&

QUARTUS"II

Quartus Il Version 7.2 Handbook

AVO[S RYA\,

101 Innovation Drive
San Jose, CA 95134
www.altera.com

QlI5V1-7.2

Volume 1: Design and Synthesis

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-

plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera mu
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

LS. EN ISO 9001

Altera Corporation

A |:| ==/ Contents

-
®
Chapter ReviSion DAtesccoeieieieiiiiii e s e e ee e eneneans Xv
About this HandbooKcconinini Xvii
HOW 10 CONEACE AIEETA .ottt ettt e e et e et e ete e st e aeeteesseaeesseesseesseenseaseesseenes Xvii
Third-Party Software Product INformation ... Xvii
Typographic CONVENtIONScccviiiuiieiiiiieicee s xviii

Section I. Design Flows

Chapter 1. Design Planning with the Quartus Il Software

INELOAUCHON vttt ettt ettt et st e st b et ese st e st be st esesseneesensesesseneesansens 1-1

Device and Programming/

Configuration Method Selection
Device Selectionc.coeceevveeveuecnenen
Device Migration Planningc.cccoeeveevvicenicnnnnnns
Programming/Configuration Method Selection

Early Planning Tools for Power and I/Occcccooviinivinnnnnnes
Early Power EStimation ...
Early Pin Planning and I/O ANalysis ...

Selecting Third-Party EDA Tool Flows
SYNNESIS TOOLScecvviiiiiitt et
SIMUIALION TOOIS ...vuiiiieiiiiet ettt ettt sttt sttt eb et eaenen
Formal Verification ToOISc..cccccrurveueuencne

Planning for On-Chip Debugging Options

Planning for an Incremental Compilation FIOWccccovviiiiiiiiiiiniccccs
Flat Compilation Flow with No Design Partitions
Incremental Compilation with Design Partitionscccceeveeieiiceiiiicieicecee s
Top-Down Versus Bottom-Up Incremental FIOWSccoocviiiiiiniiiiiiccccc,
Planning Design Partitions
Creating a Design FIOOIPIan ..o

Early Timing EStMationcccoceiiiiiiiiiiiiic s

Conclusionc.cceeevecevniereicinnrerccnnnnee

Referenced Documentsc..coceceerercncee

Document Revision History

Chapter 2. Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
50000 o R Ta 5 o) o NNURR SO SSUR R TR PRRTRRTONE
Choosing a Quartus I Compilation Flow

Altera Corporation iii

Quartus Il Handbook, Volume 1

Flat Compilation Flow with No Design Partitionscccocoeviniiiiiiiiniiciicccnne
Incremental Compilation Flow with Design Partitions ...
Top-Down versus Bottom-Up Compilation FIOWScccccviiiiniiiiiiiiiicccicne
Quick Start Guide — Summary of Steps for an Incremental Compilation Flowccccccceu.. 2-11
Top-Down Incremental Compilation Flow
Bottom-Up Incremental Compilationcoceueviiieiiiiniiiiiicec s
Design Partitionscooviiiiiii e
Design Partition Assignments Compared to Physical Placement Assignments
Creating Design Partitions
Partition Nameccccoceviiiniiiniiiiniiics
Setting the Netlist Type for Design Partitionscccoceeviiiiiiiininiiceicecceceeies
Fitter Preservation Level ...
Empty Partitions ...
What Represents a Source Change for Incremental Compilation?
Creating a Design Floorplan With LogicLock Location Assignments
Taking Advantage of the Early Timing EStimatorcccooiiiniiiniiice,
Exporting and Importing Partitions for Bottom-Up Design FIOWSccccoevviiriininicciniinnnns
Quartus IT Exported Partition File (.qXp) ...ccccooevreieiiiieiicciecie,
Exporting a Lower-Level Partition to be Used in a Top-Level Project
Exporting a Lower-Level Block within a Projectcccooeviviininininen.
Importing a Lower-Level Partition Into the Top-Level Projectccccoocevniniiiiinciinnnns
Importing Assignments and Advanced Import Settingscccocoevriiiiiiiiiiiniiiicns
Generating Bottom-Up Design Partition Scripts for Project Management ...
Guidelines for Creating Good Design Partitions and LogicLock Regionscccccocvururinnnee. 2-46
Creating Good Design Partitions
Partition Statistics Reportscccccovvveuennenee.
Resource Balancing
Timing Budgetingcccccovviiiiiiiiiiiccc s
Methodology to Check Partition Quality during Partition Planningcccooeevevriennnene. 2-54
The Importance of Floorplan Location Assignments in Incremental Compilation 2-55
Creating Good Floorplan Location Assignmentsccccceeivceiniiicnieiniceneieces v 2-57
Incremental Compilation AdVisor ..o, o 2-60
Criteria for Successful Partition and Floorplan Schemes ceverrereeenens 2=61
Recommended Design Flows and Compilation Application Examplescccccoeviiiiiinnnnnnns 2-62
Top-Down Incremental Design FIOWScccoveviiiniiiiiiicc e 2-62
Bottom-Up Incremental Design Flows wer 2767
Incremental Compilation Restrictions
Using Incremental Synthesis Only Instead of Full Incremental Compilation
Preserving Exact Timing Performance ... 2-77
Using Incremental Compilation with Quartus I Archive Files ..o, 2-77
Formal Verification Support
OpenCore Plus MegaCore Functions in Bottom-Up FIOWScccoeevviiiiiiiiniiiiieeceinn,
Importing Encrypted IP Cores in Bottom-Up FIOWScccoovrmiiniieiiiiiiciccein,
SignalProbe Pins and Engineering Change Management with the Chip Planner
SignalTap Il Embedded Logic Analyzer in Bottom-Up Compilation Flows
Logic Analyzer Interface in Bottom-Up Compilation Flows
Migrating Projects with Design Partitions to Different Devicesc.ccocoevvvnvicniiininnnnnnnen.

Altera Corporation

Contents

HardCopy Compilation FIOWScccciiiiiiiniiiiiiicii e 2-82
Assignments Made in HDL Source Code in Bottom-Up Flows 2-83
Compilation Time with Physical Synthesis Optimizationscccccccceviiiniiiinncnnne, 2-83
Restrictions on Megafunction Partitions ..., 2-84
Routing Preservation in Bottom-Up Compilation Flows
Bottom-Up Design Partition Script Limitationsccccoeoieiiiiciiicccen, 2-84
Register Packing and Partition Boundariesc.cccooceviimniniicieniiceceece, 2-87
I/0 Register PACKINGccccccuiiiiiiiiiiiiiiciiciic s 2-87
Scripting SUPPOItoooveviiii e 299
Generate Incremental Compilation Tcl Script Command ..o, 2-99
Preparing a Design for Incremental Compilation ..o, 2-100
Creating Design Partitionscccceeereiiiiiieiniicieccie e 2-100
Setting Properties of Design Partitionsccccooevviiiiiniiniinnccccccccecnes 2-101
Creating Good Floorplan Location Assignments—Excluding or Filtering Certain Device
Elements (Such as RAM 01 DSP BIOCKS)c.ccerrirueierinieieieirieieiieniniereeneseeseestsseseeneeseseenesaenes 2-102
Generating Bottom-Up Design Partition Scriptscccocooveeiieieiiiie 2-103
Exporting a Partition to be Used in a Top-Level Projectccccocoovviiiiiiinniicnciccininns 2-105
Importing a Lower-Level Partition into the Top-Level Projectcccoeevniiciniiiininninnnes 2-106

IMEAKETILES ...ttt ettt et et ettt et e e et e et e et e seeteereebeereeteertenr et e s enteeteereereereereens 2-106
Recommended Design Flows and Compilation Application Examplescccccccovuvinaeee 2-107
(@00 4 Tel LT3 To) s WSS 2-109
Referenced DOCUIMENEScovieuiieeiiiiceieeeeee ettt e et et e eaeeraeeteeeteeeaeesseeesenseesseesseseeseenseenees 2-109
Document Revision HiStOTYooviiimiieiee s 2-111

Chapter 3. Quartus Il Design Flow for MAX+PLUS Il Users

INEFOAUCHON .o —
Chapter OVEIVIEWcoiiiiiiiiitci ettt
Typical Design FIOW ..o
DVICE SUPPOTT ..o
Quartus II GUI Overview
Project NaVIZAtor ..o s
INOAE FINAET ...
Tcl Console
Messages
StAtUS oo
Setting Up MAX+PLUS II Look and Feel in Quartus IL..........ccccccoviiiiniinniiniciiccccnns 3-6
MAX+PLUS II LOOK @Qnd Feelooviiiiiiiiiiiciicccic e 3-7
Compiler Toolccoevruerevinnnnnns
Analysis and Synthesis ...
Partition Merge
FIEEET oo
ASSEIMDIET ...ttt
Timing Analyzer
EDA Netlist WIIerc.coviiiiiiiiiiiiiiiii s
Design ASSISLANEc.cvevieiveiiiicieieiccte e
MAX+PLUS II Design CONVEISIONcoovvviiiiiiiiiiiieie e snens 3-12
Converting an Existing MAX+PLUS II DeSIgNccccccovvvviiiiiiiniiiiiiiiiicccces 3-12

Altera Corporation v

Quartus Il Handbook, Volume 1

Converting MAX+PLUS II Graphic Design Files
Importing MAX+PLUS II Assignments
Quartus IT Design FLOWcccoiiiiiiiiiiiiie s
Creating @ New Project ..o
Design Entry
MaKing ASSIZNIMNENTSc.cevoiurieiiiiieieieicei et
SYNENESIS .ottt
Functional Simulation ...
Place and Route
Timing Analysisc.cccc....
Timing Closure FIOOTPIancoociiiiiiiiiiiii s
Timing SIMUIALION «..vviviviiiieic e
Power Estimation
Programming
Conclusioncccceceeeee.
QUICK MENU REFEIEICE ...ouvviiiiieiiieiieieieieetee ettt ettt ettt ettt be bt se e e s e s eneesesenessens
Quartus IT Command Reference for MAX+PLUS IT USETIS.......ccceeerierirenieirieinienieeeieeeiesieeeenene 3-36
Referenced DOCUMENESc.eovreeveeiirirerieirieieeirieieeeie e
Document Revision History

Chapter 4. Quartus Il Support for HardCopy Series Devices

Vi

TNELOAUCHON .ttt ettt bttt ettt et b ettt be et enen

HardCopy I Device SUPPOTLc.covimiiiiiiiiiiiiiiiiicic s
HardCopy II Design Benefits ... e
Quartus II Features for HardCopy II Planning ...

HardCopy II Development FLOWccccociiiiiiiiiniiiiiiccice it
Designing the Stratix Il FPGA Firstcccocoviiiiiiieiiicectec e
Designing the HardCopy II Device First ...

HardCopy II Device ReSource GUIdecouriuiiiiiiiiiiiciiiiisicscsccess s

HardCopy II Companion Device Selection

HardCopy II Recommended Settings in the Quartus I Softwarec.cococoevevniinicciicnnnn, 4-12
Limit DSP and RAM to HardCopy II Device Resourcesccocoeuvvvrieiniiicveininicieinccnne, 4-12
Enable Design Assistant to Run During Compile e 4-12
TIMING SELHINGS ..vvviviiicicic s 4-13
Constraints for Clock Effect Characteristicsccocoeeeerveeirenieinierennenns o 415
Quartus II Software Features Supported for HardCopy II Designscccccoevvviiveiiiiunnnnc. 4-17

Performing ECOs with Quartus II Engineering Change Management with the Chip Planner

.. 4-20
Migrating One-to-One Changescccccovuerieviiicienicceieicnnn, . 4-20
Migrating Changes that Must be Implemented Differently e 421
Changes that Cannot be Migratedccccooviiiiiiiniiii s 4-22

Overall Migration FIOWccccociiiiiiiiiiiiiiicc e
Preparing the Revisions
Applying ECO Changesccoovuiueieiiiniiicete et ss e saes e 4-23

Formal Verification of Stratix II and HardCopy Il ReVisSionscccccocvvrviviiiniicnicinicnicnnnnes 4-24

HardCopy II Utilities MENUccccouiiiiiiiiiiiiiiiciiiiicci s 4-25
Companion REVISIONSccccviiiiiiiiiiiiiiii s 4-26
Compiling the HardCopy II Companion ReVision ... 4-28

Altera Corporation

Contents

Comparing HardCopy II and Stratix II Companion Revisionsccccccviiiiiiinininnnns 4-28
Generate a HardCopy II Handoff Report
Archive HardCopy Il Handoff Files ..o
HardCopy IT AAVISOTc.cuoiiiiiiiiciiic s
HardCopy II Floorplan View
HardCopy Stratix Device SUPPOTLccvcueiviiiiieiiiicieccie st
FRATUTIES ..o s
HARDCOPY_FPGA_PROTOTYPE, HardCopy Stratix and Stratix Devices
HardCopy Design FIOWccoiiiiiiiiiiiiiiiicccciss e
The Design Flow Steps of the One-Step Process ...
How to Design HardCopy Stratix Devices
Tcl Support for HardCopy Migrationccceeeuieiinininiiinicccerccsescssssssseenes
Design Optimization and Performance Estimation
Design Optimization ..o
Performance Estimation
Buffer Insertionc.coceeeeereevenecnnnee
Placement Constraints
Location Constraints
LAB Assignments
LogicLock Assignments
Checking Designs for HardCopy Design Guidelines ...
Altera-Recommended HDL Coding Guidelines
Design ASSIStANEcuovviiieceeeeee s
Reports and SUMMATYccceuiiiiieiniicc ettt
Generating the HardCopy Design Database
Static TIMIiNG ANALYSISccccciiiiiiiiiiiiiiiici s
Early Power EStimation ...
HardCopy Stratix Early Power Estimation
HardCopy APEX Early Power Estimation
Tcl Support for HardCopy SHratiXccocveeiimiiiiniiiiiiccccc s
Targeting Designs to HardCopy APEX Devices
CONCIUSION ..ottt ettt et b s n b b nenene
Referenced DOCUMENESc.courieieuirinieiiiiririeicientriete ettt ettt ettt be st b et st be e nessebenene
Document Revision HiStOIYccooiiiiiiiiiicccccecccc e

Section Il. Design Guidelines

Chapter 5. Design Recommendations for Altera Devices and the Quartus Il Design
Assistant
TNELOAUCHION oottt ettt ettt eteeete e steeteeaveeaseesseessessaeessenseerssenseenseenseesnesasennes 5-1
Synchronous FPGA Design Practices
Fundamentals of Synchronous Design
Hazards of Asynchronous Design
Design Guidelines
Combinational Logic Structures

Altera Corporation vii

Quartus Il Handbook, Volume 1

ClocKINg SCHEMEScouiiiiiiiiiicii s 5-9
Checking Design Violations Using the Design Assistant
Quartus II Design Flow with the Design Assistantcccccooienniniiinn, 5-15
The Design Assistant Settings Pagecccccoviiiviiiiiiicc e 5-17
Message Severity Levels
Design Assistant RUIESccovuiiiiiiiiiii e
Enabling and Disabling Design Assistant RUlescc.cocoeiiiiiiiniiiccc,
Viewing Design Assistant Resultsc.ccccooviiiviiinnnns
Targeting Clock and Register-Control Architectural Features
Clock Network RESOUTICESccveerveeieeerieiieieieiee et
RESEE RESOUTCES ...ttt ettt sb bbb st saesaenae b
Register Control Signals
Conclusioncccoceeeveveereennne
Referenced Documents
Document Revision History

Chapter 6. Recommended HDL Coding Styles

INELOAUCHON vttt ettt ettt es et e st b et ese st e st se st esenseneesensenesseneesansans 6-1
Quartus II Language Templatescccoceiiiiiiiiniiciccscesse e 6-2
Using Altera Megafunctions ..o ssssesans 6-3
Instantiating Altera Megafunctions in HDL Codecccoviiiviiiiiiiiniiicnncccccnnes 64
Instantiating Megafunctions Using the MegaWizard Plug-In Managerc.ccccceevrcnnne. 64
Creating a Netlist File for Other Synthesis TOOISccccceoviiiiiiniiiiiiicciae 6-6
Instantiating Megafunctions Using the Port and Parameter Definitionccccccoeuvnnnnnen. 6-7
Inferring Multiplier and DSP Functions from HDL Codeccccoevvrvrunnnnen.

Multipliers—Inferring the Ipm_mult Megafunction from HDL Code
Multiply-Accumulators and Multiply-Adders—Inferring altmult_accum and altmult_add
Megafunctions from HDL Code ..o 6-10
Inferring Memory Functions from HDL Codeccccoouiiiiiiiiiiiiniiiiiccecciinas 6-13
RAM Functions—Inferring altsyncram and altdpram Megafunctions from HDL Code 6-14
ROM Functions—Inferring altsyncram and lpm_rom Megafunctions from HDL Code 6-31

Shift Registers—Inferring the altshift_taps Megafunction from HDL Codeccccceouc..... 6-33
Coding Guidelines for Registers and Latchesccccccovivirviniinncnninen, v 637
Register Power-Up Values in Altera Devicesccccovveuriviiciiinincnninne, 6-37
Secondary Register Control Signals Such as Clear and Clock Enable 639
LAtCRES ..ot 643
General Coding GUIAEIINEScoviuiiiiiiiiiiiicc e 6-48
Tri-State Signals
Adder Trees
State Machines
MULEIPIEXETS ..ot
Cyclic Redundancy Check FUNCHONScceuviimiiiiiiiiiiiiicc e 6-69
Comparators
COUNLETS ... saas
Designing with Low-Level Prmitives ... 6-73
CONCIUSION ..ot 6-74
Referenced DOCUIMENLScccciiiiiiiiiiiiiiiicii s 6-74
Document Revision HiStOIYccooiiiiiiiiiicccciccecc s 6-75

viii Altera Corporation

Contents

Section Ill. Synthesis

Chapter 7. Synplicity Synplify and Synplify Pro Support

INEPOAUCHION ..ot

Altera Device Family Support

DESIZN FIOW ...ttt
Output Netlist File Name and Result Formatcccooeviiiiiniiiiiccec 7-7

Synplify Optimization Strategies ... s
Implementations in Synplify Pro
Timing-Driven Synthesis Settings ...

FSM COMPIIET ...t
Optimization Attributes and OptioNS ..., 7-12
Altera-Specific Atributes ... e 7-15
Exporting Designs to the Quartus II Software Using NativeLink Integration e 7-17
Running the Quartus II Software from within the Synplify Software 7-18
Using the Quartus II Software to Run the Synplify Softwareccccooviiiiiniiicinnnns 7-19
Running the Quartus II Software Manually Using the Synplify-Generated Tcl Script 7-19
Passing TimeQuest SDC Timing Constraints to the Quartus II Software in the .scf File 7-20
Passing Constraints to the Quartus II Software using Tcl Commandsccccovevueveicennnns 7-22
Guidelines for Altera Megafunctions and Architecture-Specific Features e 732
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 7-33
Inferring Altera Megafunctions from HDL Codecccccoviiiniiiiiniiiiicceccnns 7-37
Incremental Compilation and Block-Based Design
Hierarchy and Design Considerations with Multiple VOM Filescccccovviiinnnnnnn. 7-46
Creating a Design with Separate Netlist Filesc.cccocooiiiiiiiiiccc, 7-46
Creating a Design with Multiple VQM Files Using Synplify Pro MultiPoint Synthesis 7-47
Generating a Design with Multiple VOM Files Using Black Boxesccccecoevveurievrernnnnnnn. 7-54
Conclusion
Referenced DOCUIMENLScccourivieiriiiriiririirrree st 7-61
Document Revision HiStOIYccooiiiiiiiiiccciccicecc s 7-61

Chapter 8. Quartus Il Integrated Synthesis
| 50190 To R Tal 5 (o) o NNRUN USRS
Design Flow
Language SUpportcccoeeeviviceinincceeicenns
Verilog HDL SUPPOToiiiiiiiiiiicicii s
VHDL SUPPOTT ettt
AHDL Supportccccoevveeeeeerenennen
Schematic Design Entry Support
State Machine Editorcccecveevvennen.
Design LIDIAIiesccoovieieiiiieieiccie et
Using Parameters/GeNeTriCScooviiiiiiiiiiiiiiiiiiiiiciesissiseses s
Incremental Synthesis and Incremental Compilation ...
Partitions for Preserving Hierarchical Boundariescccccoviiiiiiiiiinninicci,
Quartus IT Synthesis OPtioNSccccueieiiriiiiiiiic s
Setting Synthesis OPHONScccoveueiiiiiiiiiiic s

Altera Corporation ix

Quartus Il Handbook, Volume 1

Optimization TEChNIQUEcccouviiiiiiiiiiiii e 8-30
Speed Optimization Technique for Clock Domains ... 8-30
PowerPlay Power OptimizZation ..o 8-31

Restructure Multiplexers
State Machine Processing

Manually Specifying State Assignments Using the syn_encoding Attributecc........ 8-35
Manually Specifying Enumerated Types Using the enum_encoding Attribute 8-38
Safe State MacChines ..o
Power-Up Level
Power-Up Don’t Care
Remove Duplicate REISLETSccooviiiiiiiiiiiiiic e 844
Remove Redundant Logic Cellsccocoiiiriiiiiiiciicc e 844
Preserve Registers 844
Disable Register Merging/Don’t Merge Register ... 8-45
Noprune Synthesis Attribute/Preserve Fan-out Free Register Nodecccccoeviuriiinninns 8-46
Keep Combinational Node/Implement as Output of Logic Cellcccccouiiviininiiinnnnnns 8-47
Don't Retime, Disabling Synthesis Netlist Optimizationscccccoovoeeiiiinncnicne,
Don't Replicate, Disabling Synthesis Netlist Optimizations
Maximum Fan-Out ...
Controlling Clock Enable Signals with Auto Clock Enable Replacement and direct_enable
... 8-51
Megafunction Inference CONtrol ..o 8-52
RAM Style and ROM Style—for Inferred MemOIyccccvvviieiiiiceniiiicieicciecee s 8-55
Turning Off Add Pass-Through Logic to Inferred RAMs/ no_rw_check Attribute Setting
RAM Initialization File—for Inferred Memory
Multiplier Style—for Inferred Multipliers
Full Case ...
Paralle] CaSeccccuiuiuiiiiiiciiiiiic s
Translate Off and On / Synthesis Off and Oncccoccouiviiviniiinicncce
Ignore translate_off and synthesis_off Directives
Read Comments as HDL
Use I/O Flpflopsccccocovvvviiiiniiciciciinen,
Specifying Pin Locations with chip_pin ...,
Using altera_attribute to Set Quartus Il Logic Optionscccoceuiueirieicieiciicecec e,
Analyzing Synthesis Resultsc.c.ccoceieiiiiiiiineiiicece,
Analysis and Synthesis Section of the Compilation Report
Project Navigator ...
Analyzing and Controlling Synthesis Messages ..o
Quartus IIMESSAZESc.cvvviiiiiiiiiice s
VHDL and Verilog HDL Messages
Node-Naming Conventions in Quartus II Integrated Synthesiscccocoooeiviiniiinninnn, 8-79
Hierarchical Node-Naming Conventions ..o 8-79
Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)cccccceo..... ... 8-80
Register Changes During Synthesis ..., ... 881
Preserving Register Names 8-84
Node-Naming Conventions for Combinational Logic Cellsccccooviioiiiriiiniiieiinee. 8-84

X Altera Corporation

Contents

Preserving Combinational Logic Namescccccccoviiiiiiiiiiiiiiiiiiiccceeccessecens 8-86
Scripting SUPPOItovviiiiii ... 886

Adding an HDL File to a Project and Setting the HDL Versionc.ccccceviiniiiinieiicnnns 8-87
Quartus II Synthesis OPtioNScccoceiiiiiiiiiii e 8-88
Assigning a Pin
Creating Design Partitions for Incremental Compilationcccccoeevvieiniviinieiicniicninnnn. 8-90
CONCIUSION ..ttt ettt ettt b et b et b bbb et e bt s bbb et b et b e st et e be st e b nsenis

Referenced Documents
Document Revision History

Chapter 9. Mentor Graphics LeonardoSpectrum Support

50000 o R Ta 5 o) o NNURR SO SSUR R TR PRRTRRTONE 9-1
DESIZIN FIOW ...ttt 9-2
Optimization Srate@ies ... 9-5
Timing-Driven SYyNthesis ... 9-5
Oher CONSIIAINTES .vocviivicrieieieietecteeteere et ere et eeeeeeese s eseeseeseeseeseeseeseessessessesenseseeseeseeseersensensensenns 9-6
Timing Analysis with the Leonardo-Spectrum Software ..., 9-8
Exporting Designs Using NativeLink Integrationcccccccoviiiiiniiiiiccccccc, 9-9
Generating Netlist FIles ... 9-9
Including Design Files for Black-Boxed Modulesccccccoruiiiniiiiniiniiiccccnnes 9-9

Passing Constraints wWith SCripts ..o 9-9
Integration with the Quartus II Softwareccccecviiiians ... 9-10
Guidelines for Altera Megafunctions and LPM Functionsccccccvvviiiniiiciniccnicnnnns 9-10
Inferring Multipliers and DSP FUNCHONScccvvviiiiiiiiiiiiccicce 9-12
Controlling DSP Block Inference
Block-Based Design with the Quartus II SOftwarecccovviiviniicniiiiccc s 9-19
Hierarchy and Design Considerationscccoeueeceieiiinininicieecieecte i 9-20
Creating a Design with Multiple EDIF Filescccccoooiviniiiiiiiiiicccccnccens 9-21
Generating Multiple EDIF Files Using Black BOXEScccccouiiiviiiiiiiiiiicciccecinns 9-25
Incremental Synthesis Flow
CONCIUSION ...t
Referenced DOCUIMENTS ..ot cnena
Document Revision HiStOTY ...

Chapter 10. Mentor Graphics Precision RTL Synthesis Support
Introductionc.ccccueeeee.
Device Family Support ...
DESIZN FIOW ...t
Creating a Project and Compiling the DeSign..........ccccvuviiriiiiiiiiiniicccc s 10-6

Creating a Projectcccoooevevevevvivceinvccicennnnns
Compiling the Design
Mapping the Precision Synthesis Design

Setting Timing CONSTIaiNtScooeveiiiiiiiiiic s
Setting Mapping CONSLIAINTSccccoviiiiiiiiccc s
Assigning Pin Numbers and I/O Settingscccocoevviiiiniicniniccccesccen, 10-9
Assigning I/ O REGISTETSc.ovuiviiiiiiiiciiiiicc s 10-10
Disabling I/O Pad INSEItioNcccocvviviiiiiiciiiciiiicc e 10-11

Altera Corporation Xi

Quartus Il Handbook, Volume 1

Controlling Fan-Out on Data Netscccociiiiiiiiiiiiiiiiiccscesssenes 10-12
Synthesizing the Design and Evaluating the Resultsccccccooeiviiiiiiiiiiiccins 10-13

Obtaining Accurate Logic Utilization and Timing Analysis Reportsccccccevviuriiinnnns 10-13
Exporting Designs to the Quartus II Software Using NativeLink Integrationcccccccc..... 10-14
Running the Quartus II Software from within the Precision RTL Software 10-14
Running the Quartus II Software Manually Using the Precision RTL Synthesis-Generated Tcl
SCIIPE ottt 10-16
Using Quartus II Software to Launch the Precision RTL Synthesis Software 10-17

Passing Constraints to the Quartus II SOftware ... 10-17
Megafunctions and Architecture-Specific Features ..o 10-23
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 10-24
Inferring Altera Megafunctions from HDL Codecccooiiiiiniiininiciiiiciccccines 10-25
Incremental Compilation and Block-Based Designccccoeuviiueininiiieiniiiceceeccieees 10-32

Hierarchy and Design Considerations ..o 10-34

Creating a Design with Separate Netlist Files ..o, 10-34

Creating Quartus II Projects for Multiple EDIF Filesccccoooviiiiiiiiiiinicccicnnns 10-39
CONCIUSION ..ttt ettt e et b e bt et et e b et e st be st ebe st es e bentese s ebesseneeteneenenean

Referenced Documents..............
Document Revision History

Chapter 11. Synopsys Design Compiler FPGA Support

INELOAUCHON vttt ettt ettt ettt b e b e e e s e s es e beseesessesaseseesansesesseseesassesesans 11-1

Design Flow Using the DC FPGA Software and the Quartus II Softwarecccccocoviviiennnnne 112

Setup of the DC FPGA Software Environment for Altera Device Familiescccccccoevirunnnne 11-3

Megafunctions and Architecture-Specific Features

Instantiating Altera Megafunctions Using the MegaWizard Plug-In Managerccccc....... 11-6
Clear Box MethodOlOgyccvuiiiueieiiiiiiiiicict e
Black Box MethOdOLOZYcccvuiiiiiiiiiiiiiiiiiicii e

Inferring Altera Megafunctions from HDL Codecccccooiiiiiiininiiiiicccecnas

Reading Design Files into the DC FPGA Software

Selecting a Target DEVICEcoceieiiiiiiiiici e

Timing and Synthesis CONSIAINtScccccevviiiiiiiiiiicicc e

Compilation and Synthesis

Reporting Design Information

Saving Synthesis Resultsccccceviviiiiinnnnnnnn,

Exporting Designs to the Quartus II SOftwarecccccoviiiiiiiiiiiiiciices
write_fpga Commandcoociveiiiiii s
write and write_par_constraint Commands ...

Using Tcl Scripts with Quartus II Software

Place and Route with the Quartus II Software

Formality SOftware SUPPOTTcccouiuiuiiiiiiiiiii e

CONCIUSION vttt ettt ettt ettt eve et e reete e s essesbesbassassessaesaeseessessessessessessessensensenseseeseesens

Referenced Documents

Document Revision HiStOIYoooiiiiiiiiiiiiiiiiiitc

Chapter 12. Analyzing Designs with Quartus Il Netlist Viewers
INEFOAUCHON ...ttt s e et et e et e e et e seese et e b e st et e sassessassasseeseeseensensensansensensn 12-1

xii Altera Corporation

Contents

When to Use Viewers: Analyzing Design Problems
Quartus II Design Flow with Netlist Viewers
RTL VIEWET OVEIVIEW ..ooeiutiieiieeciee ettt ettt ettt eeteeeeteeeeteeeteeeeteeeeaeeeeaseeeaseeeseeeesseeeasesesseeeseeensreeenseeens
State Machine VIEWET OVEIVIEWccccvieieviieieiiiiiiiiectieeeeetestestessesseeseessessessessesessessessessesssessessessenses
Technology Map Viewer Overview
Introduction t0 the UsSer INTEITACEcecveveeeieeieeeiteeteeeeeete ettt et ereereere e ereeereenes
SCREIMATIC VIEW vttt ettt ettt et et e eeta e etseeseebeeateeaseeaseesseesseeseeetsenbeensaenseeneas
Hierarchy List
State Machine Viewer
Navigating the Schematic Viewccccoevviiniiininnnne.
Traversing and Viewing the Design Hierarchy ...,
Viewing Contents of Atom Primitives in the Technology Map Viewerccccccccvuruenne. 12-22
Viewing the Properties of Instances and Primitivesccccccoovevvinicnne.
Viewing LUT Representations in the Technology Map Viewer
Zooming and Magnification ...,
Partitioning the Schematic into Pagescccccoviiiiiiiiiiiniiicccas
Customizing the Schematic Display in the RTL VieWerccccoovviniiiiininiiciccenns
Grouping Combinational Logic into Logic Clouds
Filtering in the Schematic Viewc.cccccoooveviininricnnnnn
Filter Sources Command
Filter Destinations COMMANGc.coovieiiieieieceicceeeeeceee ettt ettt et eae et sveereevesreeeseeereenns
Filter Sources and Destinations COMMANAcccvevveviiviiniinriniierieeeeeeereeeeeeeereereereere e ereens
Filter Between Selected Nodes Command
Filter Selected Nodes and Nets Commandc.ccceeveeriiiieiiieieeeeceeceeere et
Filter Bus Index COmMMANAc.oovieiiiiieiieieceecee ettt ettt e eve s e eteeeseereenns
Filter Command Processing
Filtering Across Hierarchies
Expanding a Filtered Netlist
Reducing a Filtered Netlistccccovviiiiiiiiiiic e
Probing to Source Design File and Other Quartus II WINdowsccccccovvveiniiiininiicceininnne,
Moving Selected Nodes to Other Quartus II Windows
Probing to the Viewers from Other Quartus Il Windows ...
Viewing a Timing Path ...,
Other Features in the SChemMatic VIEWETccviviiiiiiiiiiiiicieeeeereeeetet ettt ve s ess s s aens
TOOLHPS «ovvviectiicce e
Radial Menu
Rollover
Displaying Net Names
Displaying Node NAmESccooiiiiiiiiiiiiii s
FINA COMIMANA ..ottt ettt ettt e et e ereeeaeebeesseenseennesreeeneesreenns
Exporting and Copying a Schematic Image ...
PIINEINE «oviitiiiii s
Debugging HDL Code with the State Machine VIiewerccocoevvieniiiiiniiieecceena,
Simulation of State Machine Gives Unexpected Results
ConcluSionccceeeeeereeeereereennne
Document Revision HiStOIYccoviiiiiiiiiicccccicccccc e

Altera Corporation xiii

Quartus Il Handbook, Volume 1

Xiv Altera Corporation

A |:| —Ig 0)/A\ Chapter Revision Dates

®

The chapters in this book, Quartus II Handbook, Volume 1, were revised on the following dates. Where
chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1.

Chapter 2.

Chapter 3.

Chapter 4.

Chapter 5.

Chapter 6.

Chapter 7.

Chapter 8.

Chapter 9.

Design Planning with the Quartus II Software
Revised: October 2007
Part number: QII51016-7.2.0

Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Revised: October 2007
Part number: QII51015-7.2.0

Quartus II Design Flow for MAX+PLUS II Users
Revised: October 2007
Part number: QII51002-7.2.0

Quartus II Support for HardCopy Series Devices
Revised: October 2007
Part number: QII51004-7.2.0

Design Recommendations for Altera Devices and the Quartus II Design Assistant
Revised: October 2007
Part number: QII51006-7.2.0

Recommended HDL Coding Styles
Revised: October 2007
Part number: QII51007-7.2.0

Synplicity Synplify and Synplify Pro Support
Revised: October 2007
Part number: QII51009-7.2.0

Quartus II Integrated Synthesis
Revised: October 2007
Part number: QII51008-7.2.0

Mentor Graphics LeonardoSpectrum Support
Revised: October 2007
Part number: QII51010-7.2.0

Altera Corporation XV

Chapter Revision Dates

Quartus Il Handbook, Volume 1

Chapter 10.

Chapter 11.

Chapter 12.

XVi

Mentor Graphics Precision RTL Synthesis Support
Revised: October 2007
Part number: QII51011-7.2.0

Synopsys Design Compiler FPGA Support
Revised: October 2007
Part number: QII51014-7.2.0

Analyzing Designs with Quartus II Netlist Viewers
Revised: October 2007
Part number: QII51013-7.2.0

Altera Corporation

A |:| —Ig D)/A About this Handbook

®

How to Contact
Altera

Third-Party
Software
Product
Information

Altera Corporation

This handbook provides comprehensive information about the Altera®
Quartus® II design software, version 7.2.

For the most up-to-date information about Altera products, refer to the
following table.

Information Type Contact (7)
Technical support www.altera.com/mysupport/
Technical training www.altera.com/training/

custrain@altera.com
Product literature www.altera.com/literature/
Altera literature services literature @altera.com (1)
FTP site ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

Third-party software products described in this handbook are not Altera
products, are licensed by Altera from third parties, and are subject to change
without notice. Updates to these third-party software products may not be
concurrent with Quartus II software releases. Altera has assumed
responsibility for the selection of such third-party software products and its
use in the Quartus II 7.2 software release. To the extent that the software
products described in this handbook are derived from third-party software, no
third party warrants the software, assumes any liability regarding use of the
software, or undertakes to furnish you any support or information relating to
the software. EXCEPT AS EXPRESSLY SET FORTH IN THE APPLICABLE
ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT UNDER
WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH
RESPECT TO THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR
DOCUMENTATION IN THE SOFTWARE, INCLUDING, WITHOUT
LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT. For more
information, including the latest available version of specific third-party
software products, refer to the documentation for the software in question.

xvii

http://www.altera.com/mysupport/
http://www.altera.com/training/
mailto:custrain@altera.com
http://www.altera.com/literature/
ftp://ftp.altera.com

Typographic Conventions

Quartus Il Handbook, Volume 1

Typographic
Conventions

This document uses the typographic conventions shown below.

Visual Cue

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type

External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fyax, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75: High-
Speed Board Design.

ltalic type

Internal timing parameters and variables are shown in italic type.
Examples: tpja, n+ 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters

Keyboard keys and menu names are shown with initial capital letters. Examples: Delete
key, the Options menu.

“Subheading Title”

References to sections within a document and titles of on-line help topics are shown in
quotation marks. Example: “Typographic Conventions.”

Courier type

Signal and port names are shown in lowercase Courier type. Examples: datal, tdi,
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c¢: \gdesigns\tutorial\chiptrip.gdf. Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1.,2,3., and Numbered steps are used in a list of items when the sequence of the items is important,

a., b, c., etc. such as the steps listed in a procedure.

v/, —, N/A Used in table cells to indicate the following: + indicates a “Yes” or “Applicable”
statement; — indicates a “No” or “Not Supported” statement; N/A indicates that the
table cell entry is not applicable to the item of interest.

H e ° Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

s The hand points to information that requires special attention.

>

CAUTION

A caution calls attention to a condition or possible situation that can damage or destroy
the product or the user’s work.

>

WARNING

A warning calls attention to a condition or possible situation that can cause injury to the
user.

“ The angled arrow indicates you should press the Enter key.
e The feet direct you to more information on a particular topic.
xviii Altera Corporation

A |:| E DY/A Section I. Design Flows

®

Altera Corporation

The Altera® Quartus®]1I, version 7.2 design software provides a complete
multi-platform design environment that easily adapts to your specific
design needs. The Quartus II software also allows you to use the
Quartus II graphical user interface, EDA tool interface, or command-line
interface for each phase of the design flow. This section explains the
Quartus II, version 7.2 software options that are available for each of
these flows.

This section includes the following chapters:

B Chapter 1, Design Planning with the Quartus II Software

B Chapter 2, Quartus II Incremental Compilation for Hierarchical and
Team-Based Design

B Chapter 3, Quartus II Design Flow for MAX+PLUS II Users

B Chapter 4, Quartus II Support for HardCopy Series Devices

s For information about the revision history for chapters in this

section, refer to each individual chapter for that chapter’s
revision history.

Section I-i

Design Flows Quartus Il Handbook, Volume 1

Section I-ii Altera Corporation

Z;\l I:l —E D)/A 1. Design Planning with the

QI151016-7.2.0

® Quartus Il Software

Introduction

Altera Corporation
October 2007

Due to the significant increase in FPGA device densities over the last few
years, designs are increasingly complex and may involve multiple
designers. The inherent flexibility of advanced FPGAs means that the pin
layout, power consumption, and timing performance for each design
block are all dependent on the final design implementation. The system
architect must resolve these design issues when integrating design
blocks, often leading to problems that affect the overall time to market
and thereby increase cost. Many potential problems can be solved earlier
in the design cycle by selecting the optimal device and programming
method, properly planning I/O pin locations, estimating power
consumption, selecting appropriate third-party tools, planning for
in-system debugging options, performing good design partitioning for
incremental compilation, and obtaining early timing estimates.

This chapter discusses these important FPGA design planning issues,
provides recommendations, and describes various tools available for
Altera® FPGAs to help you improve design productivity. This chapter
contains the following sections:

B “Device and Programming/ Configuration Method Selection” on
page 1-2

B “Early Planning Tools for Power and I/O” —"“Early Power

Estimation” on page 1-5

“Early Pin Planning and I/O Analysis” on page 1-6

“Selecting Third-Party EDA Tool Flows” on page 1-9

“Planning for On-Chip Debugging Options” on page 1-11

“Planning for an Incremental Compilation Flow” on page 1-13

“Early Timing Estimation” on page 1-19

Before reading the design planning guidelines discussed in this chapter,
consider your design priorities: What are the important factors for your
design? More device features, density, or performance can increase
system cost. Signal integrity and board issues may impact I/O pin
locations. Power, timing performance, and area utilization affect each
other, and compilation time is affected by optimizations for these factors.
The Quartus® II software optimizes designs for the best average results,
but you can change settings to focus on one aspect of the design results
and trade off other aspects. Certain tools or debugging options can lead
to restrictions in your design flow. If you know what is important in a
particular design, this knowledge will help you choose the tools, features,
and methodologies that you should use with the design. This chapter

Quartus Il Handbook, Volume 1

Device and
Programming/
Configuration
Method
Selection

cannot cover every possible consideration for planning a complex FPGA
design, but once you understand your design priorities, you can use the
design planning issues described here as a guide to help ensure a
productive and successful FPGA design flow.

This chapter provides an introduction to various design and planning
features in the Quartus® II software. For a general overview of the
Quartus II design flow and features, refer to the Introduction to Quartus II
Manual. For more details about specific Quartus II features and
methodologies, this chapter provides references to other appropriate
chapters in the Quartus IT Handbook.

The first stage in design planning is choosing the best device for your
application and determining how you want to program or configure the
device in your system. These factors affect the rest of your design cycle,
including board specification and layout. Most of this planning is
performed outside of the Quartus II software, but this section provides a
few suggestions to aid in the planning process.

Device Selection

It is important to choose the device family that best suits your design
needs. Different families offer different trade-offs, including cost,
performance, logic and memory density, I/O density, power utilization,
and packaging. You should also consider feature requirements such as
I/0 standards support, high-speed transceivers, and the number of
phase-locked loops (PLLs) available in the device. You can review
important features of each device family in the Selector Guides available
on the Altera website (www.altera.com/literature/lit-sg.jsp). Each device
family also has a device handbook or set of data sheets that documents
the device features in detail.

Determining the required device density can be a challenging part of the
design planning process. Devices with more logic resources and higher
I/0 counts can implement larger and potentially more complex designs,
but may have a higher cost. Select a device that meets your design needs
with some safety margin, in case you want to add more logic later in the
design cycle or reserve logic and memory for on-chip debugging (refer to
“Planning for On-Chip Debugging Options” on page 1-11). Consider
needs for specific types of dedicated logic blocks, such as memory blocks
of different sizes, or digital signal processing (DSP) blocks to implement
certain arithmetic functions.

If you have prior designs targeting Altera devices, you can use their
resource utilization as an estimate for your new design. You can compile
existing designs in the Quartus II software with the device selection set to

Altera Corporation
October 2007

Design Planning with the Quartus Il Software

Auto to review the resource utilization and find out which device density
fits the design. Note that coding style, device architecture, and the
optimization options used in the Quartus II software can significantly
affect a design’s resource utilization.

To obtain resource utilization estimates for certain configurations of
Altera’s intellectual property (IP) designs, refer to the User Guides for
Altera Megafunctions and IP MegaCores on the IP Megafunctions page
on the Altera website (Www.altera.com/literature/lit-ip.jsp). You can use
these numbers to help estimate the resource utilization of your design.

Device Migration Planning

Determine if you want the option of migrating your design to another
device density to allow flexibility when the design nears completion, or if
you want to migrate to a HardCopy® structured ASIC device when the
design reaches volume production. In some cases, designers may target a
smaller (and less expensive) device and then move to a larger device if
necessary to fit their design. Other designers may prototype their design
in a larger device to reduce optimization time and achieve timing closure
more quickly, and then migrate to a final smaller device after
prototyping. Similarly, many designers compile and optimize their
design for an FPGA device before moving to a HardCopy structured
ASIC when the design is complete and ready for higher-volume
production. If you would like this flexibility, you should specify these
migration options in the Quartus II software at the beginning of your
design cycle. Specify the target migration devices in the Migration
compatibility section of the Device page in the Settings dialog box.

