
Language Reference Manual for MIDILC
11/02/2010
Akiva Bamberger (ab2928)
Fred Lowenthal (fml2106)
Ben Mann (bjm2122)
Ye Liu (yl2428)

1. Introduction

MIDILC is a C-like language that makes it simpler to algorithmically generate music. It
simplifies MIDI music creation by allowing programmers to specify song information in musical
terms and write functions that process existing musical information. By building off of
simpler musical functions, such as arpeggios and chords, complex musical compositions can
easily be programmed.

To eliminate the programming complexities from the MIDILC language, it has limited scope
and data management capabilities. MIDILC can be used following an imperative or functional
paradigm and reduces hassle for the programmer by forcing static scope.

It compiles into MIDI files that can then be played in any standard media player.

2. Lexical Conventions

2.1 Tokens

Tokens consist of identifiers, keywords, constants, operators, and separators. As with C,
MIDILC is a free-form language and all white space characters are ignored (with the exception
of separating tokens), as braces are used to identify the start and end of code blocks and
semicolons are used to end statements.

2.2 Comments

/* and */ are used to indicate a block of comments (C-style comments). There are no C++-
style comments in MIDILC.

2.3 Identifiers

These are sequences of letters, digits, and underscores, starting with a letter or underscore.
Identifiers cannot be of the format [A-G R][0-9], as these are reserved for Note literals.

2.4 Keywords

MIDILC has very few keywords; these include the following:

Types Control

Number return

Note continue

Chord break

Sequence if

 else

Void while

 for

2.5 Constants/Literals

MIDILC has no facilities for specifying user-defined constants, but it does include a set of
Note literals, specified by the note letter, accidental (if any), MIDI octave, and a letter that
indicates the note’s duration (optional, and defaulting to a quarter note). Durations include
w (for whole note), h (for half note), q (for quarter note), e (for eigth note), and s (for
sixteenth note). Rests are indicated by using R instead of a note. Chord literals don’t exist,
though Chords can easily be expressed using built-in chord generation function calls on Note
literals. In addition, Number literals also exist (integral numbers limited to signed 32-bit
range). MIDILC does not have floating-point literals.

Note that literals look like the following:

Ab7
C4s
G5h

Pitches and Number literals have the following correspondence:

3. Meaning of Identifiers

Identifiers in MIDILC have the following attributes: scope, name space, linkage, and storage
duration, as detailed in Section 4.1. Since static scope is handled automatically, there are no
storage class specifiers in MIDILC.

3.1 Disambiguating Names

3.1.1 Scope

The scope of of an identifier is defined as the region of a program within which it is visible,
and begins when it is declared. In MIDILC, all identifiers are globally scoped, and are
therefore visible to all blocks within a program unless hidden in another scope. This is due to
the fact that the language automatically handles static identifiers.

3.1.2 Name Space

All the identifiers in MIDILC are categorized as ordinary identifiers. These include user-
defined type names, object names, and function names.

3.1.3 Linkage of Identifiers

Identifiers in MIDILC may be linked across different files of the same program, but the
identifier name must be unique in all files. Furthermore, the compiler will generate a compile
time error about the identifier if there is a conflict.

3.1.4 Storage Duration

Storage duration denotes the lifetime of an object. All objects in MIDILC are static, and have
static storage duration. The initialization of these objects occurs only once, prior to any
reference.

3.2 Object Types

The MIDILC language supports two types of objects: numbers and musical notations.

3.2.1 Number type

The only supported numerical type is Number, which has a size of 32 bits and ranges from -231
to 231 - 1. This is also the underlying type for all fields within the musical types.

3.2.2 Musical types

Note, Chord, and Sequence are all of the musical types supported by MIDILC. Note literals
are made up of strings consisting of integers and characters in sequences that match the
following regular expression:

 [A-G R][b, #]?[0-9]?[w, h, q, e, s]?

 As these types are not stored directly internally, their sizes are not exact. As a general rule,
for non-empty objects,

Number < Note < Chord < Sequence in terms of their relative sizes.

3.2.2.1 Note type

Note type has the following attributes: pitch, and duration. Pitch refers to the frequency
of the note, and duration is specified as a type of note: whole, half, quarter, eighth, or
sixteenth. Note literals with the pitch indicated as R instead of A-G are rests (numerically
represented as -1).

3.2.2.2 Chord type

Chord type has the following attributes: duration and length. Duration is a Number type that
specifies a type of note: whole, half, quarter, eighth, or sixteenth. All Note literals within
the same Chord must have the same duration. This property can be specified as number of
sixteenths. Length of the Chord refers to the number of Note literals in the Chord.

