbg.indent ~ "Return " ~ i
let string of access = function

Public -> "Public"
| Private -> "Private"
| Protected -> "Protected"
| None -> "None"

let string of field dbg fd =
dbg.indent ~ String.concat " "
((if fd.f static then ["Static"] else []) @ ["Field"; fd.f name;
"As"; fd.f type;

fd.f access])

"Of";

let string of method dbg mt =

dbg.indent ~ String.concat

([String.concat "

((if mt.m static then

["Method";

mt.m access;
"With"]
List.map

mt.m name;

"Of";

("\n" ~ dbg.indent)
["Static"] else []) @
"As"; mt.m return;

let string of class cl =
(String.concat "\n"

@ List.map string of arg mt.m arg)]
(string of stmt { indent

@

string of access

=" " }) mt.m body)

string of access

((if String.length cl.c _package > 0 then ["Package " *
cl.c package] else []) @
[String.concat " " (["Class"; cl.c name] @
(1f String.length cl.c parent > 0 then ["Extend"; cl.c parent]
else []) @
["Of"; string of access cl.c access])] @
List.map (string of field { indent =" " }) cl.c fields @
List.map (string of method { indent = " " }) cl.c methods)) *
" \nn
javasrc.ml:
open Javaast
type built in type =8B | I | F | s | L | O | T | N | Y | P
type built in binop = Jadd | Jsub | Jmult | Jdiv | Jmod | Jequal |
Jneq
| Jless | Jleq | Jgreater | Jgeq | Jand | Jor |
Jhas
type built in unaop = Jminus | Jnot
let spokeexception = "org.spoke.SpokeRuntimeException"
let spoketype = function
B -> "org.spoke.SpokeBoolean"
| T -> "org.spoke.SpokelInteger"
| F -> "org.spoke.SpokeFloat"
| S -> "org.spoke.SpokeString"
| L -> "org.spoke.SpokeList"
| O -> "org.spoke.SpokeObject"
| T -> "org.spoke.SpokeTag"
| N -> "org.spoke.SpokeNull"

| Y -> "org.spoke.SpokeAny"
| P -> "org.spoke.SpokeProgram"

let mem 1 £ =1 ~ ", " ~ f

let array of t =t ~ "[]"

let string of binop = function
Jadd -> mem (spoketype O) "OpAdd"
| Jsub -> mem (spoketype O) "OpSub"
| Jmult -> mem (spoketype O) "OpMul"
| Jdiv -> mem (spoketype O) "OpDiv"
| Jmod -> mem (spoketype O) "OpMod"
| Jequal -> mem (spoketype O) "OpEg"
| Jneq -> mem (spoketype O) "OpNeq"
| Jless -> mem (spoketype O) "OpLt"
| Jleq -> mem (spoketype O) "OpLeq"
| Jgreater -> mem (spoketype 0O) "OpGt"
| Jgeq -> mem (spoketype O) "OpGeqg"
| Jand -> mem (spoketype O) "OpAnd"
| Jor -> mem (spoketype O) "OpOr"
| Jhas -> mem (spoketype O) "OpHas"
let string of unaop = function
Jminus -> mem (spoketype 0O) "OpNeg"
| Jnot -> mem (spoketype O) "OpNot"
let translate java class =
let rec code of stmt debug = function
Jdef (t, i) -> debug.indent ~ ¢t ~ " "™ &~ i ~ ",
| Jnew(t, al, i) ->
debug.indent *~ 1 ~ " = new " ~ t ~ "(" ”~ String.concat ", "
al A u)’"
| Jinvoke(i, al, "") -> debug.indent ~ i ~ " (" ©~ String.concat ",
1] al A ll);"
| Jinvoke(il, al, i) -> debug.indent ~ i ~ " =" 7~ il ~ "(" 7
String.concat ", " al ~ ");"
| Jthrow(t, al) ->
debug.indent * "throw new " ~ t ~ "(" ~ String.concat ", "
al ~ ");"
| Jinstanceof(a, t, i) ->
debug.indent ~ 1 ~ " =" %~ a ~ " instanceof " ~ t ~ ";"
| Jgif (i, sl11, []) ->
debug.indent ~ "if (" ~ 1 ~ ") {\n" *
String.concat "\n" (List.map (code of stmt { indent =
debug.indent ~ "™ "}) sl11) ~ "\n" *

debug.indent ~ "}"
| Jif(i, sll1, sl2) ->
debug.indent ~ "if (" ~ 1 ~ ") {\n" *
String.concat "\n" (List.map (code of stmt { indent
debug.indent ~ "™ "}) s11) ~ "\n" "

debug.indent

debug.indent ~ "} else {\n" *

String.concat "\n" (List.map (code of stmt { indent
debug.indent ~ "™ "}) s12) ~ "\n" "

debug.indent ~ "}"
Jwhile(a, sl) ->

debug.indent ~ "while (" ~ a ~ ") {\n"
String.concat "\n" (List.map (code of stmt { indent

Aoy) sl) A "A\n" 2
debug.indent ~ "}"
Jfor (i, a, sl) ->
debug.indent ~ "For (" ~ i ~ " " "

a AN ") {\n" A

String.concat "\n" (List.map (code of stmt { indent
debug.indent ~ "™ "}) sl) ~ "\n" *

debug.indent ~ "}"
Jbreak -> debug.indent ~ "break;"
Jcontinue -> debug.indent ~ "continue;"

| Jreturn("") -> debug.indent * "return new "
v | Jreturn(i) -> debug.indent ~ "return " ~ i1 &~ ";"
in let code of arg ag = ag.a type ~ " " % ag.a name
in let code of access = function

Public -> "public "
Private -> "private "
Protected -> "protected "

None -> " "

in let code of field fd =

spoketype N *

" " ~ code of access fd.f access © (if fd.f static then "static
" else "M) 7
fd.f type ~ " " * fd.f name ~ ";"
in let code of method mt =
" " 7 code of access mt.m access © (if mt.m static then "static
" else "") *
mt.m return ~ " " *~ mt.m name ~ " " %
"(" ~ (String.concat ", " (List.map code of arg mt.m arg)) "~ ")
{\n" *
String.concat "\n" (List.map (code of stmt { indent = " "1)
mt.m body) ~ "\n" 7
" J\a"
in let code of class cl =
(if (String.length cl.c_package > 0) then "package " *
cl.c _package ~ ";\n\n" else "") *
code_of access cl.c _access ~ "class " * cl.c _name *
(if (String.length cl.c _parent > 0) then " extends " *
cl.c parent else "") ~ " {\n" "
String.concat "\n" (List.map code of field cl.c fields) * "\n\n"

A

String.concat "\n" (List.map code of method cl.c methods) ~ "\n"
"}\n"

in code of class java class

spoke.ml:
type opt = Scan | Parse | Intercode | Javaast | Translate | Compile
| Execute
let =
let srcs =
let getopt =
if Array.length Sys.argv > 1 then
(if Sys.argv. (1l).[0] == '=-' then [] else [Sys.argv.(1l)])
@ List.tl (List.tl (Array.to list Sys.argv))
else []
in if List.length getopt == 0 then [(["a"], stdin)]

(*

let rand path =

let gen =
let rand = (fun n -> int of char 'A' + n) (Random.int 26)
in String.make 1 (char of int rand)
in String.concat "" (Array.to list (Array.init 8 gen))
in [([rand path], stdin)]
*)
else
let rec split char sep str =
try
let 1 = String.index str sep in
String.sub str 0 i
split char sep (String.sub str (i+l) (String.length str
- 1i-1))

with Not found -> [str]

in let check path path =
let rev path = List.rev path in
let rm ext fname =
try String.sub fname 0 (String.rindex fname '.')
with Not found -> fname
in List.map (fun t -> if String.contains t '.'
then raise (Failure ("path with dot: " ©~ t)) else

(rm_ext (List.hd rev path) :: List.tl rev path)

in List.map (fun f -> (check path (split char '/' f), open in
f)) getopt in

let action =
if (Array.length Sys.argv)
List.assoc Sys.argv. (1) [

> 1 && Sys.argv. (l).[0] == '-' then
("-s", Scan);
("-p", Parse);
("-1", Intercode):;
("-9", Javaast);
("-t", Translate);
("-c", Compile);
("-x", Execute)]
else Compile in

let compile (path, instream) =
let name = List.hd path
and package = String.concat "." (List.rev (List.tl path)) in

let lexbuf = Lexing.from channel instream in

let tokenbuf =

let 1 = ref [] in
fun lexbuf -> match !l with
X::xXs —> 1 := xs; X
| [] -> match Scanner.token lexbuf with
X::xXs —> 1 := xs; X

| [] -> failwith "oops" in

if action == Scan then
let tokenize = Token.tokenize tokenbuf lexbuf
in print string tokenize

else let program = Parser.program tokenbuf lexbuf in
let checked program = Checker.check syntax program in
if action == Parse then

let str program = Ast.string of program checked program
in print string str program

else let code = Compile.translate checked program in
if action == Intercode then

let str code = Intercode.string of prog code

in 1if action == Intercode then print string str code

else print string str code

else let javaast = Translate.translate java package name code in
if action == Javaast then
let str javaast = Javaast.string of class Jjavaast

in print string str javaast

else let javasrc = Javasrc.translate javaast in
if action == Translate then print string javasrc

else

AN

let javafile = open out (name ".Java")
in output string javafile javasrc; close out javafile;
ignore (Unix.system ("./compile.sh " » name));
print endline ("Compiling " ~ name ”~ ".java done");
if action == Execute then
(print endline ("Executing " ~ name "~ ".java");
ignore (Unix.system ("./run.sh " » name)))
else ()
in List.map compile srcs
token.ml:
open Parser
let tokenize (lexfun : Lexing.lexbuf -> token) (lexbuf

Lexing.lexbuf) =
let string of token token =
match token with

LPAREN -> "LPAREN"
| RPAREN —-> "RPAREN"
| COMMA -> "COMMA"
| LBRACK -> "LBRACK"
| RBRACK -> "RBRACK"
| COLON -> "COLON"
| PLUS -> "PLUS"
| MINUS -> "MINUS"
| TIMES -> "TIMES"
| DIVIDE -> "DIVIDE"
| MODULUS -> "MODULUS"
| ASSIGN -> "ASSIGN"
| EQ -> "EQ"
| NEQ -> "NEQ"
| LT -> "LT"
| LEQ -> "LEQ"
| GT -> "GT"
| GEQ -> "GEQ"
| AND -> "AND"
| OR -> "QOR"
| NOT -> "NOT"
| IF _> "IF"
| THEN -> "THEN"
| ELSE -> "ELSE"
| ELIF -> "ELIEF"
| FI -> "FI"
| FOR -> "EFQR"
|

IN -> "IN"