Selecting a migration device has an impact on pin placement because
some pins may serve different functions in different device densities or
package sizes. When making pin assignments in the Quartus II software,
the Pin Migration View in the Pin Planner highlights pins that change
function between your migration devices. (Refer to “Early Pin Planning
and I/O Analysis” on page 1-6 for more details.) Selecting a migration
device may force you to restrict logic utilization to ensure that your
design is compatible with a selected HardCopy device. Adding migration
devices later in the design cycle is possible, but requires extra effort to
check pin assignments, and may require design changes to fit into the
new target device. It is much easier to consider these issues early in the
design cycle than at the end, when the design is near completion and
ready for migration.

Altera Corporation 1-3
October 2007

Quartus Il Handbook, Volume 1

In addition, if you are planning to use a HardCopy device, review
HardCopy guidelines early in the design cycle for any Quartus II settings
that should be used or other restrictions you should consider. It is
especially important to use complete timing constraints if you want to
migrate to a HardCopy device because of the rigorous verification
requirements for structured ASICs.

«® For more information about timing requirements and analysis for
HardCopy designs, refer to the HardCopy Handbook.
Programming/Configuration Method Selection
Choosing your programming or configuration method up-front allows
system and board designers to determine what companion devices, if
any, are needed for your system. Your board layout also depends on the
type of programming or configuration method you plan to use for
programmable devices. Many programming options use a JTAG interface
to connect to the devices, so your design may require a JTAG chain be set
up on the board.

The device family handbooks describe the configuration options

available for a given device family. For more details about configuration

options, refer to the Configuration Handbook. For information about
programming CPLD devices, refer to your device data sheet or
handbook. Programming and configuration of Altera devices includes
the following options:

B Using enhanced configuration devices—These devices combine
industry-standard flash memory with a feature-rich configuration
controller, including device features such as concurrent and dynamic
configuration, data compression, clock division, and an external
flash memory interface. You can also implement remote and local
system updates with enhanced configuration devices.

B Using Flash memory devices with a memory controller, such as an
Altera MAX® device—The flash memory controller can interface
with a PC or microprocessor to receive configuration data via a
parallel port.

B Using the Quartus II Serial Flash Loader (SFL)—This scheme allows
you to configure the FPGA and program serial configuration devices
using the same JTAG interface.

B Using the Quartus II Parallel Flash Loader (PFL)—This solution
quickly retrieves data from a JTAG interface and generates data
formatted for the receiving target flash device, significantly reducing
the flash device programming time. If your system already contains
a common flash interface (CFI) flash memory, you can utilize it for
the FPGA configuration storage as well, because the PFL feature
supports many common industry-standard flash devices. If you

1-4 Altera Corporation

October 2007

Design Planning with the Quartus Il Software

Early Planning
Tools for Power
and 1/0

Altera Corporation
October 2007

choose this method, you should check the list of supported flash
devices early in your system design cycle and plan accordingly.
Refer to AN 386: Using the MAX II Parallel Flash Loader with the
Quartus II Software for the list of supported Flash devices.

You can use the Quartus II early power and I/ O planning tools to provide
information to PCB board and system designers. Providing FPGA device
information early in the design process enables earlier planning for
power and board design requirements. You can perform early power
estimation, as well as early pin planning and analysis, before you have
created any source code, or when you have a preliminary version of the
design, and then perform the most accurate analysis when the design is
complete.

Early Power Estimation

Device power consumption must be accurately estimated to develop an
appropriate power budget and to design the power supplies, voltage
regulators, heat sink, and cooling system. Power estimation and analysis
has two significant planning requirements:

B Thermal planning—You must ensure that the cooling solution is
sufficient to dissipate the heat generated by the device. In particular,
the computed junction temperature must fall within normal device
specifications.

B Power supply planning—Power supplies must provide adequate
current to support device operation.

Power consumption in FPGA devices is dependent on the design,
providing a challenge during early board specification and layout. The
Altera PowerPlay Early Power Estimator spreadsheet allows you to
estimate power utilization before the design is complete, by processing
information about the device resources that will be used in the design, as
well as the operating frequency, toggle rates, and environmental
considerations.

If you have an existing design or a partially-completed design, the power
estimator file generated by the Quartus II software can provide input to
the spreadsheet for your current design (refer to “Early Power Estimator
File” on page 1-6).

When the design is complete, the PowerPlay Power Analyzer tool in the
Quartus II software provides an accurate estimation of power to help
ensure that thermal and supply budgets are not violated.

Quartus Il Handbook, Volume 1

The PowerPlay Early Power Estimator spreadsheets for each supported
device family are available on the Altera website:
(www.altera.com/support/devices/estimator/pow-powerplay.jsp).

Estimating power consumption early in the design cycle allows planning
of power budgets and avoids surprises for designers developing the PCB.

g For more information about power estimation and analysis, refer to the
PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Early Power Estimator File

When entering data into the Early Power Estimator spreadsheet, you
must include the device resources, operating frequency, toggle rates, and
other parameters. Specifying these values requires familiarity with the
design. If you do not have an existing design, estimate the number of
device resources used in your design and enter it manually. If you have
an existing design or a partially completed design, you can generate a
power estimator file.

First, compile your design in the Quartus II software. After compilation
is complete, on the Project menu, click Generate PowerPlay Early Power
Estimator File. This command instructs the Quartus II software to write
out a power estimator Comma-Separated Value (.csv) file (or a text [.txt]
file for older device families).

The PowerPlay Early Power Estimator spreadsheet includes the Import
Data macro, which parses the information in the power estimation file
and transfers it into the spreadsheet. If you do not want to use the macro,
you can transfer the data into the Early Power Estimator spreadsheet
manually.

If the existing Quartus II project represents only a portion of your full
design, you should enter the additional resources used in the final design
manually. You can edit the spreadsheet and add additional device
resources after importing the power estimation file information.

Early Pin Planning and 1/0 Analysis

It is important to plan top-level FPGA I/O pins early, so board designers
can start developing the PCB design and layout. The FPGA device’s I/O
capabilities influence pin locations and other types of assignments. In
cases where the board design team specifies an FPGA pin-out, it is crucial
that the pin locations be verified in the FPGA place-and-route software as
soon as possible to avoid the need for board design changes.

1-6 Altera Corporation
October 2007

Design Planning with the Quartus Il Software

Altera Corporation
October 2007

Traditionally, designers and system architects could not check the
validity of FPGA pin assignments until the design was complete. You can
now create a preliminary pin-out for an Altera FPGA using the Quartus
II Pin Planner before the source code is designed, based on standard I/O
interfaces (such as memory and bus interfaces) and any other I/O-related
assignments defined by system requirements. Refer to “Creating a Top-
Level Design File for /O Analysis” on page 1-8. Quartus II I/O
Assignment Analysis checks that the pin locations and assignments are
supported in the target FPGA architecture. You can use I/O Assignment
Analysis to validate I/O-related assignments that you make or modify
throughout the design process.

The Pin Planner enables easy I/O pin assignment planning, assignment,
and validation. Use the Pin Planner Package view to make pin location
and other assignments using a device package view instead of pin
numbers. The Pads view displays I/O pads in order around the silicon
die to help you follow pad distance and pin placement guidelines. With
the Pin Planner, you can identify I/O banks, voltage reference (VREF)
groups, and differential pin pairings to help you through the I/O
planning process. If migration devices are selected (including HardCopy
devices), as described in “Device Migration Planning” on page 1-3, the
Pin Migration view highlights pins that change function in the migration
device when compared to the currently selected device. Selecting pins in
the Device Migration view cross-probes to the rest of the Pin Planner, so
you can use device migration information when planning your pin
assignments. You can also configure board trace models of selected pins
for use in “board-aware” signal integrity reports generated with the
Enable Advanced I/0 Timing option. You have the option to use a
Microsoft Excel spreadsheet to start the I/O planning process if you
normally use a spreadsheet in your design flow, and you can export a
Comma-Separated Value (.csv) file containing your I/O assignments for
spreadsheet use when all pins are assigned.

When planning is complete, the pin location information can be passed to
PCB designers. The Pin Planner is tightly integrated with certain PCB
design EDA tools, and can read pin location changes from these tools to
check the suggested changes. It is important that pin assignments match
between the Quartus II software and your schematic and board layout
tools to ensure the design works correctly on the board where it is placed,
especially if changes to the pin-out must be made. The system architect
can use the Quartus II software to pass pin information to team members
designing individual logic blocks, for better timing closure when they
compile their design. Once the design is complete, the Quartus II Fitter
reports should be used for the final sign-off of pin assignments.

Quartus Il Handbook, Volume 1

Starting FPGA pin planning early—before the HDL design is complete—
improves the confidence in early board layouts, reduces the chance of
error, and improves the design’s overall time to market.

«® For more information about I/O assignment and analysis, refer to the
1/O Management chapter in volume 2 of the Quartus II Handbook. For more
information about passing I/O information between the Quartus II
software and third-party EDA tools, refer to the Mentor Graphics PCB
Design Tools Support and Cadence PCB Design Tools Support chapters in
the I/O and PCB Tools section in volume 2 of the Quartus Il Handbook.

Creating a Top-Level Design File for I/0 Analysis

Early in the design process, before the source code is created, the system
architect typically has information about the I/0O interfaces and IP cores
that to used in the design. You can use this information with the
Create/Import Megafunction feature in the Pin Planner to specify details
about the design I/O interfaces.

The Pin Planner interfaces with the MegaWizard® Plug-In Manager, and
allows you to create or import custom megafunctions and IP cores that
use I/0O interfaces. Configure the way in which they are connected to
each other by specifying matching node names for selected ports in the
Set Up Top-Level Design File dialog box. Make any other I/O-related
assignments for these interfaces or other design I/O pins in the Pin
Planner.

When you have entered as much information as possible, generate a
top-level design netlist file using the Create Top-Level Design File
command. The Pin Planner creates virtual pin assignments for internal
nodes, so internal nodes will not be assigned to device pins during
compilation. Use the generated netlist to perform I/O Analysis with the
Start I/O Assignment Analysis command.

You can use the I/O analysis results to change pin assignments or IP
parameters and repeat the checking process until the I/O interface meets
your design requirements and passes the pin checks in the Quartus II
software. When this initial pin planning is complete, you can create a
Quartus II Revision based on the Quartus II-generated netlist. You then
have a choice for how to proceed: you can use the generated netlist to
develop the top-level file for the actual design, or disregard the generated
netlist and use the generated Quartus II Settings File (.qsf) with the actual
design.

1-8 Altera Corporation
October 2007

Design Planning with the Quartus Il Software

Selecting Third-
Party EDA Tool
Flows

Altera Corporation
October 2007

Your complete FPGA design flow may include third-party EDA tools in
addition to the Quartus II software. Determine which tools you want to

use with the Quartus II software to ensure that they are supported and set
up correctly, and that you are aware of any useful features or undesired

limitations.

Synthesis Tools

You can synthesize your design using the Quartus II software’s
integrated synthesis tool or your preferred third-party synthesis tool.
Different synthesis tools may give different results. If you want to select
the best-performing tool for your application, you can experiment by
synthesizing typical designs for your application and coding style and
comparing the results. Be sure to perform placement and routing in the
Quartus II software to get accurate timing analysis and logic utilization
results. Results from synthesis are estimates before place-and-route and
do not include logic that is treated as a black box for synthesis (such as
megafunctions or Altera IP cores in some synthesis tools). In addition,
these estimates do not take into account logic usage reduction achieved
in the Quartus II Fitter through register packing or other Quartus II
optimizations, such as Physical Synthesis, that may change both timing
and resource utilization results.

Altera recommends that you use the most recent version of third-party
synthesis tools, because tool vendors are continuously adding new
features, fixing tool issues, and enhancing performance for Altera
devices. The Quartus II Release Notes lists the version of each synthesis tool
that is officially supported by that version of the Quartus II software.

Specify your synthesis tool in the New Project Wizard or the EDA Tools
Settings page of the Settings dialog box to use the correct Library
Mapping File for your synthesis netlist.

Synthesis tools may offer the capability to create a Quartus II project and
pass constraints such as the EDA tool setting, device selection, and timing
requirements that you specified in your synthesis project. You can use
this capability to save time when setting up your Quartus II project for
placement and routing.

If you want to take advantage of an incremental compilation
methodology, you should partition your design for synthesis and
generate multiple output netlist files. Refer to “Incremental Compilation
with Design Partitions” on page 1-14 for more information.

For more information about synthesis tool flows, refer to the appropriate
chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

Quartus Il Handbook, Volume 1

1-10

Simulation Tools

You can use the built-in Quartus II Simulator to perform quick and easy
functional and timing simulations. Altera also provides the
ModelSim-Altera simulator with Quartus II license subscriptions, which
allows you to take advantage of advanced testbench capabilities and
other features. In addition, the Quartus II software can generate timing
netlist files to support other third-party simulation tools.

If you use a third-party simulation tool, ensure that you use the software
version that is supported with your Quartus II version. The Quartus II
Release Notes list the version of each simulation tool that is officially
supported with that particular version of the Quartus II software. Also
ensure that you use the model libraries provided with your Quartus II
software version. Libraries can change between versions, which might
cause a mismatch with your simulation netlist.

Specify your simulation tool in the EDA Tools Settings page of the
Settings dialog box to generate the appropriate output simulation netlist.

For more information about simulation tool flows, refer to the
appropriate chapter in the Simulation section in volume 3 of the
Quartus II Handbook.

Formal Verification Tools

The Quartus II software supports some formal verification flows.
Consider whether your desired formal verification flow impacts the
design and compilation stages of your design.

Using a formal verification flow can impact performance results because
it requires that certain logic optimizations be turned off, such as register
retiming, and forces hierarchy blocks to be preserved, which can restrict
optimization. Formal verification treats memory blocks as black boxes.
Therefore, it is best to keep memory in a separate hierarchy block so that
other logic does not get incorporated into the black box for verification.
There are other restrictions that may also limit your design, so consult the
documentation for details. If formal verification is important to your
design, it is easier to plan for limitations and restrictions in the beginning
than to make changes later in the design flow.

Specify your formal verification tool in the EDA Tools Settings page of
the Settings dialog box to generate the appropriate output netlist.

For more information about formal verification flows, refer to the
appropriate chapter in the Formal Verification section in volume 3 of the
Quartus Il Handbook.

Altera Corporation
October 2007

Design Planning with the Quartus Il Software

Planning for
On-Chip
Debugging
Options

Altera Corporation
October 2007

Altera’s in-system debugging tools offer different advantages and
trade-offs, so different debugging tools may work better for different
systems and different designers. It is beneficial to evaluate on-chip
debugging options early in your design process, to ensure that your
system board, Quartus II project, and design are all set up to support the
appropriate options. Planning can reduce time spent during debugging
and eliminate the need to make changes later to accommodate your
preferred debugging methodologies.

The Quartus II portfolio of verification tools includes the following
in-system debugging features:

SignalProbe incremental routing—This feature makes design
verification more efficient by quickly routing internal signals to I/O
pins without affecting the design. Starting with a fully routed design,
you can select and route signals for debugging to either previously
reserved or currently unused I/O pins.

SignalTap® Il Embedded Logic Analyzer—This logic analyzer helps
you debug an FPGA design by probing the state of the internal
signals in the design without the use of external equipment or extra
I/0 pins, while the design is running at full speed in an FPGA
device. Defining custom trigger-condition logic provides greater
accuracy and improves the ability to isolate problems. The SignalTap
I Embedded Logic Analyzer does not require external probes or
changes to the design files to capture the state of the internal nodes
or I/0 pins in the design; all captured signal data is conveniently
stored in device memory until you are ready to read and analyze the
data.

Logic Analyzer Interface—This interface enables you to connect and
transmit internal FPGA signals to an external logic analyzer for
analysis. You can use this feature to connect a large set of internal
device signals to a small number of output pins for debugging
purposes, and allows you to take advantage of advanced features in
your external logic analyzer or mixed signal oscilloscope.
In-System Memory Content Editor—This feature provides read and
write access to in-system FPGA memories and constants through the
JTAG interface, making it easy to test changes to memory contents
and constant values in the FPGA while the device is functioning in a
system.

In-System Sources and Probes—This feature sets up customized
register chains to drive or sample the instrumented nodes in your
logic design, providing an easy way to input simple virtual stimuli
and an easy way to capture the current value of instrumented nodes.
You can force trigger conditions set up using the SignalTap II Logic
Analyzer, create simple test vectors to exercise your design without
the use of external test equipment, and dynamically control run-time
control signals with the JTAG chain.

1-11

Quartus Il Handbook, Volume 1

1-12

B Virtual JTAG Megafunction—The sld_virtual_jtag megafunction
allows you to build your own system-level debugging infrastructure,
including both processor-based debugging solutions and debugging
tools in software for system-level debugging. The sld_virtual_jtag
megafunction can be instantiated directly in your HDL code to
provide one or more transparent communication channels to access
parts of your FPGA design using the JTAG interface of the device.

For more information about debugging tools, refer to “Referenced
Documents” on page 1-20.

If you intend to use any of these features, you may have to plan for the
features when developing your system board, Quartus II project, and
design. The following paragraphs describe various factors to consider
during your design planning stages.

The SignalTap II Embedded Logic Analyzer, Logic Analyzer Interface, In-
System Memory Content Editor, In-System Sources and Probes, and
Virtual JTAG Megafunction all require JTAG connections to perform in-
system debugging. Plan your system and board with JTAG ports that are
available for debugging.

The JTAG debugging features also require a small amount of additional
logic resources to implement the JTAG hub logic. If you set up the
appropriate feature early in your design cycle, you can include these
device resources in your early resource estimations to ensure you do not
over-fill the device with logic.

The SignalTap IT Embedded Logic Analyzer uses device memory to
capture data during system operation. Consider reserving device
memory to be used during debugging, to ensure that you have enough
memory resources to take advantage of this debugging technique.

To use incremental debugging with the SignalTap II Embedded Logic
Analyzer, the Full incremental compilation option must be turned on.
This option is on by default for projects created in the Quartus II software
version 6.1 or later, but is not turned on automatically for existing
projects. If incremental compilation is not enabled, you must recompile
the entire design when you want to add debugging functions, or when
you make certain changes to SignalTap II settings. Using incremental
compilation with the SignalTap II Embedded Logic Analyzer greatly
reduces the compilation time required for debugging.

SignalProbe and the Logic Analyzer Interface require I/O pins for
debugging. Consider reserving I/O pins for debugging so that you do not
have to change the design or board to accommodate debugging signals
later. Keep in mind that the Logic Analyzer Interface can multiplex

Altera Corporation
October 2007

Design Planning with the Quartus Il Software

Planning for an
Incremental
Compilation
Flow

Altera Corporation
October 2007

signals with design I/O pins if required. Ensure that your board supports
some kind of debugging mode, where debugging signals do not affect
system operation.

If you want to use the Virtual JTAG megafunction for custom debugging
applications, you must instantiate it and incorporate it as part of the
design process.

The In-System Sources and Probes feature also requires that you
instantiate a megafunction in your HDL code. In addition, you have the
option to instantiate the SignalTap II Embedded Logic Analyzer as a
megafunction so that you can connect it up to nodes in your design
manually and ensure that the tapped node names are not changed during
synthesis. You can add the debugging block as a separate design partition
for incremental compilation to minimize recompilation times.

To use the In-System Memory Content Editor for RAM or ROM blocks or
the LPM_CONSTANT megafunction, ensure that you turn on the option
Allow In-System Memory Content Editor to capture and update
content independently of the system clock when you create the memory
block in the MegaWizard Plug-In Manager.

If you want to take advantage of the compilation-time savings and
performance preservation of Quartus Il incremental compilation, plan for
an incremental compilation flow from the beginning of your design cycle.
The following subsections describe the flat compilation flow, where the
design hierarchy is flattened without design partitions, and then the
incremental compilation flows that use design partitions in top-down,
bottom-up, or mixed design methodologies. Incremental compilation
flows offer several advantages but require more design planning to
ensure good quality of results. The last subsections discuss factors to
consider when planning an incremental compilation flow: planning
design partitions and creating a design floorplan.

For details about using the incremental compilation flows in the
Quartus II software, as well as important guidelines for creating design
partitions and a design floorplan, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus Il Handbook.

Flat Compilation Flow with No Design Partitions

In this compilation flow in the Quartus II software, the entire design is
compiled together in a “flat” netlist. This flow is used if you do not create
any design partitions. Your source code can have hierarchy, but the
design is flattened during compilation and all of the design source code

1-13

Quartus Il Handbook, Volume 1

1-14

is synthesized and fit in the target device whenever the design is
recompiled after any change in the design. By processing the entire
design, the software performs all available logic and placement
optimizations on the entire design to improve area and performance. You
can use debugging tools incrementally, such as the SignalTap II Logic
Analyzer, but you do not specify any design partitions to preserve design
hierarchy during compilation.

The flat compilation flow is easy to use; you do not have to plan any
design partitions. However, because the entire design is recompiled
whenever there are any changes to the design, compilation times can be
relatively long for large devices. In addition, you may find that the results
for one part of the design change when you change a different part of
your design.

Il=~ The full incremental compilation option is turned on by default
in the Quartus II software (beginning with version 6.1), so the
project is ready for you to create design partitions for
incremental compilation. If you do not create any lower-level
design partitions, the entire design is considered as a single
design partition, and the software uses a flat compilation flow.

Incremental Compilation with Design Partitions

In an incremental compilation flow, the system architect splits a large
design into smaller partitions which can be designed separately. Team
members can work on partitions independently, which can simplify the
design process and reduce compilation time.

When hierarchical design partitions are well chosen and placed in the
device floorplan, you can speed up your design compilation time while
maintaining or even improving the quality of results.

You may want to use incremental compilation later in the design cycle
when you are not interested in improving the majority of the design any
further, and want to make changes to, or optimize, one specific block. In
this case, you may want to preserve the performance of modules that are
unmodified and reduce compilation time on subsequent iterations.

Incremental compilation may also be useful for both reducing
compilation time and achieving timing closure. For example, you may
want to specify which partitions should be preserved in subsequent
incremental compilations and then recompile the other partitions with
advanced optimizations turned on.

Altera Corporation
October 2007

Design Planning with the Quartus Il Software

Altera Corporation
October 2007

If a part of your design is not yet complete, you can create an empty
partition for the incomplete part of the design while compiling the
completed partitions. Then save the results for the complete partitions
while you work on the new part of the design.

Alternately, different designers or IP providers may be working on
different blocks of the design using a team-based methodology, and you
may want to combine these blocks in a bottom-up compilation flow.

In an incremental compilation flow, after you partition the design, the
software performs logic synthesis and technology mapping for each
partition individually. The Analysis and Synthesis stage reads the project
assignments to determine the partition boundaries. If any part of the
design changes, Analysis and Synthesis processes the changed partitions
and keeps the existing netlist for the unchanged partitions.

If you use a third-party synthesis tool, you should create separate VOM
or EDIF netlists for each design partition in your synthesis tool. You may
have to create separate projects within your synthesis tool so that the tool
synthesizes each partition separately and generates separate output
netlist files. Refer to your synthesis tool documentation for information
about support for Quartus II incremental compilation. The netlists are
then considered the “source files” for incremental compilation. After
completion of the Quartus II Analysis and Synthesis step, each partition
has one post-synthesis netlist.

The Quartus II Partition Merge step creates a complete netlist that
consists of post-synthesis netlists, post-fitting netlists, or both, or netlists
imported from lower-level projects, depending on the netlist type you
specify for each partition. The Fitter then processes the merged netlist,
preserving the placement or placement and routing of unchanged
partitions, and refitting only those partitions that have changed.

Top-Down Versus Bottom-Up Incremental Flows

The Quartus II incremental compilation feature supports both top-down
and bottom-up compilation flows that are suitable for different design

methodologies. You can also combine these flows in a mixed compilation
flow. The following subsections briefly describe each of these compilation
flows so that you can choose the flow that best meets your design needs.

Top-Down Incremental Compilation Flow

With top-down compilation, one designer or project lead compiles the
entire design in the software. Different designers or IP providers can
design and verify different parts of the design, and the project lead can
add design entities to the project as they are completed. You can also

1-15

Quartus Il Handbook, Volume 1

1-16

target optimizations on one part of the design while designating the rest
of the design as “empty.” Regardless of the source for all the design logic,
the project lead compiles and optimizes the top-level project as a whole.

Incremental compilation preserves the compilation results and
performance of unchanged partitions in your design, greatly reducing
design iteration time by focusing new compilations only on changed
design partitions. New compilation results are then merged with the
previous compilation results from unchanged design partitions.
Additionally, you can target optimization techniques, such as physical
synthesis, to specific design partitions while leaving other partitions
untouched. You can also use this flow with empty partitions if parts of
your design are incomplete or missing.

Bottom-Up and Team-Based Incremental Compilation Flow

Bottom-up design flows allow individual designers to complete the
optimization of their design in separate projects and then integrate each
lower-level project into one top-level project. Bottom-up methodologies
include team-based design flows in which design partitions are created
by team members in another location or by third-party IP providers.

Incremental compilation provides export and import features to enable
bottom-up design methodologies. Designers of lower-level blocks can
export the optimized netlist for their design, along with a set of
assignments, such as LogicLock™ regions. The system architect then
imports each design block as a design partition in a top-level project.

In bottom-up design flows, it is very important that the system architect
provide guidance to designers of lower-level blocks to ensure that each
partition uses the appropriate device resources. Because the designs are
developed independently, each lower-level designer has no information
about the overall design or how their partition connects with other
partitions. This lack of information can lead to problems during system
integration. The top-level project information, including pin locations,
physical constraints, and timing requirements, should be communicated
to the designers of lower-level partitions before they start their design.

The system architect can plan design partitions at the top level and use
Quartus II incremental compilation to communicate information to
lower-level designers through automatically-generated scripts. The
Quartus II option Generate bottom-up design partition scripts
automates the process of transferring top-level project information to
lower-level modules. The software provides a project manager interface
for managing project information in the top-level design.

Altera Corporation
October 2007

Design Planning with the Quartus Il Software

Altera Corporation
October 2007

The scripts can create Quartus II projects for all the lower-level design
blocks and pass all the relevant project assignments. Using these scripts
makes it easier for designers of lower-level modules to implement the
instructions from the project lead, and avoid conflicts between projects
when importing and incorporating the projects into the top-level design.
Using this methodology helps reduce the need to further optimize the
designs after integration and improves overall designer productivity and
team collaboration.

Mixed Incremental Compilation Flow

You can combine top-down and bottom-up compilation flows to take
advantage of top-down flows for part of your design, while importing
parts of the design that are developed independently.

The top-down flow is generally simpler to perform than its bottom-up
counterpart. For example, the need to export and import lower-level
designs is eliminated. A top-down approach also provides the design
software with information about the entire design, so it can perform
global placement optimizations when no part of the design is locked
down to a specific location.

In a bottom-up design methodology, you must perform very careful
resource balancing and time-budgeting, because the software does not
have any information about the other partitions in the top-level design
when it compiles individual lower-level partitions. Using bottom-up
compilation flows where required, in combination with top-down
compilation flows to reduce compilation time and preserve results for
other parts of the design, can be an effective way to improve your
productivity.

Planning Design Partitions

Partitioning a design for an FPGA requires planning to ensure optimal
results when the partitions are integrated, and ensure that each partition
is placed well relative to other partitions in the device. Following Altera’s
recommendations for creating design partitions improves the overall
quality of results. For example, registering partition I/O boundaries
keeps critical timing paths inside one partition that can be optimized
independently. When the design partitions are specified, you can use the
Incremental Compilation Advisor to ensure that partitions meet Altera’s
recommendations.

Determining a timing budget before designers develop their individual

blocks reduces the chance of timing problems during system integration.
If you optimize lower-level partitions separately, any unregistered paths
that cross between partitions are not optimized as an entire path. To

1-17

Quartus Il Handbook, Volume 1

1-18

ensure that the software correctly optimizes the input and output logic in
each partition, you may be required to perform some manual timing
budgeting. For each unregistered timing path that crosses between
partitions, you should make timing assignments on the corresponding
I/0 path in each partition to constrain both ends of the path to the
budgeted timing delay. Assigning a timing budget for each part of the
connection ensures that the software optimizes paths appropriately so
they meet the top-level design requirements.

It is important to plan and balance resource utilization. When performing
incremental compilation, the software synthesizes each partition
separately, with no data about the resources used in other partitions.
Therefore, device resources can be overused in the individual partitions
during synthesis, and the design may not fit in the target device when the
partitions are merged.

In a bottom-up design flow in which designers optimize their lower-level
designs and export them to a top-level design, the software also places
and routes each partition separately. In some cases, partitions can use
conflicting resources when combined at the top level. Balancing resource
utilization between the design partitions avoids any problems with
conflicting resources when all the partitions are integrated.

Creating a Design Floorplan

To take full advantage of incremental compilation, you should create a
design floorplan to avoid conflicts between design partitions, and to
ensure that each partition is placed well relative to other partitions.
Creating location assignments for each partition ensures that no conflicts
occur for locations between different partitions. In addition, a design
floorplan helps to avoid a situation in which the Fitter is directed to place
or replace a portion of the design in an area of the device where most
resources have already been claimed. Without floorplan assignments,
this situation can lead to increased compilation time and reduced quality
of results.

You can use the Quartus II Timing Closure Floorplan or Chip Planner,
depending on your target device, to create a design floorplan using
LogicLock region assignments for each design partition. With a basic
design framework for the top-level design, these floorplan editors allow
you to view connections between regions, estimate physical timing
delays on the chip, and move regions around the device floorplan. When
you have compiled the full design, you can also view logic placement and
locate areas of routing congestion to improve the floorplan assignments.

Altera Corporation
October 2007

Design Planning with the Quartus Il Software

Early Timing
Estimation

Altera Corporation
October 2007

Good partition and floorplan design helps lower-level designs meet top-
level design requirements when integrated with the rest of the design,
reducing the time spent integrating and verifying the timing of the top-
level design.

For details about creating placement assignments in the design
floorplan, refer to the Analyzing and Optimizing the Design Floorplan
chapter in volume 2 of the Quartus II Handbook.

It is much less costly to find design issues early in the design cycle than
to find problems in the final timing closure stages. Once the first version
of the design source code is complete, you may want to perform a quick
compilation to create a kind of silicon virtual prototype, or SVP, that you
can use to perform timing analysis.

Regardless of your compilation flow, when the design source code is
complete you can use the Start Early Timing Estimate option to perform
a quick compilation and timing analysis of your design. The software
chooses a device automatically if required, places any LogicLock regions
used to create a floorplan, finds a quick initial placement for all the design
logic, and provides a useful estimate of the final design performance. If
you have entered timing constraints, timing analysis reports on these
constraints.

I~ Early Timing Estimation is supported with both the TimeQuest
and Classic Timing Analyzers. Use the TimeQuest Timing
Analyzer with Synopsys Design Constraint (SDC) format
constraints to enable advanced timing analysis capabilities that
are not available in the Classic Timing Analyzer.

Designers of individual blocks in bottom-up design flows can use this
feature as they develop the design. Any issues the feature highlights in
the lower level design blocks can be communicated to the system
architect. Resolving these issues may require allocating additional device
resources to the individual block or changing its timing budget.

A top-level designer can also use early timing estimation to prototype the
entire design. Incomplete partitions can be marked as empty in an
incremental compilation flow, while the rest of the design is compiled to
get an early timing estimate and detect any problems with design
integration.

A system architect can use early timing estimation along with design
partition scripts (as described in “Bottom-Up and Team-Based
Incremental Compilation Flow” on page 1-16) to pass additional
constraints to lower-level designers, and provide more information about

1-19

Quartus Il Handbook, Volume 1

Conclusion

Referenced
Documents

1-20

the other partitions in the design. This information can be especially
useful to optimize cross-partition paths. Running early timing
estimations helps designers find and resolve design problems during the
early design stages.

Modern FPGAs support large, complex designs with fast timing
performance. By planning several aspects of your design early in the
process, you can reduce unnecessary time spent handling issues in later
stages of the process. You can use various features of the Quartus II
software to quickly plan your design and achieve the best possible
results. Choosing the correct device and programming method, planning
I/0 pin locations, estimating power consumption, selecting appropriate
third-party tools, planning for debugging options, performing good
design partitioning, and obtaining early timing estimates all improve
productivity, which reduces the design cost and improves the final
product’s time to market.

This chapter references the following documents:

B AN 386: Using the MAX II Parallel Flash Loader with the Quartus II
Software

B Analyzing and Optimizing the Design Floorplan chapter in volume 2 of
the Quartus I Handbook

B Cadence PCB Design Tools chapter in volume 2 of the Quartus II
Handbook

B Configuration Handbook

B Design Debugging Using the SignalTap I Embedded Logic Analyzer
chapter in volume 3 of the Quartus II Handbook

B Design Debugging Using In-System Sources and Probes chapter in
volume 3 of the Quartus II Handbook

B Formal Verification section in volume 3 of the Quartus II Handbook

B [/O Management chapter in volume 2 of the Quartus II Handbook

B [n-System Debugging Using External Logic Analyzers chapter in
volume 3 of the Quartus II Handbook

B [n-System Updating of Memory and Constants chapter in volume 3 of
the Quartus II Handbook

B Introduction to Quartus II Manual

B Mentor Graphics PCB Design Tools Support chapter in volume 2 of the
Quartus Il Handbook

B PowerPlay Power Analysis chapter in volume 3 of the Quartus II
Handbook

B Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook

B Quick Design Debugging Using SignalProbe chapter in volume 3 of the
Quartus II Handbook

B Simulation section in volume 3 of the Quartus II Handbook

Altera Corporation
October 2007

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www/literature/hb/qts/qts_qii52015.pdf
http://www/literature/hb/qts/qts_qii52014.pdf
http://www/literature/hb/qts/qts_qii53021.pdf
http://www.altera.com/literature/an/an386.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www/literature/hb/qts/qts_qii5v3_06.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53012.pdf

Design Planning with the Quartus Il Software

B sld_virtual_jtag Megafunction User Guide
B Synthesis section in volume 1 of the Quartus II Handbook

Document Table 1-1 shows the revision history for this chapter.
Revision History

Table 1-1. Document Revision History

Date and
Document Changes Made Summary of Changes
Version
October 2007 Reorganized “Referenced Documents” on page 1-20. Updated for the Quartus Il
v7.2.0 7.2 software release.
May 2007 v7.1.0 | Updated for the Quartus Il 7.1 software release, including: Updated for the Quartus I
e Expanded Introduction, Device Migration Planning, and 7.1 software release and
Early Pin Planning and Analysis sections. expanded topic coverage.
o Added new sections: Selecting Third-Party EDA Tool Flows
and Planning for Debug Options.
o Other minor changes and reorganization.
o Added Referenced Documents.
March 2007 Updated Quartus Il software 7.0 revision and date only. No —
v7.0.0 other changes made to chapter.
November 2006 | Initial release. —
v6.1.0
Altera Corporation 1-21

October 2007

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/ug/ug_virtualjtag.pdf

Quartus Il Handbook, Volume 1

1-22 Altera Corporation
October 2007

2. Quartus Il Incremental
/ANOTE 2Ya o

Compilation for Hierarchical
and Team-Based Design

®

QI151015-7.2.0

Introduction

Altera Corporation
October 2007

For today’s high-density, high-performance FPGA designs, the ability to
iterate rapidly during the design and debugging stages is critical. The
Quartus® II software delivers advanced technology to create designs for
high-density FPGAs. Altera® introduced the FPGA industry’s first true
incremental design and compilation flow, which provides the following
benefits:

B Preserves the results and performance for unchanged logic in your
design as you make changes elsewhere.

B Reduces design iteration time by up to 70%, so you can perform more

design iterations per day and achieve timing closure efficiently.

Easy to use in the graphical user interface (GUI).

Includes Tel scripting, command-line, and makefile support.

Facilitates modular hierarchical and team-based design flows using

top-down or bottom-up methodologies.

B Supports the Arria™ GX devices, and Stratix® and Cyclone® series of
devices. Supports some incremental compilation flows for
HardCopy® II devices (for details, refer to “HardCopy Compilation
Flows” on page 2-82).

Quartus II incremental compilation is an optional compilation flow.
“Choosing a Quartus II Compilation Flow” on page 2-3 provides an
overview of the Quartus II design flow with and without incremental
compilation to help you decide if you should take advantage of this
feature for your project. The remainder of the chapter includes the
following sections:

B “Quick Start Guide — Summary of Steps for an Incremental

Compilation Flow” on page 2-11

“Design Partitions” on page 2-17

“Creating Design Partitions” on page 2-19

“Setting the Netlist Type for Design Partitions” on page 2-22

“Creating a Design Floorplan With LogicLock Location

Assignments” on page 2-29

B “Exporting and Importing Partitions for Bottom-Up Design Flows”
on page 2-32

B “Guidelines for Creating Good Design Partitions and LogicLock
Regions” on page 2—46

B “Recommended Design Flows and Compilation Application
Examples” on page 2-62

B “Incremental Compilation Restrictions” on page 2-76

Quartus Il Handbook, Volume 1

2-2

B “Scripting Support” on page 2-99
B “Conclusion” on page 2-109

To take advantage of incremental compilation, you organize your design
into logical partitions and physical regions for synthesis and fitting (or
placement and routing). Incremental compilation preserves the
compilation results and performance of unchanged partitions in your
design, dramatically reducing design iteration time by focusing new
compilations only on changed design partitions. New compilation results
are then merged with the previous compilation results from unchanged
design partitions. Additionally, you can target optimization techniques,
such as physical synthesis, to specific design partitions while leaving
other partitions untouched.

Incremental compilation supports two design methodologies: top-down,
in which one designer manages a single project for the entire design, and
bottom-up, in which each design block can be developed independently.
Bottom-up methodologies include team-based design flows in which
design partitions are created by team members in another location or by
third-party intellectual property (IP) providers. For bottom-up flows, you
can generate scripts from the top-level design that pass constraints to
lower-level design blocks compiled in separate Quartus II projects.

This chapter contains information to satisfy the following goals:

B Provide an overview of the Quartus II compilation flow and help
you decide whether to use incremental compilation
B Describe how to use the Quartus II incremental compilation feature
with a quick start guide and then more detailed information
B Provide you with the level of understanding required to make good
design decisions to achieve timing closure while speeding up design
iterations
B Present several recommended design flows for incremental
compilation in the form of examples, along with the rationale behind
them and the steps required to carry out the tasks:
o “Design Flow 1—Changing a Source File for One of Multiple
Partitions in a Top-Down Compilation Flow” on page 2-62
e “Design Flow 2—Optimizing the Placement for One of Multiple
Partitions in a Top-Down Compilation Flow” on page 2-63
e “Design Flow 3—Preserving One Critical Partition in a
Multiple-Partition Design in a Top-Down Compilation Flow” on
page 2-64
e “Design Flow 4—Placing All but One Critical Partition in a
Multiple-Partition Design in a Top-Down Compilation Flow” on
page 2-65
e “Design Flow 5—Implementing a Team-Based Bottom-Up
Design Flow” on page 2-67

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

e “Design Flow 6—Performing Design Iteration in a Bottom-Up
Design Flow” on page 2-71
e “Design Flow 7—Creating Hard-Wired Macros for IP Reuse” on

page 2-73
ChUOSi ng a Quartus II incremental compilation enhances the standard Quartus II
design flow by allowing you to reuse satisfactory results from previous
Quartus Il compilations and save compilation time. This section outlines the flat
Com p ilation compilation flow with no design partitions and the incremental flow, and
explains the differences. The section explains when a flat compilation
Flow flow is satisfactory, and highlights some of the reasons you might want

to create design partitions and use the incremental flow.

The full incremental compilation option is turned on by default in the
Quartus II software, so the project is ready for you to create design
partitions for incremental compilation. If you do not create any design
partitions, the software uses a flat compilation flow.

Flat Compilation Flow with No Design Partitions

The standard Quartus II compilation flow consists of the following
essential modules:

B Analysis and Synthesis—performs logic synthesis to minimize the
design logic and performs technology mapping to implement the
design logic using device resources such as logic elements. This stage
also generates the project database that integrates the design files
(including netlists from third-party synthesis tools). When you are
using EDIF or VOM netlists created by third-party synthesis tools,
the Analysis and Synthesis stage performs logic synthesis and
technology mapping only for black boxes and Altera megafunctions.

B Fitter—places and routes the logic of a design into a device.

B Assembler—converts the Fitter’s device, logic, and pin assignments
into programming files for the device.

B Timing Analyzer—analyzes and validates the timing performance
of all the logic in a design.

Altera Corporation 2-3
October 2007

Quartus Il Handbook, Volume 1

2-4

Figure 2-1 shows a block diagram of the Quartus II design flow with no
design partitions.

Figure 2-1. Quartus Il Design Flow with No Design Partitions

. Block
Vﬁrt')"zg VHDL | | AHDL | | Design ,\igl'izt ,\‘l’ec’“’i‘:t <
) (.vhd) (.tdf) File (edf) (vam)
: (-bdf) : va
I T T + T T T
Setti &
Analysis & Synthesis (1) « As:igl:r%?ents <«
Post-Synthesis
Netlist
Fitter - Settings &
Place-and-Route - Assignments |
Post-Fit
Netlist
| Assembler |
| Timing Analyzer |
Requirements No Make Design & Assignment

Satisfied? Modifications

(Program/Configure Device)

Note to Figure 2-1:

(1) When you are using EDIF or VQM netlists created by third-party EDA synthesis
tools, the Analysis and Synthesis stage of the compilation is performed to create
the design database, but logic synthesis and technology mapping are performed
only for black boxes and Altera megafunctions.

In any Quartus II compilation flow, you can use smart compilation to
allow the compiler to determine which compiler modules are required
based on the changes made to the design since the last smart compilation,
and then skip any modules that are not required. For example, when
smart compilation is selected, the compiler skips the Analysis & Synthesis
module if the design source files were unchanged. Smart compilation
skips only entire compiler stages. It cannot make incremental changes

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

within a given stage of the compilation flow. To turn on smart
compilation, on the Assignments menu, click Settings. In the Category
list, select Compilation Process Settings and click Use Smart
Compilation.

In the default flat compilation flow, all of the source code is processed
with the Analysis & Synthesis module, and all the logic is placed by the
Fitter module whenever the design is recompiled after a change in any
part of the design. One reason for this behavior is to obtain optimal
quality of results. By processing the entire design, the compiler can
perform global optimizations to improve area and performance.

You can use a flat compilation flow for small designs, such as designs in
CLPD devices or low-density FPGA devices, when the timing
requirements are met easily with a push-button compilation. A flat
design is satisfactory when compilation time and preserving results for
timing closure are not concerns.

Incremental Compilation Flow with Design Partitions

There are many situations in which an incremental compilation flow is
more desirable than the simple flat compilation flow. Using an
incremental flow allows you to preserve the results and performance for
unchanged logic in your design as you make changes elsewhere. It
reduces design iteration time by up to 70%, allowing you to perform more
design iterations per day and achieve timing closure more efficiently.
Incremental compilation is recommended for large designs and high
device densities, as well as designs that require high performance relative
to the speed of the device architecture. The feature also facilitates
team-based design environments, allowing designers to create and
optimize design blocks independently.

In conventional FPGA design, as described in the previous section, a
hierarchical design is flattened into a single netlist before logic synthesis
and fitting, and the entire design is recompiled every time the design
changes. To use the Quartus II incremental compilation flow, you start by
splitting your design along any of its hierarchical boundaries into blocks
called design partitions. Refer to “Design Partitions” on page 2-17 for
more details. The Quartus II software synthesizes each individual
hierarchical design partition separately, then merges the partitions into a
complete netlist for subsequent stages of the compilation flow. When
recompiling the design, you can choose to use source code, post-synthesis
results, or post-fitting results for each partition. If you want to preserve
the Fitter results, you can choose to keep just the Fitter netlist, keep the
placement results, or keep both the placement and routing results.

2-5

Quartus Il Handbook, Volume 1

2-6

You may want to use incremental compilation later in the design cycle
when you are not interested in improving the majority of the design any
further, and want to make changes to or optimize one specific block. In
this case, you may want to preserve the performance of modules that are
unmodified and to reduce compilation time on subsequent iterations.
There are also situations in which incremental compilation is useful both
for reducing compilation time and for achieving timing closure. For
example, you may want to specify which partitions should be preserved
in subsequent incremental compilations, and then recompile the other
partitions with advanced optimizations turned on.