3.2.2.3 Sequence type

Sequence type has the following attributes: current, beginning, and length. Each is of
type Number. Beginning denotes the starting point of the Sequence, while current denotes
the current time (from beginning) where a new note may be inserted. The length of the
Sequence refers to the number of Note literals or Chord objects in the Sequence.

3.2.3 Derived types

Chord and Sequence objects can be derived; a Chord can be derived from a collection of
Note objects, and a Sequence can be derived from a collection of Note or Chord objects.

3.2.4 Void type

The Void type specifies an empty set of values. It never refers to an object.

3.3 Objects and lvalues

An object is a manipulable region of storage. An lvalue is an expression referring to an object,
for example, an identifier. Assignments such as note1 = note2, where note1 and note2
are Note objects, will result in a change of reference for the Note objects, but not a change
in the objects themselves.

4. Operator Conversions

Due to the nature of the primitive types, very few conversions are supported in MIDILC. It is
possible to cast from Note to Chord, Note to Sequence, and Chord to Sequence, but
not in the opposite direction.

4.1 Conversions of Number and Note

Number objects can be converted into Note objects as a note with the pitch represented as
an integer in MIDI notation. Note objects cannot be converted to Number objects.

4.2 Conversions of Note and Chord

Note objects can be converted into Chord objects as one-note chords. Chord objects
cannot be converted into Note objects, as this is a narrowing conversion.

4.3 Conversions of Note and Sequence

Note objects can be converted into Sequence objects as a sequence that contains a single
note. Sequence objects cannot be converted into Note objects, as this is a narrowing
conversion, even if the Sequence contains only a single Note.

4.4 Conversions of Chord and Sequence

Chord objects can be converted into Sequence objects as a sequence that contains a single
chord. Sequence objects cannot be converted into Chord objects, as this is a narrowing
conversion, even if the Sequence contains only a single Chord.

5. Expressions and Operators

In MIDILC, expressions include one or more operators and a number of operands that follow
certain associativity rules. Operators may change the value of an operand or leave it alone.

Examples of some expressions are as follows:
assignment-expression: note = Ab7
operation-expression: Ab7 .+ 4

Associativity is overridden by use of parentheses. Some examples at play are below:

Expression Result Explanation

C7 .+ 4 E7 Note with E7 pitch

3 + 2 * 4 11 Regular assignment
order (multiplication
has tightest binding,
then addition)

(3 + 2) * 4 20 Parentheses change
order of operations

note = C7;
(note, note .+ 4,
note .+ 7)

(C7, E7, G7) Addition operator has
tightest binding,
followed by the
assignment operator

The associativity of the built in functions are listed below:

Tokens (From
High to Low
Priority)

Operators Class Associativity

Identifiers,
constants,
parenthesized
expression

Primary
expression

Primary

() [] . Function calls,
subscripting,
direct
selection

Postfix L-R

(type) Cast Unary R-L

+ - Add/Minus Binary L-R

== != Equality
comparisons

Binary L-R

< <= >= > Relational Binary L-R

Comparisons

&& Logical and Binary L-R

|| Logical or Binary L-R

= Assignment Binary R-L

, Comma Binary L-R

5.1 Primary Expressions

5.1.1 Identifiers

An lvalue or function designator, discussed in part 2.

5.1.2 Constants

An object of constant value, discussed in part 2.

5.1.3 Parenthesized Expressions

Parenthesized expressions allow a user to change the order of operations. They are executed
before the operations and can be used as part of a larger expression. For example:

without parentheses: 0 == note1.pitch > note2.pitch

with parentheses: 0 == (note1.pitch > note2.pitch)

This will change the order of operations, evaluating whether the pitch of note1 is greater
than that of note2 before evaluating if that return value is equal to 0.

5.2 Postfix

Postfix calls are made as follows:

Function call: (Ab6, Ab7, C4)

Subscripting: (Ab6, Ab7, C4)[1]

Direct selection: (Ab6, Ab7, C4).length

5.2.1 Function calls

The syntax of a function call is as follows:

postfix-expression (argument-expression-listopt)

argument-expression-list: argument-expression

argument-expression-list, argument-expression

An argument expression list may either be a single argument or a list of arguments. All
functions are allowed to be recursive.

Each function must be declared before it is called. With that in mind, certain casts are made
by the runtime compiler to match arguments. A Number may be cast to a Note, Chord, or
Sequence, for example.

A function may only take the a parameter of type Void. For functions like this, a function
call may include no parameters.

5.2.2 Subscripting

Certain objects may be acted upon by the subscripting operation. For example, a Chord
object may be acted upon by a subscript to select a particular note in the chord. Similarly, a
Sequence object may be acted upon to select a Chord at any particular moment in time. For
a Chord object, the index of the subscript reflects the order that a Note was added. For a
Sequence object, the index subscript indicates the order that Chords were inserted in.