NEXT -> "NEXT"

|

| WHILE -> "WHILE"

| LOOP -> "LOOP"

| CONTINUE -> "CONTINUE"

| BREAK -> "BREAK"

| FUNCTION -> "FUNCTION"

| END -> "END"

| RETURN -> "RETURN"

| GLOBAL -> "GLOBAL"

| BELONG -> "BELONG"

| NULL -> "NULL"

| STAR -> "STAR"

| STRING s -> "STRING(" ANg A n)n

| WORD s -> "WORD(" A s A n)n

| ID s -> "ID(" ~ s ~ M"

| LTPAREN -> "LTPAREN"

| RTPAREN -> "RTPAREN"

| FLOAT £ -> "FLOAT(" N String_of_float £ A u)u
| INTEGER i -> "INTEGER(" ”~ string of int i ~ "™)"
| BOOL b -> "BOOL(" ~ string of bool b ~ ")"
| EOL -> "EOL"

| EOF -> "EOE"

in
let rec trace s =
match lexfun lexbuf with

EOF -> s ~ "EOF\n"
| EOL -> trace (s ~ "EOL\n")
|t -> trace (s " string of token t ~ " ")

in trace ""

translate.ml:

open Intercode
open Javaast
open Javasrc
open Backend

let rec range i j = if 1 < j then i :: (range (i+l) Jj) else []

let translate java pname cname codes =

let tmp 1 = "t " ” string of int 1 in
let glb 1 = "g " ” string of int 1 in
let loc i = "1 " ” string of int 1 in
let fnc 1 = "f " ” string of int 1 in

let tmpb = "b" and tmpo = "o" in

let throw exception msg = Jthrow (spokeexception, [msg]) in
let check and do var mt dol do2=
[Jinvoke (mem var mt, [], tmpb); Jif (tmpb, dol, do2)]
in
let compare and do varl varZ mt dol do2Z =
[Jinvoke (mem varl mt, [var2], tmpb); Jif (tmpb, dol, do2)]
in
let rec java of intercode = function
Lc (i) -> List.concat (List.map
(fun 1 -> [Jdef (spoketype O, loc 1i); Jnew(spoketype N,
loc 1i)])
(range (List.length built in locals) 1i))
| Cb(i, il) -> [Jnew(spoketype B, [string of bool il], tmp 1i)]
| Ci(i, 11) -> [Jnew(spoketype I, [string of int il], tmp 1i)]
| C£(i, 11) -> [Jnew(spoketype F, [string of float il], tmp 1)]
| Cs(i, il) -> [Jnew(spoketype S, ["\"" ~ il ~ "\""], tmp i)]
| N1 (1) -> [Jnew (spoketype N, [], tmp 1)]
| Ay (i) -> [Jnew (spoketype Y, [], tmp 1)]
| Wp(i,-1) -> [Jinvoke (mem (spoketype L) "Wrap", ["null"],
| Wp(i, 1i1) -> [Jinvoke (mem (spoketype L) "Wrap", [tmp il],
| Tg(i, 11, i2) -> [Jnew (spoketype T, [tmp il; tmp i2], tmp 1i)]
| Pt(i, i1, i2, 1i3) -—>
check and do (tmp il) "IsList"
[Jinvoke (mem (tmp il) "Partition", [tmp i2; tmp i3], tmp 1i)]

[throw exception "\"Partition on a non-list variable\""]
| E1(i, 11, 12) ->

check and do (tmp 1il) "IsList"

[Jinvoke (mem (tmp il) "GetElement", [tmp 12], tmp 1i)]
[throw exception "\"Get element on a non-list variable\""]
| St(i, i1, i2) ->
check and do (tmp il) "IsList"

[Jinvoke (mem (tmp il) "SetElement", [tmp i2; tmp i], "")]
[throw exception "\"Set element on a non-list variable\""]

| L1(i, 1il1) ->
compare and do (tmp i) (loc il) "IsCompatible"
[Jinvoke (mem (tmp i) "Assign", [loc il1], "")]
[Jinvoke (mem (loc il) "Clone", [], tmp 1i)]
| S1(i, 11) ->
compare and do (loc il) (tmp i) "IsCompatible"
[Jinvoke (mem (loc il) "Assign", [tmp 1], "")]
[Jinvoke (mem (tmp i) "Clone", [], loc il)]
| Lg(i, il) ->
compare and do (tmp i) (glb il) "IsCompatible"
[Jinvoke (mem (tmp i) "Assign", [glb i1], "")]
[Jinvoke (mem (glb il) "Clone", [], tmp i)]
| Sg(i, 1i1) ->
compare and do (glb il) (tmp i) "IsCompatible"

tmp

tmp

tmp

tmp

tmp

tmp

tmp

tmp

tmp

tmp

[Jinvoke (mem (glb il) "Assign", [tmp i], "")]

[Jinvoke (mem (tmp i) "Clone", [], glb il)]
| Bn(i, Ast.Add, i1, 1i2) ->
compare and do (tmp il) (tmp i2) "IsCompatible"
[Jinvoke (mem (tmp il) "Operation", [string of binop Jadd;
i2], tmp 1)]
[throw exception "\"Operation on incompatible types\""]
| Bn(i, Ast.Sub, i1, 1i2) ->
check and do (tmp il) "IsEnumerated"
(compare and do (tmp 1il) (tmp i2) "IsCompatible"
[Jinvoke (mem (tmp il) "Operation", [string of binop Jsub;
i2], tmp i)]
[throw _exception "\"Operation on incompatible types\""])
[throw _exception "\"Operation on non-enumerated types\""]
| Bn(i, Ast.Mult, i1, 1i2) ->
check and do (tmp il) "IsEnumerated"
(compare and do (tmp il) (tmp i2) "IsCompatible"
[Jinvoke (mem (tmp 11) "Operation", [string of binop Jmult;
i2], tmp 1i)]
[throw exception "\"Operation on incompatible types\""])
[throw exception "\"Operation on non-enumerated types\""]
| Bn(i, Ast.Div, i1, i2) ->
check and do (tmp il) "IsEnumerated"
(compare and do (tmp il) (tmp i2) "IsCompatible"
[Jinvoke (mem (tmp il) "Operation", [string of binop Jdiv;
i2], tmp i)]
[throw exception "\"Operation on incompatible types\""])
[throw exception "\"Operation on non-enumerated types\""]
| Bn(i, Ast.Mod, i1, 1i2) ->
check and do (tmp il) "IsEnumerated"
(compare and do (tmp il) (tmp i2) "IsCompatible"
[Jinvoke (mem (tmp 11) "Operation", [string of binop Jmod;
i2], tmp i)]
[throw exception "\"Operation on incompatible types\""])
[throw exception "\"Operation on non-enumerated types\""]
| Bn(i, Ast.Equal, i1, 1i2) ->
compare and do (tmp il) (tmp i2) "IsComparable"
[Jinvoke (mem (tmp il) "Operation", [string of binop Jequal;
i2], tmp i)]
[throw exception "\"Operation on incomparable types\""]
| Bn(i, Ast.Neq, i1, 1i2) ->
compare and do (tmp il) (tmp 12) "IsComparable"
[Jinvoke (mem (tmp 11) "Operation", [string of binop Jneg;
i2], tmp i)]
[throw exception "\"Operation on incomparable types\""]
| Bn(i, Ast.Less, i1, 1i2) ->
check and do (tmp il) "IsEnumerated"
(compare and do (tmp il) (tmp i2) "IsCompatible"
[Jinvoke (mem (tmp il) "Operation", [string of binop Jless;
i2], tmp i)]

[throw exception "\"Operation on incompatible types\""])
[throw exception "\"Operation on non-enumerated types\""]

| Bn(i, Ast.Leq, i1, 1i2) ->

check and do (tmp il) "IsEnumerated"
(compare and do (tmp il) (tmp i2) "IsCompatible"
[Jinvoke (mem (tmp il) "Operation", [string of binop Jleq;

tmp i12], tmp i)]
[throw exception "\"Operation on incompatible types\""])
[throw exception "\"Operation on non-enumerated types\""]
| Bn(i, Ast.Greater, i1, 12) ->

check and do (tmp il) "IsEnumerated"
(compare and do (tmp 1il) (tmp i2) "IsCompatible"
[Jinvoke (mem (tmp il) "Operation", [string of binop

Jgreater; tmp i2], tmp 1i)]
[throw _exception "\"Operation on incompatible types\""])
[throw exception "\"Operation on non-enumerated types\""]

| Bn(i, Ast.Geq, i1, 1i2) ->
check and do (tmp il) "IsEnumerated"
(compare and do (tmp il) (tmp i2) "IsCompatible"
[Jinvoke (mem (tmp 11) "Operation", [string of binop Jgeq;

tmp i2], tmp 1i)]
[throw exception "\"Operation on incompatible types\""])
[throw exception "\"Operation on non-enumerated types\""]

| Bn(i, Ast.And, i1, i2) ->
check and do (tmp 1il) "IsBoolean"
(check and do (tmp i2) "IsBoolean"
[Jinvoke (mem (tmp il) "Operation", [string of binop Jand;

tmp i2], tmp 1i)]
[throw exception "\"Operation on non-boolean types\""])
[throw exception "\"Operation on non-boolean types\""]

| Bn(i, Ast.Or, i1, 1i2) ->
check and do (tmp il) "IsBoolean"
(check and do (tmp 12) "IsBoolean"
[Jinvoke (mem (tmp 11) "Operation", [string of binop Jor;

tmp 1i2], tmp 1i)]
[throw exception "\"Operation on non-boolean types\""])
[throw exception "\"Operation on non-boolean types\""]

| Bn(i, Ast.Has, i1, 1i2) ->
[Jinvoke (mem (spoketype P) "FlushMatch", [], "")] @
compare and do (tmp il) (tmp i2) "MayHave"
[Jinvoke (mem (tmp il) "Operation", [string of binop Jhas;

tmp i2], tmp i)]
[throw exception "\"Operation on incompatible types\""]
| Un(i, Ast.Minus, 1il) ->
check and do (tmp il) "IsEnumerated"
[Jinvoke (mem (tmp 11) "Operation", [string of unaop Jminus;
"null"], tmp 1i)]
[throw exception "\"Operation on non-enumerated types\""]
| Un(i, Ast.Not, il) ->
check and do (tmp il) "IsBoolean"
[Jinvoke (mem (tmp il) "Operation", [string of unaop Jnot;
"null"], tmp i)]
[throw exception "\"Operation on non-boolean types\""]
| Rt(-1) -> [Jreturn("")]