You might also have part of your design that is not yet complete, for
which you can create an empty partition while compiling the completed
partitions, and then save the results for the complete partitions while you
work on the new part of the design. Alternatively, different designers or
IP providers may be working on different blocks of the design using a
team-based methodology, and you might want to combine them in a
bottom-up compilation flow. In these cases, the Fitter can perform
placement and routing on each partition independently.

If you want to use the incremental compilation feature at any point in
your design flow, it is beneficial to start planning for incremental
compilation from the start of your design development. It is easier to
accommodate the guidelines for partitioning and creating a floorplan if
you start planning at the beginning of your design cycle. Refer to
“Guidelines for Creating Good Design Partitions and LogicLock
Regions” on page 2—46 for more information. For more detailed examples
that describe recommended design flows to take advantage of the
incremental compilation features, refer to “Recommended Design Flows
and Compilation Application Examples” on page 2-62.

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Figure 2-2 shows a block diagram of the Quartus II design flow using
incremental compilation with design partitions.

Figure 2-2. Quartus Il Design Flow Using Incremental Compilation

Verilog VHDL AHDL Block EDIF vam
HDL (.vhd) (:tdf) Design File Netlist Netlist
(.v) (.bdf) (.edf) (.vgm)
T T T T

v

Partition Top
Partition 1
Partition 2

Design Partition
Assignments

Analysis & Synthesis (1)
Synthesize Changed Partitions,
Preserve Others

One Post-Synthesis
Netlist per Partition

Partition Merge
Create Complete Netlist Using Appropriate Source Netlists for Each
Partition (Post-Fit, Post-Synthesis, or Imported Netlist)

Single Netlist for
Complete Design
Floorplan

Fitter < . <
Place-and-Route Changed Partitions, ASI;?C:;:;%S
Preserve Others 9

One Post-Fit
Netlist per
Partition

Create Individual Netlists and
Complete Netlists

Single Post-Fit
Netlist for
Complete DeS|gn

[Assembler

[Timing Analyzer]

Make Design &
Assignment Modifications

C Program/Configure Device)

Note to Figure 2-2:

(1) When you are using EDIF or VQM netlists created by third-party EDA synthesis
tools, the Analysis and Synthesis stage of the compilation is performed to create
the design database, but logic synthesis and technology mapping are performed
only for black boxes and Altera megafunctions.

Altera Corporation 2-7

October 2007

Quartus Il Handbook, Volume 1

In this flow, Analysis and Synthesis reads the project assignments to
determine the partition boundaries, and performs logic synthesis and
technology mapping for each partition individually.

The diagram in Figure 2-2 shows a top-level partition and two
lower-level partitions. If any part of the design changes, Analysis and
Synthesis processes the changed partitions and keeps the existing netlists
for the unchanged partitions. After completion of Analysis and Synthesis,
there is one post-synthesis netlist for each partition.

The partition merge step creates a single, complete netlist that consists of
post-synthesis netlists, post-fit netlists, and netlists imported from
lower-level projects, depending on the netlist type you specify for each
partition.

The Fitter then processes the merged netlist, preserving the placement or
placement and routing of unchanged partitions, refitting only those
partitions that have changed. The Fitter generates the complete netlist for
use in further stages of the compilation flow, including timing analysis
and programming file generation. It also generates individual netlists for
each partition so that the partition merge step can use the post-fit netlist
to preserve the placement and routing of a partition if you specify to do
so in future compilations.

If the design does not meet its requirements (functionality, timing, or
area), you can make changes to the design and recompile. The Quartus II
software does not resynthesize or refit unchanged partitions that have a
netlist type assignment that specifies the use of a post-synthesis or post-fit
netlist, respectively.

For more information about using the incremental compilation feature,
refer to the “Quick Start Guide — Summary of Steps for an Incremental
Compilation Flow” on page 2-11.

See Table 2-1 for a summary of the impact of incremental compilation on
your compilation results.

Table 2-1. Summary of the Impact of Full Incremental Compilation (Part 1 of 2)

Characteristic

Impact of Full Incremental Compilation

Compilation Time
Savings

Typically saves 50-70% of compilation time when post-fit netlists are preserved; savings in
both Quartus Il integrated synthesis and the Fitter.

Performance
Preservation

Excellent when critical paths are contained within a partition, because you can preserve
post-fitting information for unchanged partitions.

Node Name
Preservation

Preserves post-fitting node names for unchanged partitions.

2-8

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Table 2-1. Summary of the Impact of Full Incremental Compilation (Part 2 of 2)

Characteristic

Impact of Full Incremental Compilation

Area Changes

Area might increase because cross-boundary optimizations are no longer possible, and
placement and register packing are restricted.

fuax Changes

fuax might be reduced because cross-boundary optimizations are no longer possible. If the
design is partitioned and the floorplan location assignments are created appropriately, no
negative impact on fyax.-

Floorplan
Creation

Required for critical partitions to ensure the best quality of results when making design
changes. Required in bottom-up flows to avoid placement conflicts.

When Design is
Resynthesized

When you set the Netlist Type to use the source file. It is also resynthesized automatically
any time you make changes to the source code, unless you specify a Post-Fit (Strict) netlist,
or it is an imported partition.

When Design is
Refit

When you set the Netlist Type to use the source file, a post-synthesis netlist, or a post-fit
netlist with a Fitter preservation level of Netlist Only. It is also refit automatically any time you
make changes to the source code, unless you specify a Post-Fit (Strict) netlist, or it is an
imported partition.

Altera Corporation

October 2007

Top-Down versus Bottom-Up Compilation Flows

The Quartus II incremental compilation feature supports both top-down
and bottom-up compilation flows. With top-down compilation, one
designer or project lead compiles the entire design in the software.
Different designers or IP providers can design and verify different parts
of the design, and the project lead can add design entities to the project as
they are completed. You can use a top-down flow to optimize one block
or IP core in which timing is critical before adding the rest of the design.
However, one person (generally the project lead or system architect)
compiles the top-level project as a whole. Completed parts of the design
can have fitting results and performance fixed as other parts of the design
are changing.

Bottom-up design flows allow individual designers or IP providers to
complete the optimization of their design in separate projects and then
integrate each lower-level project into one top-level project. Incremental
compilation provides export and import features to enable this design
methodology. Designers of lower-level blocks can export the optimized
placed and routed netlist for their design, along with a set of assignments
such as LogicLock™ regions. The project lead then imports each design
block as a design partition in a top-level project.

2-9

Quartus Il Handbook, Volume 1

The following two benefits are associated with a bottom-up design flow:

B It facilitates team-based development

B It permits the reuse of compilation results from another project, with
the ultimate goals of performance preservation and compilation time
reduction.

A bottom-up design flow also has the following potential drawbacks that
require careful planning:

B It may be difficult to achieve timing closure for the full design
because you compile the lower-level blocks independently without
any information about each other. This problem may be avoided by
careful timing budgeting and special design rules, such as always
registering the ports at the module boundaries.

B For the same reason, resource budgeting and allocation may be
required to avoid resource conflicts and overuse. Floorplan creation
is typically very important in a bottom-up flow.

In a bottom-up design flow, the top-level project lead can do much of the
design planning, and then pass constraints on to the designers of
lower-level blocks. For more information about the export and import
operations, and how to use design partition scripts to help with design
planning, refer to “Exporting and Importing Partitions for Bottom-Up
Design Flows” on page 2-32.

It is important to understand that with the full incremental compilation
flow, users who traditionally relied on a bottom-up approach for the sole
reason of performance preservation can now employ a top-down
approach to achieve the same goal. This ability is important for two
reasons. First, a top-down flow is generally simpler to perform than its
bottom-up counterpart. For example, the need to export and import
lower-level designs is eliminated. Second, a top-down approach provides
the design software with information about the entire design so it can
perform global placement and routing optimizations.

You can also mix top-down and bottom-up flows within a single project.
If the top-level design includes one or more design blocks that are created
by different designers or IP providers, you can import those blocks (using
a bottom-up methodology) into a project that also includes partitions for
a top-down incremental methodology.

2-10 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Quick Start
Guide -
Summary of
Steps for an
Incremental
Compilation
Flow

Altera Corporation

October 2007

This section provides a summary of the steps required to perform an
incremental compilation flow. Detailed descriptions for some of these
steps are included in later sections of this chapter. For more examples of
design flows that take advantage of the incremental compilation features,
refer to “Recommended Design Flows and Compilation Application
Examples” on page 2-62.

Top-Down Incremental Compilation Flow

The flow chart in Figure 2-3 illustrates the complete incremental
compilation flow using a top-down methodology (all partitions are
contained in one top-level project). The following subsections describe
the steps in the flow. First, prepare the design for incremental
compilation and perform a full compilation. Then proceed to verify or
debug your design and make design changes as required. When you
perform additional design iterations and recompile your design, you can
choose which netlists to reuse and perform incremental compilations.

Figure 2-3. Summary of Top-Down Incremental Compilation Flow

| Perform Analysis & Elaboration |

v

| Create Design Partitions |

v

Create Floorplan Location
Assignments using LogicLock Regions

Perform Complete Compilation
(All Partitions are Compiled)

v

| Make Changes to Design |<—
Repeat as Needed
| Set Netlist Type for Each Partition | During Design, Verification,
* & Debugging Stages
Perform Incremental Compilation

(Partitions are Compiled if Required)

2-11

Quartus Il Handbook, Volume 1

2-12

Preparing a Design for Top-Down Incremental Compilation

To set up your design for incremental compilation, use the following
general steps:

1.

Elaborate the design. On the Processing menu, point to Start and
click Start Analysis & Elaboration, or run any compilation flow
that includes this step. Elaboration is part of the synthesis process
that identifies your design’s hierarchy.

Create partitions in your design by applying the Set as Design
Partition assignment to the appropriate instances.

Refer to “Design Partitions” on page 2-17 for an explanation of
design partitions and what part of your design can be specified as a
design partition. Refer to “Creating Design Partitions” on page 2-19
for details about assigning design partitions. For guidelines, refer to
“Guidelines for Creating Good Design Partitions and LogicLock
Regions” on page 2—46. The most important guidelines include using
registers at the I/O boundaries of each partition, and minimizing the
number of signals that cross between partitions.

Use LogicLock regions to make location assignments for each
partition to create a design floorplan. Depending on your design
flow and requirements, each partition may be required to be
assigned to a physical region on the device. Refer to the section
“Creating a Design Floorplan With LogicLock Location
Assignments” on page 2-29 for details about these assignments. For
guidelines, refer to “Guidelines for Creating Good Design Partitions
and LogicLock Regions” on page 2—46.

On the Processing menu, click Start Compilation to compile the
design. The first compilation after making partition and LogicLock
assignments is a complete compilation that prepares the design for
subsequent incremental compilations.

Compiling a Design Using Incremental Compilation

After compiling the design once and then making changes, you can take
advantage of incremental compilation to recompile the changed parts of
the design while preserving the results for the unchanged partitions, thus
saving time on subsequent compilations. To do this, perform the
following general steps:

1.

Choose which compilation results you would like to reuse for each
partition. To preserve previous placement results for a partition, set
the Netlist Type assignment for that partition to Post-Fit. To
preserve routing information as well, set the Fitter Preservation

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

Level to Placement and Routing. To save only the synthesis results,
set the Netlist Type assignment for that partition to Post-Synthesis.
Partitions with source code changes are recompiled automatically.
You can also direct the software to recompile from the source code
by choosing the Source File netlist type. If you do not want to
compile a specific partition at all, set its Netlist Type to Empty.

For details about setting these partition properties, refer to “Setting
the Netlist Type for Design Partitions” on page 2-22.

2. Compile the design. When you start a compilation for a partitioned
design with incremental compilation turned on, the Quartus II
software uses the incremental compilation flow, preserving the
results you specified in Step 1.

Bottom-Up Incremental Compilation

The flow chart in Figure 2—4 illustrates the incremental compilation flow
using a bottom-up methodology (lower-level partitions are compiled
separately before being imported into the top-level project). The
following subsections describe the steps involved in the flow.

First, prepare the top-level design for incremental compilation. Then
design, optimize, verify, and debug the lower-level projects. Export the
lower-level projects, and import them into the top-level design. Finally,
compile the entire top-level design.

Figure 2-4. Summary of Bottom-Up Incremental Compilation Flow

Prepare Top-Level Project for
Bottom-Up Incremental Compilation

v

Create Lower-Level Project(s) |

v

Design, Compile, & Optimize
Lower-Level Project(s)

Export Lower-Level Project(s)

v

Import Lower-Level Project(s) Repeat as Needed
into Top-Level Project During Design, Verification,
* & Debugging Stages

Perform Incremental Compilation
in Top-Level Project

2-13

Quartus Il Handbook, Volume 1

Preparing a Design for Bottom-Up Incremental Compilation

The design’s project lead or top-level designer should perform the
following steps to prepare the design for a successful bottom-up design
methodology:

1. Create the top-level Quartus II project that will eventually
incorporate the entire design, and apply project-wide settings and
global assignments.

a. Define source code for a “skeleton” of the entire design that
defines the hierarchy and the port interfaces for the lower-level
designs. The top-level design file must include the top-level
entity that instantiates the lower-level blocks you plan to
compile in separate Quartus II projects. Include wrapper HDL
files for each of these blocks that define at least the port
interface. Analysis and Elaboration requires this wrapper file
(also known as a “stub” or “black box” file) to connect all the
separate design partitions at the top level. For example, in
Verilog HDL you should include a module declaration, and in
VHDL you should include an entity and architecture
declaration. The wrapper file does not have to contain any logic
for the design partition.

b. Create all global assignments, including the device assignment,
pin location assignments, and timing assignments, so that the
final design meets its requirements. Lower-level project
designers can add their own constraints for their partitions as
needed, and later provide them to the top-level designer, but
the basic constraints can be passed down from the top level to
avoid any conflicts and ensure that lower-level projects use the
correct assignments.

2. Make design partition assignments for each lower-level design, and
set the Netlist Type to Empty for each partition that will be
imported. Refer to “Creating Design Partitions” on page 2-19 and
“Setting the Netlist Type for Design Partitions” on page 2-22 for
details. For guidelines, refer to “Guidelines for Creating Good
Design Partitions and LogicLock Regions” on page 2-46.

3. Create LogicLock regions for each of the lower-level partitions to
create a design floorplan. Refer to “Creating a Design Floorplan
With LogicLock Location Assignments” on page 2-29. For
guidelines, refer to “Guidelines for Creating Good Design Partitions
and LogicLock Regions” on page 2—46.

2-14 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

4. Optional: Perform a full compilation of the skeleton design and
create scripts to pass assignments to lower-level designers. After
compilation, on the Project menu, click Generate Bottom-Up
Design Partition Scripts. Refer to “Generating Bottom-Up Design
Partition Scripts for Project Management” on page 2—40 for details.
Provide each lower-level designer with the generated Tcl file to
create their project with the appropriate constraints. If you use
makefiles in your design environment, provide the makefile for
each partition.

Creating and Compiling Lower-Level Projects

The designer of each lower-level design should create and compile their
design in a separate Quartus II project.

If you are creating the project manually, create a new Quartus II project
for the subdesign with all the required settings. Create with LogicLock
region assignments and global assignments (including clock settings) as
specified by the project lead, as well as Virtual Pin assignments for ports
which represent connections to core logic instead of external device pins
in the top-level module.

If you have a bottom-up design partition script from the top-level
designer, source the Tcl script to create the Quartus II project with all the
required settings and assignments from the top-level design.

If you are using makefiles, use the make command and the makefile
provided by the project lead to create a Quartus II project with all the
required settings and assignments, and compile the project. Specify the
dependencies in the makefile to indicate which source file should be
associated with which partition.

Compile and optimize each lower-level design as a separate Quartus II
project.

Exporting Lower-Level Projects

When you have achieved the design requirements for the lower-level
design, export each design as a partition for the top-level design.

If you are not using makefiles, on the Project menu, use the Export
Design Partition dialog box to export each lower-level design. Refer to
“Exporting a Lower-Level Partition to be Used in a Top-Level Project” on
page 2-33. If you want to export only a portion of the design in the
lower-level project, refer to “Exporting a Lower-Level Block within a
Project” on page 2-35 for instructions. Each lower-level designer must
provide the Quartus II Exported Partition file (.qxp) to the project lead.

2-15

Quartus Il Handbook, Volume 1

If your design team is using makefiles, the project lead can use the make
command with the master_makefile to export the lower-level partitions
and create Quartus II Exported Partition files, and then import them into
the top-level design.

Importing Lower-Level Projects into the Top-Level Project

The project lead then imports the files sent in by the designers of each
lower-level subdesign partition.

If you are not using makefiles, on the Project menu, click Import Design
Partition and specify the partition in the top-level project that is
represented by the subdesign Quartus II Exported Partition (QXP) file.
Refer to “Importing a Lower-Level Partition Into the Top-Level Project”
on page 2-36 for details. Repeat the import process for each partition in
the design.

If you are using makefiles, the master_makefile command imports each
partition into the top-level design. Be sure to specify which source files
should be associated with which partition so that the software can rebuild
the project if source files change.

For details about which assignments are imported, and how to avoid
conflicts, refer to “Importing Assignments and Advanced Import
Settings” on page 2-37.

Performing an Incremental Compilation in the Top-Level Project

After you have imported the design partitions that make up the top-level
project, you can perform a full compilation. The software compiles
imported partitions in the same way as partitions defined in the top-level
project. The software recompiles an imported partition only if it has been
imported since the last compilation.

2-16 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Design
Partitions

Altera Corporation
October 2007

It is a common design practice to create modular or hierarchical designs
in which you develop each design entity separately and then instantiate
them in a higher-level entity, forming a complete design. The software
does not consider each design entity automatically to be a design
partition for incremental compilation; rather, you must designate one or
more design hierarchies below the top-level project to be a design
partition. Creating partitions prevents the compiler from performing
optimizations across partition boundaries, as discussed in “Guidelines
for Creating Good Design Partitions and LogicLock Regions” on

page 2—46 and illustrated in Figure 2-10. However, this allows for
separate synthesis and placement for each partition, making incremental
compilation possible.

Partitions must have the same boundaries as hierarchical blocks in the
design because a partition cannot be a portion of the logic within a
hierarchical entity. When you declare a partition, every hierarchical entity
within that partition becomes part of the same partition. You can create
new partitions for hierarchical entities within an existing partition, in
which case the entities within the new partition are no longer included in
the higher-level partition, as described in the following example.

In Figure 2-5, hierarchical entities B and F form partitions in the complete
design, which is made up of entities A, B, C, D, E, and F. The shaded
boxes in Representation A indicate design partitions in a “tree”
representation of the hierarchy. In Representation B, the lower-level
entities are represented inside the higher-level entities, and the partitions
are illustrated with different colored shading. The top-level partition,
called Top, automatically contains the top-level entity in the design, and
contains any logic not defined as part of another partition. The design file
for the top level may be just a wrapper for the hierarchical entities below
it, or it may contain its own logic. In this example, the partition for
top-level entity A also includes the logic in one of its lower-level entities,
C. Because entity F is contained in its own partition, it is not treated as
part of the top-level partition. Another separate partition, B, contains the
logic in entities B, D, and E.

2-17

Quartus Il Handbook, Volume 1

2-18

Figure 2-5. Partitions in a Hierarchical Design

Representation A
Partition Top
A
B C
l—l—l Iﬁ
D E F
Partition B Partition F
Representation B
A
B C
D B F

Design Partition Assignments Compared to Physical Placement
Assignments

Design partitions for incremental compilation are logical partitions,
different from physical placement assignments in the device floorplan. A
logical design partition does not refer to a physical area of the device and
does not directly control the placement of instances. A logical design
partition sets up a virtual boundary between design hierarchies so each is
compiled separately, preventing logical optimizations from occurring
between them. The software creates a separate post-synthesis and
post-fitting netlist for each partition, which allows the software to reuse
the synthesis results or reuse the fitting results (including placement and
routing information) in subsequent compilations.

If you preserve the compilation results using a Post-Fit netlist, it is not

necessary for you to back-annotate or make any location assignments for
specific logic nodes. You should not use the incremental compilation and
assignment back-annotation features in the same Quartus II project. The

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Creating Design

Partitions

Altera Corporation
October 2007

incremental compilation feature does not use placement “assignments”
to preserve placement results; it simply reuses the netlist database that
includes the placement information.

You can assign design partitions to physical regions in the device
floorplan using LogicLock assignments. Altera recommends using
LogicLock regions to improve the quality of results and avoid placement
conflicts when performing incremental compilation. LogicLock regions
have a size and location on the device floorplan, and you can assign a
partition to a physical region to place it in a specific area of the device.
Creating floorplan location assignments for design partitions using
LogicLock regions is discussed in “Creating a Design Floorplan With
LogicLock Location Assignments” on page 2-29.

To use incremental compilation, you must first split your design into
partitions, as described in “Design Partitions” on page 2-17 and “Quick
Start Guide — Summary of Steps for an Incremental Compilation Flow” on
page 2-11. You can make partition assignments to HDL or schematic
design instances, or to VOM or EDIF netlist instances (from third-party
synthesis tools). To take advantage of incremental compilation when
source files change, the top-level design entity of each partition should
have a unique design file. If you define two different entities of separate
partitions but they are in the same design file, you cannot maintain
incremental compilation because the software would have to recompile
both partitions if you changed either entity in the design file.

When you are using a third-party synthesis tool, create a separate netlist
file for each partition to allow each partition to be treated incrementally.
To create separate netlists for each partition, you may have to create a
top-level HDL wrapper file that instantiates the lower-level netlist files
and then create separate projects in your synthesis tool for each of the
lower-level partitions. In this case, the lower-level blocks should be
treated as a black box in the top-level design. Some synthesis tools allow
you to create separate netlist files for different design blocks within a
single project.

For information about using incremental compilation with third-party
synthesis tools, refer to the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

For suggestions on determining which parts of your design should be set
as design partitions, refer to “Guidelines for Creating Good Design
Partitions and LogicLock Regions” on page 2—46.

2-19

Quartus Il Handbook, Volume 1

2-20

The full incremental compilation option is turned on by default (for new
projects created in the Quartus II software version 6.1 and later), so the
project is ready for you to create design partitions.

If full incremental compilation is not turned on when you specify your
first partition, a dialog box appears that asks whether you want to enable
incremental compilation. Selecting Full incremental compilation in this
dialog box turns on incremental compilation on the Incremental
Compilation page under Compilation Process Settings in the Settings
dialog box.

Selecting Off on the Incremental Compilation page of the Settings
dialog box does not remove any partition assignments. Partition
assignments have no effect on the design if incremental compilation is
turned off.

You can create design partitions in the Quartus II GUI with the Design
Partitions Window or the Project Navigator.

On the Assignments menu, click Design Partitions Window (Figure 2-6)
to create your partitions in one of the following ways:

B Create new partitions for one or more instances by dragging and
dropping them from the Hierarchy tab of the Project Navigator, into
the Design Partitions window. Using this method, you can create
multiple partitions at once.

B Create new partitions by double-clicking the <<new>> cell in the
Partition Name column. In the Create New Partitions dialog box,
select the design instance and click OK.

To delete partitions in the Design Partitions window, right-click a
partition and click Delete, or select the partition and press the Delete key.

Figure 2-6. Design Partitions Window

Design Partitions X

Partition Name | Compilation Hierarchy Path | Metist Type |Fitter Preservation Level
= g,?@ Design Partitions
B <enews:
IRy Top filtref Source File

) mutinsts & multinst6 Post-Fit Placement

31 tapsinat Q tapsinst Post-Synthesis

) hvaluesinst2 & | hvaluesinst2 Post-Synthesis
< >

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Alternatively, you can use the list of instances under the Hierarchy tab in
the Project Navigator to create and delete design partitions. Right-click
on an instance in the Project Navigator and click Set as Design Partition.

= A design partition icon appears next to each instance that is set
as a partition (Figure 2-7).

To remove an existing partition assignment, right-click the instance in the
Project Navigator and click Set as Design Partition again. (This process
turns off the option.)

Figure 2-7. Project Navigator Showing Design Partitions

Project Mavigatar x|
Entity |
Cyclone |l: EP2CEF256CE

EI---;; filtret
-3b0 tapsiinst E@

-3b0 - state_mcinst]

-3b0 - hwaluestinst2
bt aceinst3
H-*4, multinsts S

_Hiararchy] Filas] & Design Units

Partition Name

When you create a partition, the Quartus II software automatically
generates a name based on the instance name and hierarchy path. You
can change the name by double-clicking on the partition name in the
Design Partitions window, or right-click the partition and click Rename.
Alternatively, you can right-click the partition in the Design Partitions
window and click Properties to open the Design Partition Properties
dialog box. On the General tab, enter the new name in the Name field.

By renaming your partitions you can avoid referring to them by their
hierarchy path, which can sometimes be long. This is especially important
when using command-line commands or assignments. Partition names
can be from 1 to 1024 characters in length and must be unique. The name
can only contain alphanumeric characters and the pipe (|), colon (:),
and underscore (_) characters.

Altera Corporation 2-21
October 2007

Quartus Il Handbook, Volume 1

Setting the

The Netlist Type property controls the incremental compilation process,
as described in “Compiling a Design Using Incremental Compilation” on

Netlist TVpe for page 2-12. The Netlist Type is a property of each design partition that

Design
Partitions

allows you to specify the type of netlist or source file that the compiler
should use as the input for each partition. This property determines
which netlist is used by the Partition Merge stage in the next compilation.

To view and modify the Netlist Type, on the Assignments menu, click

Design Partitions Window. Double-click the Netlist Type for an entry.
Alternatively, right-click on an entry, click Design Partition Properties,
then modify the Netlist Type on the Compilation tab.

Table 2-2 describes the different settings for the Netlist Type property,
explains the behavior of the Quartus II software for each setting, and
gives guidance on when to use a certain setting.

Table 2-2. Netlist Type Settings (Part 1 of 3)

Partition . - . -
Netlist Type Quartus 11 Behavior for Partition During Compilation
Source File Always compiles the partition using the associated design source file(s).

You can use this netlist type to recompile a partition from the source code using new synthesis
or Fitter settings.

If a partition has an associated imported netlist, compiling it with netlist type set to Source File
removes the imported netlist.

Post-Synthesis

Preserves post-synthesis results for the partition and uses the post-synthesis netlist as long as
the following conditions are true:

e A post-synthesis netlist is available from a previous synthesis

e No change has been made to the associated source files since the previous synthesis
Compiles the partition from the source files if there are source changes or if a post-synthesis
netlist is not available. Changes to the assignments do not cause recompilation.

You can use this netlist type to preserve the synthesis results unless source files change, but
refit the partition using any new Fitter settings.

If a partition has an associated imported netlist, this setting is not available.

2-22

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Table 2-2. Netlist Type Settings (Part 2 of 3)

Partition . - . -
Netlist Type Quartus 11 Behavior for Partition During Compilation
Post-Fit Preserves post-fit results for the partition and uses the post-fit netlist as long as the following

conditions are true:

e A post-fit netlist is available from a previous fitting

e No change has been made to the associated source files since the previous fitting
Compiles the partition from the source files if there are source changes or if a post-fit netlist is
not available. Changes to assignments do not cause recompilation.

The Fitter Preservation Level specifies what level of information is preserved from the post-fit
netlist. For details, refer to “Fitter Preservation Level” on page 2—24.

You can use this netlist type to preserve the Fitter results unless source files change. You can
also use this netlist type to apply global optimizations, such as Physical Synthesis
optimizations, to certain partitions while preserving the fitting results for other partitions.

If a partition has an associated imported netlist, this setting is not available.

Post-Fit (Strict)

Always preserves post-fit results for the partition. Uses the post-fit netlist even if changes have
been made to the associated source files since the previous fitting. For more information, refer
to “Forcing Use of the Post-Fitting Netlist When a Source File has Changed” on page 2-28.

The Fitter Preservation Level specifies what level of information is preserved from the post-
fit netlist. For details, refer to “Fitter Preservation Level” on page 2-24.

If a partition has an associated imported netlist, this setting is not available.

Imported

Compiles the design partition using a netlist imported from a Quartus Il Exported Partition File
(-axp).

The software does not modify or overwrite the original imported netlist during compilation. To
preserve changes made to the imported netlist (such as movement of an imported LogicLock
region), use the Post-Fit (Import-based) setting following a successful compilation with the
imported netlist. For additional details, refer to “Exporting and Importing Partitions for Bottom-
Up Design Flows” on page 2-32.

The Fitter Preservation Level specifies what level of information is preserved from the
imported netlist. For details, refer to “Fitter Preservation Level” on page 2—24.

If you have not imported a netlist for this partition using the Import Design Partition command,
this setting is not available.

Altera Corporation 2-23

October 2007

Quartus Il Handbook, Volume 1

Table 2-2. Netlist Type Settings (Part 3 of 3)

(Import-based)

Partition . - . -
Netlist Type Quartus 11 Behavior for Partition During Compilation
Post-Fit Preserves post-fit results for the partition and uses the post-fit netlist as long as the following

conditions are true:

e A post-fit netlist is available from a previous fitting

e No change has been made to the associated imported netlist since the previous fitting
Compiles the partition from the imported netlist if the imported netlist changes (which means it
has been reimported) or if a post-fit netlist is not available. Changes to assignments do not
cause recompilation.

The Fitter Preservation Level specifies what level of information is preserved from the post-
fit netlist. For details, refer to “Fitter Preservation Level”.

You can use this netlist type to preserve changes to the placement and routing of an imported
netlist.

If a partition does not have an associated imported netlist, this setting is not available.

Empty

Uses an empty placeholder netlist for the partition and uses virtual pins at the partition
boundaries.

You can use this netlist type to skip the compilation of a lower-level partition. For more details
on the Empty setting, refer to “Empty Partitions” on page 2—-26.

2-24

Fitter Preservation Level

The Fitter Preservation Level property specifies which information the
compiler will use from a post-fit or imported netlist. The property is only
available if the Netlist Type is set to Post-Fit, Post-Fit (Strict), Imported,
or Post-Fit (Import-based).

On the Assignments menu, click Design Partitions Window. You can
view and modify the Fitter Preservation Level by double-clicking an
entry. You can also right-click and click Properties, then edit the Fitter
Preservation Level on the Compilation tab.

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Table 2-3 describes the Fitter Preservation Level settings.

Table 2-3. Fitter Preservation Level Settings

Fitter Preservation
Level

Quartus Il Behavior for Partition During Compilation

Netlist Only

Preserves the netlist atoms of the design partition, but replaces and reroutes the design
partition. Unlike a Post-Synthesis netlist, a Post-Fit netlist with the atoms preserved
contains any Fitter optimizations, for example, registers duplicated by Physical Synthesis
during a previous Fitting.

You can use this setting to:

o Preserve Fitter optimizations but allow the software to perform placement and routing
again

o Reapply certain Fitter optimizations (that is, physical synthesis) that would otherwise
be impossible when the placement is locked down

o Resolve resource conflicts between two imported partitions in a bottom-up design flow

Placement

Preserves the netlist atoms and their placement in the design partition. Re-routes the
design partition.

This setting saves significant compilation time because the Fitter does not need to re-fit
the nodes in the partition. Note that the Fitter may need to modify the placement for timing
or legality reasons.

This setting might not be available if the netlist type is set to Imported and the imported
netlist does not contain placement data.

Placement and
Routing

Preserves the netlist atoms and their placement and routing in the design partition. The
minimum preservation level required to preserve Engineering Change Order (ECO)
changes made to the post-fitting netlist and SignalProbe pins added to the design.

This setting reduces compilation times compared to Placement only. Note that the Fitter
may need to modify the placement and routing for timing or legality reasons.

This setting may not be available if the netlist type is set to Imported and the imported
netlist does not contain routing data.

Placement, Routing,
and Tile

Preserves the netlist atoms and their placement and routing in the design partition, as well
as the power tile settings of high-speed or low-power.

Note that the Fitter may need to modify the placement and routing for timing or legality
reasons.

This setting is available only for devices with configurable power tiles (currently only
Stratix 1l devices).

Altera Corporation
October 2007

2-25

Quartus Il Handbook, Volume 1

Empty Partitions

To set the Netlist Type to Empty, on the Assignments menu, click Design
Partitions Window, or double-click an entry, or right-click an entry and
click Design Partition Properties and select Empty. This setting specifies
that the Quartus II Compiler should use an empty placeholder netlist for
the partition.

You can use the Empty setting to skip the compilation of a lower-level
partition that is incomplete or missing from the top-level design. You can
also use it if you want to compile only some partitions in the design, such
as during optimization or if the compilation time is large for one partition
and you want to exclude it. This is useful if you want to optimize the
placement of a timing-critical block such as an IP core and then lock its
placement before adding the rest of your custom logic.

When a partition Netlist Type is defined as Empty, virtual pins are
created at the boundary of the partition. This means that the software
temporarily maps I/O pins in the lower-level design entity to internal
cells and not to pins during compilation.

Any subpartitions below an empty partition in the design hierarchy are
also treated as empty, regardless of their settings.

You can use a design flow in which some partitions are set to Empty in a
variation of a bottom-up design flow, where you develop pieces of the
design separately and then combine them at the top level at a later time.
When you implement part of the design without information about the
rest of the project, it is impossible for the Compiler to perform global
placement optimizations. One way to reduce this effect is to ensure the
input and output ports of the partitions are registered whenever possible,
as recommended in “Creating Good Design Partitions” on page 2—47.

When you set a design partition to Empty, a design file is required in
Analysis and Synthesis to specify, at minimum, the port interface
information so that it can connect the partition correctly to other logic and
partitions in the design. If the design file is missing, you must create a
wrapper file (called a black box or hollow-body file) that defines the
design block and specifies the input, output, and bidirectional ports. For
example, in Verilog HDL you should include a module declaration, and
in VHDL you should include an entity and architecture declaration.

2-26 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

What Represents a Source Change for Incremental Compilation?

Any change in any design source file that affects a partition triggers an
automatic recompilation of the partition. The only exception is if the
partition's Netlist Type is set to Post-Fit (Strict) — refer to “Forcing Use of
the Post-Fitting Netlist When a Source File has Changed” on page 2-28.
The Quartus II software uses an internal checksum to determine whether
the contents of a source file have changed. Source files are the design files
used to create the design, and consist of VHDL files, Verilog HDL files,
AHDL files, Block Design Files (.bdf), EDIF netlists, VQM netlists, and
memory initialization files. Changes in other files such as vector
waveform files for simulation do not trigger recompilation.

Changes to certain project-wide assignments, such as changing the device
family, also trigger automatic recompilation.

Synthesis and Fitter assignments, including optimization settings, timing
assignments, or Fitter location assignments such as pin assignments or
LogicLock assignments, do not trigger automatic recompilation in the
incremental compilation flow. To recompile a partition with new
assignments, change the Netlist Type assignment for that partition to one
of the following:

B Source File to recompile with all new settings

B Post-Synthesis to recompile using existing synthesis results but new
Fitter settings

B Post-Fit with the Fitter preservation Level set to Placement to rerun
routing using existing placement results except for any new routing
settings including delay chain settings

The project database folder (\db) includes all the netlist information for
previous compilations. To avoid unnecessary recompilations, the
database files must not be altered or deleted.

If you want to archive or reproduce the project in another location, you
can use a Quartus II Archive (.qar) file. On the Project menu, click
Archive Project and turn on Include database from compilation and
simulation so that compilation results are preserved. To manually create
a project archive that preserves compilation results without keeping the
entire compilation database, you should keep all source and settings files
and create and save a Quartus II Exported Partition (.qxp) file for each
partition in the design. Refer to “Exporting a Lower-Level Block within a
Project” on page 2-35 for more details.

2-27

Quartus Il Handbook, Volume 1

2-28

Determining Which Partitions Will Be Recompiled

When design files in a partition have dependencies on other files,
changing one file may trigger an automatic recompilation of another file.
The Partition Dependent Files table in the Analysis and Synthesis report
lists the design files that contribute to each design partition. You can use
this table to determine which partitions will be recompiled when a
specific file is changed.

For example, if a design has files a.v that contains entity a, b.v that
contains entity b, and c.v that contains entity ¢, then the Partition
Dependent Files table for the partition containing entity a lists file a.v,
the table for the partition containing entity b lists file b.v, and the table for
the partition containing entity c lists file c.v. Any dependencies are
transitive, so if file a.v depends on b.v, and b.v depends on c.v, then the
entities in file a.v depend on files b.v and c.v. In this case, files b.v and c.v
are listed in the report table as dependent files for the partition containing
entity a.

If you define module parameters in a higher-level module, you will create
file dependencies. The Quartus II software checks the parameter values

when determining which partitions require resynthesis. If you change a
parameter in a higher-level module that affects a lower-level module, the
lower-level module will be resynthesized.

If a design contains common files, such as a file includes.v that is
referenced in each entity by the command ‘include includes.v, then
all partitions are dependent on this file. A change to includes.v causes the
entire design to be recompiled. The VHDL statement use work.all
also typically results in unnecessary recompilations, because it makes all
entities in the work library visible in the current entity, which results in
the current entity being dependent on all other entities in the design.

To avoid this type of problem, ensure that files common to all entities,
such as a common include file, contain only the set of information that is
truly common to all entities. Remove use work.all statements in your
VHDL file or replace them by including only the specific design units
needed for each entity.

Forcing Use of the Post-Fitting Netlist When a Source File has Changed

Forcing the use of the post-fitting netlist when the contents of a source file
has changed is recommended only for advanced users who thoroughly
understand when a partition must be recompiled. You might want to use
this assignment, for example, if you are making source code changes but
do not want to recompile the partition until you finish debugging a

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Creating a
Design
Floorplan With
LogicLock
Location
Assignments

Altera Corporation
October 2007

different partition. To force the Fitter to use a previously generated post-
fit netlist even when there are changes to the source files, you can use the
Post-Fit (Strict) Netlist Type assignment.

Misuse of the Post-Fit (Strict) Netlist Type can result in the generation of
a functionally incorrect netlist when source design files change. Use
caution in applying this assignment.

After you have partitioned the design, create floorplan location
assignments for the design as discussed in this section to improve the
quality of results when using the full incremental compilation flow.
Creating a design floorplan is not a requirement to use an incremental
compilation flow, but it is highly recommended in many cases. Floorplan
assignments are required if you want to import partition placement
results in a bottom-up flow to avoid placement conflicts at the top level.
You should also ensure that you have a LogicLock floorplan assignment
for any timing-critical blocks that will be recompiled as you make
changes to the design. Logic that is not timing-critical can float
throughout the device in a top-down compilation flow, so a floorplan
assignment might not be required in this case.

The simplest way to create a floorplan for a partitioned design is to create
one LogicLock region per partition (including the top-level partition).
Initially, you can leave each region with the default settings of Auto size
and Floating location to allow the Quartus II software to determine the
optimal size and location for the regions. Then, after compilation, use the
Fitter-determined size and origin location as a starting point for your
design floorplan. Check the quality of results obtained for your floorplan
location assignments and make changes to the regions as needed.
Alternately, you can perform synthesis, and then set the regions to the
required size based on resource estimates. In this case, use your
knowledge of the connections between partitions to place the regions in
the floorplan.

For more information about why creating a design floorplan is important
in many cases, refer to “The Importance of Floorplan Location
Assignments in Incremental Compilation” on page 2-55. For guidelines
on creating the floorplan, refer to “Creating Good Floorplan Location
Assignments” on page 2-57.

To create a LogicLock region for each design partition, use the following
general methodology:

1. On the Assignments menu, click Design Partitions Window and
ensure that all partitions have their Netlist Type set to Source File
or Post-Synthesis. If the Netlist Type is set to Post-Fit, floorplan
location assignments are not used when recompiling the design.

2-29

Quartus Il Handbook, Volume 1

Create a LogicLock region for each partition (including the top-level
entity, which is automatically considered a partition) using one of
the following methods:

e In the Design Partitions window, right-click on a partition and
click Create New LogicLock Region. You can highlight
multiple (or all) partitions by holding down the Ctrl key and
clicking on each partition. Then you can choose the option to
create a separate LogicLock region for each highlighted
partition.

e Under Compilation Hierarchy in the Project Navigator,
right-click each instance that is denoted as a partition and click
Create New LogicLock Region.

= A LogicLock icon appears in the Project Navigator next to
each instance that is set as a LogicLock region (Figure 2-8).

Figure 2-8. Project Navigator Showing LogicLock Regions

Project Mavigatar x
Entity [
Stratix 1l: EP2515F484C3

EDF

B2 fivef & 1
- bt tapzingt ,55@ 2 -

----3‘30 state_miinst] 5

gbc hvalues:inst2 ,55@ @ 3

- b accrinetd 1z
B4, multinsts S S b

< ¥

_Hierarchy Files | o Design Units

2-30

On the Processing menu, point to Start and click Start Early Timing
Estimate to place auto-sized, floating-location LogicLock regions.

]

=y You must perform Analysis and Synthesis and Partition
Merge before performing an Early Timing Estimate.

To run a full compilation instead of the Early Timing
Estimate, on the Processing menu, click Start Compilation.

On the Assignments menu, click LogicLock Regions Window, and
click on each LogicLock region while holding the Ctrl key to select
all regions (including the top-level region).

Right-click on the last selected LogicLock region, and click Set Size
and Origin to Previous Fitter Results.

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

=y It is important that you use the Fitter-chosen locations only
as a starting point to make the regions of a fixed size and
location. On average, regions with fixed size and location
yield better fyax than auto-sized regions.

Do not back-annotate the contents of the region, just save
the size and origin. Placement is preserved through the use
of the post-fit netlist and not any back-annotated content
assignments.

6. If required, modify the size and location via the LogicLock Regions
Window or the Chip Planner. For example, make the regions bigger
to fill up the device and allow for future logic changes.

7. On the Processing menu, point to Start and click Start Early Timing
Estimate to estimate the timing performance of your design with
these LogicLock regions.

8. Repeat steps 6 and 7 until you are satisfied with the quality of
results for your design floorplan. On the Processing menu, click
Start Compilation to run a full compilation.

If you do not want to use auto-sized and floating-location regions, in
steps 3-5, you can estimate the size of the regions after synthesis. On the
Processing menu, point to Start, and choose Start Analysis & Synthesis.
Right-click on a region in the LogicLock Regions dialog box, and choose
Set to Estimated Size. Then continue with step 6 to modify the size and
origin of each region as appropriate.

Taking Advantage of the Early Timing Estimator

The methodology for creating a good floorplan takes advantage of the
Early Timing Estimator to enable quick compilations of the design while
creating assignments. The Early Timing Estimator feature provides a
timing estimate for a design as much as 45 times faster than running a full
compilation, yet estimates are, on average, within 11% of final design
timing. You can use the Chip Planner to view the “placement estimate”
created by this feature, identify critical paths by locating from the timing
analyzer reports, and, if necessary, add or modify floorplan constraints.
You can then rerun the Early Timing Estimator to quickly assess the
impact of any floorplan location assignments or logic changes, enabling
rapid iterations on design variants to help you find the best solution.

Altera Corporation 2-31
October 2007

Quartus Il Handbook, Volume 1

Exporting and
Importing
Partitions for
Bottom-Up
Design Flows

2-32

The bottom-up flow refers to the design methodology in which a project
is first divided into smaller subdesigns that are implemented as separate
projects, potentially by different designers. The compilation results of
these lower-level projects are then exported and given to the designer (or
the project lead) who is responsible for importing them into the top-level
project to obtain a fully functional design.

In a bottom-up design flow, the top-level project lead can do much of the
design planning, and then pass constraints on to the designers of
lower-level blocks. The bottom-up design partition scripts generated by
the Quartus II software can make it easier to plan a bottom-up design,
and limit the difficulties that can arise when integrating separate designs.
Refer to “Generating Bottom-Up Design Partition Scripts for Project
Management” on page 2—40 for details.

Refer to “Bottom-Up Incremental Compilation” on page 2-13 in the
Quick Start Guide section for an overview of the entire flow. For examples
of team-based scenarios, refer to “Bottom-Up Incremental Design Flows”
on page 2-67.