The subscripting operator allows both retrieval and mutation of elements in those objects
that support it. There is no implicit casting for subscription.

5.2.3 Direct Selection

Used to change pitch and duration in objects of type Note, Chord, or Sequence.
Pitch and duration are treated as objects of type Number with the pitch affected (either
positively or negatively) by the successor operand. For example, C7.pitch = C7.pitch +
1 will result in C#7.

Similarly for duration: C7.duration = C7.duration + 1 will result in C7 with a duration
1/16th greater.

Direct selection can be done for the following parameters on the following objects:

Note: pitch, duration
Chord: duration, length
Sequence: current, beginning, length

5.3 Unary Operations

5.3.1 Casting

Syntax of casting is as follows:

cast-expression: unary-expression

(type-name) cast-expression

Casting allows a user to explicitly change the Type of an object, according to the order
established in 4.2.2 (Musical Types). Implicitly casting will take place during a function call
or in the use of a binary operator between two objects of different type. If, however, we
wanted to craft two notes, and then append one to another in sequence, we would need to
do the following:

Sequence s = ((Sequence) note1 + (Sequence) note2)

This would allow us to use the + operator of Sequences instead of the + operator of Notes.

5.4 Binary Operations

5.4.1 Add/Subtract

Used to add or subtract two Number objects. When applied to objects of type Note,
Chord, or Sequence, results in a Sequence object with given elements concatenated.
If two or more objects of different type are concatenated, the element of highest cast
determines the cast. That is, a Number added to a Sequence would result in the Number
being cast to a Sequence and added to the other Sequence.

Syntax is as follows:

add-expression: cast-expression

 add-expression + cast-expression

add-expression - cast-expression

5.4.2 Relational comparisons

Yields a Number result (1 if true, 0 if false). Allows for comparison between objects (casting
is done in one direction).

relational-expression: add-expression

relational-expression < add-expression

relational-expression > add-expression

relational-expression <= add-expression

relational-expression >= add-expression

5.4.3 Equality comparisons

Compares two values for equality. MIDILC uses the number 0 to denote false and all values
other than 0 to denote truth. Equality follows the following rules:

Two Number objects are equal if they evaluate to the same value
Two Note objects are equal if they have the same pitch and duration
Two Chord objects are equal if they have the same notes and the same duration
Two Sequence objects are equal if they have the same chords in the same order

equality-expression: relational-expression

equality-expression == relational-expression

equality-expression != relational-expression

5.4.4 Logical and

Performs a logical “and” on two expressions. Returns 0 if the left expression evaluates to 0.
Otherwise, evaluates right expression. If true, returns 1; if false, 0.

Syntax:

logical-AND-expression: logical-OR-expression

 logical-AND-expression && logical-OR-expression

This is lazy evaluation.

5.4.5 Logical or

Performs a logical “or” on two expressions. Returns 1 if ever the left expression evaluates to
1. Otherwise, evaluates right expression. If true, 1; if false, 0.

Syntax:

logical-OR-expression: logical-AND-expression

 logical-OR-expression || logical-AND-expression

This is again an example of MIDILC’s power to perform lazy evaluation.

5.4.6 Assignment

Right associative. The expression on the right is evaluated and then used to set the lvalue.
The rvalue must have the same type as the lvalue; no casting is implicitly done.

5.4.7 Comma

Separates elements in a list (such as parameters in a function or Note literals in a Chord).
Example of Chord constructor:

Chord myChord = (C4, E4);

6. Declarations

Declarations specify the interpretation given to a set of identifiers.

direct-declarator: type-specifier declarator

init-declarator: type-specifier declarator = initializer

Only a single declarator can be declared at once. Declarators must be preceded by the type
of the identifier. At most one declaration of the identifier can appear in the same scope and
name space.

6.1 Storage class specifiers

Static scope is handled automatically because functions have access to any identifiers not
declared in their scope. No storage class specifiers are available.

6.2 Type specifiers

Type specifiers listed below. Syntax as follows:

type-specifier: Void

Number

Note

Chord

Sequence

6.3 Custom types

Custom types are not available in MIDILC. The provided datatypes should be able to
completely specify a piece of music. As such, enumerations are also unsupported.

6.4 Type qualifiers

Types cannot be declared mutable or immutable by the programmer. All types are immutable
except for Sequence.

6.5 Function Declarators

There are no function prototypes (all function declarations are definitions). The syntax for
function declarators is shown below:

direct-declarator (identifier-listopt) { body }

identifier-list:

identifier-list, direct-declarator

For example,

T D(identifier-listopt)

creates a function with identifier D and return type T with the specified parameters. An
identifier list declares the types of and identifiers for the formal parameters of a function.