| Rt (1) -> [Jreturn (tmp 1i)]
| Cl(i, i1, i2) -> if i1 < built in base then [Jinvoke(fnc il,
[tmp 12], tmp 1)]
else [Jinvoke(List.nth
built in java functions (il-built in base),
[tmp i2], tmp 1i)]
| Br(i, i1, 1i2) -> [Jinvoke (mem (tmp i) "IsTrue", [], tmpb):;
Jif (tmpb, List.concat (List.map
java of intercode il),
List.concat (List.map java of intercode

i2))1]

| Lp(i) —-> [Jwhile("true", List.concat(List.map java of intercode
i))]

| Bk -> [Jbreak]

| Ct -> [Jcontinue]

| G1() —> []

| Fn() -> []

in let rec sum gvar = function

[] > 0
| G1(i) :: cl -> i + sum gvar cl

| :: cl -> sum gvar cl

in let gvar =
List.concat (List.map
(fun i -> [{f access = Private; f type = spoketype O;
f static = false; f name = glb 1}])
(range (List.length built in globals) (sum gvar codes)))

in let gnew =
List.concat (List.map
(fun i -> [Jnew (spoketype N, [], glb 1i)1])
(range (List.length built in globals) (sum gvar codes)))

in let tdec codes =

let rec add tmp = function
(1 >0
| e :: el -> let get tmp = function
Cb(i,) -> 1

| Ci(i,) -> 1
| CE(i,) -> 1
| Cs(i,) -> 1
| Ay (1) -> 1
| N1(1i) -> 1
| wp (i,) -> i
| Pt(j—/ _r _) -> 1
| Tg(j—/ _r _) -> 1
| El(l/ _r _) -> 1
| L1(i,) -> 1
| Lg(i,) -> 1
| C1(i, .,) —> 1
| Bn(i, , ,) —> i

| Un(i, ,) -> 1
| Br(, sl, s2) -> let t = add _tmp sl and t' =
add tmp s2 in

if t > t' then t else t'

| Lp(s) -> add tmp s
| -> 0 in
let £t = (get tmp e) + 1 and t' = add tmp el in

if t > t' then t else t'
in List.concat (List.map (fun i -> [Jdef (spoketype O, tmp 1i);
Jnew (spoketype N, [], tmp

i)1)
(range 0 (add tmp codes)))
in let fdec =
let rec add fdec i = function
(1 > [1]

| Fn(el) :: cl -> { m name = fnc i; m access = Public; m static

= false;
m arg = List.map (fun 1 -> { a type =

spoketype O; a name = loc 1 })

(range 0 (List.length
built in locals));
m return = spoketype O;
m body = [Jdef ("boolean", tmpb):;
Jdef (spoketype O, tmpo)] @
tdec el @ List.concat (List.map
java of intercode el) }
add fdec (i+1l) cl
| :: cl -> add fdec i cl
in add fdec 0 codes

in let init = { m name = "Init"; m access = Public; m static =

false;

m arg = List.map (fun i -> { a type = spoketype O;
a name = loc 1 })

(range 0 (List.length

built in locals));

m return = "void";

m body = gnew @ [Jdef ("boolean", tmpb);
Jdef (spoketype O, tmpo)] @

tdec codes @ List.concat (List.map

java of intercode codes) }

in let main = { m name = "main"; m access = Public; m static =
true;
m arg = [{ a _type = "String[]"; a name = "args"}];
m return = "void";
m body = [Jdef (chname, "myMain"); Jnew (cname, [],
"myMain") ;

Jinvoke ("Execute", ["myMain"; "args"],

"")] }

in { c _package = ""; c access = Public; c name = cname;
c _parent = spoketype P; c fields = gvar;
¢ methods = main :: (init :: fdec); }

#!/bin/bash

java -classpath backend/src:backend/lib/stanford-
parser.jar:backend/lib/stanford-postagger.jar: $*

compile.sh

#!/bin/bash

javac -classpath backend/src:backend/lib/stanford-
parser.jar:backend/lib/stanford-postagger.jar: $1.java

Makefile:

OBJS = ast.cmo parser.cmo token.cmo scanner.cmo intercode.cmo
backend.cmo \
checker.cmo compile.cmo javaast.cmo javasrc.cmo translate.cmo
\

spoke.cmo

spoke : $(OBJS)
ocamlc -g -o spoke unix.cma $ (OBJS)

scanner.ml : scanner.mll
ocamllex scanner.mll

parser.ml parser.mli : parser.mly
ocamlyacc -v parser.mly

%.cmo : $.ml
ocamlc -g -c $<

$.cmi : $.mli
ocamlc -g -c $<

.PHONY : clean
clean :
rm —-f spoke parser.ml parser.mli scanner.ml *.cmo *.cmi
*.output *.diff *~

Generated by ocamldep *.ml *.mli

ast.cmo:

ast.cmx:

token.cmo: parser.cmo

token.cmx: parser.cmx

parser.cmo: ast.cmo parser.cmi

parser.cmx: ast.cmx parser.cmi

parser.cmi: ast.cmo

scanner.cmo: ast.cmo

scanner.cmx: ast.cmx

checker.cmo: ast.cmo backend.cmo

checker.cmx: ast.cmx backend.cmx

intercode.cmo:

intercode.cmx:

backend.cmo: backend.cmi

backend.cmx: backend.cmi

backend.cmi:

compile.cmo: intercode.cmo backend.cmo ast.cmo

compile.cmx: intercode.cmx backend.cmx ast.cmx

javaast.cmo:

javaast.cmx:

javasrc.cmo: backend.cmo javaast.cmo

javasrc.cmx: backend.cmx javaast.cmx

translate.cmo: intercode.cmo backend.cmo javaast.cmo

translate.cmx: intercode.cmx backend.cmx javaast.cmx

spoke.cmo: scanner.cmo token.cmo parser.cmi ast.cmo compile.cmo
backend.cmo checker.cmo intercode.cmo javaast.cmo javasrc.cmo

spoke.cmx: scanner.cmx token.cmx parser.cmx ast.cmx compile.cmx
backend.cmx checker.cmx intercode.cmx javaast.cmx havasrc.cmx

Back End:

lib:

stanford-parser.jar:
stanford-postagger.jar:

model:

englishPCFG.ser.gz:
left3words-wsj-0-18.tagger:
left3words-wsj-0-18.tagger.props:

src/org/spoke:

SpokeBoolean. java

package org.spoke;

public class SpokeBoolean extends SpokeObject {
private Boolean myObject;

private void setObject (Object object) {
if (object instanceof SpokeBoolean)
setBoolean (((SpokeBoolean)object) .getBoolean()) ;

else if (object instanceof Boolean)
setBoolean (((Boolean)object) .booleanValue());

else
throw new SpokeException ("type does not match");

}

public SpokeBoolean (boolean value) {
setBoolean (value) ;

}

public SpokeBoolean (Object object) {
setObject (object) ;
}

public void setBoolean (boolean value) {
this.myObject = new Boolean (value);

}

public boolean getBoolean () {
return myObject.booleanValue () ;

}

@Override
public boolean IsTrue() {
return getBoolean () ;

}

@Override
public boolean IsCompatible (SpokeObject object) {
return (object instanceof SpokeBoolean);

}

@Override
public void Assign (SpokeObject object) {
if (object == null || object instanceof SpokeNull)

throw new SpokeException ("operation with null");

if (object instanceof SpokeAny)
throw new SpokeException ("operation with any");

setObject (object) ;
}

@Override
public SpokeObject Clone () {
return new SpokeBoolean (this);

}

@Override
public boolean IsBoolean () {
return true;

}

@Override
public boolean IsComparable (SpokeObject object) {
return object instanceof SpokeBoolean ||

object instanceof SpokeAny || object
instanceof SpokeNull;
}
@Override
public boolean IsEnumerated() {

return false;

}

@Override
public boolean MayHave (SpokeObject object) {
return object instanceof SpokeBoolean || object

instanceof SpokeAny;

}

@Override
public SpokeObject Operation (int Op, SpokeObject object) {
if (Op == SpokeObject.OpNot) {
return new SpokeBoolean (!myObject.booleanValue());

}

if (object instanceof SpokeNull && Op == SpokeObject.OpEq)

if

if

if

if

if

if

return new SpokeBoolean (false);

(object instanceof SpokeNull && Op ==
return new SpokeBoolean (true);

(object == null || object instanceof
throw new SpokeException ("operation

(object instanceof SpokeAny && Op ==
SpokeProgram.AddMatch (this) ;
return new SpokeBoolean (true);

(object instanceof SpokeAny && Op ==
return new SpokeBoolean (true);

(object instanceof SpokeAny && Op ==
return new SpokeBoolean (false);

(! (object instanceof SpokeBoolean))
throw new SpokeException ("type does

boolean myValue = myObject.booleanValue (
boolean value = ((SpokeBoolean)object).g

switch (Op) {
/* Comparison Operators */
case SpokeObject.OpEqg:

return new SpokeBoolean (myValue

case SpokeObject.OpNeqg:

return new SpokeBoolean (myValue != v

case SpokeObject.OpHas:

if (myValue == value) {
SpokeProgram.AddMatch (th
return new SpokeBoolean (

}

else
return new SpokeBoolean (

/* Boolean Operators */
case SpokeObject.OpAnd:

return new SpokeBoolean (myValue && v

case SpokeObject.OpOr:

return new SpokeBoolean (myValue || v

/* Unsupported Operators */
default:

throw new SpokeException ("operation

@Override
public boolean IsList () {

return false;

SpokeObject.OpNeq)
SpokeNull)
with null");

SpokeObject.OpHas)

SpokeObject.OpEq)

SpokeObject.OpNeq)

not match");

) ;
etBoolean () ;

== value);

alue) ;

is);
true) ;

false);

alue) ;

alue) ;

is not supported");

{

}

@Override
public SpokeObject Partition (SpokeObject start, SpokeObject end)

throw new SpokeException ("operation is not supported");

@Override
public void SetElement (SpokeObject index, SpokeObject object)

{
throw new SpokeException ("operation is not

supported") ;

}

@Override

public SpokeObject GetElement (SpokeObject index) {

throw new SpokeException ("operation is not

supported") ;

}

@Override

public String toString () {

? "(True)" : " (False)";

return getBoolean ()

}

SpokeException. java

package org.spoke;
public class SpokeException extends RuntimeException {
private static final long serialVersionUID = -
6549270043287893286L;
{

public SpokeException (String message)
super (message) ;

}

SpokeFloat. java

package org.spoke;

public class SpokeFloat extends SpokeObject {

private Double myObject;

private void setObject (Object object) {
if (object instanceof SpokeFloat)
setFloat (((SpokeFloat)object) .getFloat());

else if (object instanceof Double)
setFloat (((Double)object) .doubleValue()) ;

else if (object instanceof Spokelnteger)
setFloat (((SpokelInteger)object) .getInteger());

else if (object instanceof Integer)
setFloat (((SpokelInteger)object) .getInteger());

else
throw new SpokeException ("type does not match");