This section describes the export and import features provided to support
bottom-up compilation flows. The section covers the following topics:

B “Quartus II Exported Partition File (.qxp)”

B “Exporting a Lower-Level Partition to be Used in a Top-Level
Project” on page 2-33

B “Exporting a Lower-Level Block within a Project” on page 2-35

B “Importing a Lower-Level Partition Into the Top-Level Project” on
page 2-36

B “Importing Assignments and Advanced Import Settings” on
page 2-37

B “Generating Bottom-Up Design Partition Scripts for Project
Management” on page 2—40

Quartus Il Exported Partition File (.qxp)

The bottom-up incremental compilation flow uses a file called the
Quartus II Exported Partition file (or QXP) to represent lower-level
design partitions. The QXP is a binary file that contains compilation
results describing the exported design partition and includes a post-fit or
post-synthesis netlist, LogicLock regions, and a set of assignments. Note
that the QXP file does not contain the original source design files from the
lower-level design.

The following sections describe how to generate a QXP file for a
lower-level design partition, and how to import the QXP into the
top-level project.

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Exporting a Lower-Level Partition to be Used in a Top-Level
Project

Each lower-level subdesign is compiled as a separate Quartus II project.
In each project, use the following guidelines to improve the exporting and
importing process:

B If you have a bottom-up design partition script from the top level,
source the Tcl script to create the project and all the assignments
from the top-level design. Doing so may create many of the
assignments described below. Ensure that the LogicLock region uses
only the resources allocated by the top-level project lead.

B Ensure that you know which clocks should be allocated to global
routing resources so that there are no resource conflicts in the
top-level design.

e Set the Global Signal assignment to On for the high fan-out
signals that should be routed on global routing lines.

e To avoid other signals being placed on global routing lines, on
the Assignments menu, click Settings and turn off Auto Global
Clock and Auto Global Register Controls under More Settings
on the Fitter page of the Settings dialog box.

e Alternatively, you can set the Global Signal assignment to Off
for signals that should not be placed on global routing lines.
Placement for LABs depends on whether the inputs to the logic
cells within the LAB use a global clock. You may encounter
problems if signals do not use global lines in the lower-level
design but use global routing in the top level.

B Use the Virtual Pin assignment to indicate pins of a subdesign that
do not drive pins in the top-level design. This is critical when a
subdesign has more output ports than the number of pins available
in the target device. Using virtual pins also helps optimize
cross-partition paths for a complete design by enabling you to
provide more information about the subdesign ports, such as
location and timing assignments.

B Because subdesigns are compiled independently without any
information about each other, you should provide more information
about the timing paths that may be affected by other partitions in the
top-level design. You can apply location assignments for each pin to
indicate where the port connection will be located after it is
incorporated in the top-level design. You can also apply timing
assignments to the I/O ports of the subdesign to perform timing
budgeting as described in “Timing Budgeting” on page 2-53.

Altera Corporation 2-33
October 2007

Quartus Il Handbook, Volume 1

When your subdesign partition has been compiled using these
guidelines, and is ready to be incorporated into the top-level design,
export a subdesign as a partition using the following steps:

1.

In the subdesign project, on the Project menu, click Export Design
Partition. The Export Design Partition dialog box appears
(Figure 2-9).

Figure 2-9. Export Design Partition Dialog Box

Export Design Partition g|

*f'ou can export the compilation result of a partition hierarchy and import it
inta the design partition of anather project.

Export file:

|fi|tref.qxp J

Fartition hierarchy to export:
|Top =l

Metlizt to export

(+ Post-fit netlist
Iv Export routing

" Post-spnthesis netlist

(] 8 | Cancel

In the Export file box, type the name of the Quartus II Exported
Partition file (.qxp). By default, the directory path and file name are
the same as the current project.

You can also select the Partition hierarchy to export. By default, the
Top partition (the entire project) is exported, but you can choose to
export the compilation result of any partition hierarchy in the
project, as described in “Exporting a Lower-Level Block within a
Project” on page 2-35. Choose the partition hierarchy from the
drop-down box.

Under Netlist to export, select either Post-fit netlist or
Post-synthesis netlist. The default is Post-fit netlist. For post-fit
netlists, turn on or off the Export routing option as required.

Click OK. The Quartus II software creates the Quartus II Exported
Partition file in the specified directory.

Alternatively, you can set up your project so that the export process is
performed every time you compile the design:

2-34

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, under Compilation Process Settings,
select the Incremental Compilation page.

3. Turn on Automatically export design partition after compilation.

4. If you want to view or change the default export settings, click the
Export Design Partition Settings button to open the Export Design
Partition Settings dialog box (Figure 2-9).

5. In the Export Design Partition Settings dialog box, change the
settings, if required, as in steps 2-4 in the preceding export
procedure. Click OK.

6. Click OK to close the Settings dialog box. During the next full
compilation, the software will create the Quartus II Exported
Partition file in the specified directory.

Exporting a Lower-Level Block within a Project

Step 3 in “Exporting a Lower-Level Partition to be Used in a Top-Level
Project” enables you to create a Quartus II Exported Partition file for a
lower-level block within a Quartus II project. When you do this, the
command exports the entire hierarchy under the specified partition into
the QXP file.

You can use this feature to add test logic around a lower-level block that
will be exported as a design partition for a top-level design. You can also
instantiate additional design components in a lower-level project so it
matches the top-level design environment. For example, you can include
a top-level PLL in your lower-level project so that you can optimize the
design with information about the frequency multipliers, phase shifts,
compensation delays, and any other PLL parameters. The software then
captures timing and resource requirements more accurately while
ensuring that the timing analysis in the lower-level project is complete
and accurate. You can export the lower-level partition, without exporting
any auxiliary components to the top-level design.

In addition, you can use this feature in a top-down design flow to create
QXP files for specific design partitions that are complete. You can then
import the QXP file back into the project and use the Imported netlist
type. In this usage, the QXP file acts as an archive for the partition,
including the netlist and placement and routing information in one file. If
you need to change the source code for the partition, you must change the
netlist type back to Source File to use the source instead of the imported
information.

2-35

Quartus Il Handbook, Volume 1

Importing a Lower-Level Partition Into the Top-Level Project

The import process involves importing the design netlist from the
Quartus II Exported Partition file and adding the netlist to the database
for the top-level project. Importing also filters the assignments from the
subdesign and creates the appropriate assignments in the top-level
project.

To import a subdesign partition into a top-level design:

1.

2-36

In the top-level project, on the Project menu, click Import Design
Partition. Alternatively, right-click on the partition that you want to
import in the Design Partitions window and click Import Design
Partition. The Import Design Partition dialog box appears.

In the Partition(s) box, browse to the desired partition. To choose a
partition, highlight the partition name in the Select Partition(s)
dialog box and use the appropriate buttons to select or deselect the
desired partitions.

Il=~ Notethat you can select multiple partitions if your top-level
design has multiple instances of the subdesign partition
and you want to use the same imported netlist.

Under Import file, type the name of the Quartus II Exported
Partition file or browse for the file that you want to import into the
selected partition. Note that this file is required only during
importation, and is not used during subsequent compilations unless
you reimport the partition.

I~ If you have already imported the Quartus IT Exported
Partition file for this partition at least once, you can use the
same location as the previous import instead of specifying
the file name again. To do so, turn on Reimport using the
latest import files at previous locations. This option is
especially useful when you want to import the new
Quartus II Exported Partition files for several partitions
that you have already imported at least once. You can select
all the partitions to be imported in the Partition(s) box and
then use the Reimport using latest import files at previous
locations option to import all partitions using their
previous locations, without specifying individual file
names.

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

4. To view the contents of the selected Quartus II Exported Partition
file, click Load Properties. The properties displayed include the
Netlist Type, Entity name, Device, and statistics about the partition
size and ports.

5. Click Advanced Import Settings and make selections, as
appropriate, to control how assignments and regions are integrated
from a subdesign into a top-level design partition. During
importation, some regions may be resized or slightly moved. Click
OK to apply the settings.

For more information about the advanced settings, refer to
“Importing Assignments and Advanced Import Settings” on
page 2-37.

6. Inthe Import Design Partition dialog box, click OK to start
importation. The specified Quartus II Exported Partition file is
imported into the database for the current top-level project.

Importing Assignments and Advanced Import Settings

When you import a subdesign partition into a top-level design, the
software sets certain assignments by default and also imports relevant
assignments from the subdesign into the top-level design.

Design Partition Properties after Importing

When you import a subdesign partition, the import process sets the
partition’s Netlist Type to Imported.

If you compile the design and make changes to the place-and-route
results, use the Post-Fit (Import-based) Netlist Type on the subsequent
compilation. To discard an imported netlist and recompile from source
code, simply compile the partition with netlist type set to Source File and
be sure to include the relevant source code with the top-level project.

The import process sets the partition’s Fitter Preservation Level to the
setting with the highest degree of preservation supported by the
imported netlist. For example, if a post-fit netlist is imported with
placement information, the level is set to Placement, but you can change
it to the Netlist Only value.

Refer to “Setting the Netlist Type for Design Partitions” on page 2-22 for
details about the Netlist Type and Fitter Preservation Level setting.

2-37

Quartus Il Handbook, Volume 1

2-38

Importing Design Partition Assignments Within the Subdesign

Design partition assignments defined within the subdesign project are
not imported into the top-level project. All logic in the subdesign is
imported as one partition in the QXP file.

Synopsys Design Constraint (SDC) Files for the Quartus Il TimeQuest
Timing Analyzer

Timing assignments made for the Quartus II TimeQuest Timing
Analyzer in an SDC file are currently not imported into the top-level
project. You should manually ensure that the top-level project includes
all of the timing requirements for the entire project.

If you want to copy lower-level SDC files to the top-level project, consider
prefixing lower-level constraints with a variable for the design hierarchy.
Then, when you copy the file to the top-level design, you can set the
variable to provide the hierarchy path to the lower-level partition in the
top-level design.

Importing LogicLock Assignments

LogicLock regions are set to a fixed size when imported. If you instantiate
multiple instances of a subdesign in the top-level design, the imported
LogicLock regions are set to a Floating location. Otherwise, they are set to
a Fixed location. You can change the location of LogicLock regions after
they are imported, or change them to a Floating location to allow the
software to place each region but keep the relative locations of nodes
within the region wherever possible. If you want to preserve changes
made to a partition after compilation, use the Netlist Type Post-Fit
(Import-Based).

The LogicLock Member State assignment is set to Locked to signify that
it is a preserved region.

LogicLock back-annotation and node location data is not imported
because the Quartus II Exported Partition file contains all the relevant
placement information. Altera strongly recommends that you do not add
to or delete members from an imported LogicLock region.

Importing Other Instance Assignments

All instance assignments are imported, with the exception of design
partition assignments, SDC constraints, and LogicLock assignments, as
described previously.

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

Importing Global Assignments

Global assignments are not imported. The project lead should make
global assignments in the top-level design. Global assignments include
clock settings for the Quartus II Classic Timing Analyzer.

Advanced Import Settings

The Advanced Import Settings dialog box allows you to specify the
options that control how assignments and regions are integrated and how
to resolve assignment conflicts when importing a subdesign partition into
a top-level design. The following subsections describe each of these
options.

Allow Creation of New Assignments
Allows the import command to add new assignments from the imported
project to the top-level project.

When this option is turned off, it imports updates to existing
assignments, but no new assignments are allowed.

Promote Assignments to all Instances of the Imported Entity
Converts and promotes entity-level assignments from the subdesign into
instance-level assignments in the top-level design.

Assignment Conflict Resolution: LogicLock Regions

Choose one of the following options to determine how to handle
conflicting LogicLock assignments (that is, subdesign assignments that
do not match the top-level assignments):

B Always replace regions in the current project (default)—Deletes
existing regions and replaces them with the new subdesign region.
Any changes made to the LogicLock region after the assignments
were imported are also deleted.

B Always update regions in the current projects—Overwrites existing
region assignments to reflect any new subdesign assignments with
the exception of the LogicLock Origin, in case the project lead has
made floorplan location assignments in the top-level design.

B Skip conflicting regions—Ignores and does not import subdesign
assignments that conflict with any assignments that exist in the
top-level design.

Assignment Conflict Resolution: Other Assignments

Choose one of the following options to determine how to handle conflicts
with other types of assignments (that is, the subdesign assignments do
not match the top-level assignments):

2-39

Quartus Il Handbook, Volume 1

2-40

B Always replace assignments in the current project (default)—
Overwrites or updates existing instance assignments with the new
subdesign assignments.

B Skip conflicting assignments—Ignores and does not import
subdesign assignments that conflict with any assignments that exist
in the top-level design.

Generating Bottom-Up Design Partition Scripts for Project
Management

The bottom-up design partition scripts automate the process of
transferring top-level project information to lower-level modules. The
software provides a project manager interface for managing resource and
timing budgets in the top-level design. This makes it easier for designers
of lower-level modules to implement the instructions from the project
lead, and avoid conflicts between projects when importing and
incorporating the projects into the top-level design. This helps reduce the
need to further optimize the designs after integration, and improves
overall designer productivity and team collaboration.

= Generating bottom-up design partition scripts is optional in any
bottom-up design methodology.

For example design scenarios using these scripts, refer to “Bottom-Up
Incremental Design Flows” on page 2—67. In a typical bottom-up design
flow, the project lead must perform some or all of the following tasks to
ensure successful integration of the subprojects:

B Manually determine which assignments should be propagated from
the top level to the bottom levels. This requires detailed knowledge
of which Quartus II assignments are needed to set up low-level
projects.

B Manually communicate the top-level assignments to the low-level
projects. This requires detailed knowledge of Tcl or other scripting
languages to efficiently communicate project constraints.

B Manually determine appropriate timing and location assignments
that will help overcome the limitations of bottom-up design. This
requires examination of the logic in the lower levels to determine
appropriate timing constraints.

B Perform final timing closure and resource conflict avoidance at the
top level. Because the low-level projects have no information about
each other, meeting constraints at the lower levels does not
guarantee they will be met when integrated at the top-level. It then
becomes the project lead’s responsibility to resolve the issues, even
though information about the low-level implementation may not be
available.

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

Using the Quartus II software to generate bottom-up design partition
scripts from the top level of the design makes these tasks much easier and
eliminates the chance of error when communicating between the project
lead and lower-level designers. Partition scripts pass on assignments
made in the top-level design, and create some new assignments that
guide the placement and help the lower-level designers see how their
design connects to other partitions. If necessary, you can exclude specific
design partitions.

Generate design partition scripts after a successful compilation of the
top-level design. On the Project menu, click Generate Bottom-Up Design
Partition Scripts. The design can have empty partitions as placeholders
for lower-level blocks, and you can perform an Early Timing Estimation
instead of a full compilation to reduce compilation times.

The following subsections describe the information that can be included
in the bottom-up design partition Tcl scripts. Use the options in the
Generate Bottom-Up Design Partition Scripts dialog box to choose
which types of assignments you want to pass down and create in the
lower-level partition projects. Each time you rerun the script generation
process, the Quartus II software recreates the files and replaces older
versions.

For information about current limitations in the bottom-up partition
scripts, refer to “Bottom-Up Design Partition Script Limitations” on
page 2-84.

Project Creation

You can use the Create lower-level project if one does not exist option
for the partition scripts to create lower-level projects if they are required.
The Quartus II Project File for each lower-level project has the same name
as the entity name of its corresponding design partition.

With this project creation feature, the scripts work by themselves to create
a new project, or can be sourced to make assignments in an existing
project.

Excluded Partitions

Use the Excluded partition(s) option at the bottom of the dialog box to
exclude specific partitions from the Tcl script generation process. Use the
browse button, then highlight the partition name in the Select
Partition(s) dialog box and use the appropriate buttons to select or
deselect the desired partitions.

2-41

Quartus Il Handbook, Volume 1

Assignments from the Top-Level Design

By default, any assignments made at the top level (not including default
assignments or project information assignments) are passed down to the
appropriate lower-level projects in the scripts. The software uses the
assignment variables and determines the logical partition(s) to which the
assignment pertains (this includes global assignments, instance
assignments, and entity-level assignments). The software then changes
the assignments so that they are syntactically valid in a project with its
target partition’s logic as the top-level entity.

The names of the design files that apply to the specific partition are added
to each lower-level project. Note that the script uses the file name(s)
specified in the top-level project. If the top-level project used a
placeholder wrapper file with a different name than the design file in the
lower-level project, you should be sure to add the appropriate file to the
lower-level project.

The scripts process wildcard assignments correctly, provided there is
only one wildcard. Assignments with more than one wildcard are
ignored and warning messages are issued.

Use the following options to specify which types of assignments to pass
down to the lower-level projects:

B Timing assignments—When this option is turned on, all Classic
Timing Analyzer global timing assignments for the lower-level
projects are included in the script, including tco, tsy, and fyax
constraints. This option may also include timing constraints on
internal partition connections.

B Design partition assignments—When this option is turned on,
script assignments related to design partitions in the lower-level
projects are included, as well as assignments associated with
LogicLock regions.

B Pin location assignments—When this option is turned on, all pin
location assignments for lower-level project ports that connect to
pins in the top-level design are included in the script, controlling the
overuse of I/Os at the top-level during the integration phase and
preserving placement.

2-42 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

Virtual Pin Assignments

When Create virtual pins at low-level ports connected to other design
units is turned on, the Quartus II software searches partition netlists and
identifies all ports that have cross-partition dependencies. For each
lower-level project pin associated with an internal port in another
partition or in the top-level project, the script generates a virtual pin
assignment, ensuring more accurate placement, because virtual pins are
not directly connected to I/O ports in the top-level project. These pins are
removed from a lower-level netlist when it is imported into the top-level
design.

Virtual Pin Timing and Location Assignments

One of the main issues in bottom-up design methodologies is that each
individual design block includes no information about how it is
connected to other design blocks. If you turn on the option to write virtual
pin assignments, you can also turn on options to constrain these virtual
pins to achieve better timing performance after the lower-level partitions
are integrated at the top level.

When Place created virtual pins at location of top-level source/sink is
turned on, the script includes location constraints for each virtual pin
created. Virtual output pins are assigned to the location of the
connection’s destination in the top-level project, and virtual input pins
are assigned to the location of the connection’s source in the top-level
project. Note that if the top-level design uses Empty partitions, the final
location of the connection is not known but the pin is still assigned to the
LogicLock region that contains its source or destination.

As a result, these virtual pins are no longer placed inside the LogicLock
region of the lower-level project, but at their location in the top-level
design, eliminating resource consumption in the lower-level project and
providing more information about lower-level projects and their port
dependencies. These location constraints are not imported into the
top-level project.

When Add maximum delay to created virtual input pins, Add
maximum delay from created virtual output pins, or both, are turned on,
the script includes timing constraints for each virtual pin created. The
value you enter in the dialog box is the maximum delay allowed to or
from all paths between virtual pins to help meet the timing requirements
for the complete design. The software uses the INPUT MAX DELAY
assignment or OUTPUT MAX DELAY assignment to apply the constraint.

2-43

Quartus Il Handbook, Volume 1

2-44

This option allows the project lead to specify a general timing budget for
all lower-level internal pin connections. The lower-level designer can
override these constraints by applying individual node-level
assignments on any specific pin as needed.

LogicLock Region Assignments

When Copy LogicLock region assignments from top-level is turned on,
the script includes assignments identifying the LogicLock assignment for
the partition.

The script can also pass assignments to create the LogicLock regions for
all other partitions. When Include all LogicLock regions in lower-level
projects is turned on, the script for each partition includes all LogicLock
region assignments for the top-level project and each lower-level
partition, revealing the floorplan for the complete design in each
partition. Regions that do not belong to other partitions contain virtual
pins representing the source and destination ports for cross-partition
connections. This allows each designer to more easily view the
connectivity between their partition and other partitions in the top-level
design, and helps ensure that resource conflicts at the top level are
minimized.

When Remove existing LogicLock regions from lower-level projects is
turned on, the script includes commands to remove LogicLock regions
defined in the lower-level project prior to running the script. This ensures
that LogicLock regions not part of the top-level project do not become
part of the complete design, and avoids any location conflicts by ensuring
lower-level designs use the LogicLock regions specified at the top level.

Global Signal Promotion Assignments

To help prevent conflicts in global signal usage when importing projects
into the top-level design, you can choose to write assignments that
control how signals are promoted to global routing resources in the
lower-level partitions. These options can help resource balancing of
global routing resources.

When Promote top-level global signals in lower-level projects is turned
on, the Quartus II software searches partition netlists and identifies
global resources, including clock signals. For the relevant partitions, the
script then includes a global signal promotion assignment, providing
information to the lower-level projects about global resource allocation.

When Disable automatic global promotion in lower-level projects is
turned on, the script includes assignments that turn off all automatic
global promotion settings in the lower-level projects. These settings

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

include the Auto Global Memory Control Signals logic option, output
enable logic options, and clock and register control promotions. If you
select the Disable automatic global promotion in lower-level projects
option in conjunction with the Promote top-level global signals in
lower-level projects option, you can ensure that only signals promoted
to global resources in the top-level are promoted in the lower-level
projects.

Makefile Generation

Makefiles allow you to use make commands to ensure that a bottom-up
project is up-to-date if you have a make utility installed on your
computer. The Generate makefiles to maintain lower-level and
top-level projects option creates a makefile for each design partition in
the top-level design, as well as a master makefile that can run the
lower-level project makefiles. The Quartus II software places the master
makefiles in the top-level directory, and the partition makefiles in their
corresponding lower-level project directories.

You must specify the dependencies in the makefiles to indicate which
source file should be associated with which partition. The makefiles use
the directory locations generated using the Create lower-level project if
one does not exist option. If you created your lower-level projects
without using this option, you must modify the variables at the top of the
makefile to specify the directory location for each lower-level project.

To run the makefiles, use a command such as

make -f master_makefile.mak from the script output directory. The
master makefile first runs each lower-level makefile, which sources its Tcl
script and then generates a Quartus II Exported Partition file to export the
project as a design partition. Next, run the top-level makefile that
specifies these newly generated Quartus II Exported Partition files as the
import files for their respective partitions in the top-level project. The
top-level makefile then imports the lower-level results and performs a
full compilation, producing a final design.

To exclude a certain partition from being compiled, edit the
EXCLUDE_FLAGS section of master_makefile.mak according to the
instructions in the file, and specify the appropriate options. You can also
exclude some partitions from being built, exported, or imported using
make commands. To exclude a partition, run the makefile using a
command such as the one for the GNU make utility shown in the
following example:

gnumake -f master makefile.mak exclude <partition directory>=1 +

Altera Corporation 2-45
October 2007

Quartus Il Handbook, Volume 1

This command instructs that the partition whose output files are in
<partition directory> are not built. Multiple directories can be excluded by
adding multiple exclude_<partition directory> commands.
Command-line options override any options in the makefile.

Another feature of makefiles is the ability to have the master makefile
invoke the low-level makefiles in parallel on systems with multiple
processors. This option can help designers working with multiple CPUs
greatly improve their compilation time. For the GNU make utility, add
the -j<N> flag to the make command. The value <N> is the number of
processors that can be used to run the build.

I The makefile does not include a make clean option, so the design
may recompile when make is run again and a QXP file already
exists.

Guidelines for This section provides guidelines for creating design partitions and
. floorplan location assignments that will help you achieve good quality

Creatin g Good results, as well as criteria and methodologies to check the quality of your
Desi gn assignments.
Partltl ons and When planning your design, keep in mind the size and scope of each
LogicLock partition, and the likelihood that different parts of your design might

. change as your design develops. Consider placing logic that changes
Reg ons frequently into its own partition, so that you have to recompile only that

partition if the rest of the design stays the same. Similarly, consider
placing fixed logic, such as IP cores or logic reused from another project,
into its own partition so that you can compile once and lock down the
placement immediately with a post-fit netlist.

Creating partitions prevents the compiler from performing logic
optimizations across partition boundaries (Figure 2-10), allowing the
software to synthesize and place each partition separately.

Figure 2-10. Effects of Partition Boundaries During Optimization

: - = Presence of Cross-Boundary
H hy A H hy B
—> ierarchy U ierarchy Optimizations
= Cannot Obtain Results of an
Individual Hierarchy for
Incremental Compilation

Compile without
Partition Boundaries

Hierarchy A

Hierarchy B
Hierarchy A Hierarchy B = Hierarchies Remain Independent
Compile with from One Another During Logic
Partition Boundaries Optimizations
—p = Possible to Incrementally

Recompile Each Hierarchy

2-46 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

For example, consider a design with a 36-bit function defined in partition
A, but with only 18 bits connected in partition B. In a flat design, you
would expect the logic for the other 18 bits to be removed during
synthesis. With incremental compilation, the Quartus II compiler does
not remove the (unused) logic from partition A because partition B is
allowed to change independently from partition A. That is, you could
later connect all 36 bits in partition B. In this case, you should remove the
unconnected ports and replace them with ground signals inside partition
A. You can create a new wrapper file to do this.

Another example is the case in which a clock is inverted at partition
boundary, but the inversion should be done in the destination LAB for
best results. With incremental compilation, the Quartus II compiler uses
logic to invert the signal, then routes the signal on global clock resource
to its destinations within the partition. The signal acts as a gated clock
with high skew. You must set up partitions to ensure that optimization
does not rely on information from other partitions, so you should
perform clock inversions in the destination partitions.

Because cross-boundary optimizations cannot occur when using
partitions, the quality of results and performance of the design may
decrease as the number of partitions increases. Although more partitions
allows for greater reduction in compilation time, you should limit the
number of partitions to prevent degradation of the quality of results. This
effect is more pronounced in a bottom-up methodology than a top-down
methodology.

In a top-down compilation where partitions are not locked down with
post-fitting results, the Fitter can perform placement optimizations on the
design as a whole to optimize the placement of cross-partition paths.
(However, the Fitter cannot perform logic optimizations such as physical
synthesis across the partition boundary.) In a bottom-up flow, partitions
are compiled separately. Typically, the fitting results are exported, so
there is no placement optimization across the partitions boundaries.

Creating Good Design Partitions

Altera recommends that you observe the following important
hierarchical design considerations when creating partitions:

B Register all inputs and outputs of each partition. This helps avoid
any delay penalty on signals that cross partition boundaries. At the
very least, either the inputs or the outputs should be registered. The
Statistics reports described in the “Partition Statistics Reports”
section list the ports registered for each partition.

2-47

Quartus Il Handbook, Volume 1

2-48

=y While this can be difficult in practice, adherence to this
principle results in less timing degradation and area
increase when using incremental flows. Registering lessens
the need for the cross-partition optimizations that are
prevented by partitioning. By registering the ports, you can
keep critical paths within a single partition, thus keeping
the lengths of inter-partition register-to-register paths to a
minimum.

Minimize the number of paths that cross partition boundaries. If
there are critical paths crossing between partitions, rework the
partitions to avoid these inter-partition paths. Capturing as many of
the timing-critical connections as possible inside a partition allows
you to effectively apply optimizations to that partition to improve
timing, while leaving the rest of the design unchanged. The Statistics
reports described in “Partition Statistics Reports” on page 2-50 list
the number of input and output ports for each partition.

Ensure that the size of each partition is not too small (as a rough
guideline, partitions should be greater than 2,000 logic elements
(LEs) or adaptive logic modules (ALMs)). The Statistics reports
described in the “Partition Statistics Reports” section list the logic
utilization of each partition.

Minimize the number of unconnected ports at partition boundaries.
When a port is left unconnected, optimizations that remove logic
driving that port could improve results. However, these
optimizations are not allowed in an incremental design, because they
would lead to cross-partition dependence. Altera recommends that
you either connect such ports to an appropriate node or remove them
from the design. If you know the port should not be used, consider
defining a wrapper module with a port interface that reflects this
fact. The Statistics reports described in the “Partition Statistics
Reports” section list the number of unconnected input and output
ports for each partition.

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

Do not use tri-state signals or bidirectional ports on hierarchical
boundaries, unless the port is connected directly to a top-level I/O
pin on the device. If you use boundary tri-states in a lower-level
block, synthesis pushes the tri-states through the hierarchy to the top
level to take advantage of the tri-state drivers on the output pins of
the device.

In an incremental compilation flow, internal tri-states are supported
only when all the destination logic is contained in the same partition,
in which case Analysis and Synthesis implements the internal
tri-state signals using multiplexing logic. For a bidirectional port that
feeds a bidirectional pin at the top level, all the logic that forms the
bidirectional I/O cell must reside in the same partition.

Note that logic is not synthesized or optimized across partition
boundaries, which means any constant value (for example, a signal
set to GND) is not propagated across partitions. If a port is supposed
to be connected to VCC or GND, replace the port with VCC or GND in
the module's design. This allows optimizations to take place that
could not be performed if VCC or GND is connected through a port.
Do not use the same signal to drive multiple ports on a single
partition. If the same driving signal feeds multiple ports of a
partition, those ports are logically equivalent. However, because
inter-partition optimizations cannot be performed, the compilation
of that partition cannot take advantage of this fact, which usually
results in sub-optimal performance. For example, if a single clock is
used to drive the read and write clocks of a RAM block and the RAM
block is compiled separately in a bottom-up design flow, the RAM
block is implemented as though there are two unique clocks. If you
know the port connectivity will not change (that is, the ports will
always be driven by the same signal), redefine the port interface so
there is only a single port that can then internally drive other logic in
the partition. If required, you can create a wrapper module around
the partition that has fewer ports.

Do not directly connect two ports of a partition. If two ports on a
module are directly connected, consider redefining the module to
remove those ports. If an output port drives an input port on the
same module, the connection can be made internally without going
through any I/O ports. If an input port drives an output port
directly, the connection can likely be implemented without the ports
by connecting the signals in a higher-level design partition.

You may have to perform some manual resource balancing across
partitions if device resources are overused in the individual
partitions. Refer to “Resource Balancing” on page 2-51 for details.
You may have to perform some timing budgeting if paths that cross
partition boundaries require further optimization. Refer to “Timing
Budgeting” on page 2-53 for details.

2-49

Quartus Il Handbook, Volume 1

You can use the Incremental Compilation Advisor to check that your
design follows many of these guidelines. Refer to “Incremental
Compilation Advisor” on page 2-60 for more details.

Partition Statistics Reports

You can view statistics about design partitions in the Partition Merge
Partition Statistics compilation report and the Statistics tab in the Design
Partitions Properties dialog box.

The Partition Statistics page under the Partition Merge folder of the
Compilation Report lists statistics about each partition. The statistics for
each partition (each row in the table) include the number of logic cells it
contains, as well as the number of input and output pins it contains and
how many are registered or unconnected. This report is useful when
optimizing your design partitions in a top-down compilation flow, or
when you are compiling the top-level design in a bottom-up compilation
flow, ensuring that the partitions meet the guidelines presented in
“Creating Good Design Partitions” on page 2-47. Figure 2-11 shows the
report window.

Figure 2-11. Partition Merge Partition Statistics Report

5 Compilation Report - Partition Merge Partition Statistics

% Compilation Report ~

EhE Legal Notice
S Flow Summary
SHEA Flow Settings

SHEA Flow Elapsed Time
EhE FlowLog
+- &0 Anabysis & Synthesis
= @a Partition Merge
S summary
SHER Metlist Types Used
SHE Partition Statistics

5}; Messages
+- & Fitker
o ..

SHER Flow Non-Default Global 5¢

@5 Resource Usage Summm

Partition Merge Partition Statistics

Partition Total combinational | normal | arithmetic | Total Input | Output | Registered Input
Mame functions mode | mode registers | Ports | Ports Ports

1F Top 16 4 12 28 12 10 1

|2] multinsts |42 24 18 a 11 11 a

i tapz:inzt 8 8 1] 32 13 8 11

|4] hvaluesinet2)3 3 0 0 2 3 0

v
< ¥

2-50

You can also view statistics about the resource and port connections for a
particular partition on the Statistics tab of the Design Partition
Properties dialog box. On the Assignments menu, click Design
Partitions Window. Right-click on a partition and click Properties to
open the dialog box. Click Show All Partitions to view all the partitions
in the same report (Figure 2-12).

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Figure 2-12. Statistics Tab in the Design Partitions Properties Dialog Box

Design Partition Properties -- hvalues:inst2 @

Generaw Corpilation Statistics]

Dizplays the post-compilation statistics for the design partitions selected in the Design Partitions windaw.

Statistic | Top | hevalues:irst2 | riultinste | taps:inst
El Resouices
b |40 15 0 i}]
- Combinational cell 22 3 42 12
i Register cel 2B 0 1] 3
- Clack contral block 3 1] 0 1]
= Connectiohs
i [nput Connections 11 2 43 1z
i FRegistered Input Connections |0 0 1] 95
- Output Connections 114 24 11 24
t Registered Output Conkections | 0 0 1] 1]
= Intemal Congestion
+-- Total Connections 254 26 106 204
- Registered Connections B2 0 1] 152
= Inter-partition connections
- Top 0 2 1 12
- hvalugsinst2 2 0 24 1]
b it ingte 1 24 1] 24
- bapaingt 112 0 24 i}
ok | Cancel | ‘

Resource Balancing

When using incremental compilation, the software synthesizes each
partition separately, with no data about the resources used in other
partitions. This means that device resources could be overused in the
individual partitions during synthesis, and thus the design may not fit in
the target device when the partitions are merged.

In a bottom-up design flow in which designers optimize their lower-level
designs and export them to a top-level design, the software also places
and routes each partition separately. In some cases, partitions can use
conflicting resources when combined at the top level.

To avoid these effects, you may have to perform manual resource
balancing across partitions.

Altera Corporation 2-51
October 2007

Quartus Il Handbook, Volume 1

RAM and DSP Blocks

In the standard synthesis flow, when DSP blocks or RAM blocks are
overused, the Quartus II Compiler can perform resource balancing and
convert some of the logic into regular logic cells (for example, LEs or
ALMs). Without data about resources used in other partitions, it is
possible for the logic in each separate partition to maximize the use of a
particular device resource, such that the design does not fit after all the
partitions are merged. In this case, you may be able to manually balance
the resources by using the Quartus II synthesis options to control
inference of megafunctions that use the DSP or RAM blocks. You can also
use the MegaWizard® Plug-In Manager to customize your RAM or DSP
megafunctions to use regular logic instead of the dedicated hardware
blocks.

P For more information about resource balancing when using Quartus II
synthesis, refer to the Megafunction Inference Control section in the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook. For more tips about resource balancing and reducing resource
utilization, refer to the appropriate Resource Utilization Optimization
Techniques section in the Area and Timing Optimization chapter in

volume 2 of the Quartus II Handbook.

Altera recommends using a LogicLock region for each partition to
minimize the chance that the logic in more than one partition uses the
same logic resource. However, there are situations in which partition
placement may still cause conflicts at the top level. For example, you can
design a partition one way in a lower-level design (such as using an
M-RAM memory block) and then instantiate it in two different ways in
the top level (such as one using an M-RAM block and another using an
M4K block). In this case, you can use a post-fit netlist only with no
placement information to allow the software to refit the logic.

Global Routing Signals

Global routing signals can cause conflicts when multiple projects are
imported into a top-level design. The Quartus II software automatically
promotes high fan-out signals to use global routing resources available in
the device. Lower-level partitions can use the same global routing
resources, thus causing conflicts at the top level.

In addition, LAB placement depends on whether the inputs to the
LCELLSs within the LAB are using a global clock signal. Therefore,
problems can occur if a design does not use a global signal in the
lower-level design, but does use a global signal in the top-level design.

2-52 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

To avoid these problems, the project lead can first determine which
partitions will use global routing signals. Each designer of a lower-level
partition can then assign the appropriate type of global signals manually,
and prevent other signals from using global routing resources. If you
have all partitions available, you can compile the entire design at the top
level with floorplan assignments to allow the use of regional clocks that
span only a part of the chip. The Fitter automatically promotes some
signals to global routing, and you can use this information when
optimizing the lower-level partitions in separate Quartus II projects.

Use the Global Signal assignment set to a value of On or Off in the
Assignment Editor to place a signal on a global routing line, or to prevent
the signal from using a global routing line. You can also assign certain
types of global clock resources in some device families, such as regional
clocks that cover only part of the device. You can view the resource
coverage of such clocks in the Chip Planner, and then align LogicLock
regions that constrain partition placement with available global clock
routing resources. For example, if the LogicLock region for a particular
partition is limited to one device quadrant, that partition’s clock can use
a regional clock routing type that covers only one device quadrant.

If you want to disable the automatic global promotion performed in the
Fitter, turn off the Auto Global Clock and Auto Global Register Control
Signals options. On the Assignments menu, click Settings. On the Fitter
Settings page, click More Settings and change the settings to Off.

Alternatively, to avoid problems when importing, direct the Fitter to
discard the placement and routing of the imported netlist by setting the
Fitter preservation level property of the partition to Netlist Only. With
this option, the Fitter re-assigns all the global signals for this particular
partition when compiling the top-level design.

If you are performing a bottom-up flow using the design partition scripts,
the software can automatically write the commands to pass global
constraints and turn off the automatic options. Refer to “Generating
Bottom-Up Design Partition Scripts for Project Management” on

page 2—40 for details.

Timing Budgeting

If you optimize lower-level partitions independently and import them to
the top level, any unregistered paths that cross between partitions are not
optimized as an entire path. One way to reduce this effect is to ensure

input and output ports of the partitions are registered whenever possible.

2-53

Quartus Il Handbook, Volume 1

To ensure that the Compiler correctly optimizes the input and output
logic in each partition, you may be required to perform some manual
timing budgeting. For each unregistered timing path that crosses
between partitions, make timing assignments on the corresponding I/O
path in each partition to constrain both ends of the path to the budgeted
timing delay. Timing budgets may be required for these I/O ports
because when the Compiler optimizes each partition, it has no
information about the placement of the logic that connects to that port. If
the logic in one partition is placed far away from logic in another
partition, the routing delay between the logic could lead to problems
meeting the timing requirements. Assigning a timing budget for each
part of the connection ensures that the Compiler optimizes the paths
appropriately.

When performing manual timing budgeting, you can also use Virtual Pin
assignments to represent I/O ports of a partition that feed another
partition in the full design. By assigning location and timing constraints
to the Virtual Pins that represent the connections in the full design, you
can further improve the quality of the timing budget.

If you are performing a bottom-up flow using the design partition scripts,
the software can write virtual pin assignments and I/O timing budget
constraints automatically. Refer to “Generating Bottom-Up Design
Partition Scripts for Project Management” on page 2—40 for details.

Methodology to Check Partition Quality during Partition Planning

There is an inherent tradeoff between compilation time and quality of
results when you vary the number of partitions in a project. You can
ensure that you limit this effect by following an iterative methodology
during the partitioning process. In any incremental compilation flow in
which you can compile the source code for each partition during the
partition planning phase, Altera recommends the following iterative
flow:

1. Start with a complete design that is not partitioned and has no
location or LogicLock assignments.

2. To perform a placement and timing analysis estimate, on the
Processing menu, point to Start and click Start Early Timing
Estimate.

2-54 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

=y You must perform Analysis and Synthesis before
performing an Early Timing Estimate. If incremental
compilation is already turned on, you must also perform
Partition Merge.

To run a full compilation instead of the Early Timing Estimate, on the
Processing menu, click Start Compilation.

3. Record the quality of results from the Compilation Report (fy2x,
area, and so forth).

4. Create design partitions as described in “Creating Design
Partitions” on page 2-19 using the guidelines in “Creating Good
Design Partitions” on page 2—47.

5. Perform another Early Timing Estimate or full compilation.

6. Record the quality of results from the Compilation Report. If the
quality of results is significantly worse than that obtained in the
previous compilation in Step 3, repeat Step 4 through this step
(Step 6) to change your partition assignments and use a different
partitioning scheme.

7. Even if the quality of results is acceptable, you can repeat Step 4
through Step 6 by further dividing a large partition into several
smaller partitions. Doing so improves compilation time in future
incremental compilations. You can repeat this step until you achieve
a good tradeoff point (that is, all critical paths are localized within
partitions, the quality of results is not negatively affected, and the
size of each partition is reasonable).

The Importance of Floorplan Location Assignments in
Incremental Compilation

Floorplan location planning can be very important for a design that uses
full incremental compilation, for the following two reasons:

B To avoid resource conflicts between partitions
B To ensure a good quality of results when recompiling partitions and
other partition placement is unchanged

Location assignments for each partition ensures that there are no conflicts
for locations between different partitions. If there are no LogicLock
region assignments, or if LogicLock regions are set to auto-size or
floating, it is unclear which resources on the device are allocated for the
logic associated with the region. Without clearly defining this resource
budget, bottom-up design can produce many resource conflicts when

2-55

Quartus Il Handbook, Volume 1

2-56

importing results, because each bottom-up partition has no information
about its resource budget and may therefore claim resources required by
another partition.

In addition, a design floorplan helps to avoid the situation that arises
when the Fitter is directed to place or replace a portion of the design in an
area of the device where most resources have already been claimed. In
this case, the placement of the post-fit netlists of other modules forces the
Fitter to place the new portion of the design in the empty parts of the
device. There are two immediate disadvantages to this situation. First, the
Fitter must work harder because of the higher number of physical
constraints, and therefore compilation time probably increases. Second,
the quality of results often decreases, sometimes dramatically, because
the placement of the target module is now scattered throughout the
device.

Figures 2-13 and 2-14 illustrate the problems associated with refitting
designs that do not have floorplan location assignments. Figure 2-13
shows the initial placement of a four-partition design (P1-P4) without
floorplan location assignments. The second part of the figure shows the
situation if a change occurs to P3. After removing the logic for the
changed partition, the Fitter must replace and reroute the new logic for
P3 using the white space shown in the figure.

Figure 2-13. Representation of Device Floorplan without Location
Assignments

Device Floorplan Device Floorplan
With 4 Partitions After Removing Changed Partition P3

Performing this placement is very difficult. The Fitter may not be able to
find any legal placement for the logic in partition P3, even if it was able to
do so in the initial compilation. If the Fitter does find a legal placement,
the results are probably sub-optimal.

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

Figure 2-14 shows the initial placement of a four-partition design with
floorplan location assignments made by the user, and the situation after
partition P3 is removed in this case.

Figure 2-14. Representation of Device Floorplan with Location Assignments

P3

Device Floorplan Device Floorplan
With 4 Partitions After Removing Changed Partition P3

This placement presents a much more reasonable task to the Fitter and
yields better results than the previous case that does not have floorplan
location assignments. Due to this effect, you should ensure that you have
a LogicLock floorplan assignment for any timing-critical blocks that will
be recompiled as you make changes to the design. You can use the
Reserved property to ensure that there are no placement conflicts in
bottom-up flows. Logic that is not timing-critical can float throughout the
device in a top-down compilation flow, so a floorplan assignment might
not be required in this case.

Creating Good Floorplan Location Assignments

This section presents recommendations for creating a design floorplan
using LogicLock regions.

In most cases, each LogicLock region should contain logic from only one
partition. This organization helps prevent resource conflicts in a bottom-
up design and can lead to better performance preservation when locking
down parts of a project in a top-down design. One exception to this rule
is the case where you want to have two lower-level partitions compiled
together in the same LogicLock region because of tight interaction, but
you want to separate the placement of the parent logic for each partition.
In this case, you can place more than one partition in one LogicLock
region, but for best results you must ensure that you recompile all
partitions every time the logic in one partition changes. In addition, if
your partition consists of a wrapper around more than one lower-level

2-57

Quartus Il Handbook, Volume 1

2-58

module, you can place those modules in different areas of the device by
using different LogicLock regions even if they are defined in the same
partition.

If your design contains hierarchical partitions (that is, parent-child
relationships between partitions), you can create hierarchical LogicLock
regions to ensure that the logic in the child partition is physically placed
inside the LogicLock region for the parent partition. This can be useful
when the parent partition does not contain registers at the boundary with
the lower-level child partition and has a lot of signal connectivity. To
create a hierarchical relationship between regions in the LogicLock
Regions window, drag and drop the child region to the parent region.

Ensure that all LogicLock regions in the design have a fixed size and have
their origin locked to a specific location on the chip. If you use auto-sized,
floating-location regions to create an initial floorplan, be sure to set the
size and origin to use the fitter results before you recompile. Do not use
the Soft LogicLock region property. Refer to “The Importance of
Floorplan Location Assignments in Incremental Compilation” on

page 2-55 for more information.