Function declarators do not support variable additional arguments.

If the type of any parameter declared in the identifier list is other than that which would be
derived using the default argument promotions, an error is posted. Otherwise, a warning is
posted and the function prototype remains in scope.

When a function is invoked for which a function is defined, no attempt is made to convert
each actual parameter to the type of the corresponding formal parameter specified in the
function prototype. Instead an error is thrown.

The following is an example of a function definition:

Chord transposeChord(Chord oldChord, Note newKey) { ... }

This declares a function transposeChord() which returns a Chord and has two
parameters: a Chord and a Note.

6.6 Initialization

A declaration of a type can specify an initial value for the identifier after being declared.
The initializer is preceded by = and consists of an expression.

initializer: assignment-expression

Variables that are not explicitly initialized may cause a null pointer exception during
compilation. When an initializer applies to a literal, it consists of a single expression, perhaps
in parentheses. The initial value of the object is taken from the expression. Type conversion
is only attempted with an explicit cast.

6.6.1 Examples of initialization

Note root = C3q

Initializes root with a note literal.

Chord notes = (root, root .+ 4, root .+ 7)

Initializes notes with a chord literal

Sequence gProgression = oneFourFiveProg(G7q)

Initializes gProgression with the result of the function call.

7. Statements

A statment is a complete instruction to the midi compiler. Except as indicated, statements
are executed in sequence. Statements have the following form:

statement: expression-statement

selection-statement

iteration-statement

jump-statement

7.1 Expression statement

Most statements are expression statements, which have the following form:

expression-statement: expression;

Usually expression statements are expressions evaluated for their side effects such as
assignments or function calls.

7.2 Compound statement or block

A compound statement (or block) groups a set of statements into a syntactic unit. The set
can have its own declarations and initializers, and as the following form:

compound-statement: {declaration-list statement-listopt}

declaration-list: declaration

declaration-list declaration

statement-list : statement

statement-list statement

Declarations within compound statements have block scope. If any of the identifiers in the
declaration list were previously declared, the outer declaration is hidden for the duration of
the block, after which it resumes its force. Function declarations can only be defined at the
outermost scope.

7.3 Selection statements

Selection statements include the if and else statements and have the following form:

selection-statement: if (expression) statement

if (expression) statement else statement

Selection statements choose one of a set of statements to execute, based on the evaluation
of the expression. The expression is referred to as the controlling expression.

7.3.1 if statement

The controlling expression of an if statement must have Number type. For both forms of
the if statement, the first statement is executed if the controlling expression evaluates
to nonzero. For the second form, the second statement is executed if the controlling
expression evaluates to zero. An else clause that follows multiple sequential else-less
if statements is associated with the most recent if statement in the same block (that is,
not in an enclosed block).

7.4 Iteration statements

Iteration statements execute the attached statement (called the body) repeatedly until the
controlling expression evaluates to zero. In the for statement, the second expression is the
controlling expression. The format is as follows:

iteration-statement: while(expression) statement

for (expression; expression ; expression) statement

The controlling expression must have Number type.

7.4.1 while statement

The controlling expression of a while statement is evaluated before each execution of the
body.

7.4.2 for statement

The for statement has the form specified above. The first expression specifies the
initialization for the loop. The second expression is the controlling expression, which is
evaluated before each iteration. The third expression often specifies incrementation. It is
evaluated after each iteration. It is equivalent to the following:

expression-1: while (expression-2) {statement expression-3}

One exception exists, however. If a continue statement is encountered, expression-3 of
the for statement is executed prior to the next iteration.

7.5 Jump statements:

jump-statement: continue;

break;

return expressionopt;

7.5.1 continue statement

The continue statement can appear only in the body of an iteration statement. It causes

control to pass to the loop-continuation portion of the smallest enclosing while, do, or for
statement; that is, to the end of the loop.

7.5.2 break statement

The break statement can appear only in the body of an iteration statement or code
attached to a switch statement. It transfers control to the statement immediately following
the smallest enclosing iteration, terminating its execution.

7.5.4 return statement

A function returns to its caller by means of the return statement. The value of the
expression is returned to the caller as the value of the function call expression. The return
statement cannot have an expression if the type of the current function is Void.

If the end of a function is reached before the execution of an explicit return, an implicit
return (with no expression) is executed. If the value of the function call expression is used
when none is returned, the behavior is undefined.

Appendix A. Built-In Functions

void play(Sequence s)

Instructs compiler to write sequence s to the MIDI file.
void setTempo(Number n)

Sets the tempo of the file to number n.

