

RUN, STEPHEN, RUN: Shoot First, Ask Questions Later

Andrew Bui, Cathy Chen, Johnny Chin, Andrew Sabatino, Michael Scott

Goals:

- USB missile control
- RCA camera input
- Laser calibration and triangulation
- Laser targeting
- Ballistics determination
- VGA monitor view
- Termination

USB Control

Philips ISP1362 USB Controller

Commands by PC

Name	Value		
0x01	Down		
0x02	Up		
0x04	Left		
0x08	Right		
0x10	Fire		
0x40	Get Status		
0x20	Stop		
/	Reset		

Responses by MCU

Byte					Byte 0			
bit	7	6	5	4	3	2	1	0
Meaning	/	/	/	Fired	Right Limit	Left Limit	Up Limit	Down Limit

USB Descriptor Information

Name	Value
Vendor ID	0x0A81
Product ID	0x0701
Manufacturer String	Rocket Baby
Product String	Rocket Baby
Version	1
Serial Number	/

Endpoint Descriptor

Bus 005 Device 002: ID 0a81:0701 Chesen Electronics Corp.	bDescriptorType 4
Device Descriptor:	bInterfaceNumber 0
bLength 18	bAlternateSetting 0
bDescriptorType 1	bNumEndpoints 1
bcdUSB 1.10	bInterfaceClass 3 Human Interface Device
bDeviceClass 0 (Defined at Interface level)	bInterfaceSubClass 0 No Subclass
bDeviceSubClass 0	bInterfaceProtocol 0 None
bDeviceProtocol 0	iInterface 0
bMaxPacketSize0 8	HID Device Descriptor:
idVendor 0x0a81 Chesen Electronics Corp.	bLength 9
idProduct 0x0701	bDescriptorType 33
bcdDevice 0.01	bcdHID 1.00
iManufacturer 1 Dream Link	bCountryCode 0 Not supported
iProduct 2 USB Missile Launcher v1.0	bNumDescriptors 1
iSerial 0	bDescriptorType 34 Report
bNumConfigurations 1	wDescriptorLength 52
Configuration Descriptor:	Report Descriptors:
bLength 9	** UNAVAILABLE **
bDescriptorType 2	Endpoint Descriptor:
wTotalLength 34	bLength 7
bNumInterfaces 1	bDescriptorType
bConfigurationValue 1	bEndpointAddress 0x81 EP 1 IN
iConfiguration 0	bmAttributes 3
bmAttributes 0xa0	Transfer Type Interrupt
(Bus Powered)	Synch Type None
Remote Wakeup	Usage Type Data
MaxPower 100mA	wMaxPacketSize 0x0001 1x 1 bytes
Interface Descriptor:	bInterval 20
bLength 9	Device Status: 0x0000
	(Bus Powered)

Laser Dot-Finding

- Must recognize multiple (3) laser dots
- Must ignore larger sources of light in the frame
- Must operate on a row by row basis

Laser Dot-Finding

An Issue of Perspective -Rangefinding

The problem

- The camera sees a 3D environment projected onto the CCD film plane
- Without any depth perception, how do we determine how far away the target is?

- Catching a football with one eye closed

The solution

- Many options
 - Echolocation, stereoscopic vision, etc.
- Decided on a laser projection
 - Cheap to implement
 - Hardware has a more pronounced effect on the feasibility of the system compared to other alternatives
 - Threshold and RGB truncation/filtering

The concrete solution

- Take two lasers, a known distance apart, and project onto a wall
 - The perceived distance decreases as the camera is moved to and from the wall
- In fancier terms, the angle subtended by the line formed by the laser points scales depending on the length and Field of View (FOV)

Assumptions

- Ignores the effect of field curvature
 - Increased error near the edges of the image
- There is linear scaling between the object's angle and the distance subtended in pixel space
- The FOV only encapsulates the flat wall
- The camera line of sight and the laser beams are all perpendicular

• •

 Calculate the ratio of the horizontal pixel distance between the dots over the entire CCD width; this is proportional to the angle subtended

$$\frac{d_x}{W_{CCD}} = \frac{\beta}{FOV}$$

 This angle relates the known length of the dots in real-world measurements to the real distance from the camera

$$\frac{L_{laser}}{2D_{wall}} = \tan\frac{\beta}{2}$$

Robustness

- Notice that the final equation involves β/2, implying that only one offcenter (from the camera LOS) laser is required
- In fact, for any horizontal displacement of the camera or launcher (adhering to prior assumptions), using two points is redundant
- Discovered trying to determine the height of the FOV independent of the width

Complicating the Problem -Angular Displacement

- Simplify the problem by superimposing an physical boundary on top of the existing coordinate system
 - Can be viewed as a rotation of the coordinate system (formed by the depth and length) by an angle γ
 - Assumed valid given that the vision is from the perspective of the camera
- The new projection of the length is scaled by sec(γ)

Angular Displacement -Consequences

- Can implement correction factor with prior **knowledge of \gamma** (not feasible in practice
- The length now varies across the field, and must be corrected

- The field curvature becomes warped and the approximated linear β-L_{laser} relationship breaks down
- In short: without the "anchor" of knowing the real distance between the laser dots in pixel space, the problem becomes unconstrained

The Persistence of Vision

Video Input

Spec	VGA	NTSC	
Horizontal			
Refresh Rate	31.469 kHz	15.75kHz	
Vertical			
Refresh Rate	59.94 Hz	60 Hz	

Video Module Block Diagram

Lessons Learned:

- When inconsistently manufactured projectiles are used, each must have a unique set of projectile constants and expectations.
- Lasers are an excellent distinguishing feature in a frame of otherwise ambient light.
- Code from outside projects is not a reliable source.
- Buy extras when structuring a project around plastic toys.
- Proprietary USB protocols are difficult to reverse engineer.