If resource utilization is low, you can enlarge the regions chosen by the
Fitter with the auto-size setting. Doing so usually improves the final
results because it gives the Fitter more freedom to place additional logic
added to the partition during future incremental compilations.

Ideally, almost the entire device should be covered by LogicLock regions
if all partitions are assigned to a region. Give more area to regions that are
densely populated, because overly congested regions can lead to poor
results. You may move the region origins from auto-floating region
placement to satisfy this requirement, but Altera recommends preserving
the Fitter-determined relative placement of the regions. Also, regions that
are too large for their logic can result in wasted resources and also lead to
poor results. You should define LogicLock regions that are neither too
small nor too large.

Regions should not overlap in the device floorplan, especially in
bottom-up flows. If two partitions are allocated an overlapping portion of
the chip, each may independently claim some common resources in this
region. This will lead to resource conflicts when importing bottom-up
results into a final top-level design.

If two LogicLock regions have several connections between them, place
them near each other to improve timing performance. By placing
connected regions near each other, the Fitter has more opportunity to

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

optimize inter-region paths when both partitions are recompiled.
Reducing the criticality of inter-region paths also allows the Fitter more
flexibility when placing the other logic in each region.

You can use the Incremental Compilation Advisor to check that your
design follows many of these guidelines. Refer to “Incremental
Compilation Advisor” on page 2-60 for more details.

«® For more information about making and editing LogicLock regions, refer
to the Analyzing and Optimizing the Design Floorplan chapter in volume 2
of the Quartus II Handbook.

Excluding Certain Device Elements (such as RAM or DSP Blocks) with
Resource Exceptions

If your design contains memory or digital signal processing (DSP)
elements, you may want to exclude these elements from the LogicLock
region. You can use LogicLock resource exceptions to prevent elements
of certain types from being assigned to a region. Note that the filter does
not prevent them from being placed inside the region boundaries unless
the region’s Reserved property is turned on. Defining a resource
exception instructs the Fitter that certain blocks are not required to be
inside a region.

Resource exceptions are useful in cases where it is difficult to place
rectangular regions for design blocks that contain memory and DSP
elements, because of their placement in columns throughout the device
floorplan. Excluding these elements can help to resolve no-fit errors that
are caused by regions spanning too many resources, especially for
designs that are memory-intensive, DSP-intensive, or both. If desired,
you can also create separate regions for the memory or DSP blocks,
excluding logic cell resources, which can be shaped to accommodate the
columns in the device to control the placement of those design elements.

To view any resource exceptions, right-click in the LogicLock Regions
window and click Properties. In the LogicLock Region Properties dialog
box, highlight the design element (module/entity) in the Members box
and click Edit. To set up a resource exception, click the browse button
under Excluded element types, then turn on the design element types to
be excluded from the region. You can choose to exclude combinational
logic or registers from logic cells, or any of the sizes of TriMatrix™
memory blocks, or DSP blocks.

Altera Corporation 2-59
October 2007

Quartus Il Handbook, Volume 1

Incremental Compilation Advisor

You can use the Incremental Compilation Advisor to check that your
design follows many of the recommendations presented in this chapter
for creating design partitions and floorplan location assignments. On the
Tools menu, point to Advisors, and click Incremental Compilation
Advisor.

As shown in Figure 2-15, recommendations are split into General
Recommendations that apply to all compilation flows and Bottom-Up
Design Recommendations that apply to bottom-up design
methodologies. Each recommendation provides an explanation,
describes the effect of the recommendation, and provides the action
required to make the suggested change. In some cases, there is a link to
the appropriate Quartus Il settings page where you can make a suggested
change to assignments or settings.

Figure 2-15. Incremental Compilation Advisor

=| Incremental Compilation Advisor

General Recommendations
+ &) Bottom-Up Design Recommendations

e the Incremental Compilation Adviso
heck Timing Independent Recommendations Recommendation !mp\emenl the recommendations in the Incremental Compilation Advisor to effectively partition your design as part of an
Classic Timing Analyzer - Check Timing Dependent Recomment
imeQuest Timing Analyzer - Check Timing Dependent Recomn | Description The Incremental Compilation Adwisor provides a set of recommendations for effectively partitioning your design into

incremental design flow,

Ingicaly independent units. The recommendations are not mandatony but represent a good set of heuristics for
partitioning pour logic.

Some of the design or project sellings malch O plimization Advisor recammendations, bul same dont.
/" Design or project settings match Diptimization Advisor recommendations.
"4 Dplimization Advisor cannat veriy il he recommended changes have been implemented.

Legend g Design or project settings do nat match O ptimization Advisar recommendations,

Action Click the "Check Recommendations” buttons on the "Check Timing Independent Recommendations™ panel and the
“'Classic: Timing Analyzer - Check Timing D ependent Recommendations" or "Timeluest Timing Analyzer - Check Timing
Dependent Recommendstions' [depending on vour cheice of ining analyzer) panel to check your design for vidlations
of any of the recommendations. Yiolations are reported on the appropriate recommendations panel after you have
dlicked the "'Check Recommendations" button. Use the recommendations provided by the Incremental Compilation
Advisor ta make project or individual setings and assignments, or make design changes

2-60

To check whether the design follows the recommendations, go to the
Timing Independent Recommendations page or the Timing
Dependent Recommendations page, and click Check
Recommendations. For large designs, these operations can take a few
minutes. After you perform a check operation, symbols appear next to
each recommendation to indicate whether the design or project setting
follows the recommendations, or if some or all of the design or project
settings do not follow the recommendations. Refer to the Legend on the
How to use the Incremental Compilation Advisor page in the advisor
for more information.

For some items in the Advisor, if your design does not follow the
recommendation, the Check Recommendations operation lists any parts
of the design that could be improved. For example, if not all of the
partition I/O ports follow the Register All Ports recommendation, the
advisor displays a list of unregistered ports with the partition name and
the source and destination nodes for the port.

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

When the advisor provides a list of nodes, you can right-click on a node
and click Locate to cross-probe to other Quartus II features such as the
RTL Viewer, Chip Planner, or the design source code in the text editor.
= The first time you open the RTL or Technology Map Viewer, a
preprocessor stage runs. This preprocessor resets the
Incremental Compilation Advisor, so you must rerun the Check
Recommendations process. Alternatively, you can open the
appropriate netlist viewer before you use the Incremental
Compilation Advisor if you want to locate nodes in the viewer.

Criteria for Successful Partition and Floorplan Schemes

The end results of design partitioning and floorplan creation differ from
design to design. However, it is important to evaluate your results to
ensure that your scheme is successful. Compare the results before
creating your floorplan location assignments to the results after doing so,
and consider using another scheme if any of the following guidelines are
not met:

B No degradation in fy;ax should be observed after the design is
partitioned and floorplan location assignments are created. In many
cases, a slight increase in fy5x is possible.

B The area increase should be no more than 5% after the design is
partitioned and floorplan location assignments are created.

B The time spent in the routing stage should not significantly increase.

The amount of compilation time spent in the routing stage is reported in
the Messages window with an Info message indicating the elapsed time
for Fitter routing operations. If you notice a dramatic increase in routing
time, the floorplan location assignments may be creating substantial
routing congestion. In this case, decrease the number of LogicLock
regions. Doing so typically reduces the compilation time in subsequent
incremental compilations, and may also improve design performance. To
help you modify your LogicLock regions, you can identify areas of
congested routing in your design using the Chip Planner. On the Tools
menu, click Chip Planner. To view the routing congestion, click the
Layers icon located next to the Task menu. Under Background Color
Map, select the Routing Utilization map.

Altera Corporation 2-61
October 2007

Quartus Il Handbook, Volume 1

Recommended
Design Flows
and Compilation
Application
Examples

2-62

This section provides design flows for solving common timing closure

and team-based design issues using incremental compilation. Each flow

describes the situation in which it should be used, and gives a

step-by-step description of the commands required to implement the
ow. These examples are divided into the following two sections:

B “Top-Down Incremental Design Flows”
B “Bottom-Up Incremental Design Flows”

Top-Down Incremental Design Flows

There are four top-down incremental design flow examples that reduce
compilation time while making incremental changes to the design. The
following design flow examples also allow you to achieve timing closure
more quickly by optimizing or preserving the results for one partition in
a larger design:

B “Design Flow 1—Changing a Source File for One of Multiple
Partitions in a Top-Down Compilation Flow”

B “Design Flow 2—Optimizing the Placement for One of Multiple
Partitions in a Top-Down Compilation Flow” on page 2-63

B “Design Flow 3—Preserving One Critical Partition in a Multiple-
Partition Design in a Top-Down Compilation Flow” on page 2-64

B “Design Flow 4—Placing All but One Critical Partition in a
Multiple-Partition Design in a Top-Down Compilation Flow” on
page 2-65

All examples assume you have set up the project to use the full
incremental compilation flow, using the steps described in “Quick Start
Guide — Summary of Steps for an Incremental Compilation Flow” on
page 2-11.

Design Flow 1—Changing a Source File for One of Multiple Partitions in a
Top-Down Gompilation Flow

Use this flow to update the source file in one partition without having to
recompile the other parts of the design. You can reduce the compilation
time by keeping the post-fit netlists for the unchanged partitions, while
also preserving the performance for these blocks to reduce additional
timing closure efforts.

Example background: You have just performed a lengthy, complete
compilation of a design that consists of multiple partitions. An error is
found in the HDL source file for one partition and it is being fixed.
Because the design is currently meeting timing requirements and the fix
is not expected to affect timing performance, it makes sense to compile
only the affected partition and preserve the rest of the design.

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

Perform the following steps to update the single source file:
1. Apply and save the fix to the HDL source file.
2. On the Assignments menu, click Design Partitions Window.

3. For the partitions that should be preserved, change the Netlist Type
to Post-Fit. You can set the Fitter Preservation Level to either
Placement or Placement and Routing. For the partition that
contains the fix, you can change the netlist type to Source File.
Making the Source File setting is optional because the Quartus II
software recompiles partitions if changes are detected in a
source file.

4. Click Start Compilation to incrementally compile the fixed HDL
code. This compilation should take much less time than the initial
full compilation.

5. Run simulation again to ensure that the bug is fixed, and use the
Timing Analyzer report to ensure that timing results have not
degraded.

Design Flow 2—O0ptimizing the Placement for One of Multiple Partitions
in a Top-Down Compilation Flow

Use this flow when you want to optimize the results of one partition
when the other partitions in the design already meet their requirements.

Example background: You have just performed a lengthy full
compilation of a design that consists of multiple partitions. The Timing
Analyzer reports that the clock timing requirement is not met. After some
analysis, you believe that timing closure can be achieved if placement can
be improved for one particular partition. You have at least three
optimization techniques in mind: raising the Placement Effort Multiplier,
enabling Physical Synthesis, and running the Design Space Explorer.
Because these techniques all involve significant compilation time, it
makes sense to apply them (or just one of them) to only the partition in
question.

Perform the following steps to raise the Placement Effort Multiplier or
enable Physical Synthesis:

1. On the Assignments menu, click Design Partitions Window.
2. For the partition in question, set the Netlist Type to Post-Synthesis.

This causes the partition to be placed and routed with the new Fitter
settings (but not resynthesized) during the next compilation.

2-63

Quartus Il Handbook, Volume 1

2-64

3. For the remaining partitions (including the top-level entity), set the
Netlist Type to Post-Fit. Set the Fitter Preservation Level to
Placement to allow for the most flexibility during routing. To
reduce compilation time further, use the Placement and Routing
setting. These partitions are preserved during the next compilation.

4. Apply the desired optimization settings.

5. Click Start Compilation to incrementally compile the design with
the new settings. During this compilation, the Partition Merge stage
automatically merges the post-synthesis netlist of the critical
partition with the post-fit netlists of the remaining partitions. This
“merged” netlist is fed to the Fitter. The Fitter then refits only one
partition. Since the effort is reduced as compared to the initial full
compilation, the compilation time is also reduced.

To use Design Space Explorer, perform the following steps:
1. Repeat steps 1-3 of the previous set of steps.

2. Save the project and run Design Space Explorer.

Design Flow 3—Preserving One Critical Partition in a Multiple-Partition
Design in a Top-Down Compilation Flow

Use this flow to optimize one partition by itself, and then lock the
placement to preserve its results while you complete the rest of your
design. For example, you can incorporate some IP that comes with
instructions to perform optimization before you incorporate the rest of
your custom logic.

Example background: Prior to any compilation, you have some insight
into which partition will be the most critical (in terms of timing) after
placement and routing. To help achieve timing closure, you decide to use
the following compilation flow.

The critical partition is placed and routed by itself, with all optimizations
turned on (manually or through Design Space Explorer). After timing
closure is achieved for this partition, its content and placement are
preserved and the remaining partitions are fit with normal or reduced
optimization levels so that the compilation time can be reduced.

s This flow generally works only if the critical path is contained
inside the partition in question. This is one reason why both the

inputs and outputs of each partition should be registered.

To implement this design flow, perform the following steps:

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

Partition the design and create floorplan location assignments.

For the partition expected to be critical, on the Assignments menu,
click Design Partitions Window and set Netlist Type to Source
File.

For the remaining partitions (other than any direct or indirect
parents of the critical one), set the Netlist Type to Empty.

Click Start Compilation to compile with the desired optimizations
turned on, or use Design Space Explorer.

Check Timing Analyzer reports to ensure that timing requirements
are met. If so, proceed to step 6. Otherwise, repeat steps 4 and 5 until
the requirements are met.

In the Design Partitions Window, set the Netlist Type to Post-Fit
for the critical partition. Set the Fitter Preservation Level to
Placement and Routing to preserve the results.

Change the Netlist Type from Empty to Source File for the
remaining partitions.

Turn off the optimizations set in step 4, and compile the design.
Turning off the optimizations at this point does not affect the fitted
partition, because its Netlist Type is set to Post-Fit.

Check Timing Analyzer reports to ensure that timing requirements
are met. If not, make design or option changes and repeat step 8 and
step 9 until the requirements are met.

(&~ This flow is similar to a bottom-up design flow in which a
module is implemented separately and is merged into the
rest of the design afterwards. Refer to “Empty Partitions”
on page 2-26 for more information about potential issues.
Ensure that if there are any partitions representing a design
file that is missing from the project, you create a placeholder
wrapper file that defines the port interface.

Design Flow 4—Placing All but One Critical Partition in a
Multiple-Partition Design in a Top-Down Compilation Flow

Use this flow if you want to compile your design without one
timing-critical partition or a partition that requires a long compilation
time, and then preserve the rest of your design when you add the last
design block.

2-65

Quartus Il Handbook, Volume 1

Example background: Prior to any compilation, you have some insight
into which partition will be the most critical (in terms of timing) after
placement and routing. To help achieve timing closure, you decide to use
the following compilation flow.

Only the non-critical partitions are placed and routed initially, using
floorplan location assignments. These non-critical partitions are then
preserved when the critical partition is introduced into the Fitter, with
various optimizations turned on (manually or through Design Space
Explorer).

To implement this design flow, perform the following steps:
1. Perform partitioning and floorplan creation.

2. For the partition expected to be critical, on the Assignments menu,
click Design Partitions Window and set the Netlist Type to Empty.

3. For the remaining partitions, set the Netlist Type to Source File.
4. Click Start Compilation to compile the non-critical partitions.

5. Check the Timing Analyzer report to ensure that the timing
requirements are met. If so, proceed to step 6. Otherwise, make
design or option changes and repeat steps 4 and 5 until the
requirements are met.

6. In the Design Partitions Window, set the Netlist Type to Post-Fit
for the processed partitions. Set the Fitter Preservation Level to
Placement to allow for the most flexibility during routing.

7. Change the Netlist Type from Empty to Source File for the
partition expected to be critical.

8. Click Start Compilation to compile the design with optimizations
turned on, or use Design Space Explorer.

9. Check the Timing Analyzer report to ensure that the timing
requirements are met. If not, make design or option changes and
repeat steps 8 and 9 until the requirements are met.

2-66 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

=" This flow is similar to a bottom-up design flow, in which a
module is implemented separately and merged into the rest of
the design afterwards. Refer to “Empty Partitions” on page 2-26
for more information about potential issues. If there are any
partitions representing a design file that is missing from the
project, ensure that you create a placeholder wrapper file that
defines the port interface.

Bottom-Up Incremental Design Flows

This section contains the following three bottom-up design flow
examples to illustrate team-based design methodologies and IP reuse:

B “Design Flow 5—Implementing a Team-Based Bottom-Up Design
Flow” on page 2-67

B “Design Flow 6—Performing Design Iteration in a Bottom-Up
Design Flow” on page 2-71

B “Design Flow 7—Creating Hard-Wired Macros for IP Reuse” on
page 2-73

Design Flow 5—Implementing a Team-Based Bottom-Up Design Flow

This example describes how to use incremental compilation in a
bottom-up design flow.

Example background: A project consists of several lower-level
subdesigns that are implemented separately by different designers. The
top-level project instantiates each of these subdesigns exactly once. The
subdesign designers want to optimize their designs independently and
pass on the results to the project lead.

As the project lead in this scenario, perform the following steps to prepare
the design for a successful bottom-up design methodology:

1. Create a new Quartus II project that will ultimately contain the full
implementation of the entire design.

2. To prepare for the bottom-up methodology, create a “skeleton” of
the design that defines the hierarchy for the subdesigns that will be
implemented by separate designers. The top-level design
implements the top-level entity in the design and instantiates
wrapper files that represent each subdesign by defining only the
port interfaces but not the implementation.

2-67

Quartus Il Handbook, Volume 1

Make project-wide settings. Select the device, make global
assignments for clocks and device I/O ports, and make any global
signal constraints to specify which signals can use global routing
resources.

Ensure that Full incremental compilation is turned on.

Make design partition assignments for each subdesign and set the
Netlist Type for each design partition that will be imported to
Empty in the Design Partitions window.

Create LogicLock regions for each of the lower-level partitions to
create a design floorplan. This floorplan should consider the
connectivity between partitions and estimates of the size of each
partition based on any initial implementation numbers and
knowledge of the design specifications.

On the Project menu, click Generate Bottom-Up Design Partition
Scripts, or launch the script generator from Tcl or the command
prompt.

Make any changes to the default script options as desired. Altera
recommends that you pass all the default constraints, including
LogicLock region, for all partitions and virtual pin location
assignments. Altera further recommends that you add a maximum
delay timing constraint for the virtual I/O connections in each
partition to help timing closure during integration at the top level. If
lower-level projects have not already been created by the other
designers, use the partition script to set up the projects so that you
can easily take advantage of makefiles.

Provide each lower-level designer with the Tcl file to create their
project with the appropriate constraints. If you are using makefiles,
provide the makefile for each partition.

As the designer of a lower-level subdesign in this example, perform the
appropriate set of steps to successfully export your design, whether your
design team is using makefiles, or exporting and importing the design
manually.

2-68

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

If you are using makefiles, perform the following steps:

1.

Use the make command and the makefile provided by the project
lead to create a Quartus II project with all design constraints, and
compile the project.

The information about which source file should be associated with
which partition is not available to the software automatically, so
you must specify this information in the makefile. You must specify
the dependencies before the software will rebuild the project after
the initial call to the makefile.

When you have achieved the desired compilation results and the
design is ready to be imported into the top-level design, the project
lead can use the master_makefile command to export this
lower-level partition and create a Quartus II Exported Partition file,
and then import it into the top-level design.

If you are not using makefiles, perform the following steps:

1.

2.

Altera Corporation
October 2007

Create a new Quartus II project for the subdesign.

Make LogicLock region assignments and global assignments
(including clock settings) as specified by the project lead.

Make Virtual Pin assignments for ports which represent
connections to core logic instead of external device pins in the top-
level module.

Make floorplan location assignments to the Virtual Pins so that they
are placed in their corresponding regions as determined by the
top-level module. This provides the Fitter with more information
about the timing constraints between modules. Alternatively, you
can apply timing I/O constraints to the paths that connect to virtual
pins.

Ensure that Full incremental compilation is turned on and proceed
to compile and optimize the design as needed.

When you have achieved the desired compilation results, on the

Project menu, click Export Design Partition. The Export Design
Partition dialog box appears.

2-69

Quartus Il Handbook, Volume 1

2-70

7. Under Netlist to export, select the netlist type Post-fit netlist to
preserve the placement and performance of the subdesign, and turn
on Export routing to include the routing information if required.
You can export Post-synthesis netlist instead if placement or
performance preservation is not required.

8. Provide the Quartus II Exported Partition file to the project lead.

Finally, as the project lead in this example, perform the appropriate set of
steps to import the files sent in by the designers of each lower-level
subdesign partition.

If you are using makefiles, perform the following steps:

1. Use the master_makefile command to export each lower-level
partition and create Quartus II Exported Partition files, and then
import them into the top-level design.

2. The software does not have all the information about which source
files should be associated with which partition, so you must specify
this information in the makefile. The software cannot rebuild the
project if source files change unless you specify the dependencies.

If you are not using makefiles, perform the following steps:

1. After you obtain the Quartus II Exported Partition file for each
subdesign from the other designers on the team, on the Project
menu, click Import Design Partition and specify the partition in the
top-level project that is represented by the subdesign Quartus II
Exported Partition file.

2. Repeat the import process described in step 1 for each partition in
the design. After you have imported each partition once, select all
the design partitions and use the Reimport using latest import files
at previous locations option to import all of the files from their
previous locations at one time.

Resolving Assignment Conflicts During Import

When importing the subdesigns, the project lead may become aware of
some assignment conflicts. This can occur, for example, if the subdesign
designers changed their LogicLock regions to account for additional logic
or placement constraints, or if the designers applied I/O port timing
constraints that differ from constraints added to the top-level project by
the project lead. To address these conflicts, the project lead may want to
take one or both of the following actions:

B Allow new assignments to be imported

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

B Allow existing assignments to be replaced or updated

When LogicLock region assignment conflicts occur, the project lead may
take one of the following actions:

m Allow the imported region to replace the existing region
® Allow the imported region to update the existing region
B Skip assignment import for regions with conflicts

The project lead can address all of these situations using the Advanced
Import Settings as described in “Importing Assignments and Advanced
Import Settings” on page 2-37.

If the placement of different subdesigns conflict, the project lead can also
set the partition’s Fitter Preservation Level to Netlist Only, which allows
the software to re-perform placement and routing with the imported
netlist.

Importing a Partition to be Instantiated Multiple Times

In this variation of the scenario, one of the subdesigns is instantiated more
than once in the top-level design. The designer of the subdesign may
want to compile and optimize the entity once under a lower-level project,
and then import the results as multiple partitions in the top-level project.

In this case, placement conflict resolution as described in “Resolving
Assignment Conflicts During Import” is mandatory because the top-level
partitions share the same imported post-fit netlist. If you import multiple
instances of a subdesign in the top-level design, the imported LogicLock
regions are automatically set to Floating status.

If you choose to resolve conflicts manually, you can use the import
options and manual LogicLock assignments to specify the placement of
each instance in the top-level design.

Design Flow 6—Performing Design Iteration in a Bottom-Up Design Flow

Use this flow if you want to re-optimize lower-level partitions in a
bottom-up compilation by incorporating additional constraints from the
integrated top-level design.

Example background: A project consists of several lower-level
subdesigns that have been exported from separate Quartus II projects
and imported into the top-level design in a bottom-up compilation flow.
In this example, integration at the top level has failed because the timing
requirements are not met. The timing requirements are met in each
individual lower-level project, but critical inter-partition paths in the top
level are causing timing requirements to fail.

2-71

Quartus Il Handbook, Volume 1

After trying various optimizations at the top level, the project lead
determines that they cannot meet the timing requirements given the
current lower-level partition placements that were imported. The project
lead decides to pass additional constraints to the lower-level projects to
improve the placement.

To implement this design flow, perform the following steps:

1.

2-72

In the top-level design, on the Project menu, click Generate
Bottom-Up Design Partition Scripts, or launch the script generator
from Tcl or the command line.

Because lower-level projects have already been created for each
partition, turn off Create lower-level project if one does not exist.

Make any additional changes to the default script options as
desired. Altera recommends that you pass all the default
constraints, including LogicLock regions, for all partitions and
virtual pin location assignments. Altera also recommends that you
add a maximum delay timing constraint for the virtual I/O
connections in each partition.

The Quartus II software generates Tcl scripts for all partitions, but in
this scenario, you would focus on the partitions that make up the
cross-partition critical paths. The following assignments are
important in the script:

e Virtual pin assignments for module pins not connected to device
I/0 ports in the top-level design.

e Location constraints for the virtual pins that reflect the initial
top-level placement of the pin’s source or destination. These
help make the lower-level placement “aware” of its
surroundings in the top-level, leading to a greater chance of
timing closure during integration at the top-level.

[INPUT MAX DELAY and OUTPUT MAX DELAY timing
constraints on the paths to and from the I/O pins of the
partition. These constrain the pins to optimize the timing paths
to and from the pins.

The low-level designers source the file provided by the project lead.

e To source the Tcl script from the Quartus II GUI, on the Tools
menu, click Utility Windows and open the Tcl console.
Navigate to the script’s directory, and type the following

command:

source <filename> «

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

e Tosource the Tcl script at the system command prompt, type the
following command:

quartus_cdb -t <filename>.tcl ¢

6. The lower-level designers recompile their designs with the new
assignments.

7. The lower-level designers re-export their results.
8. The top-level designer re-imports the results.

9. You can now analyze the design to determine if the timing
requirements have been achieved. Since the lower-level partitions
were compiled with more information about connectivity at the top
level, it is more likely that the inter-partition paths have improved
placement which helps to meet the timing requirements.

Design Flow 7—Creating Hard-Wired Macros for IP Reuse

Use this design flow to create a hard-wired macro or IP block that can be
instantiated in a top-level design. This flow provides the ability to export
a design block with placement (and optionally routing) information and
to import any number of copies of this pre-placed macro into another
design.

Example background: An IP provider wants to produce and sell an IP
core for a component to be used in higher-level systems. The IP provider
wants to optimize the placement of their block for maximum
performance in a specific Altera device and then pass on the placement
information to their end customer. To preserve their IP, they also prefer
to send a compiled netlist instead of providing the HDL source code to
their customer.

The customer first specifies what Altera device they are using for this
project and provides the design specifications.

As the IP provider in this example, perform the following steps to export
a preplaced IP core (or hard macro):

1. Create an HDL black box wrapper file that defines the port interface
for the IP core and provide the file to the customer to instantiate as
an empty partition in their top-level design.

2. Create a Quartus II project for the IP core.

3. Create a LogicLock region for the design hierarchy to be exported.

2-73

Quartus Il Handbook, Volume 1

2-74

Creating a floorplan using LogicLock regions is recommended
although not required for the generation and use of QXP files.
Using a LogicLock region for the IP core allows the customer to
create an empty placeholder region to reserve space for the IP in
their design floorplan. This ensures there are no conflicts with
the top-level design logic, and that the IP core will not affect the
timing performance of other logic in the top-level design.
LogicLock regions can be effective to reduce resource utilization
conflicts and to enable performance preservation. In addition,
without LogicLock regions, placement can be preserved only in
an absolute manner. With LogicLock regions, you can preserve
placement absolutely or relative to the origin of the associated
regions. This is important when a QXP file is imported for
multiple partition hierarchies in the same project, because in this
case the location of at least one instance in the top-level project
does not match the location used by the IP provider.

If required, add any logic (such as PLLs or other logic that will be
defined in the customer’s top-level design) around the design
hierarchy to be exported. If you do so, create a design partition for
the design hierarchy that is to be exported as an IP core.

For more information, refer to “Exporting a Lower-Level Block
within a Project” on page 2-35.

Optimize the design and close timing to meet the design
specifications.

Export the appropriate level of hierarchy into a single QXP file.
Following a successful compilation of the project, you can generate
a QXP file from the GUI, the command-line, or with Tcl commands:

e If you are using the Quartus II GUI, use the Export Design
Partition command.

e If you are using command-line executables, run quartus_cdb
with the - -incremental compilation_ export option.

e If you are using Tcl commands, run the following command:
execute flow -incremental compilation export.

Provide the QXP file to the customer. Note that you do not have to
send any of your design source code to the customer; the design
netlist as well as placement and routing information is contained
within this single file.

As the customer in this example, incorporate the IP core in your design
by performing the following steps:

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

Create a Quartus II project for the top-level design and instantiate a
copy or multiple copies of the IP core. Add the black box wrapper
file from the IP provider to your project to specify the entity name
and the port interface.

On the Processing menu, point to Start and click Perform Analysis
& Elaboration to identify the design hierarchy.

Create a design partition for each instance of the IP core (refer to
“Creating Design Partitions” on page 2-100) with the Netlist Type
set to Empty (refer to “Setting the Netlist Type for Design
Partitions” on page 2-22).

You can now continue work on your part of the design and accept
the IP core from the IP provider whenever it is ready.

Import the QXP file from the IP provider for the appropriate
partition hierarchy. You can import a QXP file from the GUI, the
command-line, or with Tcl commands.

e If you are using the Quartus II GUI, use the Import Design
Partition command.

e From the command-line, run quartus_cdb with the
--incremental compilation_import option.

e With Tcl commands, run the following command:
execute flow -incremental compilation import.

You can set the imported LogicLock regions to floating or move
them to a new location, with the relative locations of the region

contents preserved. Routing information is preserved whenever
possible.

The Fitter ignores relative placement assignments if the
LogicLock region’s location in the top-level design is not
compatible with the locations exported in the QXP file.

You can control whether to preserve the imported netlist only,
placement, or placement and routing (if the placement or placement
and routing information was exported in the QXP file) with the
Fitter Preservation Level.

By default, the software preserves the absolute placement and
routing of all nodes in the imported netlist if you choose to preserve
placement and routing. However, if you use the same QXP files for
multiple partitions in the same project, the software preserves the
relative placement for each of the imported modules (relative to the
origin of the LogicLock region).

2-75

Quartus Il Handbook, Volume 1

Incremental
Compilation
Restrictions

2-76

=" If the IP provider did not define a LogicLock region in the
exported partition, the software preserves absolute placement
locations and this leads to placement conflicts if the partition is
imported for more than one instance.

This section documents the restrictions and limitations that you may
encounter when using incremental compilation, including interactions
with other Quartus II features. Some restrictions apply to both top-down
and bottom-up design flows, while some additional restrictions apply
only to bottom-up design flows.

The following restrictions and limitations are covered:

B “Using Incremental Compilation with Quartus II Archive Files” on
page 2-77

B “OpenCore Plus MegaCore Functions in Bottom-Up Flows” on
page 2-78

B “SignalProbe Pins and Engineering Change Management with the
Chip Planner” on page 2-78

B “SignalTap II Embedded Logic Analyzer in Bottom-Up Compilation

Flows” on page 2-80

“HardCopy Compilation Flows” on page 2-82

“Restrictions on Megafunction Partitions” on page 2-84

“Routing Preservation in Bottom-Up Compilation Flows” on

page 2-84

B “Bottom-Up Design Partition Script Limitations” on page 2-84

B “Register Packing and Partition Boundaries” on page 2-87

B “I/O Register Packing” on page 2-87

Using Incremental Synthesis Only Instead of Full Incremental
Compilation

You can turn on incremental compilation for only the synthesis stage of
compilation to perform incremental synthesis, with no incremental
place-and-route. This mode is not recommended for new projects
because it is not compatible with certain Quartus II design flows, such as
formal verification and incremental SignalTap II verification.

To use incremental synthesis only, you can follow the steps for full
incremental compilation, but turn on the Incremental synthesis only
(Can reduce compilation time for a design with partition assignments)
option on the Incremental Compilation page under Compilation
Process Settings in the Settings dialog box.

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

In this mode, the Fitter uses a flattened netlist without partition
boundaries, so the design is always replaced and rerouted. The difference
between this flow and the one shown in Figure 2-2 on page 2-7 is that the
partition merge stage does not accept post-fit netlists produced by the
Fitter, and the Fitter does not compile partitions separately. The following
differences exist in the impact of incremental synthesis only as compared
to full incremental compilation:

B Compilation time reduction is limited to Quartus II integrated
synthesis.

B You cannot preserve placement and routing, therefore the feature
does not preserve partition timing performance.

B A partition is automatically resynthesized whenever you make a
change to the source code or any synthesis assignments (changes to
synthesis or fitting assignments do not trigger an automatic
recompilation with Full Incremental Compilation).

Preserving Exact Timing Performance

Timing performance might change slightly in the top-level design when
all partitions are incorporated due to differences between the separate
partitions and the full design. For example, there may be parasitic effects
or crosstalk that was not present in the initial compilation with only part
of the design. Additional fan-out on routing lines can also degrade timing
performance. To ensure that the design will meet performance when all
partitions are present, only approximately 2% margin is required. This
applies to both bottom-up and top-down methodologies. The Fitter
automatically works to achieve more than 2% margin when compiling
any design.

Using Incremental Compilation with Quartus Il Archive Files

The post-synthesis and post-fitting netlist information for each design
partition is stored in the project database. When you archive a project, the
database information is not included in the archive unless you include the
database files in the Quartus II Archive file (.qar). In addition, when you
import a design partition into a top-level design, the lower-level design
netlist is stored in the project database for the top-level design (the
top-level project does not use the original source files or the Quartus II
Exported Partition file). If you archive the top-level project, the imported
design information is not included unless the database files are included
in the Quartus II Archive file.

Altera recommends that you turn on Include database from compilation
and simulation in the Archive Project dialog box if any form of
incremental compilation is used so that compilation results are
preserved.

2-77

Quartus Il Handbook, Volume 1

2-78

Formal Verification Support

You cannot use design partitions if you are creating a netlist for a formal
verification tool.

OpenCore Plus MegaCore Functions in Bottom-Up Flows

You can use OpenCore Plus MegaCore® functions in top-down
incremental compilation flows beginning with the Quartus II software
version 7.1. You cannot export partitions containing OpenCore Plus
MegaCore functions, so you cannot use OpenCore Plus functions in a
bottom-up design flow. Include any OpenCore IP functions in your
top-level Quartus II project.

Importing Encrypted IP Cores in Bottom-Up Flows

Proper license information is required to compile encrypted IP cores. The
license assignment is imported in to the top-level project when a design
is imported as a QXP file. However, the license assignment contains an
absolute path to the licensed IP source files. Therefore, the QXP file
usually works correctly only if imported into a top-level project on the
same computer as the lower-level project.

To avoid this problem, you can include this partition in the top-level
project instead of importing it, because IP cores generally do not require
additional changes by a designer in the project team. You can set the
partition that contains the core to Post-Fit after the first compilation to
reduce future compilation times, because the partition will not be
changing in any subsequent compilation. You can also set the partition to
Empty to exclude the IP core from the database until you are ready to
compile the entire design.

If you do want to import an encrypted IP core, copy the encrypted IP
source files to the top-level project's computer in exactly the same path
structure. For example, if the IP encrypted source file was
d:/work/my_encrypted_file.vhd, the top-level designer that imports the
QXP file must create the same folder and place the file in this location.

SignalProbe Pins and Engineering Change Management with the
Chip Planner

When you create SignalProbe pins or use the Resource Property Editor to
make changes due to engineering change orders (ECOs) after performing
a full compilation, recompiling the entire design is not necessary. These
changes are made directly to the netlist without performing a new
placement and routing. You can preserve these changes using a post-fit

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

netlist with placement and routing. When a partition is recompiled,
SignalProbe pins and ECO changes in unaffected partitions are
preserved.

For more information about using the SignalProbe feature to debug your
design, refer to the Design Debugging Using the SignalTap 11 Embedded
Logic Analyzer chapter in volume 3 of the Quartus II Handbook. For more
information about using the Chip Planner and the Resource Property
Editor to make ECOs, refer to the Engineering Change Management with
the Chip Planner chapter in volume 2 of the Quartus II Handbook.

To preserve SignalProbe pins or ECO changes, the partitions must be set
to a Netlist Type of Post-fit with the Fitter Preservation Level set to
Placement and routing. If any partitions with SignalProbe pins or ECO
changes are set to post-fit without routing or to netlist only, the software
issues a warning and internally uses the post-fit netlist with placement
and routing. If the partitions are set to use the source code or a
post-synthesis netlist, the software issues a warning and the post-fit
SignalProbe pins or ECO changes are not included in the new
compilation. However, partitions can become linked due to the
SignalProbe pins or ECO changes, as described below, in which case all
linked partitions inherit the netlist type from the linked partition with the
highest level of preservation.

Linked Partitions Due to SignalProbe Pins or ECO Changes

If ECO changes affect more than one partition or the connection between
any partitions, the partitions become linked. All of the higher-level
“parent” partitions up to their nearest common parent are also linked. In
this case, the connection between the partitions is actually defined
outside of the two partitions immediately affected, so all the partitions
must be compiled together. All linked partitions use the same netlist type,
and they inherit the netlist type from the linked partition with the highest
level of preservation.

When a SignalProbe pin is created, it affects the partition that contains the
node being probed. In addition, any pipeline registers are created in the
same partition as the node being probed. The SignalProbe output pin is
assigned to the top-level partition. Therefore, there is a new connection
formed between the top-level partition and the lower-level partition that
is being probed. Because of this connection, the lower-level partition
being probed and all of the higher-level “parent” partitions up to the top
level become linked. All linked partitions use the same netlist type, and
they inherit the netlist type from the linked partition with the highest
level of preservation.

2-79

Quartus Il Handbook, Volume 1

2-80

When partitions are linked, they can change which netlists are preserved
when you recompile the design, as follows:

B If all the linked partitions are set to use the source code or a
post-synthesis netlist, the partitions are refit as normal. In this case,
the SignalProbe pins or ECO changes are not included in the new
netlists, so you must reapply the changes in the Change Manager.

B If any of the linked partitions is set to the Post-Fit netlist type, and
there are no source code changes, the software issues a warning and
internally uses the post-fit netlist with placement and routing for all
linked partitions. By preserving the appropriate post-fit netlists, the
software can preserve the SignalProbe pins or ECO changes.

B If any of the linked partitions is set to the Post-Fit (Strict) netlist type,
the software issues a warning and internally uses the post-fit netlist
with placement and routing for all linked partitions, regardless of
any source code changes. By preserving the appropriate post-fit
netlists, the software can preserve the SignalProbe pins or ECO
changes. Note that in this case, source code changes in any of the
linked partitions are not included in the new netlist.

B Ifany of the linked partitions is recompiled due to a change in source
code, the software issues a warning and recompiles the other linked
partition(s) as well. When this occurs, the SignalProbe pins or ECO
changes are not included in the new netlist, so you must reapply the
changes in the Change Manager.

Exported Partitions

In a bottom-up incremental compilation, the exported netlist includes all
currently saved SignalProbe pins and ECO changes. This might require
flattening and combining lower-level partitions in the child project to
avoid partition boundary violations at the top level. After importing this
netlist, changes made in the lower-level partition do not appear in the
Change Manager at the top level.

If you make any ECO changes that affect the interface to the lower-level
partition, the software issues a warning message during the export
process that this netlist will not work in the top-level design without
modifying the top-level HDL code to reflect the lower-level change.

SignalTap Il Embedded Logic Analyzer in Bottom-Up
Compilation Flows

You can use the SignalTap® Il Embedded Logic Analyzer in any project
that you can compile and program into an Altera device. You cannot
export a lower-level project that uses a SignalTap II File (.stp) for the
SignalTap II Logic Analyzer in a bottom-up incremental compilation
flow. You must disable the SignalTap II feature and recompile the design

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

before you export the design as a partition. You can instantiate the
SignalTap I Megafunction directly in your lower-level design (instead of
using an .stp file) and export the design to the top level in a bottom-up
flow.

You can tap any nodes in a Quartus II project, including nodes imported
from other projects. Use the appropriate filter in the Node Finder to find
your node names. Use SignalTap II: post-fitting if the Netlist Type is
Post-Fit to incrementally tap node names in the post-fit netlist database.
Use SignalTap II: pre-synthesis if the Netlist Type is Source File to make
connections to the source file (pre-synthesis) node names when you
synthesize the partition from the source code.

«® For details about using the SignalTap II logic analyzer in an incremental
design flow, refer to the Design Debugging Using the SignalTap II Embedded
Logic Analyzer chapter in volume 3 of the Quartus I1I Handbook.

Logic Analyzer Interface in Bottom-Up Compilation Flows

You can use the Logic Analyzer Interface in any project that you can
compile and program into an Altera device. You cannot export a
lower-level project that uses the Logic Analyzer Interface in a bottom-up
incremental compilation flow. You must disable the Logic Analyzer
Interface feature and recompile the design before you export the design
as a partition.

«® For more information about the Logic Analyzer Interface, refer to the
In-System Debugging Using External Logic Analyzers chapter in volume 3
of the Quartus IT Handbook.

Migrating Projects with Design Partitions to Different Devices

Partition assignments are still valid if you migrate to a different device
density or family. LogicLock region size is valid if you migrate to a device
in the same family, but the origin location is not valid. Specific floorplan
assignments are not valid for different devices or families because the
location coordinates change between devices.

Post-synthesis netlists are valid if you migrate to a different-sized device
in the same family. Post-fit netlists are not valid if you migrate to a
different device density or family.

Altera Corporation 2-81
October 2007

Quartus Il Handbook, Volume 1

HardCopy Compilation Flows

HardCopy APEX and HardCopy Stratix Devices

Incremental compilation with the Quartus II software is not supported
for HardCopy APEX or HardCopy Stratix design flows.

HardCopy Il Migration Flows

Top-down incremental compilation is supported for the base family in
HardCopy Il migration flows for both the Stratix II first and HardCopy II
first flows. Design partitions are migrated to the companion device.
LogicLock regions are suggested for design partitions but are not
migrated to the companion device, due to the different device
architecture. However, you can not make changes to the design after
migration because the design would not match the compilation results for
the base family.

The Netlist only preservation level is not supported for Post-fit netlists for
Stratix II or HardCopy II device compilations when there is a migration
device set (that is, for HardCopy II device compilations with a Stratix II
migration device, or Stratix II device compilations with a HardCopy II
migration device).

Bottom-up incremental compilation is not supported in HardCopy II or
Stratix II device compilations when there is a migration device setting.
The Revision Compare feature requires that the HardCopy II and FPGA
netlists are the same. Therefore, all operations performed on one revision
must also occur on the other revision. This is accomplished by logging all
operations and replaying them on the other revision. Unfortunately,
using the bottom-up flow and importing partitions does not support this
requirement. You can often use a top-down flow with Empty partitions
to implement behavior similar to bottom-up flows.

HardCopy Il Stand-Alone Compilations

You can use both top-down and bottom-up incremental compilation for
stand-alone HardCopy II compilations.

Routing preservation is not supported for HardCopy II devices.
Therefore, the Placement and Routing preservation level is not available,
and routing cannot be exported in the bottom-up flow.

2-82 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Assignments Made in HDL Source Code in Bottom-Up Flows

Assignments made with I/O primitives or the altera_attribute
HDL synthesis attribute in lower-level partitions are not currently
honored at the top level in a bottom-up flow. The assignments are
processed at the top level, but cannot always be applied to the netlist
database after import. Fitter-related assignments (such as I/O
termination setting) can be applied correctly if you use a post-synthesis
QXP file.

Compilation Time with Physical Synthesis Optimizations

If Physical Synthesis is turned on, the optimizations run whenever there
is any partition placement that is not fixed with a post-fit netlist. For
example, when using the SignalTap II logic analyzer, there is an
automatic partition created for the SignalTap II instance which does not
have its placement preserved. Physical synthesis cannot make any
changes to partitions that are set to post-fit; however, it does still analyze
the netlist as whole. Therefore, the compilation time is not reduced as
much if physical synthesis optimizations are turned on.

You can set partitions to Empty to reduce compilation time if you want to
use physical synthesis for other partitions. You can go back to the Post-fit
netlist type directly from Empty, so the previous fitting results can be
reused when you want to include all partitions in the netlist. This method
works best if you assign each Empty partition to a LogicLock region with
the Reserved property, so that no other logic is placed in that region of the
device floorplan when the design is recompiled.