}

public SpokeFloat (Object object) {
setObject (object) ;
}

public void setFloat (double value) {
this.myObject = new Double (value);

}

public double getFloat () {
return myObject.doubleValue () ;

}

@Override
public boolean IsTrue() {
return getFloat () '= 0.0;
}
@Override
public boolean IsCompatible (SpokeObject object) {
return (object instanceof SpokeFloat || object

instanceof Spokelnteger);

}

@Override
public void Assign (SpokeObject object) {
if (object == null || object instanceof SpokeNull)

throw new SpokeException ("operation with null");

if (object instanceof SpokeAny)
throw new SpokeException ("operation with any");

setObject (object) ;

@Override
public SpokeObject Clone () {
return new SpokeFloat (this);

}

@Override
public boolean IsBoolean () {
return false;

}

@Override
public boolean IsComparable (SpokeObject object) {
return object instanceof SpokeFloat ||

object instanceof SpokeAny || object
instanceof SpokeNull;
}
@Override
public boolean IsEnumerated() {

return false;

}

@Override
public boolean MayHave (SpokeObject object) {
return object instanceof SpokeFloat || object

instanceof SpokeAny;

}

@Override
public SpokeObject Operation (int Op, SpokeObject object) {
if (Op == SpokeObject.OpNegqg)
return new SpokeFloat (-myObject.doubleValue())

if (object instanceof SpokeNull && Op == SpokeObject.OpEq)
return new SpokeBoolean (false);

if (object instanceof SpokeNull && Op == SpokeObject.OpNeq)
return new SpokeBoolean (true);

if (object == null || object instanceof SpokeNull)
throw new SpokeException ("operation with null");

if (object instanceof SpokeAny && Op == SpokeObject.OpHas)

SpokeProgram.AddMatch (this) ;
return new SpokeBoolean (true);

if (object instanceof SpokeAny && Op == SpokeObject.OpEq)
return new SpokeBoolean (true);

if (object instanceof SpokeAny && Op == SpokeObject.OpNeq)

return new SpokeBoolean(false);

if (! (object instanceof SpokeFloat) && ! (object instanceof
SpokelInteger))
throw new SpokeException ("type does not match");

Double myValue = myObject.doubleValue()
Double value = object instanceof SpokeFloat ?
((SpokeFloat)object) .getFloat ()
((SpokeInteger)object) .getInteger () ;

switch (Op) {
/* Arithmetic Operators */
case SpokeObject.OpAdd:

return new SpokeFloat (myValue + value);
case SpokeObject.OpSub:

return new SpokeFloat (myValue - wvalue);
case SpokeObject.OpDiv:

return new SpokeFloat (myValue * wvalue);
case SpokeObject.OpMul:

return new SpokeFloat (myValue / value);
case SpokeObject.OpMod:

return new SpokeFloat (myValue % value);
/* Comparison Operators */
case SpokeObject.OpEqg:

return new SpokeBoolean (myValue == value);
case SpokeObject.OpNeqg:

return new SpokeBoolean (myValue != value);

case SpokeObject.OpGt:
return new SpokeBoolean (myValue > value);
case SpokeObject.OpGeqg:
return new SpokeBoolean (myValue >= value);
case SpokeObject.OpLt:
return new SpokeBoolean (myValue < wvalue);
case SpokeObject.Opleq:
return new SpokeBoolean (myValue <= value);
case SpokeObject.OpHas:
if (myValue == value) {
SpokeProgram.AddMatch (this) ;
return new SpokeBoolean (true);
}
else
return new SpokeBoolean(false);
/* Unsupported Operators */
default:
throw new SpokeException ("operation is not supported");

}

@Override
public boolean IsList () {
return false;

}

@Override
public SpokeObject Partition (SpokeObject start, SpokeObject end)

throw new SpokeException("this method is not supported");

@Override
public void SetElement (SpokeObject index, SpokeObject object)

{
throw new SpokeException ("operation is not

supported") ;
}
@Override
public SpokeObject GetElement (SpokeObject index) {
throw new SpokeException ("operation is not
supported") ;

}

@Override
public String toString () {
return myObject.toString();

}

SpokelInteger. java

package org.spoke;

public class SpokeInteger extends SpokeObject {
private Integer myObject;

private void setObject (Object object) {

if (object instanceof Spokelnteger)
setInteger (((SpokelInteger)object) .getInteger()):;

(object instanceof Integer)

else if
setInteger (((Integer)object) .intValue())
else if (object instanceof SpokeFloat)
setInteger ((int)Math.round((((SpokeFloat)object) .getFloat())));
else if (object instanceof Double)

setInteger (((Double)object) .intValue()) ;

else
throw new SpokeException ("type does not match");

}

public SpokeInteger (Object object) {
setObject (object) ;
}

public SpokelInteger (int value) {
setInteger (value);

}

public void setInteger (int value) {
myObject = new Integer (value);

}

public int getInteger () {
return myObject.intValue();

}

@Override
public boolean IsTrue() {
return getInteger() != 0;
}
@Override
public boolean IsCompatible (SpokeObject object) {
return (object instanceof Spokelnteger || object instanceof
SpokeFloat) ;
}
@Override
public void Assign (SpokeObject object) {
if (object == null || object instanceof SpokeNull)

throw new SpokeException ("operation with null");

if (object instanceof SpokeAny)
throw new SpokeException ("operation with any");

setObject (object) ;
}

@Override
public SpokeObject Clone () {
return new SpokelInteger (getInteger());

}

@Override
public boolean IsBoolean () {
return false;

}

@Override
public boolean IsComparable (SpokeObject object) {
return object instanceof SpokelInteger ||

object instanceof SpokeAny || object instanceof
SpokeNull;
}
@Override
public boolean IsEnumerated() {
return true;
}
@Override
public boolean MayHave (SpokeObject object) {
return object instanceof SpokelInteger || object instanceof
SpokeAny;
}
@Override
public SpokeObject Operation (int Op, SpokeObject object) {
if (Op == SpokeObject.OpNeq)
return new SpokeFloat (-myObject.intValue());
if (object instanceof SpokeNull && Op == SpokeObject.OpEq)
return new SpokeBoolean (false);
if (object instanceof SpokeNull && Op == SpokeObject.OpNeq)
return new SpokeBoolean (true);
if (object == null || object instanceof SpokeNull)
throw new SpokeException ("operation with null");
if (object instanceof SpokeAny && Op == SpokeObject.OpHas) {
SpokeProgram.AddMatch (this) ;
return new SpokeBoolean (true);
}
if (object instanceof SpokeAny && Op == SpokeObject.OpEq)
return new SpokeBoolean (true);
if (object instanceof SpokeAny && Op == SpokeObject.OpNeq)
return new SpokeBoolean (false);
if (! (object instanceof SpokeFloat) && ! (object instanceof
SpokelInteger))

throw new SpokeException ("type does not match");

double myValue = myObject.floatValue()
double value = object instanceof SpokeFloat ?
((SpokeFloat)object) .getFloat ()
((SpokelInteger)object) .getInteger();

switch (Op) {
/* Arithmetic Operators */
case SpokeObject.OpAdd:
return new SpokeInteger (myValue + value);
case SpokeObject.OpSub:
return new SpokelInteger (myValue - value);
case SpokeObject.OpDiv:
return new SpokelInteger (myValue * value);
case SpokeObject.OpMul:
return new SpokeInteger (myValue / value);
case SpokeObject.OpMod:
return new SpokelInteger (myValue % value);
/* Comparison Operators */
case SpokeObject.OpEqg:

return new SpokeBoolean (myValue == value);
case SpokeObject.OpNeq:
return new SpokeBoolean (myValue != value);

case SpokeObject.OpGt:
return new SpokeBoolean (myValue > value);
case SpokeObject.OpGeq:
return new SpokeBoolean (myValue >= value);
case SpokeObject.OpLt:
return new SpokeBoolean (myValue < value);
case SpokeObject.OplLeq:
return new SpokeBoolean (myValue <= value);
case SpokeObject.OpHas:
if (myValue == value) {
SpokeProgram.AddMatch (this) ;
return new SpokeBoolean (true);
}
else
return new SpokeBoolean(false);
/* Unsupported Operators */
default:
throw new SpokeException ("operation is not
supported") ;

}
@Override

public boolean IsList () {
return false;

}

@Override
public SpokeObject Partition (SpokeObject start, SpokeObject end)

throw new SpokeException ("This method is not supported");

@Override

public void SetElement (SpokeObject index, SpokeObject object)
{

throw new SpokeException ("operation is not

supported") ;
}
@Override
public SpokeObject GetElement (SpokeObject index) {
throw new SpokeException ("operation is not
supported") ;

}

@Override
public String toString () {
return myObject.toString();

}

SpokeAny. java

package org.spoke;
public class SpokeAny extends SpokeObject {

@Override
public boolean IsTrue() {
return true;

}

@Override
public boolean IsCompatible (SpokeObject object) {
return object instanceof SpokeAny;

}

@Override
public void Assign (SpokeObject object) {
if (! (object instanceof SpokeAny))
throw new SpokeException ("operation is not supported");

}

@Override
public SpokeObject Clone () {
return this;

}

@Override
public boolean IsBoolean () {

return false;

}

@Override
public boolean IsComparable (SpokeObject object) {
return true;

}

public boolean IsEnumerated() {
return false;

}

public boolean MayHave (SpokeObject object) {
return object instanceof SpokeAny;

}

@Override
public SpokeObject Operation (int Op, SpokeObject object) {
switch (Op) {
/* Comparison Operators */
case SpokeObject.OpAdd:
if (! (object instanceof SpokeAny))
throw new SpokeException ("operation is not
supported") ;
/* Comparison Operators */
case SpokeObject.OpEqg:
return new SpokeBoolean (true);
case SpokeObject.OpNeqg:
return new SpokeBoolean (false);
case SpokeObject.OpHas:
SpokeProgram.AddMatch (this) ;
return new SpokeBoolean (true);
/* Unsupported Operators */
default:
throw new SpokeException("operation is not supported");

@Override
public boolean IsList () {
return false;

}

@Override
public SpokeObject Partition (SpokeObject start, SpokeObject
end) {
throw new SpokeException ("operation is not
supported") ;
}

@Override

public void SetElement (SpokeObject index, SpokeObject object)
{

throw new SpokeException ("operation is not

supported") ;
}
@Override
public SpokeObject GetElement (SpokeObject index) {
throw new SpokeException ("operation is not
supported") ;

}

@Override
public String toString () {
return " (Any)";

}

SpokeFile. java

package org.spoke;

public class SpokeFile extends SpokeObject {
private java.io.FileDescriptor myFD;

public void setObject (Object object) {
if (object instanceof SpokeFile)
setFD (((SpokeFile)object) .getFD())

else if (object instanceof java.io.FileDescriptor)
setFD((jJava.io.FileDescriptor)object);

else
throw new SpokeException ("Type does not

match") ;