You can also turn off physical synthesis if you are recompiling a partition
which does not require physical synthesis optimizations. For example,
when using the SignalTap II Logic Analyzer on a design that has all
partitions using post-fit netlists, you can turn off physical synthesis to
reduce compilation time. You can also compile critical partitions that
require Physical Synthesis first, and close timing for those partitions. If
those partitions do not require any logic changes, you can set the critical
partitions to post-fit and then subsequent compilations can have physical
synthesis turned off. Be sure to turn the option on again if you make
design changes to timing-critical partitions and want to recompile the
new logic with physical synthesis optimizations.

Altera Corporation 2-83
October 2007

Quartus Il Handbook, Volume 1

2-84

Restrictions on Megafunction Partitions

The Quartus II software does not support partitions for megafunction
instantiations. If you use the MegaWizard Plug-In Manager to customize
a megafunction variation, the MegaWizard-generated wrapper file
instantiates the megafunction. You can create a partition for the
MegaWizard-generated megafunction custom variation wrapper file.

The Quartus II software does not support the creation of a partition for
inferred megafunctions (that is, where the software infers a megafunction
to implement logic in your design). If you have a module or entity for the
logic that is inferred, you can create a partition for that hierarchy level in
the design.

The Quartus II software does not support creation of a partition for any
Quartus II internal hierarchy that is dynamically generated during
compilation to implement the contents of a megafunction.

Routing Preservation in Bottom-Up Compilation Flows

There are some cases in which routing information cannot be preserved
exactly, especially in bottom-up compilation, because of legality in the
device architecture. For example, when multiple partitions are imported,
there may be routing conflicts because you cannot pre-assign routing for
each lower-level block. In addition, if an imported LogicLock region is
moved in the top-level design, the relative placement of the nodes is
preserved but the routing may not be preserved.

Bottom-Up Design Partition Script Limitations

The Quartus II software has some limitations related to bottom-up design
partition scripts.

Synopsys Design Constraint (SDC) Files for the TimeQuest Timing
Analyzer

As described in “Importing Assignments and Advanced Import Settings”
on page 2-37, timing assignments made for the TimeQuest Timing
Analyzer in an SDC file are currently not imported into the top-level
project. You should manually ensure that the top-level project includes
all of the timing requirements for the entire project.

If you want to copy lower-level SDC files to the top-level project, consider
prefixing lower-level constraints with a variable that describes the
constraint’s location in the design hierarchy. Then, when you copy the file
to the top-level design, you can set the variable to provide the hierarchy
path to the lower-level partition in the top-level design.

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

Wildcard Support in Bottom-Up Design Partition Scripts

When applying constraints with wildcards, wildcards are not analyzed
across hierarchical boundaries. For example, an assignment could be
made to these nodes: Top | A:inst | B:inst | *, where A and B are
lower-level partitions, and hierarchy B is a child of A, that is B is
instantiated in hierarchy A. This assignment is applied to modules A, B
and all children instances of B. However, the assignment

Top | A:inst | B:inst* is applied to hierarchy A, but is not applied to the B
instances because the single level of hierarchy represented by B:inst* is
not expanded into multiple levels of hierarchy. To avoid this issue, ensure
that you apply the wildcard to the hierarchical boundary if it should
represent multiple levels of hierarchy.

When using the wildcard to represent a level of hierarchy, only single
wildcards are supported. This means assignments such as

Top | A:inst | * | B:inst | * are not supported. The Quartus II software
issues a warning in these cases.

Derived Clocks and PLLs in Bottom-Up Design Partition Scripts

If a clock in the top level is not directly connected to a pin of a lower-level
partition, then the lower-level partition does not receive assignments and
constraints from the top-level pin in the design partition scripts.

This issue is of particular importance for clock pins that require timing
constraints and clock group settings. Problems can occur if your design
uses logic or inversion to derive a new clock from a clock input pin. Make
appropriate timing assignments in your lower-level Quartus II project to
ensure that clocks are not unconstrained.

In addition, if you use a PLL in your top-level design and connect it to
lower-level partitions, the lower-level partitions do not have information
about the multiplication or phase shift factors in the PLL. Make
appropriate timing assignments in your lower-level Quartus II project to
ensure that clocks are not unconstrained or constrained with the incorrect
frequency. Alternately, you can manually duplicate the top-level derived
clock logic or PLL in the lower-level design file to ensure that you have
the correct multiplication or phase shift factors, compensation delays and
other PLL parameters for complete accurate timing analysis. Create a
design partition for the rest of the lower-level design logic that will be
exported to the top level. When the lower-level design is complete, export
just the partition that contains the relevant logic with the “Exporting a
Lower-Level Block within a Project” on page 2-35 feature.

2-85

Quartus Il Handbook, Volume 1

Virtual Pin Timing Assignments in Bottom-Up Design Partition Scripts

The design partition scripts use INPUT_MAX DELAY and

OUTPUT_MAX DELAY assignments to specify the inter-partition delays
associated with input and output pins which would not otherwise be
visible to the project. These assignments require that the software specify
the clock domain for the assignment, and the software sets this clock
domain to “*’.

This clock domain assignment means that there may be some paths
constrained and reported by the timing analysis engine that are not
required.

To restrict which clock domains are included in these assignments, edit
the generated scripts or change the assignments in your lower-level
Quartus II project. In addition, because there is no known clock
associated with the delay assignments, the software assumes the
worst-case skew, which makes the paths seem more timing critical than
they are in the top-level design. To make the paths appear less
timing-critical, lower the delay values from the scripts. If required, you
can also enter negative numbers for input and output delay values.

Top-Level Ports that Feed Multiple Lower-Level Pins in Bottom-Up
Design Partition Scripts

When a single top-level I/O port drives multiple pins on a lower-level
module, it unnecessarily restricts the quality of the synthesis and
placement at the lower-level. This occurs because in the lower-level
design, the software must maintain the hierarchical boundary and cannot
use any information about pins being logically equivalent at the top level.
In addition, because I/O constraints are passed from the top-level pin to
each of the children, it is possible to have more pins in the lower level
than at the top level, and these pins use the top-level I/O constraints and
placement options that might make them impossible to place at the
lower-level. The software avoids this situation whenever possible, but it
is best to avoid this design practice to avoid these potential problems.
Restructure your design so that the single I/O port feeds the design
partition boundary, and then the connection is split into multiple signals
within the lower-level partition.

2-86 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

Register Packing and Partition Boundaries

The Quartus II software automatically performs register packing during
compilation. However, when incremental compilation is enabled, logic in
different partitions cannot be packed together because partition
boundaries prevent cross-boundary optimization. (Refer to “Guidelines
for Creating Good Design Partitions and LogicLock Regions” on

page 2-46 for more information.) This restriction applies to all types of
register packing, including I/O cells, DSP blocks, sequential logic, and
unrelated logic.

1/0 Register Packing

Cross-partition register packing of I/O registers is allowed in certain
cases where your input and output pins exist in the top hierarchy level
(and the Top partition), but the corresponding I/ O registers exist in other
partitions.

The following specific circumstances are required for cross-partition
register packing of input pins:

B The input pin feeds exactly one register
B The path between the input pin and the register includes only input
ports of partitions that have one fan-out each

The following specific circumstances are required for cross-partition
register packing of output registers:

B The register feeds exactly one output pin

B The output pin is fed by only one signal

B The path between the register and the output pin includes only
output ports of partitions that have one fan-out each

Output pins with an output enable signal cannot be packed into the
device I/0 cell if the output enable logic is part of a different partition
from the output register. To allow register packing for output pins with
an output enable signal, structure your HDL code or design partition
assignments so that the register and the tri-state logic are defined in the
same partition.

Bidirectional pins are handled in the same way as output pins with an

output enable. If the registers that need to be packed are in the same
partition as the tri-state logic, then register packing can be performed.

2-87

Quartus Il Handbook, Volume 1

The restrictions on tri-state logic are due to the fact that the I/O atom
(device primitive) is created as part of the partition that contains the
tri-state logic. If an I/O register and its tri-state logic are contained in the
same partition, the register can always be packed with the tri-state logic
into the I/O atom. The same cross-partition register packing restrictions
also apply to I/O atoms for input and output pins. The I/O atom must
feed the I/O pin directly with exactly one signal and the path between the
I/0 atom and the I/O pin must include only ports of partitions that have
one fan-out each.

Examples of I/0 Register Packing Across Partition Boundaries

The following examples provide detailed explanations for various I/O
and partition configurations. The examples use BDF schematics to
illustrate the design logic.

Example 1—Output Register in Partition Feeding Output Pin

In this example, a subdesign contains a single register, as shown in
Figure 2-16. As shown in Figure 2-17, the top-level design instantiates
the subdesign with a single fan-out directly feeding an output pin, and
designates the subdesign as a separate design partition.

Figure 2-16. Subdesign with One Register, Designated as a Separate Partition

I liiIllEETETTTIIILL Ll
. s A e i 0
clk —: BELT 5 s | R
SEREESSR SRR S T N [P b SRR RSN EE AR SRR SRR RS
CniiiiiiiiiiiiioohRs BT oo

2-88

The Quartus II software performs cross-partition register packing if there
is a Fast Output Register assignment on pin out. This type of
cross-partition output register packing is permitted because the port
interface of the subdesign partition does not need to be changed and the
partition port feeds an output pin directly.

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Example 2—Output Register in Partition Feeding Multiple Output
Pins

In this example, a subdesign designated as a separate partition contains a
register as in Figure 2-16. The top-level design instantiates the subdesign
as an output register with more than one fan-out signal, as shown in
Figure 2-18.

Figure 2-18. Top-level Design Instantiating the Subdesign in Figure 2-16 with Two Output Pins

Altera Corporation
October 2007

In this case, the software does not perform output register packing. If
there is a Fast Output Register assignment on pin out, the software issues
a warning that the Fitter can't pack the node to an I/O pin because the
node and the I/O cell are connected across a design partition boundary.

This kind of cross-partition register packing is not permitted because it
would require modification to the interface of the subdesign partition. In
order to perform incremental compilation, the interface of design
partitions must be preserved.

To allow the software to pack the register in the subdesign from
Figure 2-16 with the output pin out in Figure 2-18, make one of the
following changes:

B Remove the design partition assignment to the subdesign. This
allows the Fitter to perform all cross-hierarchy optimizations.
However, it prevents you from using incremental compilation for
this block of hierarchy. A good design partition should have a
well-defined interface so that the Fitter does not have to perform
cross-boundary optimizations.

B Restructure your HDL code to place the register in the same partition
as the output pin. The simplest option is to move the register from
the subdesign partition into the partition containing the output pin.
This guarantees that the Fitter can optimize the two nodes without
violating any partition boundaries.

B Restructure your HDL code so the register feeds only one output pin.
Turn off the Analysis and Synthesis setting Remove Duplicate
Registers. Duplicate the register in your subdesign HDL as in

2-89

Quartus Il Handbook, Volume 1

Figure 2-19 so that each register feeds only one pin, then connect the
extra output pin to the new port in the top-level design as shown in
Figure 2-20. This converts the cross-partition register packing into
the simplest case where the register has a single fan-out.

Figure 2-19. Modified Subdesign from Figure 2-16 with Two Output Registers and Two Output Ports

d 3

clk extra

Example 3—Output Register, Output Enable Register and Tri-State
Logic in Partition Feeding Output Pin

In this example, a subdesign designated as a separate partition contains
an output register, an output enable register, and the tri-state logic to
drive the output pin, as shown in Figure 2-21. The top-level design
instantiates the subdesign with a single fan-out directly feeding an output
pin, as shown in Figure 2-22.

2-90 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Figure 2-21. Subdesign with Output Register, Output Enable Register and Tri-State Logic, Designated as a
Separate Partition

The Quartus II software performs cross-partition register packing if there
is a Fast Output Register assignment, Fast Output Enable Register
assignment, or both, on pin out. This kind of cross-partition output
register packing is permitted because the port interface of the subdesign
partition does not need to be changed, no logic needs to be optimized
across the partition boundary, and the partition port feeds an output pin
directly.

Example 4—Output Register, Output Enable Register, or Both, in
Partition Feeding Tri-State Output Pin

In this example, a subdesign designated as a separate partition contains
two registers, as shown in Figure 2-23. The top-level design instantiates
the subdesign with the registers driving the output and the output enable
signal for an output pin, as shown in Figure 2-24.

Altera Corporation 2-91
October 2007

Quartus Il Handbook, Volume 1

Figure 2-23. Subdesign with Two Registers, Designated as a Separate Partition

In this case, the software cannot perform register packing. If there is a Fast
Output Register or Fast Output Enable Register assignment on pin out,
the software issues a warning that the Fitter cannot pack the node to an

I/0 pin because the node and the I/O cell are connected across a design
partition boundary.

The same restrictions apply in the case that the top-level design includes
either the output register or the output enable register as well as the
tri-state logic. The software cannot pack the register that is part of the
subdesign partition into the I/O register.

This type of register packing is not permitted because it would require
moving logic across a design partition boundary to place into a single I/O
device atom. To perform register packing, either the registers must be
moved out of the subdesign partition or the tri-state logic must be moved
into the subdesign partition. In order to guarantee correctness of the
design with subsequent incremental compilations, the contents of design
partitions must be preserved.

2-92 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Altera Corporation
October 2007

To allow the software to pack the output register, output enable register,
or both, in the subdesign from Figure 2-23 with the output pin out in
Figure 2-24, make one of the following changes:

B Remove the design partition assignment to the subdesign. This
allows the Fitter to perform all cross-hierarchy optimizations.
However, it prevents you from using incremental compilation for
this block of hierarchy. A good design partition should have a
well-defined interface so that the Fitter does not need to perform
cross-boundary optimizations.

B Restructure your HDL code to place the register in the same partition
as the output pin. The simplest option is to move the register from
the subdesign partition into the top-level partition containing the
output pin. This guarantees that the Fitter can optimize the two
nodes without violating any partition boundaries.

B Restructure your HDL code so the register and the tri-state logic are
contained in the same partition. Move the tri-state logic from the
top-level block into the subdesign with both registers as shown in
Figure 2-21. Then connect the subdesign to an output pin in the
top-level design, as shown in Figure 2-22.

Example 5—Bidirectional Logic in Partition Feeding Bidirectional Pin
The behavior for bidirectional pins is similar to that of an output pin with
an output enable. To allow register packing, the registers must be
included in the same partition as the tri-state logic that drives the
bidirectional pin.

In this example, a subdesign designated as a separate partition contains
three registers and the tri-state logic for a bidirectional pin, as shown in
Figure 2-25. The top-level design instantiates the subdesign with ports
feeding bidirectional and output pins, as shown in Figure 2-26.

2-93

Quartus Il Handbook, Volume 1

Figure 2-25. Subdesign with Three Registers and Tri-State Logic, Designated as a Separate Partition

d bidir
clk out
1 0

The Quartus II software performs cross-partition register packing if there
is a Fast Output Register, Fast Output Enable Register, or Fast Input
Register assignment on pin bidir. This type of cross-partition output
register packing is permitted because the port interface of the subdesign
partition does not need to be changed and the partition port feeds a
bidirectional pin directly.

Registers cannot be packed in designs that have the registers and tri-state
logic in different partitions. The situations described in “Example 4—
Output Register, Output Enable Register, or Both, in Partition Feeding
Tri-State Output Pin” on page 2-91 apply similarly to bidirectional pins if
you replace the output pin out with a bidirectional pin in the top-level
design.

2-94 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Example 6—Input Register in Partition Fed by Input Pin

In this example, a subdesign contains a single register, as shown in
Figure 2-27. The top-level design instantiates the subdesign with a single
fanin directly fed by an input pin, as shown in Figure 2-28, and
designates the subdesign to be a separate design partition.

Figure 2-27. Subdesign with One Register, Designated as a Separate Partition

;:::::::::::::::::::::'f-'ﬁ"";%""""""
- id C_—=——p Q

The Quartus II software performs cross-partition register packing if there
is a Fast Input Register assignment on pin in. This type of cross-partition
output register packing is permitted because the port interface of the
subdesign partition does not have to be changed and the partition port is
fed by an input pin directly.

Example 7—Input Register in Partition Fed by Input with Multiple
Fan-Out

In this example, a subdesign designated as a separate partition contains a
register as in Figure 2-27. The top-level design instantiates the subdesign
as an input register but the input pin also feeds another destination, as
shown in Figure 2-29.

Altera Corporation 2-95
October 2007

Quartus Il Handbook, Volume 1

Figure 2-29. Top-level Design Instantiating the Subdesign in Figure 2-27 as an Input Register for a Pin with

Two Destinations

2-96

In this case, the software does not perform input register packing. If there
is a Fast Input Register assignment on pin in, the software issues a
warning that the Fitter cannot pack the node to an I/O pin because the
node and the I/O cell are connected across a design partition boundary.

This type of cross-partition register packing is not permitted because it
would require modification to the interface of the subdesign partition. In
order to perform incremental compilation, the interface of design
partitions must be preserved.

To allow the software to pack the register in the subdesign from
Figure 2-27 with the input pin in in Figure 2-29, make one of the
following changes:

B Remove the design partition assignment to the subdesign. This
allows the Fitter to perform all cross-hierarchy optimizations.
However, it also prevents you from using incremental compilation
for this block of hierarchy. A good design partition should have a
well-defined interface so that the Fitter does not have to perform
cross-boundary optimizations.

B Restructure your HDL code to place the register in the same partition
as the input pin. The simplest option is to move the register from the
subdesign partition into the partition containing the input pin. This
guarantees that the Fitter can optimize the two nodes without
violating any partition boundaries.

Example 8—Inverted Input Register in Partition Fed by Input Pin

In this example, a subdesign designated as a separate partition contains
an inverted register as in Figure 2-30. The top-level design instantiates
the subdesign as an input register, as shown in Figure 2-31.

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Figure 2-30. Subdesign with an Inverted Register, Designated as a Separate Partition

o
Fe]

The Quartus II software performs cross-partition register packing if there
is a Fast Input Register assignment on pin in. This kind of cross-partition
input register packing is permitted because the software can implement
the logic for the inversion with the input register inside the partition, and
then the partition port is fed by an input pin directly.

Example 9—Input Register in Partition Fed by Inverted Input Pin, or
Output Register in Partition Feeding Inverted Output Pin

In this example, a subdesign designated as a separate partition contains a
register as in Figure 2-32. The top-level design in Figure 2-33 instantiates
the subdesign as an input register with the input pin inverted. The
top-level design in Figure 2-34 instantiates the subdesign as an output
register with the signal inverted before feeding an output pin.

Figure 2-32. Subdesign with One Register, Designated as a Separate Partition

L lIIgETETTTI LI
: s S M e i e 9
clk | —" I
SRS AREREEE N [P b S SRS SR SRS
SRS SRS SRR AR SRR t:- - F S SRS S SRR

Altera Corporation
October 2007

2-97

Quartus Il Handbook, Volume 1

Figure 2-33. Top-level Design Instantiating the Subdesign in Figure 2-32 as an Input Register with an
Inverted Input Pin

Figure 2-34. Top-level Design Instantiating the Subdesign in Figure 2-33 as an Output Register Feeding an
Inverted Output Pin

d
clk

F=]

In these cases, the software does not perform register packing. If there is
a Fast Input Register assignment on pin in in Figure 2-33 or a Fast
Output Register assignment on pin out in Figure 2-34, the software
issues a warning that the Fitter cannot pack the node to an I/O pin
because the node and the I/O cell are connected across a design partition
boundary.

This type of register packing is not permitted because it would require
moving logic across a design partition boundary to place into a single I/O
device atom. To perform register packing, either the register must be
moved out of the subdesign partition or the inverter must be moved into
the subdesign partition to be implemented in the register. In order to
guarantee correctness of the design with subsequent incremental
compilations, the contents of design partitions must be preserved.

2-98 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Scripting
Support

Altera Corporation
October 2007

To allow the software to pack the register in the subdesign from
Figure 2-32 with the input pin in in Figure 2-33 or the output pin out in
Figure 2-34, make one of the following changes:

B Remove the design partition assignment from the subdesign. This
allows the Fitter to perform all cross-hierarchy optimizations.
However, it prevents you from using incremental compilation for
this block of hierarchy. A good design partition should have a
well-defined interface so that the Fitter does not have to perform
cross-boundary optimizations.

B Restructure your HDL code to place the register in the same partition
as the pin. The simplest option is to move the register from the
subdesign partition into the top-level partition containing the pin.
This ensures that the Fitter can optimize the two nodes without
violating any partition boundaries.

B Restructure your HDL code so the register and the inverter are
contained in the same partition. Move the inverter from the top-level
block into the subdesign as shown in Figure 2-30 for an input pin.
Then connect the subdesign to a pin in the top-level design, as shown
in Figure 2-31 for an input pin.

You can run procedures and make settings described in this chapter in a
Tel script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --ghelp ¢

The Quartus II Scripting Reference Manual includes the same information
in PDF form.

For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Generate Incremental Compilation Tcl Script Command

To create a template Tcl script for full incremental compilation, use the
Generate Incremental Compilation Tcl Script feature. Right-click in the
Design Partitions Window and click Generate Incremental
Compilation Tecl Script.

2-99

Quartus Il Handbook, Volume 1

2-100

If you have made any partition assignments in the user interface, this
script contains the Tcl equivalents of the assignments. The Tel
assignments are described in the following sections.

Preparing a Design for Incremental Compilation

To set or modify the current mode of incremental compilation, use the
following command:

set _global assignment -name INCREMENTAL COMPILATION \
<value>

The incremental compilation <value> setting must be one of the following
values:

B FULL INCREMENTAL COMPILATION—Full incremental
compilation (this is the default)

B INCREMENTAL_SYNTHESIS—Incremental synthesis only

B OFF—No incremental compilation is performed

Creating Design Partitions

To create a partition, use the following command:

set_instance assignment -name PARTITION HIERARCHY \
<file name> -to <destination> -section_id <partition name>

The <destination> should be the entity’s short hierarchy path. A short
hierarchy path is the full hierarchy path without the top-level name
(including quotation marks), for example:

"ram:ram_ unit|altsyncram:altsyncram component"

For the top-level partition, you can use the pipe (|) symbol to represent
the top-level entity.

For more information about hierarchical naming conventions, refer to
Node-Naming Conventions in Quartus II Integrated Synthesis in the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus I
Handbook.

The <partition name> is the user-designated partition name, which must
be unique and less than 1024 characters. The name can consist only of
alphanumeric characters, and the pipe (|), colon (:), and underscore
(_) characters. Altera recommends enclosing the name in double
quotation marks (" ").

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

The <file name> is the name used for internally generated netlists files
during incremental compilation. Netlists are named automatically by the
Quartus II software based on the instance name if you create the partition
in the user interface. If you are using Tcl to create your partitions, you
must assign a custom file name that is unique across all partitions. For the
top-level partition, the specified file name is ignored, and you can use any
dummy value. To ensure the names are safe and platform independent,
file names must be unique regardless of case. For example, if a partition
uses the file name my_ file, no other partition can use the file name
MY_FILE. For simplicity, Altera recommends that you base each file
name on the corresponding instance name for the partition.

The software stores all netlists in the \db compilation database directory.

Setting Properties of Design Partitions

After a partition is created, set its Netlist Type with the following
command:

set _global assignment -name PARTITION NETLIST TYPE <value> -section_ id \

<partition name>

The netlist type <value> setting is one of the following values:

SOURCE—Source File

POST SYNTH—Post-Synthesis

POST_FIT—Post-Fit

STRICT POST_FIT—Post-Fit (Strict)
IMPORTED—Imported

IMPORT_ BASED_ POST_FIT—Post-Fit (Import-based)
EMPTY—Empty

Set the Fitter Preservation Level for a post-fit or imported netlist using the
following command:

set _global assignment -name PARTITION FITTER PRESERVATION LEVEL <uvalue> \
-section_id <partition name>

Altera Corporation
October 2007

The Fitter Preservation Level <value> setting is one of the following
values:

NETLIST ONLY—Netlist only

PLACEMENT—Placement

PLACEMENT_AND ROUTING—Placement and routing
PLACEMENT_AND ROUTING_AND_ TILE— Placement and routing,
as well as the power tile setting of high-speed or low-power

2-101

Quartus Il Handbook, Volume 1

For details about these partition properties, refer to “Setting Properties of
Design Partitions”.

Creating Good Floorplan Location Assignments—Excluding or
Filtering Certain Device Elements (Such as RAM or DSP Blocks)

Resourece filtering uses the optional Tcl argument
-exclude_ resourcesinthe set logiclock_contents function of
the LogicLock Tcl package. If left unspecified, no resource filter is created.

The argument takes a list of resources-to-be-excluded as input. The list is
a colon-delimited string of the following keywords:

Table 2-4. Resources-to-be-Excluded Keywords

Keyword Resource

REGISTER Any registers in the logic cells

COMBINATIONAL Any combinational elements in the logic cells

SMALL MEM The small TriMatrix memory blocks (M512 or MLAB)
MEDIUM MEM The medium TriMatrix memory blocks (M4K or M9K)
LARGE_MEM The large TriMatrix memory blocks (M-RAM or M144K)
DSP Any DSP blocks

VIRTUAL_PIN Any virtual pins

For example, the following command assigns everything under
alu:alu_unit to the ALU region, excluding all the DSP and M512 blocks:

set_logiclock_contents -region ALU -to alu:alu unit -exceptions \
"DSP:SMALL MEM"

In the QSF, resource filtering uses an extra LogicLock membership
assignment called LI, MEMBER_RESOURCE_EXCLUDE. For example, the
following line in the QSF is used to specify a resource filter for the
alu:alu_unit entity assigned to the ALU region. The value of the
assignment takes the same format as the resource listing string taken by
the previous Tcl command.

set_instance assignment -name LL MEMBER RESOURCE EXCLUDE "DSP:SMALL_ MEM" \
-to "alu:alu unit" -section id ALU

2-102 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Generating Bottom-Up Design Partition Scripts

To generate scripts, type the following Tcl command at a Tcl prompt:

generate_bottom up scripts <options>

The command is part of the database_manager package, which must
be loaded using the following command before the command can be

used:

load package database manager

You must open a project before you can generate scripts.

The Tcl options are the same as those available in the GUI. The exact

format of each option is specified in Table 2-5.

Table 2-5. Options for Generating Bottom-Up Partition Scripts with Tcl Commands

Option Default
-include_makefiles <on|off> On
-include_project creation <on|off> On
-include_virtual pins <on|off> On
-include_virtual pin timing <on|off> On
-include_virtual pin_ locations <on|off> On
-include_logiclock_regions <on|off> On
-include_all logiclock regions <on|off> On
-include_global_signal promotion <on|off> Off
-include pin locations <on|off> On
-include_timing assignments <on|off> On
-include_design partitions <on|off> On
-remove_existing regions <on|off> On
-disable_auto_global_promotion <on|off> Off

-bottom up_scripts_output_directory <output directory>

Current project directory

-virtual pin delay <delayin ns>

(1)

Note to Table 2-5:
(1) No default.

The following example shows how to use the Tcl command:

load package database manager
set project test proj

Altera Corporation
October 2007

2-103

Quartus Il Handbook, Volume 1

project open $project

generate bottom up scripts -bottom up scripts output directory test \

-include virtual pin timing on -virtual pin delay 1.2
project close

Command Line Support

To generate scripts at the command prompt, type the following

command:

quartus_cdb <project name> --generate_bottom up_ scripts=on <options> +

Once again, the options map to the same as those in the GUI. To add an
option, append “- - <option_name>=<val>" to the command line call.

The command prompt options are the same as those available in the GUIL

They are listed in Table 2-6.

Table 2-6. Options for Generating Bottom-Up Partition Scripts

Option Default
--include makefiles with bottom up scripts=<on|off> On
--include_project creation_in bottom up_scripts=<on|off> On
--include virtual pins in bottom up scripts=<on|off> On
--include_virtual pin_ timing in bottom_up_scripts=<on|off> On
--bottom up scripts virtual pin delay=<delay in ns> (1)
--include virtual pin locations in bottom up_ scripts=<on|off> On
--include_logiclock regions_in bottom up_ scripts=<on|off> On
--include all logiclock regions in bottom up scripts=<on|off> On
--include_global_signal promotion in bottom up scripts=<on|off> Off
--include pin locations_ in bottom up scripts=<on|off> On
--include timing assignments_ in bottom up_ scripts=<on|off> On
--include design partitions in bottom up scripts=<on|off> On
--remove existing regions_in bottom up scripts=<on|off> On
--disable_auto_global promotion in bottom up scripts=<on|off> Off
--bottom up scripts output directory=<output directory> Current project
directory

Note to Table 2-6:
(1) No default. You must provide this option if you are including virtual pin timing.

2-104

Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Exporting a Partition to be Used in a Top-Level Project

Use the quartus_cdb executable to export a file for a bottom-up
incremental compilation flow with the following command:

quartus_cdb --INCREMENTAL COMPILATION EXPORT=<file> \

[--incremental compilation export netlist type=<POST_SYNTH|POST_FIT>] \
[--incremental compilation export partition name=<partition name>] \
[--incremental compilation_export routing=<on|off>]

The <file> argument is the file path to the exported file. The

<partition name> is the name of the partition, not its hierarchical path. If
you do not specify the options, the executable uses any settings in the QSF
file, or otherwise uses the default values. The default partition is the
top-level partition in the project, the default netlist type is post-fit, and the
default for routing is on (for all device families that support exported
routing).

The command reads the assignment
INCREMENTAL COMPILATION EXPORT NETLIST TYPE to determine
which netlist type to export; the default is post-fit.

You can also use the flow INCREMENTAL COMPILATION EXPORT in the
execute_flow Tcl command contained in the £1ow Tcl package.

Use the following commands to export a QXP file for a given partition,
choose the netlist type, and specify whether to export routing.

load package flow

set_global_assignment -name INCREMENTAL COMPILATION EXPORT FILE <filename>
set_global assignment -name INCREMENTAL COMPILATION EXPORT NETLIST TYPE \
<POST_FIT | POST_SYNTH>

set_global assignment -name \

INCREMENTAL COMPILATION EXPORT PARTITION NAME <partition name>

set _global assignment -name INCREMENTAL COMPILATION EXPORT ROUTING \
<on | off>

execute flow -INCREMENTAL COMPILATION_ EXPORT

The default partition is the top-level partition in the project, the default
netlist type is post-fit, and the default for routing is on (for all device

families that support exported routing).

To turn on the option to always perform exportation following
compilation, use the following Tcl command:

set global assignment -name AUTO EXPORT INCREMENTAL COMPILATION ON

Altera Corporation 2-105
October 2007

Quartus Il Handbook, Volume 1

Importing a Lower-Level Partition into the Top-Level Project

Use the quartus_cdb executable to import a lower-level partition with
the following command:

quartus_cdb -- INCREMENTAL COMPILATION IMPORT ¢

You can also use the flow called INCREMENTAL COMPILATION IMPORT
in the execute_flow Tcl command contained in the £1ow Tcl package.

The following example script shows how to import a partition using a Tl
script:

load package flow
commands to set the import-related assignments for each partition
execute flow --INCREMENTAL COMPILATION IMPORT

Specify the location for the imported file with the

PARTITION_ IMPORT_FILE assignment. Note that the file specified by
this assignment is read only during importation. For example, the project
is completely independent from any files from the lower-level projects
after importing. In the command-line and Tcl flow, any partition that has
this assignment set to a non-empty value will be imported.

The following assignments specify how the partition should be imported:

PARTITION IMPORT PROMOTE ASSIGNMENTS = on | off
PARTITION IMPORT NEW ASSIGNMENTS = on | off

PARTITION_ IMPORT_EXISTING ASSIGNMENTS = \

replace conflicting | skip conflicting

PARTITION_ IMPORT EXISTING LOGICLOCK REGIONS = \

replace conflicting | update conflicting | skip conflicting

Makefiles

For an example of how to use incremental compilation with a

makefile as part of the bottom-up design flow, refer to the read_me.txt
file that accompanies the incr_comp example located in the
/qdesigns/incr_comp_makefile subdirectory. When using a bottom-up
incremental compilation flow, the Generate Bottom-Up Design Partition
Scripts feature can write makefiles that automatically export lower-level
design partitions and import them into the top-level project whenever
design files change.

2-106 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Recommended Design Flows and Compilation Application
Examples

This section provides scripting examples that cover some of the topics
discussed in the main section of the chapter.

The script shown in Example 2-1 opens a project called AB_project,
sets up two partitions, entities A and B, for the first time, and performs an
initial complete compilation.

Example 2-1. AB_project
set project AB project

package require ::quartus::flow
project open $project

Ensure that incremental compilation is turned on
set _global assignment -name INCREMENTAL COMPILATION \
FULL_INCREMENTAL COMPILATION

Set up the partitions

set_instance assignment -name PARTITION HIERARCHY \
db/A_inst -to A -section_id "Partition A"

set instance assignment -name PARTITION HIERARCHY \
db/B_inst -to B -section id "Partition B"

Set the netlist types to post-fit for subsequent
compilations (all partitions are compiled during the
initial compilation since there are no post-fit

netlists)

set_global assignment -name PARTITION NETLIST TYPE \
POST FIT -section_id "Partition A"

set_global assignment -name PARTITION NETLIST TYPE \

POST_FIT -section_id "Partition B"

#
#
#
#

Run initial compilation:
export_assignments
execute flow -full compile

project_close

Design Flow 1—Changing a Source File for One of Multiple Partitions in a
Top-Down Gompilation Flow

Example background: You have run the initial compilation shown in the
example script under “Recommended Design Flows and Compilation
Application Examples” on page 2-62. You have modified the HDL source
file for partition A, and would like to recompile it.

Altera Corporation 2-107
October 2007

Quartus Il Handbook, Volume 1

Run the standard flow compilation command in your Tel script:
execute flow -full compile

Or, run the following command at a system command prompt:
quartus_sh --flow compile AB project¢

Assuming the source files for partition B do not depend on A, only A is
recompiled. The placement of B and its timing performance is preserved,
which also saves significant compilation time.

Design Flow 2—O0ptimizing the Placement for One of Multiple Partitions
in a Top-Down Compilation Flow

Example background: You have run the initial compilation shown in the
example script under “Recommended Design Flows and Compilation
Application Examples” on page 2-62. You would like to apply Fitter
optimizations, such as physical synthesis, only to partition A. No changes
have been made to the HDL files.

To ensure the previous compilation result for partition B is preserved,
and to ensure that Fitter optimizations are applied to the post-synthesis
netlist of partition A, set the netlist type of B to Post-Fit (which was
already done in the initial compilation, but is repeated here for safety),
and the netlist type of A to Post-Synthesis, as shown in the following
script:

2-108 Altera Corporation
October 2007

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

set project AB project

package require ::quartus::flow
project open $project

Turn on Physical Synthesis Optimization
set_global assignment -name \
PHYSICAL_ SYNTHESIS REGISTER RETIMING ON

For A, set the netlist type to post-synthesis
set_global_assignment -name PARTITION NETLIST_TYPE POST_SYNTH \
-section_id "Partition A"

For B, set the netlist type to post-fit
set_global assignment -name PARTITION NETLIST TYPE POST FIT \
-section id "Partition B"

Run incremental compilation:
export assignments
execute_flow -full compile

project close

Conclusion With the Quartus II incremental compilation feature described in this
chapter, you can preserve the results and the performance of unchanged
logic in your design as you make changes elsewhere. The various
applications of incremental compilation enable you to improve your
productivity while designing for high-density FPGAs, using either
top-down or bottom-up design methodologies.

Referenced This chapter references the following documents:

Documents B Analyzing and Optimizing the Design Floorplan chapter in volume 2 of

the Quartus II Handbook

B Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook

B Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook

B Design Debugging Using the SignalTap I Embedded Logic Analyzer
chapter in volume 3 of the Quartus II Handbook

B Engineering Change Management with the Chip Planner chapter in
volume 2 of the Quartus II Handbook

B Introduction to Quartus Il Manual

B [n-System Debugging Using External Logic Analyzers chapter in
volume 3 of the Quartus II Handbook

B Quartus II Classic Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

Altera Corporation 2-109
October 2007

http://www/literature/manual/intro_to_quartus2.pdf
http://www/literature/hb/qts/qts_qii52005.pdf
http://www/literature/hb/qts/qts_qii52006.pdf
http://www/literature/hb/qts/qts_qii53009.pdf
http://www/literature/hb/qts/qts_qii53004.pdf
http://www/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf

Quartus Il Handbook, Volume 1

B Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook

B Quartus II Settings File Reference Manual

B Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus Il Handbook

B Switching to the TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

B Synthesis section in volume 1 of the Quartus II Handbook

B Tcl Scripting chapter in volume 2 of the Quartus II Handbook

2-110 Altera Corporation
October 2007

http://www/literature/manual/mnl_qsf_reference.pdf
http://www/literature/hb/qts/qts_qii5v1_03.pdf
http://www/literature/hb/qts/qts_qii51008.pdf
http://www/literature/hb/qts/qts_qii52003.pdf
http://www/literature/hb/qts/qts_qii53018.pdf
http://www/literature/hb/qts/qts_qii53019.pdf

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Document

Table 2-7 shows the revision history for this chapter.

Revision History

Table 2-7. Document Revision History (Part 1 of 2)

Date and
Document Version

Changes Made

Summary of Changes

October 2007
v7.2.0

o Updated “Introduction” on page 2—-1.

@ Updated “Choosing a Quartus || Compilation Flow” on
page 2-3.

e Changed title and updated “Preparing a Design for
Incremental Compilation” section to “Quick Start Guide —
Summary of Steps for an Incremental Compilation Flow” on
page 2-11.

e Updated “Design Partition Assignments Compared to
Physical Placement Assignments” on page 2—18.

e Updated “Creating Design Partitions” on page 2—-19.

@ Updated “Creating a Design Floorplan With LogicLock
Location Assignments” on page 2—29.

e Updated “Exporting and Importing Partitions for Bottom-Up
Design Flows” on page 2—-32.

o Updated “Guidelines for Creating Good Design Partitions and
LogicLock Regions” on page 2—46.

e Updated “Incremental Compilation Restrictions” on
page 2-76.

Updated for Quartus Il
software version 7.2.

May 2007
v7.1.0

e Updated “Choosing a Quartus |l Compilation Flow” on
page 2-3.Updated “Preparing a Design for Incremental
Compilation” on page 2—10.

e Updated Tables 2—1 and 2-3.

o Updated design in “Recommended Design Flows and
Compilation Application Examples” on page 2-61.

e Added new examples to “Design Flow 7—Creating Hard-
Wired Macros for IP Reuse” on page 2-72.

e Moved and simplified “Using Incremental Synthesis Only
Instead of Full Incremental Compilation” on page 2-76.

o Updated “HardCopy Compilation Flows” on page 2—81.

e Updated “Support for the TimeQuest Timing Analyzer and
SDC Constraints” on page 2-81.

e Updated “Setting Properties of Design Partitions” on
page 2-98.

o Added “Referenced Documents” on page 2—106.

Removed several
dialog box figures.
Added support for
Arria GX devices.
Added Fitter
Preservation Level
Post-Fit Placement,
Routing, and Tiles.

March 2007
v7.0.0

No changes to chapter.

Altera Corporation
October 2007

2-111

Quartus Il Handbook, Volume 1

Table 2-7. Document Revision History (Part 2 of 2)

Date and
Document Version

Changes Made

Summary of Changes

November 2006 Chapter 2 was formerly Chapter 1 in version 6.0.0. Added support for
v6.1.0 Reorganized chapter to group recommendations and guidelines | Stratix Il devices.
together. Added information
Updated for the Quartus Il software version 6.1: about new features and
e Added support for Stratix Il devices. updates in the
® Added information on the Incremental Compilation Advisor. | Quartus Il software
e The full incremental compilation option is now turned on by | version 6.1.
default.
o Added new feature for Exporting a Lower-Level Block within
a Project.
e Changed the location of the Automatically export design
partition after compilation option.
o Added support for HardCopy Compilation Flows.
e Added that routing can be exported in bottom-up flows.
@ Added I/O port guidelines in Creating Good Design Partitions.
e Updated limitations: SignalProbe Pins and Engineering
Change Management with the Chip Planner.
May 2006 Name changed to Quartus Il Incremental Compilation for —
v6.0.0 Hierarchical and Team-Based Design.
Updated for the Quartus Il software version 6.0.
e Added new device support information.
e Added top-down and bottom-up design flow information.
o Added incremental compilation design compiling information.
e Added recommendations for creating good floorplan location
assignments.
o Added register packing and partition boundary information.
o Added engineering management with the Chip Editor.
e Added information on how to check and save to reapply
SignalProbe.
e Added user scenarios.
December 2005 Minor typographic update. —
v5.1.1
October 2005 Updated for the Quartus Il software version 5.1. —
v5.1.0
August 2005 Added documentation on cross-partition register packing. —
v5.0.1
May 2005 Initial release. —
v5.0.0
2-112 Altera Corporation

October 2007

Z;\l |:| —E D)/A 3. Quartus Il Design Flow for

MAX+PLUS Il Users

®

QI151002-7.2.0

Introduction

Chapter
Overview

Altera Corporation
October 2007

The feature-rich Quartus® II software helps you shorten your design
cycles and reduce time-to-market. With support for FLEX®, ACEX®, and
MAX® device families, as well as all of Altera®s newest devices, the
Quartus II software is the most widely accepted Altera design software
tool today.

This chapter describes how to convert MAX+PLUS® II designs to
Quartus II projects, as well as the similarities and differences between the
MAX+PLUS II and Quartus II design flows. This discussion includes
supported device families, graphical user interface (GUI) comparisons,
and the advantages of the Quartus II software.

There are many features in the Quartus II software to help MAX+PLUS II
users easily transition to the Quartus II software design environment.
These include a customizable Look & Feel feature, which changes the
GUI to display menus, toolbars, and utility windows as they appear in the
MAX+PLUS II software without sacrificing Quartus II software
functionality.

This chapter covers the following topics:

“Typical Design Flow” on page 3-2

“Device Support” on page 3-3

“Quartus II GUI Overview” on page 3—4

“Setting Up MAX+PLUS II Look and Feel in Quartus II” on page 3-6
“Compiler Tool” on page 3-9

“MAX+PLUS II Design Conversion” on page 3-12

“Quartus II Design Flow” on page 3-15

“Quick Menu Reference” on page 3-35

Quartus Il Handbook, Volume 1

Typical Design

Flow

Figure 3-1 shows a typical design flow with the Quartus II software.

Figure 3-1. Quartus Il Software Design Flow

Functional
Simulation

Gate-Level
Timing
Simulation

Functional
Netlist

Post Place-and-Route
Simulation Files
(.vo/.vho, .sdo)

(Design Files)

\4

Analysis & Elaboration

Constraints
& Settings

Constraints
& Settings

A

A

v
Integrated Analysis & Synthesis [«
\ 4
Fitter <
Timing
and Area No
Requirements
Satisfied?
Configuration/

C Program/Configure Device >

Programming
Files (.sof/.pof)

Altera Corporation

October 2007

Device Support

Device Support

Altera Corporation
October 2007

The Quartus II software supports most of the devices supported in the
MAX+PLUS 1II software, but it does not support any obsolete devices or

packages. The devices supported by these two software packages are

shown in Table 3-1.

Table 3-1. Device Support Comparison

Device Supported Quartus Il MAX+PLUS Il
Arria GX™ v —
Stratix® Series v —
Cyclone® Series v —
Hardcopy® Series v —
MAX® i v -
Classic™ v
MAX 3000A N v
MAX 7000S/AE/B v v
MAX 7000E v
MAX 9000 — v
ACEX® 1K v v
FLEX® 6000 v v
FLEX 8000 — v
FLEX 10K v (1) v
FLEX 10KA N v
FLEX 10KE v (2) v
Mercury™ N4 —
APEX™ || v —
APEX™ 20K N4 —

Notes to Table 3-1:

(1) PGA packages (represented as package type G in the ordering code) are not

supported in the Quartus II software.
(2) Some packages are not supported.

3-3

Quartus Il Handbook, Volume 1

Quartus Il GUI

Overview

3-4

The Quartus II software provides the following utility windows to assist
in the development of your designs:

Project Navigator
Node Finder

Tcl Console
Messages

Status

Change Manager

Project Navigator

The Hierarchy tab of the Project Navigator window is similar to the
MAX+PLUS II Hierarchy Display and provides additional information
such as logic cell, register, and memory bit resource utilization. The Files
and Design Units tabs of the Project Navigator window provide a list of
project files and design units.

Node Finder

The Node Finder window provides the equivalent functionality of the
MAX+PLUS II Search Node Database dialog box and allows you to find
and use any node name stored in the project database.

Tecl Console

The Tcl Console window allows access to the Quartus II Tcl shell from
within the GUI. You can use the Tcl Console window to enter Tcl
commands and source Tcl scripts to make assignments, perform
customized timing analysis, view information about devices, or fully
automate and customize the way you run all components of the
Quartus II software. There is no equivalent functionality in the
MAX+PLUS II software.

For more information on using Tcl with the Quartus II software, refer to
the Tcl Scripting chapter in volume 2 of the Quartus IT Handbook.

Messages

The Messages window is similar to the Message Processor window in the
MAX+PLUS 1II software, providing detailed information, warnings, and
error messages.You also can use it to locate a node from a message to
various windows in the Quartus II software.

Altera Corporation
October 2007

Quartus Il GUI Overview

Status

The Status window displays information similar to the MAX+PLUS II
Compiler window. Progress and elapsed time are shown for each stage of

the compilation.

Change Manager

The Change Manager provides detailed tracking information on all
design changes made with the Chip Planner.

For more information about the Engineering Change Manager and the

Chip Editor, refer to the Engineering Change Management with the Chip
Planner chapter in volume 2 of the Quartus II Handbook.

Figure 3-2 shows a typical Quartus II software display.

Figure 3-2. Quartus Il Look and Feel

:faltera/chiptrip/chiptrip - chiptrip

Fle Edit View Project Assignments Processing Tools Window Help

3 ox 1\? ||:mptrip

SR s@OB(0 >R E © B A

IGE=TEIERT

abd
3 auto_max 1

3 5
iL speed_ch2

el =zl I T2 chiptrip.baf | @ Compisiion Repot - Faw Summary |
ity [

iy Cysione || EPICEF25ECE 7 chiptrip.bdf

22 chene

I 100>

at -altera - -

5
3
4
o 3E0 time_crt:d 8
8
5
5

get ticketl-

Bl 32 tick_cnt:10
&5 Soounteourter a
2 tBeountsub F
1
(<) 3
&yHierarchy | B Files | ¢ Design Units
x| ¢
[Modde Pogesn [T d []|
Full Compilation
Analysis & Synthesis =
Farttion Merge 5
Fiter
e |
- Timing Analyzer @
- Dasign Assistart ~
w 0000
EDA Netlist Wrier 000006 ~ [Ern

at_altera

E tick ent
- get ticket1 =

s get ticket2 - - -

uartus Il
Information

@ Documentation

% Info: Quarius | Design Assistant was successful. 0 eors. 2 wamings
Info:
Info: Running Guartus 1| EDA Netiist Writer

Info: Command: quartus_sda ~read_settings_files=off -wiite_ssttings_filss=off chiptrip < chiptrip
Info: Generated file chiptrp.vo in folder "C:/attera/chiptrip/smulation/modelsim/” for EDA simulatior
Info: Quartus Il EDA Netlist Witer was successful. 0 emors, Dw:

& Info: Quartus Il Full Compilation was successful. 0 emors, 2

=

L e

Quartus IT Tcl Console
B

v
¢ | > =
2 [\ System), Processing £_Edialrio i Info J Warring J_Cilieal wiaming _Jy Enr f,_Suppressed | 2
5 [Message: 0 287 2| ¥ [recsion =] locae |3
Far Help, press F1 Hhel o | Idie [um | A
Altera Corporation 3-5

October 2007

Quartus Il Handbook, Volume 1

Setting Up
MAX+PLUS I
Look and Feel in
Quartus Il

3-6

You can choose the MAX+PLUS II look and feel by selecting
MAX+PLUS II in the Look & Feel box of the General tab of the
Customize dialog box on the Tools menu.

s Any changes to the look and feel do not become effective until
you restart the Quartus II software.

By default, when you select the MAX+PLUS II look and feel, the
MAX+PLUS II quick menu (Figure 3-21 on page 3-35) appears on the
left side of the menu bar. You can turn the Quartus II and MAX+PLUS II
quick menus on or off. You also can change the preferred positions of the
two quick menus. To change these options, perform the following steps:

1. On the Tools menu, click Customize. The Customize dialog box is
shown.

2. Click the General tab.

3. Under Quick menus, select your preferred options.

Altera Corporation
October 2007

MAX+PLUS Il Look and Feel

MAX+PLUS Il The MAX+PLUS II look and feel in the Quartus II software closely
resembles the MAX+PLUS II software. Figures 3-3 and 3—4 compare the
Look and Feel MAX+PLUS II software appearance with the Quartus Il MAX+PLUS II

look and feel.

Figure 3-3. MAX+PLUS Il Software GUI

MAX+plus Il - c:\altera\chiptrip\chiptrip
MAX+plusII File Processng Interfaces Assign Options Window Help

Dz =an o earnbepds @2 g

2 Hierarchy Display

chiptripf g —@—time_ hiptrip.gdf - Graphic Editor
gdf

Ebd Ebd Ebd [nnl Ebd

rpt log hst scf fit

{EH Bbd hbd Ebd
sym acf pin jan

sPEED_Too_FasT—
: at altera
AT_ALTERA|

: get ticket?
GET_TICKET—

time_cnt
enable —JennBLE TIMEL7. . @

= Compiler

T Database Logic
Netlist Builde Synthesizer Partitioner
Extractor

Messages - Compiler
Info: State 'altera’ in state machine '|auto_max:1|street_map' is never exited
Info: Design Doctor has given the project a clean bill of health based on the EPLD Rules set

4 Message p| 0 of 2 I” Locate in Floorplan Editor Help on Message
Dof0 Loeste A

Altera Corporation 3-7
October 2007

Quartus Il Handbook, Volume 1

Figure 3—4. Quartus Il Software with MAX+PLUS Il Look and Feel

Quartus Il - C:/altera/ch

Fle Edit View Project Assignments Processing Tools Window Help

[DwE|= v me oo R[mme e8RS T[Tk 8 B[4
8 chiptip b | B Compiler Tool |
Project Navigator

Enty Logic Cells [LC
_Cyc\nneIIEPZCEFZEECS 5% Y . o % 5% Y . o % Y . o % 5% Y ry 5y 5y ry 5y 5y 5y ry 5y
-3 chiptnp Gad] ML
bbd auto_maxc1 uE

b 2 @
B spesd_chZ 404

Ehd w

< |

yHierarchy | Bl Files | 87 Design Units

3 Compiler Tool

at_altera
qget_ticket1

— Analysic & Synthesis
00:00:00

—— Partiion Merge-
00:00:00

Fitter
00:00:00

00000

— Timing Analyzer—

—— Design Assistant—
o

L0000 L00 3
wlolalall) alel e mlsm e else | wvelel sEelele

Full Compilation
100 %
00:00:00

T stop

Smart recompiation skipped module Ardlysis & Synthesis because 1 is not required
Smatt recompilation skipped module Partition Merge because it is ot required
Smart recompilation skipped module Fitter because f is not required

Smart recompilation skipped module Assembler because i is not required

Smatt recompilation skipped module Timing Anafyzer because t is ot required
Smart recompilation skipped module Design Assistant because t is not required
Smart recompilation siipped madule EDA Netist Writer because i is net required
<& Info: Quartus Il Full Compilation was successful. 0 emors, 0 wamings

System) Processing f_Extalrio J\ Info J, Waming Jy_Cilicsl Warming _Jy_ Evor i Suppessed |
2| ® [Cecaton

uartus Il
Informatien

=l Locate _
[G*E Idle

|Message: 0af &

For Help, pressF1

The standard MAX+PLUS II toolbar is also available in the Quartus II
software with the MAX+PLUS II look and feel in the Quartus II software
(Figure 3-5).

Figure 3-5. Standard MAX+PLUS Il Toolbar

NEE&E | RLARES2DL IEE Baa

3-8 Altera Corporation

October 2007

Compiler Tool

cOmp| ler Tool The Quartus II Compiler Tool provides an intuitive MAX+PLUS II style
interface. You can edit the settings and view result files for the following
modules:

Analysis and Synthesis
Partition Merge

Fitter

Assembler

Timing Analyzer

EDA Netlist Writer
Design Assistant

Each of these modules is described later in this section.

To start a compilation using the Compiler Tool, click Compiler Tool from
either the MAX+PLUS II menu or the Tools menu and click Start in the
Compiler Tool. The Compiler Tool, shown in Figure 3-6, displays all
modules, including optional modules such as Partition Merge,
Assembler, EDA Netlist Writer, and the Design Assistant.

«o For information about using the Quartus II software modules at the
command line, refer to the Command-Line Scripting chapter in volume 2
of the Quartus I Handbook.

Figure 3-6. Running a Full Compilation with the Compiler Tool

s Compiler Tool

Analpsiz & Synthesis Partition kerge Fitter Agzembler Timing Analyzer Design Assistant E D Metlizt wiriter
00:00:34 00:00:06 00:00:42 00:00:09 00:00:05 00:00:04 00:00:05
wlol@lal alel 8wl wslelel wlelel wsslel griele

Full Compilation
100 %
00:01:45

= Start @ Report

Altera Corporation 3-9
October 2007

Quartus Il Handbook, Volume 1

Analysis and Synthesis

The Quartus II Analysis and Synthesis module analyzes your design,
builds the design database, optimizes the design for the targeted
architecture, and maps the technology to the design logic.

In MAX+PLUS II software, these functions are performed by the
Compiler Netlist Extractor, Database Builder, and Logic Synthesizer.
There is no module in the Quartus II software similar to the
MAX+PLUS II Partitioner module.

Partition Merge

The optional Quartus II Partition Merge module merges the partitions to
create a flattened netlist for further stages of the Quartus II compilation
flow. The Partition Merge module is not similar to the MAX+PLUS II
Partitioner. This tool is available only if you turn on incremental
compilation. You can turn on incremental compilation by performing the
following steps:

1. On the Assignment menu, click Settings. The Settings dialog box
appears.

2. Inthe Category list, click the + icon to expand Compilation Process
Settings, and select Incremental Compilation. The Full
Incremental Compilation page appears.

3. Under Incremental compilation, turn on Incremental Compilation.

Fitter

The Quartus II Fitter module uses the PowerFit™ fitter to fit your design
into the available resources of the targeted device. The Fitter places and
routes the design. The Fitter module is similar to the Fitter stage of the
MAX+PLUS 1II software.

3-10 Altera Corporation
October 2007

Compiler Tool

Altera Corporation
October 2007

Assembler

The optional Quartus II Assembler module creates a device
programming image of your design so that you can configure your
device. You can select from the following types of programming images:

Programmer Object File (.pof)

SRAM Output File (.sof)

Hexadecimal (Intel-Format) Output File (.hexout)
Tabular Text File (.ttf)

Raw Binary File (.rbf)

Jam™ STAPL Byte Code 2.0 File (.jbc)

JEDEC STAPL Format File (.jam)

You can turn off the Assembler module during compilation by turning off
Run assembler in the Compilation Process Settings page in the Settings
dialog box. You also can turn off the Assembler by right-clicking in the
Compiler Tool window. The Assembler module is similar to the
Assembler stage of the MAX+PLUS II software.

Timing Analyzer

The Quartus II Timing Analyzer allows you to analyze more complex
clocking schemes than is possible with the MAX+PLUS II Timing
Analyzer. The Quartus II Timing Analyzer analyzes all clock domains in
your design, including paths that cross clock domains, and also reports
both fyjax and slack. Slack is the margin by which the timing requirement
is met or is not met. For more information on the Timing Analyzer, refer
to “Timing Analysis” on page 3-27.

EDA Netlist Writer

The optional Quartus Il EDA Netlist Writer module generates a netlist for
simulation with an EDA simulation tool. The EDA Netlist Writer module
is comparable to the VHDL and Verilog Netlist Writer in the
MAX+PLUS II software.

Design Assistant

The optional Quartus II Design Assistant module checks the reliability of
your design based on a set of design rules. The Design Assistant analyzes
and generates messages for a design targeting any Altera device and is
especially useful for checking the reliability of a design to be converted to
HardCopy series devices. The Design Assistant is similar to the Design
Doctor in the MAX+PLUS II software.

3-11

Quartus Il Handbook, Volume 1

MAX+PLUS I
Design
Conversion

3-12

In the Quartus II software, you can reduce subsequent compilation time
significantly by turning Use Smart compilation on before compiling your
design. The Smart Compilation feature skips any compilation stages
which are not required and which may use more disk space. This
Quartus II smart compilation option is similar to the MAX+PLUS II
Smart Recompile command. To turn the Use Smart compilation option
on, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select Compilation Process Settings. The
Compilation Process Settings page appears.

3. Turn on Use Smart compilation.

With the Quartus II software, you can open MAX+PLUS II designs and
convert MAX+PLUS II assignments and files.

The Quartus II software is project based. All the files for your design
(HDL input, simulation vectors, assignments, and other relevant files) are
associated with a project file. For more information about creating a new
project, refer to “Creating a New Project” on page 3-16.

Converting an Existing MAX+PLUS Il Design

You can easily convert an existing MAX+PLUS II design for use with the
Quartus II software with the Convert MAX+PLUS II Project command
in the Quartus II software or the Open Project command. You can find
these commands on the File menu

If you use the Convert MAX+PLUS II Project command, browse to the
MAX+PLUS II Assignments and Configuration File (.acf) or top-level
design file (Figure 3-7) and click Open. The Convert MAX+PLUS II
Project command generates a Quartus II Project File (.qpf) and a
Quartus II Settings File (.qsf). The Quartus II software stores project and
design assignments in the Quartus II Settings File, which is equivalent to
the Assignments and Configuration File in the MAX+PLUS II software.

You also can open and convert a MAX+PLUS II design with the Open
Project command. In the Open Project dialog box, browse to the
Assignments and Configuration File or the top-level design file. Click
Open to display the Convert MAX+PLUS II Project dialog box.

Altera Corporation
October 2007

MAX+PLUS Il Design Conversion

Altera Corporation
October 2007

=" TheQuartus I software can import all MAX+PLUS Il-generated
files, but it cannot save files in the MAX+PLUS II format. You
cannot open a Quartus II project in the MAX+PLUS II software,
nor can you convert a Quartus II project to a MAX+PLUS II
project.

Figure 3-7. Convert MAX+PLUS Il Project Dialog Box

Convert MAX+PLUS Il Project 53

Allows pou to convert existing MAX+PLUS | projects and assignments into a
new Quartus || project.

Max+PLUS 1l file name:
|EI:.-"tools.-"maxplus2.-"max2w0rk.-"c:hiptrip.-"c:hiptrip.ac:f

Quartusz || project name:

(] 8 | Cancel |

The conversion process performs the following actions:

B Converts the MAX+PLUS II Assignments and Configuration File
into a Quartus II Settings File (equivalent to importing all
MAX+PLUS II assignments)

B Creates a Quartus II Project File
B Displays all errors and warnings in the Quartus II message window

I = The Quartus II software can read MAX+PLUS II generated
Graphic Design Files (.gdf) and Simulation Channel Files (.scf)
without converting them. These files are not modified during a
MAX+PLUS II design conversion.

Converting MAX+PLUS Il Graphic Design Files

The Quartus II Block Editor (similar to the MAX+PLUS II Graphic Editor)
saves files as Block Design Files (.bdf). You can convert your
MAX+PLUS II Graphic Design File into a Quartus II Block Design File
using one of the following methods:

1. Open the Graphic Design File and on the File menu, click Save As.
The Save As dialog box is shown.

2. Inthe Save as type list, select Block Diagram/Schematic File
(*.bdf).

3-13

Quartus Il Handbook, Volume 1

3. Run the quartus_g2b.exe command line executable located in the
\<Quartus II installation>\bin directory. For example, to convert the
chiptrip.gdf file to a Block Design File, type the following command
at a command prompt:

quartus_g2b.exe chip trip.gdf ¢

Importing MAX+PLUS Il Assignments

You can import MAX+PLUS II assignments into an existing Quartus II
project. Open the project, and on the Assignments menu, click Import
Assignments. Browse to the Assignments and Configuration File
(Figure 3-8). You can also import Quartus II Settings Files and Entity
Setting Files (.esf).

Figure 3-8. Import Assignments Dialog Box

Import Assignments @

Specify the source and categories of azsignments to import. Click LogicLock Import File Assignments
to zelect LogicLock Import File[z].

Categories. ..
& File name: |EI:.-"t00Is.-"maxplus2.-"max2w0rk.-"c:hiptrin.-"c:hiptrip.ac:f
" Use LogicLock Import File Assignments 4

Aszsignment source

[v Copy existing assignments into chiptrip.gsf.bak before importing

(] 8 | Cancel

The Quartus II software accepts most MAX+PLUS II assignments.
However, some assignments can be imported incorrectly from the
MAX+ PLUS II software into the Quartus Il software due to differences in
node naming conventions and the advanced Quartus II integrated
synthesis algorithms.

The differing node naming conventions in the Quartus II and
MAX+PLUS II software can cause improper mapping when importing
your design from MAX+PLUS II software into the Quartus II software.
Improper node names can interfere with the design logic if you are
unaware of these node name differences and do not take appropriate

3-14 Altera Corporation
October 2007

Quartus Il Design Flow

Quartus Il
Design Flow

Altera Corporation
October 2007

steps to prevent improper node name mapping. Table 3-2 compares the
differences between the naming conventions used by the Quartus II and
MAX+PLUS 1II software.

Table 3-2. Quartus Il and MAX+PLUS Il Node and Pin Naming Conventions

Feature Quartus Il Format MAX+PLUS Il Format
Node name auto_max:auto|qo0 |auto_max:auto|qo
Pin name dfo]l, dl1]l, dl2] do, di, d2

When you import MAX+PLUS II assignments containing node names
that use numbers, such as signal0 or signall, the Quartus II software
imports the original assignment and also creates an additional copy of the
assignment. The additional assignment has square brackets inserted
around the number, resulting in signal [0] or signal [1]. The square
bracket format is legal for signals that are part of a bus, but creates illegal
signal names for signals that are not part of a bus in the Quartus II
software. If your MAX+PLUS II design contains node names that end in
a number and are not part of a bus, you can edit the Quartus II Settings
File to remove the square brackets from the node names after importing
them.

I'=" You can remove obsolete assignments in the Remove
Assignments dialog box. Open this dialog box on the
Assignments menu by clicking Remove Assignments.

The Quartus II software may not recognize valid MAX+PLUS Il node
names, or may split MAX+PLUS Il nodes into two different nodes. As a
result, any assignments made to synthesized nodes are not recognized
during compilation.

For more information about Quartus II node naming conventions, refer
to the Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook.

The following sections include information to help you get started using
the Quartus II software. They describe the similarities and differences
between the Quartus II software and the MAX+PLUS II software. The
following sections highlight improvements and benefits in the Quartus II
software.

For an overview of the Quartus II software features and design flow,
refer to the Introduction to Quartus I manual.

3-15

Quartus Il Handbook, Volume 1

3-16

Creating a New Project

The Quartus II software provides a wizard to help you create new
projects. On the File menu, click New Project Wizard to start the New
Project Wizard. The New Project Wizard generates the Quartus II Project
File and Quartus II Settings File for your project.

Design Entry

The Quartus II software supports the following design entry methods:

Altera HDL (AHDL) Text Design File (.tdf)
Block Diagram File

EDIF Netlist File (.edf)

Verilog Quartus Mapping Netlist File (.vqm)
VHDL (.vhd)

Verilog HDL (.v)

The Quartus II software has an advanced integrated synthesis engine that
fully supports the Verilog HDL and VHDL languages and provides
options to control the synthesis process.

For more information, refer to the Quartus II Integrated Synthesis chapter
in volume 1 of the Quartus IT Handbook.

To create a new design file, perform the following steps:

1. On the File menu, click New. The New dialog box appears.
2. Click the Device Design Files tab.

3. Select a design entry type.

4. Click OK (see Figure 3-9).

Altera Corporation
October 2007

Quartus Il Design Flow

Figure 3-9. New Dialog Box

New

X

Device Design Files l Software Files] Other Files]

AHDL File

Block Diagram/S chematic File
EDIF File

SOPC Builder Spstem

Werilog HOL File

WHOL File

Cancel

s You can create other files from the Software Files tab and Other
Files tab of the New dialog box on the File menu. For example,
the Vector Waveform File (.vwf) is located in the Other Files tab.

To analyze a netlist file created by an EDA tool, perform the following
steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Design Entry & Synthesis. The Design
Entry & Synthesis page appears.

3. In the Tool name list, select the synthesis tool used to generate the
netlist (Figure 3-10).

Altera Corporation

3-17
October 2007

Quartus Il Handbook, Volume 1

Figure 3-10. Settings Dialog Box Specifying Design Entry Tool

Settings - chiptrip

Category:
Files
User Libraries [Current Project] Specify options for processing input files created by other ED& tools.
Device
b by fjgﬂ[::;”ts Fplions Tool name: | Syrpiity =l
e Farmat: [EDIF =
Timing Analysis ™ Run this tool automatically to spnthesize the current design
Board-Lewvel
Formal Verification S s
Physical Synthesiz
= Compilation Process Settings WL [VCC
Early Timing E stimate
Incremental Compilation GND: |GND
+- Analyziz & Synthesis Settings
- Fitter Setings Library tapping File
Azzembler
Timing Analyzer File name: |synplcty.lmf J

Dresign Assistant
SignalT ap Il Logic Analyzer
Logic Analyzer Interface
SignalProbe Settings r
=I- Simulator Settings
Simulation Power
PowerFlay Power Analyzer Settings
Operating Conditions
Software Build Settings
HardCopy Settings

[Show information messages describing LMF mapping during compilation

£

Reset
()8 | Cancel |

The Quartus II Block Editor has many advantages over the MAX+PLUS II
Graphic Editor. The Block Editor offers an unlimited sheet size, multiple
region selections, an enhanced Symbol Editor, and conduits.

The Symbol Editor allows you to change the positions of the ports in a
symbol (refer to the three images in Figure 3-11). You can reduce wire
congestion around a symbol by changing the positions of the ports.

3-18 Altera Corporation
October 2007

Quartus Il Design Flow

Figure 3-11. Various Port Position for a Symbol

. ’f'///////////////////////// L P
= R

..
- time cnt Z -
E — E
s -
5 . z.
; enable time[7.. é
s A

! g clk ? .
-z 7.
. i‘///////////////////////////.l///////////////////////////

-

. ”///////////////////////////.’///////////////////////////’ .
- o
B R .

E time cnt zZ
o] “.
N Z
% e . Z.
; | enable X time[7. . ﬁ
g U Z .

A

e .
o 4
% 4
L @
Z Z
. ARSI s e IRt s r s rr e e rer el

///////////////////////////.f///////////////////////////’ .

"

enable time[7. .
clk

N B P P i

Rttty SRR
B RO SOOI

To make changes to a symbol in a Block Design File, right-click a symbol
in the Block Editor and select Properties to display the Symbol
Properties dialog box. This dialog box allows you to change the instance
name, add parameters, and specify the line and text color.

You can use conduits to connect blocks (including pins) in the Block
Editor. Conduits contain signals for the connected objects

(see Figure 3-12). You can determine the connections between various
blocks in the Conduit Properties dialog box by right-clicking a conduit
and clicking Properties.

Altera Corporation 3-19
October 2007

Quartus Il Handbook, Volume 1

3-20

Figure 3-12. Blocks and Pins Connected with Conduits

....................... CU D taps

10| Type
clk [IMPLIT
reset [IMPUT
sel[1..0] [INFUT
et [INPUT
d[7.0] [MPUT
<700 |OUTROT

1

....................... o fhealues
DD [. - 0| Type
AR | I | I se|[1..|:|]||NPLIT
AR | I | I h[2.0] [OUTPUT
....................... 1
[R inst®

....................... i=tate_m
SOREEE SN B 0| Type
O ck NPUT
A reset JIMNPLIT
N newt NPT
............................ =el[1..0] [QUTPUT
A next [OUTPOT
A first [OUTPUT
DUDDIIIITIIIIIIII T e

Making Assignments

The Quartus II software stores all project and design assignments in a
Quartus II Settings File, which is a collection of assignments stored as Tcl
commands and organized by the compilation stage and assignment type.
The Quartus II Settings File stores all assignments, regardless of how they
are made, from the Floorplan Editor, the Pin Planner, the Assignment
Editor, with Tcl, or any other method.

Altera Corporation
October 2007

Quartus Il Design Flow

Altera Corporation
October 2007

Assignment Editor

The Assignment Editor is an intuitive spreadsheet interface designed to
allow you to make, change, and manage a large number of assignments
easily. With the Assignment Editor, you can list all available pin numbers
and design pin names for efficiently creating pin assignments. You also
can filter all assignments based on assignment categories and node names
for viewing and creating assignments.

The Assignment Editor is composed of the Category Bar, Node Filter Bar,
Information Bar, Edit Bar, and spreadsheet.

To make an assignment, follow these steps:

1. On the Assignments menu, click Assignment Editor. The
Assignment Editor window appears.

2. Select an assignment category in the Category bar.

3. Select a node name using the Node Finder or type a node name filter
into the Node Filter bar. (This step is optional; it excludes all
assignments unrelated to the node name.)

4. Type the required values into the spreadsheet.

5. On the File menu, click Save.

If you are unsure about the purpose of a cell in the spreadsheet, select the
cell and read the description displayed in the Information bar.

You can use the Edit bar to change the contents of multiple selected cells
simultaneously. Select cells in the spreadsheet and type the value in the
Edit box.

Other advantages of the Assignment Editor include clipboard support in
the spreadsheet and automatic font coloring to identify the status of

assignments.

For more information, refer to the Assignment Editor chapter in volume 1
of the Quartus IT Handbook.

3-21

Quartus Il Handbook, Volume 1

3-22

Timing Assignments

You can use the timing wizard to help you set your timing requirements.
On the Assignments menu, click Timing Wizard to create global clock
and timing settings. The settings include fy;ax, setup times, hold times,
clock to output delay times, and individual absolute or derived clocks.

You also can set timing settings manually by performing the following
steps:

1. On the Assignments menu, click Settings. The Setting dialog box is
shown.

2. In the Category list, select Timing Requirements & Options. The
Timing Requirements & Options page is shown.

3. Setyour timing settings.

You can make more complex timing assignments with the Quartus II
software than allowed by the MAX+PLUS II software, including
multicycle and point-to-point assignments using wildcards and time
groups.

[l=~ A time group is a collection of design nodes grouped together
and represented as a single unit for the purpose of making
timing assignments to the collection.

Multicycle timing assignments allow you to identify register-to-register
paths in the design where you expect a delayed latch edge. This
assignment enables accurate timing analysis of your design.

Point-to-point timing assignments allow you to specify the required
delay between two pins, two registers, or a pin and a register. This
assignment helps you optimize and verify your design timing
requirements.

Wildcard characters “?” and “ * “ allow you to apply an assignment to a
large number of nodes with just a few assignments. For example,
Figure 3-13 shows a 4 ns tgy requirement assignment to all paths from
any node to the “d” bus in the Assignment Editor.

Altera Corporation
October 2007

Quartus Il Design Flow

Figure 3-13. Single tgy Timing Assignment Applied to All Nodes of a Bus

¥ Assignment Editor

|

|
=l + Category: |F—\II
|

Edit:

EBX

X|VI[= |

j| ﬁ Al B Pin | (b Timing | # Logic Options |

| From

1

<<new =

To Assignment Mame Value Enabled

& d[7] tsu Requirement 4ns ‘fes
<<news> <<news>

i

Altera Corporation

October 2007

For more information, refer to the Classic Timing Analyzer or the
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Synthesis

The Quartus I advanced integrated synthesis software fully supports the
hardware description languages, Verilog HDL, VHDL, and AHDL,
schematic entry, and also provides options to control the synthesis
process. With this synthesis support, the Quartus II software provides a
complete, easy-to-use, stand-alone solution for today's designs.

You can specify synthesis options in the Analysis & Synthesis Settings
page of the Settings dialog box. Similar to MAX+PLUS II synthesis
options, you select one of these optimization techniques: Speed, Area, or
Balanced.

To achieve higher design performance, you can turn on synthesis netlist
optimizations that are available when targeting certain devices. You can
unmap a netlist created by an EDA tool and remap the components in the
netlist back to Altera primitives by turning on Perform WYSIWYG
primitive resynthesis. Additionally, you can move registers across
combinational logic to balance timing without changing design
functionality by turning on Perform gate-level register retiming. Both of
these options are accessible from the Synthesis Netlist Optimizations
page under Analysis & Synthesis Settings in the Settings dialog box on
the Assignments menu.

For more information, refer to the Quartus II Integrated Synthesis chapter
in volume 1 of the Quartus II Handbook.

3-23

Quartus Il Handbook, Volume 1

3-24

Functional Simulation

Similar to the MAX+PLUS II Simulator, the Quartus II Simulator Tool
performs both functional and timing simulations.

To open the Simulator Tool, on MAX+PLUS II menu, click Simulator or
on the Tools menu, click Simulator Tool. Before you perform a functional
simulation, an internal functional simulation netlist is required. Click
Generate Functional Simulation Netlist in the Simulator Tool window
(Figure 3-14), or on the Processing menu, click Generate Functional
Simulation Netlist.

[l=" Generating a functional simulation netlist creates a separate
database that improves the performance of the simulation
significantly.

Figure 3-14. Simulator Tool Dialog Box

& Simulator Tool E| @| Pz|

Simulation mode: |Functi0nal j Generate Functional Simulation Metlist |

Simulation input: |ChithiD-SCf

Simulation period

" Run simulation until all vectar stimuli are used

t* End simulation at; [200.0 ns -

Simulation options
Iv Automatically add pins to simulation output waveforms

[Check outputs |
-
r po e <

[v Owenwiite simulation input file with simulation results

™ Generate Signal Activity File: |

00:00:00

E‘_L Start | @- Open |

You can view and modify the simulator options on the Simulator page of
the Settings dialog box or in the Simulator Tool window. You can set the
simulation period and turn Check outputs on or off. You can choose to
display the simulation outputs in the simulation report or in the Vector
Waveform File. To display the simulation results in the simulation input
vector waveform file, which is the MAX+PLUS II behavior, turn on
Overwrite simulation input file with simulation results.

Altera Corporation
October 2007

Quartus Il Design Flow

Altera Corporation
October 2007

When using either the MAX+PLUS II or Quartus II software, you may
have to compile additional behavioral models to perform a simulation
with an EDA simulation tool. In the Quartus II software, behavioral
models for library of parameterized modules (LPM) functions and
Altera-specific megafunctions are available in the altera_mf and
220model library files, respectively. The 220model and altera_mf files
can be found in the \<Quartus II Installation>\eda\sim_lib directory.

The Quartus II schematic design files (Block Design File, or .bdf) are not
compatible with EDA simulation tools. To perform a register transfer
level (RTL) functional simulation of a Block Design File using an EDA
tool, convert your schematic designs to a VHDL or Verilog HDL design
file. Open the schematic design file and on the File menu, click
Create/Update > Create HDL Design File for Current File to create an
HDL design file that corresponds to your Block Design File.

You can export a Vector Waveform File or Simulator Channel File as a
Verilog HDL or VHDL test bench file for simulation with an EDA tool.
Open your Vector Waveform File or Simulator Channel File and on the
File menu, click Export. See Figure 3-15. Select Verilog or VHDL Test
Bench File (*.vt) from the Save as type list. Turn on Add self-checking
code to file to add additional self-checking code to the test bench.

Figure 3-15. Export Dialog Box
Export @

Savein: | I chiptrip j I‘j‘ v

|)atom_netlists
IZhdb
I simulation

File name: |c:hiptrip.'v't

Save as type: |"v"eri|og Test Bench File (") j Cancel

Iv Add zelf-checking code to file

3-25

Quartus Il Handbook, Volume 1

3-26

Place and Route

The Quartus II PowerFit is an incremental fitter that performs
place-and-route to fit your design into the targeted device. You can
control the Fitter behavior with options in the Fitter Settings page of the
Settings dialog box on the Assignments menu.

High-density device families supported in the Quartus II software, such
as the Stratix series, sometimes require significant fitter effort to achieve
an optimal fit. The Quartus II software offers several options to reduce
the time required to fit a design. You can control the effort the Quartus II
Fitter expends to achieve your timing requirements with these options:

B Optimize timing performs timing-based placement using the timing
requirements you specify for the design. You can use this option by
itself or with one or more of the options below.

B Optimize hold timing optimizes the hold times within a device to
meet timing requirements and assignments you specify. You can
select this option only if the Optimize timing option is also chosen.

B Optimize fast-corner timing instructs the Fitter, when optimizing
your design, to consider fast-corner delays, in addition to
slow-corner delays, from the fast-corner timing model (fastest
manufactured device, operating in low-temperature and
high-voltage conditions). You can select this option only if the
Optimize timing option is also chosen.

If minimizing compilation time is more important than achieving specific
timing results, you can turn these options off.

Another way to decrease the processing time and effort the Fitter expends
to fit your design is to select either Standard Fit or Fast Fit in the Fitter
Effort box of the Fitter Settings page in the Settings dialog box on the
Assignments menu. The option you select affects the Fitter behavior and
your design as described below.

B Select Standard Fit for the Fitter to use the highest effort and
preserve the performance from previous compilations.

B Select Fast Fit for up to 50% faster compilation times, although this
may reduce design performance.

You can also select Auto Fit to decrease compilation time by directing the
Fitter to reduce Fitter effort after meeting your timing requirements. The
Auto Fit option is available for select devices.

For more information, refer to the Area and Timing Optimization chapter
in volume 2 of the Quartus IT Handbook.

Altera Corporation
October 2007

Quartus Il Design Flow

To further reduce compilation times, turn on Limit to one fitting attempt
in the Fitter Settings page in the Settings dialog box on the Assignments
menu.

If your design is very close to meeting your timing requirements, you can
control the seed number used in the fitting algorithm by changing the
value in the Seed box of the Fitter Settings page of the Settings dialog
box on the Assignments menu. The default seed value is 1. You can
specify any non-negative integer value. Changing the value of the seed
only repositions the starting location of the Fitter, but does not affect
compilation time or the Fitter effort level. However, if your design is
difficult to fit optimally or takes a long time to fit, sometimes you can
improve results or processing time by changing the seed value.

Timing Analysis

Version 6.1 and later of the Quartus II software supports two native
timing analysis tools: TimeQuest Timing Analyzer and the Classic
Timing Analyzer. Both timing analysis tools provide more complex
clocking schemes than is possible with the MAX_PLUS II Timing
Analyzer. The TimeQuest analyzer uses the industry-standard Synopsys
Design Constraint (SDC) methodology for constraining designs and
reporting results. In general, the TimeQuest Timing Analyzer provides
more control in constraining a design as compared to the Classic Timing
Analyzer. However, the Classic Timing Analyzer incorporates a basic
graphical user interface and the timing analysis flow is similar to the flow
in the MAX_PLUS Il software. As such, the section that follows provides
a more detailed look at timing analysis using the Classic Timing
Analyzer.

«® For more information on choosing between the TimeQuest Timing
Analyzer or the Classic Timing Analyzer, refer to the Timing Analysis
Section in the Introduction to Quartus Il manual.

Launch the Classic Timing Analyzer tool on the MAX+PLUS Il menu by
clicking Classic Timing Analyzer or by selecting Classic Timing
Analyzer Tool on the Processing menu. See Figure 3-16. To start the
analysis, click Start in the Timing Analyzer Tool or on the Processing
menu, by pointing to Start, and clicking Start Timing Analyzer.

Altera Corporation 3-27
October 2007

Quartus Il Handbook, Volume 1

Figure 3-16. Registered Performance Tab of the Timing Analyzer Tool

& Timing Analyzer Tool

Registered Performance hpd |tsu Jtca |th | Custom Delays |
Clock: |clnck j

Walue |
Fram auto_ma:1 gdf

To speed_ch:Zticket

Clock period | 3067 ns

Frequency |326.69 MHz

100 %
00:00:07

W, Start | &b Report | Murnber of paths to list (10 List Paths

The Quartus II Classic Timing Analyzer analyzes all clock domains in
your design, including paths that cross clock domains. You can ignore
paths that cross clock domains by using the following options in the
Timing Requirements & Options page in the Settings dialog box on the
Assignments menu:

B Create a Cut Timing Path assignment
B Turn on Cut paths between unrelated clock domains

To view the results from the Classic Timing Analyzer Tool, click the
Report button located at the bottom of the Classic Timing Analyzer
dialog box, or to get specific information, click on any of the following
tabs at the top of the Classic Timing Analyzer window:

Registered Performance
tep

tsy

tco

ty

Custom Delays

3-28 Altera Corporation
October 2007

Quartus Il Design Flow

The Quartus II Classic Timing Analyzer reports both fysx and slack.
Slack is the margin by which the timing requirement was met or not met.
A positive slack value, displayed in black, indicates the margin by which
a requirement was met. A negative slack value, displayed in red,
indicates the margin by which a requirement was not met.

To analyze a particular path in more detail, select a path in the Classic
Timing Analyzer Tool and click List Paths. This displays a detailed
description of the path in the System tab of the Messages window
(Figure 3-17).

Figure 3-17. Messages Window Displaying Detailed Timing Information

Messages [

l,) Info: tsu for register "speed_ch: Zticket” data pin = "dir[1]", clock pin = "clock") is &.000 ns
E]-: In‘fo + Longest pin to register delay is 8 3

r'IE MNode = "auto_mape:1|_~488

MB MNode = 'auto_max: 1lspeed_too_fast~563
6; Fanout = 1; COMB Node = "auto_max: 1speed_too_fast 564
0, Fanout MB Node = 'auto_max: 1lspeed_too_fast~565
0: Fanout MB Node = 'speed_ch:Ztickst~74

ME; Fanout = 1; COMB MNode = ‘speed_ch:2ticket ~feeder’

7, Fanout = 1; REG Mode = 'speed_ch:2ticket

Total cell delay = 2.1
&) Total interconnect delay 97 %)
--f;J Info: + Micro setup delay of dertlnaﬂm\ 0.036ns
'./ Info: - Shortest clock paih from cluck clock” to de:

ns; Loc. = _,LK\,TRL_'..:z. Fanout = 24; COMB Node = “clock ~clcctr

7 ns; Loc. = LCFF_X¥32_Y17_N7; Fanout = 1; REG MNode = 'speed_ch:2ticket
Total c:eII delay = 1.456 ns
Total interconnect delay

System /i Processing A Exbialnfo A Info A Waming)\ Critical Warning A Ermor A Suppressed /

Message: 0of 19 J J | J Q

e For more information, refer to the Classic Timing Analyzer or the
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus IT
Handbook.

Timing Closure Floorplan

The Quartus II Timing Closure Floorplan is similar to the MAX+PLUS II
Floorplan Editor but has many improvements to help you more
effectively view and debug your design. With its ability to display logic
cell usage, routing congestion, critical paths, and LogicLock™ regions,
the Timing Closure Floorplan also makes the task of improving your
design performance much easier.

Altera Corporation 3-29
October 2007

Quartus Il Handbook, Volume 1

3-30

To view the Timing Closure Floorplan, on the MAX+PLUS Il menu, click
Floorplan Editor or Timing Closure Floorplan.

The Timing Closure Floorplan Editor provides Interior Cell views
equivalent to the MAX+PLUS II logic array block (LAB) views. In
addition to these views, available from the View menu, you also can
select from the Interior MegaL ABs (where applicable), Interior LABs, and
Field views.

1= The Pin Planner is equivalent to the MAX+PLUS II Device view.
The Pin Planner can be launched from the Timing Closure
Floorplan Editor by selecting Package (Top or Bottom) from the
View menu or on the Assignments menu by clicking Pin
Planner.

The Interior LABs view hides cell details for logic cells, Adaptive Logic
Modules (ALM), and macrocells, and shows LAB information

(see Figure 3-18). You can display the number of cells used in each LAB
on the View menu by clicking Show Usage Numbers.

Figure 3-18. Interior LAB View of the Timing Closure Floorplan
B B B ®B ®B ®B B @B B ©
The Field view is a color-coded, high-level view of your device resources

that hides both cell and LAB details. In the Field view, you can see critical
paths and routing congestion in your design.

The View Critical Paths feature shows a percentage of all critical paths in
your floorplan. You can enable this feature on the View menu by clicking
Show Critical Paths. You can control the number of critical paths shown
by modifying the settings in the Critical Paths Settings dialog box on the
View menu.

The View Congestion feature displays routing congestion by coloring
and shading logic resources. Darker shading shows greater resource
utilization. This feature assists in identifying locations where there is a
lack of routing resources.

Altera Corporation
October 2007

Quartus Il Design Flow

Altera Corporation
October 2007

= To show lower level details in any view, right-click on a resource
and click Show Details.

For more information, refer to the Timing Closure Floorplan chapter in
volume 2 of the Quartus II Handbook.

Timing Simulation

Timing simulation is an important part of the verification process. The
Quartus II software supports native timing simulation and exports
simulation netlists to third-party software for design verification.

Quartus Il Simulator Tool

The Quartus II Simulator tool is an easy-to-use integrated solution that
uses the compiler database to simulate the logical and timing
performance of your design (Figure 3-19). When performing timing
simulation, the simulator uses place-and-route timing information.

Figure 3-19. Quartus Il Simulator Tool

= Simulator Tool [Z”E| rz|

Simulation mode: | Tirning j |

Simulation input: |ChiD“iD sef

Simulation period

" Run simulation unti all vector stimuli are used

% End simulation at; |800.0 ns -

Simulation options
v Automatically add ping to simulation output warvefoms

[Check outputs |

v Setup and hold time violation detection

[~ Glitch detection:

v Owenarite simulation input file with simulation results

™ Generate Signal Activiy File: |

00:00:00

» Start | U} Open |

You can use Vector Table Output Files (.tbl), Vector Waveform Files,
Vector Files (.vec), or an existing Simulator Channel File as the vector
stimuli for your simulation.

3-31

Quartus Il Handbook, Volume 1

The simulation options available are similar to the options available in the
MAX+PLUS II Simulator. You can control the length of the simulation
and the type of checks performed by the Simulator. When the
MAX+PLUS II look and feel is selected, the Overwrite simulation input
file with simulation results option is on by default. If you turn it off, the
simulation results are written to the report file. To view the report file,
click Report in the Simulator Tool window.

EDA Timing Simulation

The Quartus II software also supports timing simulation with other EDA
simulation software. Performing timing simulation with other EDA
simulation software requires a Quartus II generated timing netlist file in
the form of a Verilog Output File (.vo) or VHDL Output File (.vho), a
Standard Delay Format Output File (.sdo), and a device-specific atom file
(or files), shown in Table 3-3.

Table 3-3. Altera Timing Simulation Library Files

Verilog VHDL

<device_family>_atoms.v <device_family>_atoms_87.vhd

<device_family>_atoms.vhd

<device_family>_components.vhd

Specify your EDA simulation tool by performing the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page
appears.

3. In the Tool name list, select your EDA Tool.

You can generate a timing netlist for the selected EDA simulator tool by
running a full compile or on the Processing menu, by pointing to Start
and clicking Start EDA Netlist Writer. The generated netlist and SDF file
are placed into the \<project directory>\simulation\<EDA simulator tool>
directory. The device-specific atom files are located in the

\<Quartus II Install>\eda\sim_lib directory.

3-32 Altera Corporation
October 2007

Quartus Il Design Flow

Altera Corporation
October 2007

Power Estimation

To develop an appropriate power budget and to design the power
supplies, voltage regulators, heat sink, and cooling system, you need an
accurate estimate of the power that your design consumes. You can
estimate power by using the PowerPlay Early Power Estimation
spreadsheet available on the Altera website at www.altera.com, or with
the PowerPlay Power Analyzer in the Quartus II software.