}

public SpokeFile (Object object) {
setObject (object) ;

}

public void setFD(java.io.FileDescriptor FD) ({
myEFD = FD;
}

public java.io.FileDescriptor getFD() {
return myFD;

}

public boolean CanRead () {
try {
System.getSecurityManager () .checkRead (myFD) ;
return true;
} catch (SecurityException e) {
return false;
}
}

public boolean CanWrite() {
try {
System.getSecurityManager () .checkWrite (myFD) ;
return true;
} catch (SecurityException e) {
return false;
}
}

@Override
public boolean IsTrue() {
return true;

}

@Override
public boolean IsCompatible (SpokeObject object) {
return object instanceof SpokeFile;

}

@Override
public void Assign (SpokeObject object) {
if (object == null || object instanceof SpokeNull)

throw new SpokeException ("operation with null");

if (object instanceof SpokeAny)
throw new SpokeException ("operation with any");

setObject (object) ;
}

@Override
public SpokeObject Clone () {
return new SpokeFile (myFD);

}

@Override
public boolean IsBoolean() {
return false;

}

@Override
public boolean IsComparable (SpokeObject object) {

return object instanceof SpokeNull;

}

@Override
public boolean IsEnumerated() {
return false;

}

@Override
public boolean MayHave (SpokeObject object) {
return false;

}

@Override
public SpokeObject Operation (int Op, SpokeObject object) {
if (object instanceof SpokeNull && Op == SpokeObject.OpEq)

return new SpokeBoolean (false);

if (object instanceof SpokeNull && Op == SpokeObject.OpNeq)
return new SpokeBoolean (true);

throw new SpokeException("This method is not

supported") ;
}
@Override
public boolean IsList() {
return false;
}
@Override
public SpokeObject Partition (SpokeObject start, SpokeObject
end) {
throw new SpokeException ("This method is not
supported") ;
}
@Override
public void SetElement (SpokeObject index, SpokeObject object)
{
throw new SpokeException ("This method is not
supported") ;
}
@Override
public SpokeObject GetElement (SpokeObject index) {
throw new SpokeException ("This method is not
supported") ;

}

@Override
public String toString () {

return " (File)";

Spokelist. java

package org.spoke;

public class Spokelist extends SpokeObject {
private SpokeObject[] myList;

private void setObject (Object object) {
if (object instanceof Spokelist) ({
setList (((SpokeList)object) .getList());
}
else 1f (object instanceof SpokeObject[]) {
setList ((SpokeObject[])object);
}

else {
throw new SpokeException ("type does not match");

}
}

public static Spokelist Wrap (SpokeObject object) {
SpokeList newList = new SpokelList();
if (object != null)
newList.addObject (object) ;
return newList;

}

public void addObject (SpokeObject object) {
SpokeObject[] newlList = new SpokeObject[myList.length + 1];
for (int 1 = 0 ; i1 < myList.length ; i++)
newList[i] = myList[i];
newList[myList.length] = ((SpokeObject)object).Clone();
myList = newlList;

}

public SpokeList () {
setObject (new SpokeObject[0]);

}

public SpokeList (Object object) {
setObject (object) ;
}

public void setList (SpokeObject[] List) {

myList = new SpokeObject[List.length];
for (int i = 0 ; 1 < List.length ; i++)
myList[i] = List[i];
}

public SpokeObject[] getList () {
return myList;

}

@Override
public boolean IsTrue() {
return myList.length > 0;

}

@Override
public boolean IsCompatible (SpokeObject object) {
return object instanceof Spokelist;

}

@Override
public void Assign (SpokeObject object) {
if (object == null || object instanceof SpokeNull)

throw new SpokeException ("operation with null");

if (object instanceof SpokeAny)
throw new SpokeException ("operation with any");

if (! (object instanceof SpokelList))
throw new SpokeException ("type does not match");

setObject (object) ;
}

@Override
public SpokeObject Clone () {
return new SpokelList (myList);

}

@Override
public boolean IsBoolean () {
return false;

}

@Override
public boolean IsComparable (SpokeObject object) {
return object instanceof Spokelist ||
object instanceof SpokeAny || object

instanceof SpokeNull;

}

@Override
public boolean IsEnumerated() {

}

return false;

@Override
public boolean MayHave (SpokeObject object) {
return true;

}

@Override
public SpokeObject Operation (int Op, SpokeObject object) {

if

if

if

if

if

if

if

(object instanceof SpokeNull && Op == SpokeObject.OpEQq)
return new SpokeBoolean (false);

(object instanceof SpokeNull && Op == SpokeObject.OpNeq)
return new SpokeBoolean (true);

(object == null || object instanceof SpokeNull)
throw new SpokeException ("operation with null"™);

(object instanceof SpokeAny && Op == SpokeObject.OpHas)

SpokeProgram.AddMatch (this) ;
return new SpokeBoolean (true);

(object instanceof SpokeAny && Op == SpokeObject.OpEq)
return new SpokeBoolean (true);

(object instanceof SpokeAny && Op == SpokeObject.OpNeq)
return new SpokeBoolean (false);

(! (object instanceof Spokelist) && Op ==

SpokeObject.OpHas) {

boolean hasObject = false;
for (int i = 0 ; 1 < myList.length ; i++) {
if (myList[i].IsComparable (object) &é&
myList[i] .Operation (SpokeObject.OpHas,

object) .IsTrue())

}

hasObject = true;
}

return new SpokeBoolean (hasObject) ;

if (! (object instanceof Spokelist))
throw new SpokeException("type does not match");
SpokeObject[] List = ((Spokelist)object) .getlist ()

switch (Op) {
/* Arithmetic Operators */
case SpokeObject.OpAdd:

List.length];

SpokeObject[] newlList = new SpokeObject[myList.length +

for (int 1 = 0 ; 1 < myList.length ; i++)
newList[i] = myList[i];
for (int i = 0 ; 1 < List.length ; i++)
newList [myList.length + i] = List[i];
return new SpokelList (newlList);
/* Comparison Operators */
case SpokeObject.OpEqg:
if (List.length != myList.length)
return new SpokeBoolean (false);
boolean egObject = true;
for (int 1 = 0 ; 1 < myList.length ; i++) {
if (myList[i].IsComparable(List[i]) &&
myList[i] .Operation (OpEq, List[i]).IsTrue())
continue;
egObject = false;
}
return new SpokeBoolean (egObject);
case SpokeObject.OpNeqg:
if (List.length != myList.length)
return new SpokeBoolean (true);
boolean negObject = false;
for (int 1 = 0 ; i < myList.length ; i++) {
if (myList[i].IsComparable (List[i]) &&
myList[i] .Operation (OpEq, List[i]).IsTrue())
continue;
neqgObject = true;
}
return new SpokeBoolean (negObject) ;
case SpokeObject.OpHas:
boolean hasObject = false;
for (int 1 = 0 ; 1 < myList.length - List.length + 1 ;

i++) |
for (int j = 0 ; j < List.length ; j++) {
if (myList[i + j].IsComparable(List[]]) &&
myList[i + j].Operation (SpokeObject.OpEq,
List[]j]) .IsTrue()) {

if (j == List.length - 1) {
SpokeObject[] matchList = new
SpokeObject[List.length];
for (int k = 0 ; k < List.length ;
k++)
matchList[k] = myList[i + k];
SpokeProgram.AddMatch (new
SpokelList (matchList));
hasObject = true;
}
continue;
}
break;
}

}
for (int i = 0 ; i1 < myList.length ; i++) {

if (myList[i].MayHave (object) &&
myList[i].Operation (SpokeObject.OpHas,
object) .IsTrue()) |
hasObject = true;
}
}
return new SpokeBoolean (hasObject) ;
/* Unsupported Operators */
default:
throw new SpokeException ("operation is not

supported") ;

}

}
@Override
public boolean IsList () {

return true;

}

@Override

public SpokeObject Partition (SpokeObject start, SpokeObject end)

if (! (start instanceof SpokeInteger))
throw new SpokeException ("type does not match");

if (! (end instanceof Spokelnteger))
throw new SpokeException ("type does not match");

int sindex = ((Spokelnteger)start) .getlInteger();
int eindex ((SpokelInteger)end) .getInteger () ;

if (sindex 0) {
sindex = myList.length + sindex;

A

A

if (eindex 0) {
eindex = myList.length + eindex;

if (sindex >= myList.length) {
throw new SpokeException ("List boundary is violated");

if (eindex >= myList.length) {
throw new SpokeException ("List boundary is violated");

if (sindex > eindex) {
return new Spokelist (new SpokeObject[0]);
}

SpokeObject[] List = new SpokeObject[eindex - sindex + 1];
for (int i = sindex ; 1 <= eindex ; i++) {

List[i - sindex] = myList[i];
}

return new SpokeList (List);

@Override
public void SetElement (SpokeObject index, SpokeObject object)

if (! (index instanceof Spokelnteger))
throw new SpokeException("type does not match");

int eindex = ((Spokelnteger)index) .getlInteger();

if (eindex < 0) {
eindex myList.length + eindex;

}
if (eindex >= myList.length) {
throw new SpokeException ("List boundary is violated");

}

myList[eindex] = object.Clone();

}

@Override
public SpokeObject GetElement (SpokeObject index) {
if (! (index instanceof SpokeInteger))

throw new SpokeException ("type does not match");

int eindex = ((Spokelnteger)index) .getInteger();

if (eindex < 0) {
eindex = myList.length + eindex;
}
if (eindex >= myList.length) {
throw new SpokeException ("List boundary is violated");

}

return myList[eindex];

}

@Override
public String toString () {
String result = "[";
for (int i = 0 ; i < myList.length ; i++) {
result += myList[i].toString() + (i < myList.length - 1 ?

}
result += "1";
return result;

SpokeObject. java

*/

package org.spoke;

public abstract class SpokeObject extends Object {
/* 0-15: Arithmetic Operators */
public static final int OpAdd = 0;
public static final int OpSub = 1
public static final int OpMul = 2
public static final int OpDiv = 3;
public static final int OpMod = 4
public static final int OpNeg = 5;
/* 16-31: Comparison Operators */
public static final int OpEg = 16;

public static final int OpNeg = 17;
public static final int OpGt = 18;
public static final int OpGeg = 19;
public static final int OpLt = 20;
public static final int Opleg = 21;

public static final int OpHas = 22;
/* 32-40: Boolean gates */
public static final int OpAnd = 32;
public static final int OpOr
public static final int OpNot = 34;

Il
w
w
~.

/* Used in Branch or Loop to check if this object indicate True
abstract public boolean IsTrue():;

/* Used in Assignment to check if the type is compatible */
abstract public boolean IsCompatible (SpokeObject object);

/* Used as the easy Assignment when the type is compatible */
abstract public void Assign (SpokeObject object);

/* Used as the easy Assignment when the type is incompatible */
abstract public SpokeObject Clone();

/* Used in Operation to check if the type is Boolean */
abstract public boolean IsBoolean();

/* Used in Operation to check if the type can be compared */
abstract public boolean IsComparable (SpokeObject object);

/* Used in Operation to check if the type is enumerated */
abstract public boolean IsEnumerated();

/* Used in Operation to check if the type may have another */
abstract public boolean MayHave (SpokeObject object);

/* Used as the easy Operation on the object */

abstract public SpokeObject Operation (int Op, SpokeObject
object);

/* Used in Partition and Get Element to check if is List */
abstract public boolean IsList();

/* Used as the easy Operation to Partition the List */
abstract public SpokeObject Partition (SpokeObject start,

SpokeObject end);

/* Used as the easy Operation to Get Element in the list */
abstract public void SetElement (SpokeObject index, SpokeObject

object);

/* Used as the easy Operation to Get Element in the list */
abstract public SpokeObject GetElement (SpokeObject index);

SpokeString. java

package org.spoke;

public class SpokeString extends SpokeObject ({
private String myObject;

private void setObject (Object object) {
if (object instanceof SpokeString)
setString(((SpokeString)object) .getString());

else if (object instanceof String)
setString((String)object);

else
throw new SpokeException ("type does not match");

}

public SpokeString (Object object) {
setObject (object) ;

}

public void setString(String object) {
myObject = new String(object);

}

public String getString() {
return myObject;

}

@Override
public boolean IsTrue() {
return myObject.length() > 0;

}

@Override
public boolean IsCompatible (SpokeObject object) {
return object instanceof SpokeString;

}

@Override
public void Assign (SpokeObject object) {
if (object == null || object instanceof SpokeNull)

throw new SpokeException ("operation with null");

if (object instanceof SpokeAny)
throw new SpokeException ("operation with any");

setObject (object) ;
}

@Override
public SpokeObject Clone () {

}

return new SpokeString(this);

@Override
public boolean IsBoolean () {
return false;

}

@Override

public boolean IsComparable (SpokeObject object) {

return object instanceof SpokeString ||
object instanceof SpokeAny || object

instanceof SpokeNull;

}

@Override
public boolean IsEnumerated() {
return false;

}

@Override
public boolean MayHave (SpokeObject object) {

return object instanceof SpokeString || object

instanceof SpokeAny;

}

@Override
public SpokeObject Operation (int Op, SpokeObject object)

if (object instanceof SpokeNull && Op == SpokeObject.OpEq)
return new SpokeBoolean (false);

if (object instanceof SpokeNull && Op == SpokeObject.OpNeq)
return new SpokeBoolean (true);

if (object == null || object instanceof SpokeNull)
throw new SpokeException ("operation with null");

if (object instanceof SpokeAny && Op == SpokeObject.OpHas)
return new SpokeBoolean (true);

if (object instanceof SpokeAny && Op == SpokeObject.OpEq)
return new SpokeBoolean (true);

if (object instanceof SpokeAny && Op == SpokeObject.OpNeq)
return new SpokeBoolean (false);

if (! (object instanceof SpokeString))
throw new SpokeException("type does not match");

String string = ((SpokeString)object).getString();

switch (Op) {
/* Arithmetic Operators */
case SpokeObject.OpAdd:
return new SpokeString (myObject.concat (string));
/* Comparison Operators */
case SpokeObject.OpEqg:
return new SpokeBoolean (myObject.equals(string));
case SpokeObject.OpNeqg:
return new SpokeBoolean (!myObject.equals(string));
case SpokeObject.OpHas:
int index = myObject.lastIndexOf (string);
if (index >= 0) {
SpokeProgram.AddMatch (object) ;
return new SpokeBoolean (true);
}
else
return new SpokeBoolean (false);
/* Unsupported Operators */
default:
throw new SpokeException ("operation is not
supported") ;
}
}

@Override
public boolean IsList () {
return true;

}

@Override
public SpokeObject Partition (SpokeObject start, SpokeObject end)

if (! (start instanceof Spokelnteger))
throw new SpokeException ("type does not match");

if (! (end instanceof Spokelnteger))
throw new SpokeException ("type does not match");

int sindex = ((Spokelnteger)start) .getInteger();
int eindex ((SpokelInteger)end) .getInteger () ;

byte[] chars = myObject.getBytes();

if (sindex < 0) {
sindex = chars.length + sindex;

if (eindex < 0) {
eindex = chars.length + eindex;

if (sindex >= chars.length) {
throw new SpokeException("List boundary is
violated") ;
}
if (eindex >= chars.length) {
throw new SpokeException("List boundary is
violated") ;
}
if (sindex > eindex) {
return new SpokeString("");

}

return new SpokeString(new String(chars, sindex, eindex -
sindex + 1));

}

@Override
public void SetElement (SpokeObject index, SpokeObject object) {
if (! (index instanceof Spokelnteger))
throw new SpokeException ("type does not match");

if (! (object instanceof SpokeString))
throw new SpokeException("type does not match");

int eindex = ((Spokelnteger)index) .getInteger();
String str ((SpokeString)object) .getString() ;

byte[] chars = myObject.getBytes();

if (eindex < 0) {
eindex = chars.length + eindex;

}
if (eindex >= chars.length) {
throw new SpokeException ("array boundary is
violated");

}

setString(new String(chars, 0, eindex - 1) + str +
new String(chars, eindex, chars.length -
eindex)) ;

}

@Override
public SpokeObject GetElement (SpokeObject index) {
if (! (index instanceof Spokelnteger))
throw new SpokeException ("type does not match");

int eindex = ((SpokelInteger)index) .getlInteger();
byte[] chars = myObject.getBytes();

if (eindex < 0) {
eindex = chars.length + eindex;

}
if (eindex >= chars.length) {
throw new SpokeException ("array boundary is
violated");

}

return new SpokeString(new String(chars, eindex, 1));
@Override
public String toString () {

return "\"" + myObject + "\"";
}

SpokeTag. java

package org.spoke;

public class SpokeTag extends SpokeObject {
private SpokeObject myTag;
private SpokeObject myObject;

public SpokeTag (SpokeObject tag, SpokeObject object) {
setTag (tag) ;
setObject (object) ;

}

public SpokeTag (Object object) {
if (object instanceof SpokeTag) {
setTag (((SpokeTag)object) .getTag()) ;
setObject (((SpokeTag)object) .getObject ()) ;
}

else
throw new SpokeException("type does not match");

}

public void setTag (SpokeObject tag) {
myTag = tag;
}

public SpokeObject getTag() {
return myTag;

}

public void setObject (SpokeObject object) {
myObject = object.Clone();
}

public SpokeObject getObject () {
return myObject;

}

@Override
public boolean IsTrue() {

return myTag.IsTrue() && myObject.IsTrue();
}

@Override
public boolean IsCompatible (SpokeObject object) {
return object instanceof SpokeTag;

}

@Override
public void Assign (SpokeObject object) {
if (object == null || object instanceof SpokeNull)

throw new SpokeException ("operation with null");

if (object instanceof SpokeAny)
throw new SpokeException ("operation with any");

if (! (object instanceof SpokeTagqg))
throw new SpokeException ("type does not match");

setTag (((SpokeTag)object) .getTag());
setObject (((SpokeTag)object) .getObject ()) ;
}

@Override
public SpokeObject Clone () {
return new SpokeTag(this);

}

@Override
public boolean IsBoolean () {
return false;

}

@Override
public boolean IsComparable (SpokeObject object) {
return object instanceof SpokeTag ||

object instanceof SpokeAny || object
instanceof SpokeNull;
}
@Override
public boolean IsEnumerated() {

return false;

}

@Override
public boolean MayHave (SpokeObject object) {
return object instanceof SpokeTag || object

instanceof SpokelList ||
object instanceof SpokeString;

}

public SpokeObject Operation (int Op, SpokeObject object) {
if (object instanceof SpokeNull && Op == SpokeObject.OpEq)
return new SpokeBoolean(false);

if (object instanceof SpokeNull && Op == SpokeObject.OpNeq)
return new SpokeBoolean (true);

if (object == null || object instanceof SpokeNull)
throw new SpokeException ("operation with null");

if (object instanceof SpokeAny && Op == SpokeObject.OpHas) {
SpokeProgram.AddMatch (this) ;
return new SpokeBoolean (true);

if (object instanceof SpokeAny && Op == SpokeObject.OpEq)
return new SpokeBoolean (true);

if (object instanceof SpokeAny && Op == SpokeObject.OpNeq)
return new SpokeBoolean (false);

if (! (object instanceof SpokeTag) && Op == SpokeObject.OpHas)

if (myObject.MayHave (object))

return myObject.Operation (OpHas, object);
else

return new SpokeBoolean (false);

}

if (! (object instanceof SpokeTaqg))
throw new SpokeException("type does not match");

SpokeObject Tag = ((SpokeTag)object).getTag()
SpokeObject Obj = ((SpokeTag)object) .getObject();

switch (Op) {
/* Arithmetic Operators */
case SpokeObject.OpAdd:
if (myObject instanceof SpokeList) {
SpokeObject[] List =
((SpokeList)myObject) .getList (),
SpokeObject[] newList = new
SpokelList[List.length + 1];
for (int 1 = 0 ; i < List.length ; i++)
newList[i] = List[i];
newList[List.length] = object;
return new SpokeTag(myTag, new
SpokeList (newList));
}

else {
SpokeObject[] newlList = new SpokeObject[2];
newlList[0] = this;
newList[1l] = object;

return new SpokeTag(new SpokeAny (), new
SpokeList (newList));
}
/* Comparison Operators */
case SpokeObject.OpEqg:
if (myTag instanceof SpokeString && Tag instanceof
SpokeString) {
String myTagStr =
((SpokeString)myTag) .getString () ;
String TagStr =
((SpokeString) Tag) .getString() ;
return new
SpokeBoolean (myTagStr.startsWith (TagStr) &&

myObject.IsComparable (Obj) &&
myObject.Operation (OpEq,
Obj) .IsTrue()) ;
}

return new SpokeBoolean (myTag.IsComparable (Tag) &&

myTag.Operation (OpEq,

Tag) .IsTrue () &&

myObject.IsComparable (Obj) &&

myObject.Operation (OpEqg,

Obj) .IsTrue());

case SpokeObject.OpNeqg:
return new SpokeBoolean (! (Operation (Opkq,

object) .IsTrue()));

supported") ;

end)

{

case SpokeObject.OpHas:
boolean hasObject = false;

if (Operation (OpEqg, object).IsTrue()) |
SpokeProgram.AddMatch (this) ;
hasObject = true;

}

if (myObject.MayHave (object) &&
myObject.Operation (OpHas, object) .IsTrue())
hasObject = true;

return new SpokeBoolean (hasObject);
/* Unsupported Operators */
default:
throw new SpokeException ("operation is not

}
}

@Override

public boolean IsList () {
return myObject.IsList();
}

@Override
public SpokeObject Partition (SpokeObject start, SpokeObject

return myObject.Partition(start, end);

}

@Override
public void SetElement (SpokeObject index, SpokeObject object)

myObject.SetElement (index, object);
}

@Override
public SpokeObject GetElement (SpokeObject index) {
return myObject.GetElement (index) ;

}

@Override

public String toString () {
return myTag.toString() + " (" + myObject.toString/ ()

SpokeProgram. java

package org.spoke;
public abstract class SpokeProgram {

/* global variable 'match' */
protected static SpokelList g 0
/* global variable 'star' */
protected static SpokelList g 1 = new SpokeList();

new SpokeList () ;

public static void AddMatch (SpokeObject object) {
g 0.addObject (object) ;
}

public static void FlushMatch() {
g 0 = new SpokeList();

public static void AddStar (SpokeObject object) {
g 1l.addObject (object);

public static void FlushStar () {
g 1 = new SpokelList();
}

public static void Execute (SpokeProgram program, String[] args)

SpokeObject[] args list = new SpokeObject[args.length];
for (int i = 0 ; i < args.length ; i++) {
args_list[i] = new SpokeString(argsl[i]);
}
program.Init (new Spokelist (args list));

}

abstract public void Init (SpokeObject args);

SpokeRuntimeException. java

package org.spoke;
public class SpokeRuntimeException extends RuntimeException {
private static final long serialVersionUID = -

3077970640526088070L;

public SpokeRuntimeException (String message) {
super (message) ;

Makefile

JFLAGS = -g
JC = javac

default: backend

BACKEND SRC = SpokeAny.java SpokeApi.java SpokeBoolean.java
SpokeException.java SpokeFloat.java SpokeFile.java SpokelInteger.java
SpokeList.java SpokeNull.java SpokeObject.java SpokeProgram.java
SpokeRuntimeException.java SpokeString.java SpokeTag.java
NLPparser.java NLPtagger.java

backend:
$(JC) -classpath ../../../lib/stanford-
parser.jar:../../../lib/stanford-postagger.jar: $(BACKEND SRC)

clean:
$S(RM) *.class *~

NLPtagger. java

package org.spoke;

import edu.stanford.nlp.ling.Sentence;
import edu.stanford.nlp.tagger.maxent.MaxentTagger;

public final class NLPtagger {

static public SpokeObject nlpTag(SpokeObject obj) {
SpokeList args = (SpokelList)obj;

SpokeApi.check args num(args, 1);

SpokeObject object = args.getList () [0];

if (! (object instanceof SpokeString))
throw new SpokeException ("Type does not
match") ;
if (((SpokeString)object) .getString () .equals(""))
throw new SpokeException("The String is
empty.");

SpokeObject[] tagged list = null;
String raw = ((SpokeString)object) .getString();

MaxentTagger tagger;
try {
tagger = new
MaxentTagger ("backend/model/left3words-wsj-0-18.tagger") ;
} catch (Exception e) {
throw new SpokeException ("MaxentTagger
initialization failed");

}

String tagged =
tagger.tagSentence (Sentence.toSentence (raw.split ("\\s+"))) .toString () ;

tagged = tagged.replaceAll ("\\[", "");

tagged = tagged.replaceAll ("\\]",

String [] tags = tagged.split(", "):;

tagged list = new SpokeObject[tags.length];

for (int i = 0; 1 < tags.length; i++) {
int split = tags[i].lastIndexOf ("/");
String word = tags[i].substring(0, split);
String pos = tags[i].substring(split+l,

"");

tags[i].length());

SpokeTag ST = new SpokeTag (new
SpokeString (pos), new SpokeString(word));

tagged list[i] = ST;

}

return new Spokelist (tagged list);

NLPparser. java

package org.spoke;

import java.util.*;

import edu.stanford.nlp.trees.*;
import edu.stanford.nlp.parser.lexparser.LexicalizedParser;

public final class NLPparser {

static public SpokeObject nlpParse (SpokeObject obj) {
SpokeList args = (SpokelList)obj;

SpokeApi.check args num(args, 1);
SpokeObject object = args.getList () [0];

if (! (object instanceof SpokeString))
throw new SpokeException ("Type does not match");

LexicalizedParser lp = new
LexicalizedParser ("backend/model/englishPCFG.ser.gz");
lp.setOptionFlags (new String[]{"-maxLength", "80", "-
retainTmpSubcategories™}) ;

1f (((SpokeString)object) .getString () .equals(""))
throw new SpokeException("The String is empty.");

String[] sent =
((SpokeString)object) .getString() .split (" ");
Tree parse = (Tree)lp.apply(Arrays.asList(sent));

Object curObj = null;
edu.stanford.nlp.trees.LabeledScoredTreeNode curNode =

null;

Iterator<Tree> iterator = parse.iterator();

curObj = iterator.next();

curNode =
(edu.stanford.nlp.trees.LabeledScoredTreeNode) curObj;

return addNode (curNode) ;

}

static public SpokeTag addNode (Tree curNode) {
SpokeObject Tag = null;
SpokeObject Obj null;

if (curNode.value () .equals(""))
throw new SpokeException ("Error occurs during
parsing.");
else {
Tag = new SpokeString (curNode.value()):;

}

Tree[] children = curNode.children() ;

if (children.length == 0) {
throw new SpokekException ("Wierd Tree");

}

if (children[0] instanceof
edu.stanford.nlp.trees.LabeledScoredTreeleaf) {
if (children.length > 1)
throw new SpokeException ("Wierd

Tree");

Obj = new SpokeString(children[0].value());
}

else{
SpokeObject[] siblings = new
SpokeObject[children.length];
for(int i = 0 ; 1 < children.length ; i++) {
if (children([i] instanceof
edu.stanford.nlp.trees.LabeledScoredTreeNode) {
siblings[i] = new
SpokeTag (addNode (children[i])) ;
}
}
Obj = new SpokeList(siblings);

}

return new SpokeTag(Tag, Obj):;
}

public static String remove score (String raw) {
String processed = raw.replaceAll ("[.*0-9]","");
processed = processed.replaceAll ("\\[", "");
processed processed.replaceAll ("\\]",
processed = processed.replaceAll ("\\s+", " ");
return processed;

"");

}

public static String remove tag (String raw) {
String processed = raw.replaceAll ("\\)",
processed = processed.replaceAll ("\\ ([A-Z!,.2:;" 1+"

"");

"")

return processed;

}

src/org/spoke/api:

SpokeApi.java

package org.spoke;
public final class SpokeApi {

static public void check args num(Spokelist args, int num)
if (args.getlist () .length < num)
throw new SpokeException ("Too few
arguments"™) ;

if (args.getlist () .length > num)
throw new SpokeException ("Too many
arguments") ;

}

static public int check args num(SpokelList args, int numl,
int num?2) {
if (args.getlist () .length < numl)
throw new SpokeException("Too few
arguments") ;

if (num2 > 0 && args.getlList () .length > num?2)
throw new SpokeException ("Too many
arguments") ;

return args.getList () .length;
}

static private float float value (SpokeObject object) ({
if (object instanceof Spokelnteger)

return ((SpokelInteger)object) .getInteger();

else if (object instanceof SpokeFloat)

return (int) ((SpokeFloat)object) .getFloat();

throw new SpokeException ("Type does not match");

}

static public SpokeObject SpokeCeil (SpokeObject obj) {
SpokelList args = (SpokelList)obj;

check args num(args, 1);
SpokeObject object = args.getList () [0];
return new

SpokelInteger (Math.ceil (float value (object)));
}

static public SpokeObject SpokeFloor (SpokeObject obj) {
SpokeList args = (SpokelList)obj;

check args num(args, 1);
SpokeObject object = args.getList () [0];

return new
SpokeInteger (Math.floor (float value (object)));

}

static public SpokeObject SpokePow (SpokeObject obj)
SpokeList args = (SpokelList)obj;

{

check args num(args, 2);

SpokeObject obj0 = args.getList () [0];
SpokeObject objl = args.getList()[1];

return new
SpokeFloat (Math.pow (float value (obj0), float value (objl)));

}
static public SpokeObject SpokeSgrt (SpokeObject obj) {
SpokelList args = (SpokelList)obj;
check args num(args, 1);
SpokeObject object = args.getList () [0];

return new
SpokeFloat (Math.sqgrt (float value (object)));

}

static public SpokeObject Spokelog (SpokeObject obj)
SpokelList args = (Spokelist)obj;

{

check args num(args, 1);
SpokeObject object = args.getList () [0];
return new SpokeFloat (Math.log(float value (object)));

}

static public SpokeObject SpokeAbs (SpokeObject obj) {
SpokelList args = (Spokelist)obj;

check args num(args, 1);
SpokeObject object = args.getList () [0];
return new SpokeFloat (Math.abs(float value (object)));
}

static public SpokeObject SpokeExp (SpokeObject obj) {

SpokelList args = (Spokelist)obj;
check args num(args, 1);
SpokeObject object = args.getList () [0];

return new SpokeFloat (Math.exp(float value (object)));
}

static public SpokeObject SpokeRange (SpokeObject obj) {

SpokelList args = (Spokelist)obj;

int args num = check args num(args, 1, 3);
int sindex = 0;

int eindex = 0;

int inc = 1;

switch (args num) {
case 1: {
SpokeObject object = args.getList () [0];
if (! (object instanceof SpokelInteger))
throw new SpokeException ("Type does not
match") ;

eindex = ((Spokelnteger)object).getInteger();
break; }
case 2: {
SpokeObject obj0 = args.getList() [0];
if (! (obj0 instanceof Spokelnteger))
throw new SpokeException ("Type does not
match") ;

SpokeObject objl = args.getlList()[1l];
if (! (objl instanceof Spokelnteger))
throw new SpokeException ("Type does not
match") ;

sindex = ((SpokelInteger)obj0).getInteger();
eindex = ((SpokelInteger)objl).getInteger();
break; }
case 3: {
SpokeObject obj0 = args.getlList() [0];
if (! (obj0 instanceof Spokelnteger))
throw new SpokeException ("Type does not
match") ;

SpokeObject objl = args.getList () [1l];
if (! (objl instanceof Spokelnteger))
throw new SpokeException ("Type does not
match") ;

SpokeObject obj2 = args.getlList() [2];
if (! (objl instanceof Spokelnteger))
throw new SpokeException ("Type does not

match") ;
sindex = ((SpokelInteger)obj0).getInteger();
eindex = ((SpokelInteger)obijl).getInteger();
inc = ((SpokelInteger)obij?).getInteger();
break; }
}
if (eindex <= sindex) return new SpokelList();
SpokeObject[] List = new SpokeObject[(eindex - sindex) /
inc];
for (int i = sindex, j = 0 ; 1 < eindex ; i += inc, J++) {
List[]j] = new SpokelInteger(i);

}

return new SpokelList (List);

}

static public SpokeObject Spokelen (SpokeObject obj) {
SpokelList args = (Spokelist)obj;

check args num(args, 1);
SpokeObject object = args.getList () [0];

if (object instanceof Spokelist)
return new
SpokeInteger (((SpokelList)object) .getlList () .length);

if (object instanceof SpokeString)
return new
SpokelInteger (((SpokeString)object) .getString () .length())

if (object instanceof SpokeTag) {

SpokeTag Tag = (SpokeTag)object;

if (Tag.getObject () instanceof SpokeString)
return new SpokelInteger (0);

if (Tag.getObject () instanceof SpokeTagqg)
return new Spokelnteger(1l);

if (Tag.getObject () instanceof Spokelist)
return new

SpokeInteger (((SpokelList)Tag.getObject ()) .getlList () .length);

throw new SpokeException ("Wierd Tree");

throw new SpokeException ("Type does not match");

static private String str (SpokeObject obj) {
if (obj instanceof SpokeString)
return ((SpokeString)obj).getString()
if (obj instanceof SpokelInteger)
return
Integer.toString (((SpokeInteger)obj) .getInteger());
if (obj instanceof SpokeFloat)
return
Double.toString (((SpokeFloat)obj) .getFloat())
if (obj instanceof SpokeBoolean)
return ((SpokeBoolean)obj).getBoolean() ?
"True" : "False";
if (obj instanceof SpokeAny)
return "Any";
if (obj instanceof SpokeNull)
return "Null";
if (obj instanceof Spokelist) {
SpokeObject[] List =
((SpokeList)obj) .getList ()
String myStr = "";
for (int 1 = 0 ; i < List.length ; i++) {
myStr += str(List[i]) + (i < List.length
-1 2™ "y,
}
return myStr;
}
if (obj instanceof SpokeTagqg)
return str (((SpokeTag)obj).getObject())

throw new SpokeException ("Type does not match");

}

static public SpokeObject SpokeStr (SpokeObject obj) {
SpokelList args = (Spokelist)obj;

check args num(args, 1);
SpokeObject object = args.getList () [0];

return new SpokeString(str (object)):;

}

static public SpokeObject SpokeDebug (SpokeObject obj) {
SpokelList args = (Spokelist)obj;

check args num(args, 1);
SpokeObject object = args.getList () [0];

return new SpokeString(object.toString()):;

static public SpokeObject SpokeTag (SpokeObject obj) {
SpokelList args = (SpokelList)obj;

check args num(args, 1);
SpokeObject object = args.getList () [0];

if (object instanceof SpokeTag)
return new SpokeString(str (((SpokeTag)object).getTag())):;

throw new SpokeException ("Type does not match");

}

static public SpokeObject SpokeObj (SpokeObject obj) {
SpokelList args = (Spokelist)obj;

check args num(args, 1);
SpokeObject object = args.getList () [0];

if (object instanceof SpokeTagq)
return ((SpokeTag)object) .getObject () .Clone();
else
return object.Clone();

}

static public SpokeObject SpokelInt (SpokeObject obj) {
SpokelList args = (SpokelList)obj;

check args num(args, 1);
SpokeObject object = args.getList () [0];
if (object instanceof SpokelInteger || object
instanceof SpokeFloat)
return new SpokelInteger (object);
else if (object instanceof SpokeString)
return new

SpokeInteger (Integer.parselnt (((SpokeString)object) .getString()))

throw new SpokeException ("Type does not match");

}

static public SpokeObject SpokeFloat (SpokeObject obj) {
SpokelList args = (Spokelist)obj;

check args num(args, 1);
SpokeObject object = args.getList () [0];

if (object instanceof Spokelnteger || object
instanceof SpokeFloat)

return new SpokeFloat (object);
else if (object instanceof SpokeString)
return new
SpokeFloat (Float.parseFloat (((SpokeString)object) .getString())):;

throw new SpokeException ("Type does not match");

}

static public SpokeObject SpokePrint (SpokeObject obj) {
SpokeList args = (SpokelList)obj;

System.out.print (str (args));
return new SpokeNull () ;

}

static public SpokeObject SpokeOpen (SpokeObject obj) {
SpokelList args = (Spokelist)obj;

check args num(args, 2);

SpokeObject 0obj0 = args.getlList () [0];
SpokeObject objl = args.getlList()[1l];

if (! (obj0 instanceof SpokeString) || ! (objl instanceof
SpokeString))
throw new SpokeException ("Type does not match");
String filename = ((SpokeString)obj0).getString();
String filetype = ((SpokeString)obijl).getString();
if (filetype.equals("r")) {
try |

return new SpokeFile ((new
java.io.FileInputStream(filename)) .getFD());
} catch (java.io.IOException e) {
return new SpokeNull ();
}
}

if (filetype.equals ("w")) {
try {
return new SpokeFile ((new
java.io.FileOutputStream(filename, false)) .getFD());
} catch (java.io.IOException e) {
return new SpokeNull () ;
}
}

if (filetype.equals("a")) {
try {
return new SpokeFile ((new
java.io.FileOutputStream(filename, true)) .getFD());

} catch (java.io.IOException e) {
return new SpokeNull () ;
}
}

throw new SpokeException ("Unknown file type");

}

static public SpokeObject SpokeClose (SpokeObject obj) {
SpokeList args = (SpokelList)obj;

check args num(args, 1);
SpokeObject object = args.getList () [0];

if (! (object instanceof SpokeFile))
throw new SpokeException ("Type does not match");

SpokeFile file = (SpokeFile)object;
if (file.CanRead()) {
try {
(new
java.io.FileInputStream(file.getFD())) .close();

} catch (java.io.IOException e) {

throw new SpokeException("IO error");
}

return new SpokeNull () ;

}

if (file.CanWrite()) {
try {
(new
java.io.FileOutputStream(file.getFD())) .close();

} catch (java.io.IOException e) {
throw new SpokeException("IO error");

}
return new SpokeNull ();
}
throw new SpokeException("IO error");
static public SpokeObject SpokeRead (SpokeObject obj) {
SpokelList args = (Spokelist)obj;
int args _num = check args num(args, 0, 1);

java.io.FileInputStream input;

if (args num == 0) {

input = new
java.io.FileInputStream(java.io.FileDescriptor.in);

}
else {
SpokeObject object = args.getList () [0];

if (! (object instanceof SpokeFile))

throw new SpokeException ("Type does not match");

SpokeFile file = (SpokeFile)object;

if (!file.CanRead())
throw new SpokeException("File is not

readable") ;

input = new java.io.FileInputStream(file.getFD());

}

try {

String readstr =

while (true) {

char readchar = (char)input.read();

if (readchar == ' ') break;

readstr += readchar;

}

return new SpokeString(readstr);
} catch (java.io.IOException ex) {
throw new SpokeException ("IOError");

}

static public SpokeObject SpokeReadline (SpokeObject obj)
SpokelList args = (Spokelist)obj;

int args num = check args num(args, 0, 1);
java.io.FileInputStream input;

if (args num == 0) {
input = new
java.io.FileInputStream(java.io.FileDescriptor.in);
}
else {
SpokeObject object = args.getList () [0];

if (! (object instanceof SpokeFile))

throw new SpokeException ("Type does not match");

SpokeFile file = (SpokeFile)object;

{

if (!file.CanRead())
throw new SpokeException("File is not

readable") ;

input = new java.io.FileInputStream(file.getFD());

}

try {
String readstr = "";

while (true) {
char readchar = (char)input.read();
if (readchar == '\n') break;

readstr += readchar;

}

return new SpokeString(readstr);
} catch (java.io.IOException ex) {
throw new SpokeException("IO error");
}
}

static public SpokeObject SpokeWrite (SpokeObject obj) {
SpokeList args = (SpokelList)obj;

check args num(args, 1, 0);
SpokeObject object = args.getList () [0];

if (! (object instanceof SpokeFile))
throw new SpokeException ("Type does not match");

SpokeFile file = (SpokeFile)object;

if (!file.CanWrite())
throw new SpokeException("File is not writeable");

java.io.FileOutputStream output = new
java.io.FileOutputStream(file.getFD());

try {
output.write(str(args.Partition (new

SpokeInteger(l), new SpokelInteger(-1)))
.getBytes());
return new SpokeNull () ;
} catch (java.io.IOException ex) {
throw new SpokeException("IO error");
}
}

static public SpokeObject SpokeSystem(SpokeObject obj) {
SpokeList args = (SpokelList)obj;

check args num(args, 1);
SpokeObject object = args.getList () [0];

if (! (object instanceof SpokeString))
throw new SpokeException ("Type does not match");

Process proc;
try {
proc =
Runtime.getRuntime () .exec (((SpokeString)object) .getString());
} catch (java.io.IOException ex) {
throw new SpokeException ("IO error");

}

try {
proc.wait () ;
} catch (Exception e) {

}

try {
return new Spokelnteger (proc.exitValue()):;
} catch (Exception e) {
return new SpokelInteger (255);
}
}

static public SpokeObject SpokePipe (SpokeObject obj) {
SpokelList args = (Spokelist)obj;

check args num(args, 1);
SpokeObject object = args.getList () [0];

if (! (object instanceof SpokeString))
throw new SpokeException ("Type does not match");

Process proc;
try {
proc =
Runtime.getRuntime () .exec (((SpokeString)object) .getString());
} catch (java.io.IOException ex) {
throw new SpokeException("IO error");

}

java.io.BufferedInputStream input =
new
java.io.BufferedInputStream (proc.getInputStream());

try {
proc.wait();

} catch (Exception e) {

}

try {
byte[] buffer = new byte[input.available()];
input.read (buffer);
return new SpokeString(new String (buffer));
} catch (java.io.IOException e) {
throw new SpokeException("IO error");

}

References

R. Cole, J. Mariani, H. Uszkoreit, A. Zaenen, & V. Zue (eds.), Discourse and Dialogueue. Grosz,
Barbara; Scott, Donia; Kamp, Hans; Cohen, Phil; Giachin, Egidio. Chapter 6 of Survey of the State
of the Art in Human Language Technology, Cambridge University Press, 1995.

Pieraccini R. and Huerta, Juan, "Where do we go from here? research and commercial spoken
dialogue systems", In SIGdial-2005, 1-10.