You can perform early power estimation with the PowerPlay Early Power
Estimation spreadsheet by entering device resource and performance
information. The Quartus II PowerPlay Analyzer tool performs
vector-based power analysis by reading either a Signal Activity File (.saf),
generated from a Quartus II simulation, or a Value Change Dump File
(VCD) generated from a third-party simulation.

For more information about how to use the PowerPlay Power Analyzer
tool, refer to the PowerPlay Power Analysis chapter in volume 3 of the
Quartus II Handbook.

Programming

The Quartus II Programmer has the same functionality as the
MAX+PLUS II Programmer, including programming, verifying,
examining, and blank checking operations. Additionally, the Quartus II
Programmer now supports the erase capability for CPLDs. To improve
usability, the Quartus II Programmer displays all programming-related
information in one window (Figure 3-20).

Click Add File or Add Device in the Programmer window to add a file
or device, respectively.

3-33

Quartus Il Handbook, Volume 1

Figure 3-20. Programmer Window

Ul chiptrip.cdf

‘.:., Hardware Setup... Ho Hardware

™ Enable realtime ISP to allow backaround programming [for k&3 1 devices)

Mode: |JTAG | Progress: 0%

¥ Delete

s Add File. .

Tz Change File...
Ebsavrie. |
[Add Device...
fu |
$oon |

Programy
L — i |
FFFFFFFF

Security
Bit.

Checksum Usercode Examine

Conclusion

3-34

= Figure 3-20 shows that the Programmer Window now supports
Erase capability.

You can save the programmer settings as a Chain Description File (.cdf).
The CDF is an ASCII text file that stores device name, device order, and
programming file name information.

The Quartus II software is the most comprehensive design environment
available for programmable logic designs. Features such as the
MAX+PLUS II look and feel help you make the transition from Altera’s
MAX+PLUS 1II design software and become more productive with the
Quartus II software. The Quartus II software has all the capabilities and
features of the MAX+PLUS II software and many more to speed up your
design cycle.

Altera Corporation
October 2007

Quick Menu Reference

Quick Menu

Reference

Altera Corporation

October 2007

The commands displayed in the MAX+PLUS II Quick Menu and the
Quartus II Quick Menu vary based on whichever window is active
(Figures 3-21). In the following figure, the Graphic Editor window is
active.

Figure 3-21. MAX+PLUS Il Quick Menus in MAX+PLUS Il and Quartus Il
Software

MAX+PLUS Il Quick Menu MAX+PLUS Il Quick Menu in Quartus Il Software
MAX-+PLUS IT
Hierarchy Display @C MNew Text File
;Eg Graphic Editor @ MNew Block Diagram/Schematic File
H&l Symbol Editor @ New Block Symbol File

% Text Editor w Memory Initialization File

& Waveform Editor @ New Vector Waveform File
Boarplan Editor % Project Mavigator Alt+0
g_ompile" & node Finder Alt+1
£ Smustor \lj Td Console Alt+2
& Timing Analyzer B Messages Alt+3
@B Programmer B Status Alt+4
Al essage Processor e Changes Manager Alt+5

uick Start Guide
* o @ Assignment Editor Ctrl+Shift+A

File 4 @ Pin Planner Ctrl+5hift-+N
Assign 4 @ Timing Closure Floorplan

QOptions 3 @ LogicLock Regions Window Alt+.
Help 3 6’@ Design Partitions Window Alt+D

! Compilation Report Cirl+R
@ Simulation Report Ctrl+Shift+R

Compiler Tool
£ Simulator Toal
,['9 Timing Analyzer Tool

,r?f PowerPlay Power Analyzer Tool

':é), Resource Optimization Advisor
'@@ Timing Optimization Advisor
& chip Editor

Q RTL Viewer

@ Technology Map Viewer

R State Machine Viewer

= SignalTap II Logic Analyzer

m In-System Memory Content Editor
=] Logic Analyzer Interface Editor
% Programmer

3-35

Quartus Il Handbook, Volume 1

Quartus Il
Command
Reference for
MAX+PLUS I
Users

Table 34 lists the commands in the MAX+PLUS II software and gives
their equivalent commands in the Quartus II software.

NA means either Not Applicable or Not Available. If a command is not
listed, then the command is the same in both tools.

Table 3-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 1 of 10)

MAX+PLUS Il Software

Quartus Il Software

MAX+PLUS Il Menu

Hierarchy Display

3

View menu, Utility Windows, Project Navigator

Graphic Editor @] Block Editor
Symbol Editor Effz] Block Symbol Editor

Text Editor

Text Editor

Waveform Editor

G =]

Waveform Editor

Floorplan Editor

&
52

Assignments menu, Timing Closure Floorplan

& B <8 |2] 2] o]] [

b
Compiler [T Tools menu, Compiler Tool
Simulator [} Tools menu, Simulator Tool
Timing Analyzer L"n Tools menu, Timing Analyzer Tool

:I

Programmer

Tools menu, Programmer

Message Processor

‘13!

View menu, Utility Windows, Messages

P

)
@
=
@
S
=

File menu, Project, Name (Ctrl+J)

i

File menu, Open Project (Ctrl+J)

File menu, Project, Set Project to Current
File (Ctrl+Shift+J)

EE

Project menu, Set as Top-Level Entity (Ctrl+Shift+J)
or
File menu, New Project Wizard

File menu, Project, Save & Check (Ctrl+K)

R =S

Processing menu, Start, Start Analysis & Synthesis
(Ctrl+K)

or

Processing menu, Start, Start Analysis &
Elaboration

File menu, Project, Save & Compile (Ctrl+L)

&

Processing menu, Start Compilation (Ctrl+L)

Altera Corporation
October 2007

Quartus Il Command Reference for MAX+PLUS Il Users

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 2 of 10)

MAX+PLUS Il Software

Quartus Il Software

:ﬂ File menu, Project, Save & Simulate
=1 (Ctrl+Shift+L)

Processing menu, Start Simulation (Ctrl+l)

File menu, Project, Compile & Simulate
(Ctrl+Shift+K)

Processing menu, Start Compilation & Simulation
(Ctrl+Shift+K)

File menu, Project, Archive

Project menu, Archive Project

File menu, Project, <Recent Projects>

File menu, <Recent Projects>

File menu, Delete File

NA

File menu, Retrieve

NA

File menu, Info (Ctrl+I)

File menu, File Properties

File menu, Create Default Symbol

File menu, Create/Update, Create Symbol Files for
Current File

File menu, Edit Symbol

(Block Editor) Edit menu, Edit Selected Symbol

File menu, Create Default Include File

File menu, Create/Update, Create AHDL Include Files for
Current File

F=]| File menu, Hierarchy Project Top (Ctrl+T)

EI Project menu, Hierarchy, Project Top (Ctrl+T)

File menu, Hierarchy, Up (Ctrl+U)

Project menu, Hierarchy, Up (Ctrl+U)

File menu, Hierarchy, Down (Ctrl+D)

Project menu, Hierarchy, Down (Ctrl+D)

File menu, Hierarchy, Top

NA

File menu, Hierarchy, Project Top (Ctrl+T)

El Project menu, Hierarchy, Project Top (Ctrl+T)

File menu, MegaWizard Plug-In Manager

Tools menu, MegaWizard Plug-In Manager

(Graphic Editor) File menu, Size

NA

(Waveform Editor) File menu, End Time

(Waveform Editor) Edit menu, End Time

(Waveform Editor) File menu, Compare

(Waveform Editor) View menu, Compare to
q‘.‘l Waveforms in File

(Waveform Editor) File menu, Import Vector File

File menu, Open (Ctrl+O)

Waveform Editor) File menu, Create Table File

File menu, Save As

(
(
(Hierarchy Display
(
(

Hierarchy Display) File menu, Select Hierarchy | NA

) File menu, Open Editor (Project Navigator) Double-click
Hierarchy Display) File menu, Close Editor NA

)

Hierarchy Display) File menu, Change File Type

(Project Navigator) Select file in Files tab and select
Properties on right click menu

(Hierarchy Display) File menu, Print Selected
Files

NA

Altera Corporation
October 2007

3-37

Quartus Il Handbook, Volume 1

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 3 of 10)

MAX+PLUS Il Software

Quartus Il Software

(Programmer) File menu, Select Programming
File

File menu, Open

(Programmer) File menu, Save Programming
Data As

File menu, Save

(Programmer) File menu, Inputs/Outputs

NA

(Programmer) File menu, Convert SRAM Object
Files

File menu, Convert Programming Files

(Programmer) File menu, Archive JTAG
Programming Files

NA

(Programmer) File menu, Create Jam or SVF File

File menu, Create/Update, Create JAM, SVF, or ISC File

Message Processor) Select Messages

NA

(Messages) Save Messages on right click menu

(
(Message Processor) Save Messages As
(

Timing Analyzer) Save Analysis As

Processing menu, Compilation Report - Save Current
Report on right click menu in Timing Analyzer sections

(Simulator) Create Table File

(Waveform Editor) File menu, Save As

(Simulator) Execute Command File

NA

(Simulator) Inputs/Outputs

NA

Edit Menu

Waveform Editor) Edit menu, Overwrite

(Waveform Editor) Edit menu, Value

Waveform Editor) Edit menu, Insert

(Waveform Editor) Edit menu, Insert Waveform Interval

Waveform Editor) Edit menu, Align to Grid

NA

Waveform Editor) Edit menu, Repeat

(Waveform Editor) Edit menu, Repeat Paste

Waveform Editor) Edit menu, Grow or Shrink

Edit menu, Grow or Shrink (Ctrl+Alt+G)

(
(
(
(Ctrl+Y)
(
(
(

Text Editor) Edit menu, Insert Page Break

(Text Editor) Edit menu, Insert Page Break

(Text Editor) Edit menu, Increase Indent
(F2)

(Text Editor) Edit menu, Increase Indent

(Text Editor) Edit menu, Decrease Indent
(F3)

(Text Editor) Edit menu, Decrease Indent

(Graphic Editor) Edit menu, Toggle
Connection Dot (Double-Click)

(Block Editor) Edit menu, Toggle Connection Dot

(Graphic Editor) Edit menu, Flip Horizontal

@ (Block Editor) Edit menu, Flip Horizontal

5B [1H] [l

(Graphic Editor) Edit menu, Flip Vertical

Ii‘l (Block Editor) Edit menu, Flip Vertical

(Graphic Editor) Edit menu, Rotate

El (Block Editor) Edit menu, Rotate by Degrees

3-38

Altera Corporation
October 2007

Quartus Il Command Reference for MAX+PLUS Il Users

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 4 of 10)

MAX+PLUS Il Software

Quartus Il Software

View Menu

View menu, Fit in Window (Ctrl+W)

View menu, Fit in Window (Ctrl+W)

E View menu, Zoom In (Ctrl+Space)

View menu, Zoom In (Ctrl+Space)

@ View menu, Zoom Out (Ctrl+Shift+Space)

View menu, Zoom Out (Ctrl+Shift+Space)

View menu, Normal Size (Ctrl+1)

EEE

View menu, Maximum Size (Ctrl+2)

P4
>

(Hierarchy Display) View menu, Auto Fit in
Window

pzd
>

(Waveform Editor) View menu, Time Range

View menu, Zoom

Assign menu, Device

Assignments menu, Device
or
Assignments menu, Settings (Ctrl+Shift+E)

Assign menu, Pin/Location/Chip

Assignments menu, Assignment Editor - Locations
category

Assign menu, Timing Requirements

Assignments menu, Assignment Editor - Timing
category

Assign menu, Clique

Assignments menu, Assignment Editor - Cliques
category

Assign menu, Logic Options

Assignments menu, Assignment Editor - Logic
Options category

Assign menu, Probe

Assign menu, Connected Pins

Assignments menu, Assignment Editor - Simulation
category

Assign menu, Local Routing

Assignments menu, Assignment Editor - Local
Routing category

Assign menu, Global Project Device Options

Assignments menu, Device - Device and Pin Options

Assign menu, Global Project Parameters

Assignments menu, Settings - Analysis and
Synthesis - Default Parameters

Assign menu, Global Project Timing
Requirements

Assignments menu, Timing Settings

Assign menu, Global Project Logic Synthesis

Assignments menu, Settings - Analysis and
Synthesis

Assign menu, Ignore Project Assignments

Assignments menu, Assignment Editor - disable

Assign menu, Clear Project Assignments

Assignments menu, Remove Assignments

Altera Corporation
October 2007

3-39

Quartus Il Handbook, Volume 1

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 5 of 10)

MAX+PLUS Il Software

Quartus Il Software

Assign menu, Back-Annotate Project

Assignments menu, Back-Annotate Assignments

Assign menu, Convert Obsolete Assignment
Format

NA

Utilities Menu

Utilities menu, Find Text (Ctrl+F)

Edit menu, Find (Ctrl+F)

Utilities menu, Find Node in Design File
(Ctrl+B)

ﬂ Project menu, Locate, Locate in Design File
L

Utilities menu, Find Node in Floorplan

o

s Project menu, Locate, Locate in Timing Closure
dnn

Floorplan

Utilities menu, Find Clique in Floorplan NA

Utilities menu, Find Node Source (Ctrl+Shift+S) | NA

Utilities menu, Find Node Destination NA

(Ctrl+Shift+D)

Utilities menu, Find Next (Ctrl+N) Edit menu, Find Next (F3)
Utilities menu, Find Previous (Ctrl+Shift+N) NA

Utilities menu, Find Last Edit NA

Utilities menu, Search and Replace (Ctrl+R)

Edit menu, Replace (Ctrl+H)

Utilities menu, Timing Analysis Source
(Ctrl+Alt+S)

Utilities menu, Timing Analysis Destination NA
(Ctrl+Alt+D)
Utilities menu, Timing Analysis Cutoff NA
(Ctrl+Alt+C)
Utilities menu, Analyze Timing NA
Utilities menu, Clear All Timing Analysis Tags NA

(Text Editor) Utilities menu, Go To (Ctrl+G)

Edit menu, Go To (Ctrl+G)

(Text Editor) Utilities menu, Find Matching
Delimiter (Ctrl+M)

(Text Editor) Edit, Find Matching Delimiter (Ctrl+M)

(Waveform Editor) Utilities menu, Find Next
Transition (Right Arrow)

(Waveform Editor) View menu, Next Transition (Right
Arrow)

(Waveform Editor) Utilities menu, Find Previous
Transition (Left Arrow)

(Waveform Editor) View menu, Next Transition (Left
Arrow)

Options Menu

Options menu, User Libraries

Assignments menu, Settings (Ctrl+Shift+E)
Tools, Options, Global User Libraries

g

3-40

Altera Corporation
October 2007

Quartus Il Command Reference for MAX+PLUS Il Users

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 6 of 10)

MAX+PLUS Il Software

Quartus Il Software

Options menu, Color Palette

Tools menu, Options

Options menu, License Setup

Tools menu, License Setup

Options menu, Preferences

Tools menu, Options

(Hierarchy Display) Options menu, Orientation

NA

(Hierarchy Display) Options menu, Compact
Display

NA

(Hierarchy Display) Options menu, Show All
Hierarchy Branches

(Project Navigator) Expand All on right click menu

(Hierarchy Display) Options menu, Hide All
Hierarchy Branches

NA

(Editors) Options menu, Font

Tools menu, Options

(Editors) Options menu, Text Size

Tools menu, Options

(Graphic Editor) Options menu, Line Style

Edit menu, Line

ﬂ (Graphic Editor) Options menu,
Rubberbanding

El Tools menu, Options

(Graphic Editor) Options menu, Show Parameters

View menu, Show Parameter Assignments
ad

(Graphic Editor) Options menu, Show Probes

NA

(Graphic Editor) Options menu, Show
Pins/Locations/Chips

El View menu, Show Pin and Location Assignments

I.’JE (Graphic Editor) Options menu, Show All

(Ctrl+Shift+M)

(Graphic Editor) Options menu, Show Clique, NA
Timing & Local Routing Assignments
(Graphic Editor) Options menu, Show Logic NA
Options

NA

Graphic Editor) Options menu, Show Guidelines

Tools menu, Options - Block/Symbol Editor page

(
(Ctrl+Shift+G)
(

Graphic Editor) Options menu, Guideline
Spacing

Tools menu, Options - Block/Symbol Editor page

(Symbol Editors) Options menu, Snap to Grid

Tools menu, Options - Block/Symbol Editor page

Text Editor) Options menu, Tab Stops

Tools menu, Options - Text Editor page

Tools menu, Options - Text Editor page

Text Editor) Options menu, Syntax Coloring

NA

(
(Text Editor) Options menu, Auto-Indent
(
(

Waveform Editor) Options menu, Snap to Grid

View menu, Snap to Grid

(Waveform Editor) Options menu, Show Grid
(Ctrl+Shift+G)

Tools menu, Options - Waveform Editor page

(Waveform Editor) Options menu, Grid Size

Edit menu, Grid Size - Waveform Editor page

Altera Corporation
October 2007

3-41

Quartus Il Handbook, Volume 1

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 7 of 10)

MAX+PLUS Il Software

Quartus Il Software

(Floorplan Editor) Options menu, Routing
Statistics

NA

(Floorplan Editor) Options menu, Show
Node Fan-In

eEl

View menu, Routing, Show Fan-In

(Floorplan Editor) Options menu, Show
Node Fan-Out

"_::I View menu, Routing, Show Fan-Out

E (Floorplan Editor) Options menu, Show Path

View menu, Routing, Show Paths between Nodes

(Floorplan Editor) Options menu, Show Moved
Nodes in Gray

NA

(Simulator) Options menu, Breakpoint

Processing menu, Simulation Debug, Breakpoints

(Simulator) Options menu, Hardware Setup

NA

(Timing Analyzer) Options menu, Time
Restrictions

y Assignments menu, Timing Settings

(Timing Analyzer) Options menu, NA
Auto-Recalculate
(Timing Analyzer) Options menu, Cell Width NA

(Timing Analyzer) Options menu, Cut Off /0 Pin
Feedback

y Assignments menu, Timing Settings

(Timing Analyzer) Options menu, Cut Off Clear &
Reset Paths

y Assignments menu, Timing Settings

(Timing Analyzer) Options menu, Cut Off Read
During Write Paths

y Assignments menu, Timing Settings

(Timing Analyzer) Options menu, List Only NA
Longest Path
(Programmer) Options menu, Sound NA

(Programmer) Options menu, Programming
Options

Tools menu, Options - Programmer page

(Programmer) Options menu, Select Device

(Programmer) Edit menu, Change Device

(Programmer) Options menu, Hardware Setup

(Programmer) Edit menu, Hardware Setup

Symbol (Graphic Editor)

Symbol menu, Enter Symbol (Double-Click)

(Block Editor) Edit menu, Insert Symbol (Double-

El Click)

Symbol menu, Update Symbol

Edit menu, Update Symbol or Block

Symbol menu, Edit Ports/Parameters

Edit menu, Properties

Element (Symbol Editor)

Element menu, Enter Pinstub

‘ Double-click on edge of symbol

3-42

Altera Corporation
October 2007

Quartus Il Command Reference for MAX+PLUS Il Users

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 8 of 10)

MAX+PLUS Il Software

Quartus Il Software

Element menu, Enter Parameters

NA

Templates (Text Editor)

Templates

E (Text Editor) Edit menu, Insert Template

Node (Waveform Editor)

Node menu, Insert Node (Double-Click)

Edit menu, Insert Node or Bus (Double-Click)

Node menu, Enter Nodes from SNF

Edit menu, Insert Node - click on Node Finder...

Node menu, Edit Node

Double-click on the Node

Node menu, Enter Group

Edit menu, Group

Node menu, Ungroup

Edit menu, Ungroup

Node menu, Sort Names

El Edit menu, Sort

Node menu, Enter Separator

P4

A

Layout (Floorplan Editor)

Layout menu, Full Screen

View menu, Full Screen (Ctrl+Alt+Space)

Layout menu, Report File Equation Viewer

View menu, Equations

Layout menu, Device View (Double-Click)

View menu, Package Top

View menu, Package Bottom

Layout menu, LAB View (Double-Click)

View menu, Interior Labs

Layout menu, Current Assignments
Floorplan

View menu, Assignments, Show User Assignments

ENSHE R

?_-_EFJ Layout menu, Last Compilation Floorplan

I_I¢I

View menu, Assignments, Show Fitter
Assignments

Processing (Compiler)

Processing menu, Design Doctor

Processing menu, Start, Start Design Assistant

Processing menu, Design Doctor Settings

Assignments menu, Settings - Design Assistant

RNE

Processing menu, Functional SNF Extractor

Processing menu, Generate Functional Simulation
Netlist

Processing menu, Timing SNF Extractor

Processing menu, Start Analysis & Synthesis

Processing menu, Optimize Timing SNF

P4

A

Processing menu, Linked SNF Extractor

Altera Corporation
October 2007

3-43

Quartus Il Handbook, Volume 1

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 9 of 10)

MAX+PLUS Il Software

Quartus Il Software

Processing menu, Fitter Settings

Assignments menu, Settings - Fitter Settings

Processing menu, Report File Settings

EE

Assignments menu, Settings

Processing menu, Generate AHDL TDO File

P4
>

Processing menu, Smart Recompile

Assignments menu, Settings - Compilation Process

Processing menu, Total Recompile

Assignments menu, Settings - Compilation Process

Processing menu, Preserve All Node Name
Synonyms

Assignments menu, Settings - Compilation Process

Interfaces (Compiler)

o

Assignments menu, EDA Tool Settings

Initialize (Simulator)

Initialize menu, Initialize Nodes/Groups NA
Initialize menu, Initialize Memory NA
Initialize menu, Save Initialization As NA
Initialize menu, Restore Initialization NA
Initialize menu, Reset to Initial SNF Values NA
Node (Timing Analyzer)

Node menu, Timing Analysis Source (Ctrl+Alt+S) | NA
Node menu, Timing Analysis Destination NA
(Ctrl+Alt+D)

Node menu, Timing Analysis Cutoff (Ctrl+Alt+C) | NA

Analysis (Timing Analyzer)

Analysis menu, Delay Matrix

(Timing Analyzer Tool) Delay tab

Analysis menu, Setup/Hold Matrix

NA

Analysis menu, Registered Performance

(Timing Analyzer Tool) Registered Performance tab

JTAG (Programmer)

JTAG menu, Multi-Device JTAG Chain

(Programmer) Mode: JTAG

JTAG menu, Multi-Device JTAG Chain Setup

(Programmer) Window

JTAG menu, Save JCF

File menu, Save

JTAG menu, Restore JCF

File menu, Open

JTAG menu, Initiate Configuration from
Configuration Device

Tools menu, Options - Programmer page

3-44

Altera Corporation
October 2007

Referenced Documents

Table 3—4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 10 of 10)

MAX+PLUS Il Software Quartus Il Software
FLEX (Programmer)
FLEX menu, Multi-Device FLEX Chain (Programmer) Mode: Passive Serial

FLEX menu, Multi-Device FLEX Chain Setup (Programmer) Window

FLEX menu, Save FCF

File menu, Save

FLEX menu, Restore FCF

File menu, Open

Referenced
Documents

Altera Corporation
October 2007

This chapter references the following documents:

Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook

Command Line Scripting chapter in volume 2 of the Quartus II
Handbook

Engineering Change Management with the Chip Planner chapter in
volume 3 of the Quartus II Handbook

Introduction to Quartus II manual

PowerPlay Power Analysis chapter in volume 3 of the Quartus II
Handbook

Quartus II Classic Timing Analyzer chapter in volume 3 of the
Quartus Il Handbook

Quartus II Integrated Synthesis chapter in volume 1 of the Quartus I
Handbook

Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

Tcl Scripting chapter in volume 2 of the Quartus II Handbook
Analyzing and Optimizing the Design Floorplan chapter in volume 2 of
the Quartus II Handbook

3-45

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf

Quartus Il Handbook, Volume 1

Document Table 3-5 show the revision history of this chapter.
Revision History

Table 3-5. Document Revision History

Date and
Document Version Changes Made Summary of Changes
October 2007 Reorganized “Referenced Documents”. Updated for the
v7.2.0 Quartus Il 7.2 software
release.
May 2007 o Added support for Arria GX in Table 3—-1. Minor updates to
v7.1.0 o Added “Referenced Documents” section. support Altera’s newest
device, Arria GX.
March 2007 Consolidated the device support table (Table 1-3) to show —
v7.0.0 support for Stratix series and Cyclone series devices.
\l;lg\;ecr)nber 2006 Added document revision history to chapter. -
\I\//(Iaag 3006 Minor updates for the Quartus Il software version 6.0. -
\ll);cie;nber 2005 Minor typographic and formatting updates. -
\?Sc';oger 2005 Updated for the Quartus Il software version 5.1. -
May 2005 Chapter 2 was formerly Chapter 1 in version 4.2. —
v5.0.0
Dec. 2004 Updated for Quartus Il software version 4.2. —
v2.1.0 o Chapter 1 was formerly Chapter 2.
o General formatting, editing updates, and figure updates.
e FLEX® 600 device support added.
e Assignment Editor, Timing Assignments, and Synthesis
updated.
e APEX Il support for balanced optimization technique
removed, MAX |l support added.
e Minor updates to Place and Route.
e Tcl commands no longer supported for the Quartus Il
Simulator Tool.
o Excel-based power calculator replaced by PowerPlay Early
Power Estimation spreadsheet.
@ Added support for erase capability for CPLDs.
June 2004 e Updates to tables, figures. —
v2.0 o New functionality for Quartus Il software 4.1.
Feb. 2004 Initial release. —
v1.0
3-46 Altera Corporation

October 2007

Z;\l |:| —E N 4. Quartus Il Support for

QI151004-7.2.0

o HardCopy Series Devices

Introduction

HardCopy Il
Device Support

Altera Corporation
October 2007

This chapter includes Quartus® II Support for HardCopy® Il and

HardCopy Stratix® devices. This chapter is divided into the following
sections:

B “HardCopy II Device Support” on page 4-1
B “HardCopy Stratix Device Support” on page 4-34

Altera® HardCopy II devices feature 1.2-V, 90 nm process technology,
and provide a structured ASIC alternative to increasingly expensive
multi-million gate ASIC designs. The HardCopy II design methodology
offers a fast time-to-market schedule, providing ASIC designers with a
solution to long ASIC development cycles. Using the Quartus II software,
you can leverage a Stratix I FPGA as a prototype and seamlessly migrate
your design to a HardCopy II device for production.

This document discusses the following topics:

B “HardCopy II Development Flow” on page 4-3

B “HardCopy II Device Resource Guide” on page 4-8

B “HardCopy Il Recommended Settings in the Quartus II Software” on
page 4-12

B “HardCopy II Utilities Menu” on page 4-25

For more information about HardCopy II, HardCopy Stratix, and
HardCopy APEX™ devices, refer to the respective device data sheets in
the HardCopy Series Handbook.

HardCopy Il Design Benefits

Designing with HardCopy II structured ASICs offers substantial benefits
over other structured ASIC offerings:

B Prototyping using a Stratix II FPGA for functional verification and
system development reduces total project development time

B Seamless migration from a Stratix Il FPGA prototype to a
HardCopy II device reduces time to market and risk

B Unified design methodology for Stratix Il FPGA design and
HardCopy II design reduces the need for ASIC development
software

Quartus Il Handbook, Volume 1

B Low up-front development cost of HardCopy II devices reduces the
financial risk to your project

Quartus Il Features for HardCopy Il Planning

With the Quartus II software you can design a HardCopy II device using
a Stratix II device as a prototype. The Quartus II software contains the
following expanded features for HardCopy II device planning:

B HardCopy II Companion Device Assignment—Identifies
compatible HardCopy II devices for migration with the Stratix II
device currently selected.

=" This feature constrains the pins of your Stratix Il FPGA
prototype making it compatible with your HardCopy II
device. It also constrains the correct resources available for
the HardCopy II device making sure that your Stratix II
FPGA design does not become incompatible. In addition,
you are still required to compile the design targeting the
HardCopy II device to ensure that the design fits, routes,
and meets timing.

B HardCopy II Utilities—The HardCopy II Utilities functions create
or overwrites HardCopy II companion revisions, change revisions to
use, and compare revisions for equivalency.

B HardCopy II Advisor—The HardCopy II Advisor helps you follow
the necessary steps to successfully submit a HardCopy II design to
Altera’s HardCopy Design Center.

s The HardCopy II Advisor is similar to the Resource
Optimization Advisor and Timing Optimization Advisor.
The HardCopy II Advisor provides guidelines you can
follow during development, reporting the tasks completed
as well as the tasks that remain to be completed during
development.

B HardCopy II Floorplan—The Quartus II software can show a
preliminary floorplan view of your HardCopy II design’s Fitter
placement results.

B HardCopy II Design Archiving—The Quartus II software archives
the HardCopy II design project’s files needed to handoff the design
to the HardCopy Design Center.

Il=~ This feature is similar to the Quartus II software HardCopy
Files Wizard used for HardCopy Stratix and HardCopy
APEX families.

4-2 Altera Corporation
October 2007

HardCopy Il Development Flow

HardCopy Il
Development
Flow

Altera Corporation
October 2007

HardCopy II Device Preliminary Timing—The Quartus II software
performs a timing analysis of HardCopy II devices based on
preliminary timing models and Fitter placements. Final timing
results for HardCopy II devices are provided by the HardCopy
Design Center.

HardCopy II Handoff Report-—The Quartus II software generates
a handoff report containing information about the HardCopy II
design used by the HardCopy Design Center in the design review
process.

Formal Verification—Cadence Encounter Conformal software can
now perform formal verification between the source RTL design files
and post-compile gate level netlist from a HardCopy II design.

In the Quartus II software, you have two methods for designing your
Stratix I FPGA and HardCopy II companion device together in one
Quartus II project.

Design the HardCopy II device first, and create the Stratix II FPGA
companion device second and build your prototype for in-system
verification

Design the Stratix Il FPGA first and create a HardCopy II companion
device second

Both of these flows are illustrated at a high level in Figure 4-1. The added
features in the HardCopy II Utilities menu assist you in completing your
HardCopy II design for submission to Altera’s HardCopy Design Center
for back-end implementation.

4-3

Quartus Il Handbook, Volume 1

4-4

Figure 4-1. HardCopy Il Flow in Quartus Il Software

Prepare Design HDL

Design Stratix Il First Design Stratix Il Second

Design
Stratix Il
First?

Select Stratix Il Device
& HardCopy Il

Select HardCopy I
Device & Stratix Il
Companion Device Companion Device

v v

Complete Stratix Il Complete HardCopy Il
Device First Flow (7) Device First Flow (2)

In-System Verification
of Stratix Il <
FPGA Design

v

Compare Stratix Il
& HardCopy Il
Design Revisions

v

Generate HardCopy I
Archive

Handoff Design Archive for
Back-End Migration

A\

Notes for Figure 4-1:
(1) Refer to Figure 4-2 on page 4-5 for an expanded description of this process.
(2) Refer to Figure 4-3 on page 4-7 for an expanded description of this process.

Designing the Stratix Il FPGA First

The HardCopy II development flow beginning with the Stratix II FPGA
prototype is very similar to a traditional Stratix Il FPGA design flow, but
requires a few additional tasks be performed to migrate the design to the
HardCopy II companion device. To design your HardCopy II device
using the Stratix II FPGA as a prototype, complete the following tasks:

Specify a HardCopy II device for migration

Compile the Stratix II FPGA design

Create and compile the HardCopy II companion revision
Compare the HardCopy II companion revision compilation to the
Stratix II device compilation

Altera Corporation
October 2007

HardCopy Il Development Flow

Figure 4-2 provides an overview highlighting the development process
for designing with a Stratix II FPGA first and creating a HardCopy II

companion device second.

Figure 4-2. Designing Stratix Il Device First Flow

Stratix Il Prototype Device Development Phase

C Prepare Stratix Il Design)

I Select HardCopy Il Companion Device l

v

I Review HardCopy Il Advisor l

v

I Apply Design Constraints l

In-System Verification

Compile Stratix Il Design

Any
Violations?

Create or Overwrite HardCopy Il
Companion Revision
T

}47

Fix Violations

HardCopy Il Companion Device Development Phase #

Compile HardCopy Il Companion Revision

Fits in
HardCopy Il Device?

Select a Larger
HardCopy || Companion
Device?

Compare Stratix Il & HardCopy Il Revisions

Any
Violations?

No

Design Submission & Back-End Implementation Phase

v

I Generate Handoff Report

v

C Archive Project for Handoff)

Altera Corporation
October 2007

4-5

Quartus Il Handbook, Volume 1

4-6

Prototype your HardCopy II design by selecting and then compiling a
Stratix I device in the Quartus II software.

After you compile the Stratix II design successfully, you can view the
HardCopy II Device Resource Guide in the Quartus II software Fitter
report to evaluate which HardCopy II devices meet your design’s
resource requirements. When you are satisfied with the compilation
results and the choice of Stratix I and HardCopy II devices, on the
Assignments menu, click Settings. In the Category list, select Device. In
the Device page, select a HardCopy II companion device.

After you select your HardCopy II companion device, do the following;:

B Review the HardCopy II Advisor for required and recommended

tasks to perform

Enable Design Assistant to run during compilation

Add timing and location assignments

Compile your Stratix II design

Create your HardCopy II companion revision

Compile your design for the HardCopy II companion device

Use the HardCopy II Utilities to compare the HardCopy II

companion device compilation with the Stratix Il FPGA revision

B Generate a HardCopy II Handoff Report using the HardCopy II
Utilities

B Generate a HardCopy II Handoff Archive using the HardCopy II
Utilities

B Arrange for submission of your HardCopy II handoff archive to
Altera’s HardCopy Design Center for back-end implementation

For more information about the overall design flow using the Quartus II
software, refer to the Introduction to Quartus II manual on the Altera
website at www.altera.com.

Designing the HardCopy Il Device First

The HardCopy II family presents a new option in designing unavailable
in previous HardCopy families. You can design your HardCopy II device
first and create your Stratix II FPGA prototype second in the Quartus II
software. This allows you to see your potential maximum performance in
the HardCopy II device immediately during development, and you can
create a slower performing FPGA prototype of the design for in-system
verification. This design process is similar to the traditional HardCopy II
design flow where you build the FPGA first, but instead, you merely
change the starting device family. The remaining tasks to complete your
design for both Stratix II and HardCopy II devices roughly follow the

Altera Corporation
October 2007

HardCopy Il Development Flow

same process (Figure 4-3). The HardCopy II Advisor adjusts its list of
tasks based on which device family you start with, Stratix II or

HardCopy I, to help you complete the process seamlessly.

Figure 4-3. Designing HardCopy Il Device First Flow

Prepare HardCopy Il Design)

v

‘ Select Stratix Il Companion Device |

v

‘ Review HardCopy 1| Advisor |

v

‘ Apply Design Constraints |

v
PE—

‘ Compile HardCaopy 11 Design

P
b

o Any

& Violations?
m

Creata or Overwrite Stratix Il
Companion Revision

Fix Violations

Stratix Il Companion Device Development Phase

h 4
In-System Verification }4—' Compile Stratix || Companion Revision |

v

| Compare HardCopy |l & Stratix Il Revisions |

e

Ha

H""‘-\-\.
A
el
H\'\."IDlaIIOHS.’ i
S -
No

Design Submission & Back-End Implementation Phase

Y

Generate Handoff Report |

v

-
-5

Generale HardCopy 11 Archive for Handofi J

Altera Corporation
October 2007

4-7

Quartus Il Handbook, Volume 1

HardCopy li
Device Resource

Guide

The HardCopy II Device Resource Guide compares the resources
required to successfully compile a design with the resources available in
the various HardCopy II devices. The report rates each HardCopy II
device and each device resource for how well it fits the design. The
Quartus II software generates the HardCopy II Device Resource Guide
for all designs successfully compiled for Stratix II devices. This guide is
found in the Fitter folder of the Compilation Report. Figure 4-4 shows an
example of the HardCopy II Device Resource Guide. Refer to Table 4-1
for an explanation of the color codes in Figure 4—4.

Figure 4-4. HardCopy Il Device Resource Guide

HardCopy II Device Resource Guide

Colar Legend:
-~ Green:
- Package Resource:
target device migration enabled

The HardCopy Il package can be migrated from the Stratis Il FPGA selected package, and the design has been fitted with the

Resource Stratix ||
EP25130

1 M igration Compatibility
27 Primary Migration Constraint Package
3| Package FEGA - 1020 FBGA - 484
L = Logic - 19%
i - Logic cells BET2ALUT: -
E | - DSP elements 0
7 [Pins
B -Tol 515 515 /302
9_ - Differential Input 1] 0/E6
1_D - Differential Output 1] 0/44
1 - PCl/ PCl-= a 07153
12| -oo 0 0720
13| -oos 0 0/8
F = Memony
15| -MRaM 6 670
8] -~ M4K blocks & M512 blocks™ |44
17| B FLLs
18] - Enhanced 2 272
19| - Fast 1] n/z
20 Dls 1] 0
21| = SERDES
22 - R 0 07
S 0 /18
g =] Configuration
| -oAC 0 070
26| -asMi 0 070
? - Remote Update o 0s/0
F 0 0

Package
FEGA - 484
19%

A16 /336
0/
0./ 50
0/ 167
o/20
o/8

E/0

242
/2
01

o/
0./14

/0
/0
o/0
041

Package
FBGA - 672
10%

A15 / 453
07380
0770
07245
0/50
o/18

E/2

2/2
n/2
o/

0/3
0/24

00
00
o/0
o1

Package
FEGA - 780
0%

516 / 495
0./4a0
0/
0/247
0/50
0/18

E/2

2/2
/2
0/1

0/
0/29

0/n
0/n
0/0
01

A15 /R399
n/12a
n/112
0/ 353
0/ 204
o/qz

E/B

2/4
0/4
/2

0/48
0/44

o0
o0
o/0
o1

Package

FEGA - 1020

4z

A15/ 743
0/224
0/ 200
0/ 367
0/204
o/72

E/9

2/4
0/8
n0/2

0/92
0/8e

o/n
o/n
o/0
041

FEGA - 1503

* Device is preliminary, Dverall performance iz expected to be degraded.

" Diesign containg one or more M512 blocks, which cannot be migrated to HardCopy || devices.

4-8

Use this report to determine which HardCopy II device is a potential
candidate for migration of your Stratix II design. The HardCopy II device
package must be compatible with the Stratix II device package. A logic

Altera Corporation

October 2007

HardCopy Il Device Resource Guide

resource usage greater than 100% or a ratio greater than 1/1 in any
category indicates that the design does not fit in that particular
HardCopy II device.

Table 4-1. HardCopy Il Device Resource Guide Color Legend

Color Package Resource (7) Device Resources
The design can migrate to the Hardcopy I The resource quantity is within the range of the
package and the design has been fitted with HardCopy Il device and the design can likely
target device migration enabled in the migrate if all other resources also fit.

Green . S

(High) HardCopy Il Companion Device dialog box.

You are still required to compile the HardCopy Il
revision to make sure the design is able to route
and migrate all other resources.

The design can migrate to the Hardcopy Il The resource quantity is within the range of the
package. However, the design has not been HardCopy Il device. However, the resource is at
fitted with target device migration enabled in the | risk of exceeding the range for the HardCopy Il
HardCopy Il Companion Device dialog box. package.
. If your target HardCopy Il device falls in this
(Medium) category, compile your design targeting the
HardCopy Il device as soon as possible to check
if the design fits and is able to route and migrate
all other resources. You may need to migrate to
a larger device.
R The design cannot migrate to the Hardcopy Il The resource quantity exceeds the range of the
ed ;) .
(None) package. HardCopy Il device. The design cannot migrate

to this HardCopy Il device.

Note to Table 4-1:
(1) The package resource is constrained by the Stratix II FPGA for which the design was compiled. Only vertical
migration devices within the same package are able to migrate to HardCopy II devices.

The HardCopy II architecture consists of an array of fine-grained HCells,
which are used to build logic equivalent to Stratix II adaptive logic
modules (ALMs) and digital signal processing (DSP) blocks. The DSP
blocks in HardCopy II devices match the functionality of the Stratix II
DSP blocks, though timing of these blocks is different than the FPGA DSP
blocks because they are constructed of HCell Macros. The M4K and
M-RAM memory blocks in HardCopy II devices are equivalent to the
Stratix I memory blocks. Preliminary timing reports of the HardCopy II
device are available in the Quartus II software. Final timing results of the
HardCopy II device are provided by the HardCopy Design Center after
back-end migration is complete.

Altera Corporation 4-9
October 2007

Quartus Il Handbook, Volume 1

e« For more information about the HardCopy II device resources, refer to
the Introduction to HardCopy II Devices and the Description, Architecture

and Features chapters in the HardCopy II Device Family Data Sheet in the
HardCopy Series Handbook.

The report example in Figure 44 shows the resource comparisons for a
design compiled for a Stratix II EP2S130F1020 device. Based on the
report, the HC230F1020 device in the 1,020-pin FineLine BGA® package
is an appropriate HardCopy II device to migrate to. If the HC230F1020
device is not specified as a migration target during the compilation, its
package and migration compatibility is rated orange, or Medium. The
migration compatibilities of the other HardCopy II devices are rated red,
or None, because the package types are incompatible with the Stratix II
device. The 1,020-pin FBGA HC240 device is rated red because it is only
compatible with the Stratix II EP2S180F1020 device.

Figure 4-5 shows the report after the (unchanged) design was recompiled
with the HardCopy I HC230F1020 device specified as a migration target.
Now the HC230F1020 device package and migration compatibility is
rated green, or High.

Figure 4-5. HardCopy Il Device Resource Guide with Target Migration Enabled

HardCopy II Device Resource Guide

Color Legend: ~

- Green:
-- Package Resource: The HardCopy Il package can be migrated from the Stratix || FPGA selected package, and the design has been fitted with the

target device migration enabled.

Resource Strati Il
EP25130

1

Migration Compatibility g
Primary Migration Constraint Package Package Package Package Package Package
Package FBGA - 1020 |FEGA - 484 |FEGA - 484 |FEGA - 672 |FEGA - 780 |FBGA - 1020 |FEGA - 1020 |FEGA - 1508

Hard cOpv] In the Quartus II software, you can select a HardCopy II companion

device to help structure your design for migration from a Stratix II device

Compa nion to a HardCopy II device. To make your HardCopy II companion device
Device Selection selection, on the Assignments menu, click Settings. In the Settings dialog

4-10

box in the Category list, select Device (Figure 4-6) and select your
companion device from the Available devices list.

Selecting a HardCopy II Companion device to go with your Stratix II
prototype constrains the memory blocks, DSP blocks, and pin
assignments, so that your Stratix Il and HardCopy II devices are
migration-compatible. Pin assignments are constrained in the Stratix II
design revision so that the HardCopy II device selected is

Altera Corporation
October 2007

HardCopy Il Companion Device Selection

pin-compatible. The Quartus II software also constrains the Stratix II
design revision so it does not use M512 memory blocks or exceed the
number of M-RAM blocks in the HardCopy II companion device.

Figure 4-6. Quartus Il Settings Dialog Box

Settings - demo_design

=

#

=

Category:

General

Files
User Libraries (Curient Project]
Devise
Timing Requirements & Options
EDA Tool Settings
Design Entry/Synthesis
Simulation
Timing Analysis
BoardLevel
Formal Verification
Physical Synthesis
Compilation Process Settings
Early Timing E stimate
Incremental Compilation
Analysis & Sprthesis Seftings
YHDL Input
Yeriog HDL Input
Defalt Parameters
Synthesis Metlst Optimizations
Fiter Setings
Physical Synthesis Dptimizations
Assembler
Timing Analyzer
Design Assistart
SignalT ap Il Lagic Analyzer
Logic Analyzer Interface
SignalProbe Settings
Simulstor Settings
PowerPlay Power Analyzer Settings
Software Build Setfings
HardCopy Settings

3
e

Select the family and devics pou want ta target for compilation

Target device

P

Available devices:

Family: [Stratix 1 =] Show in *Available devices' list
Package: |Any -

Device & Pin Optians.. ‘
Pin caunt | Any =

" Auta device selected by the Fitter

* Specific device selected in ‘Available devices' ist

Speed grade: [Ary =
Core voltage: 1.2V

Iv Show advanced devices

[ALUTs [Memor.. | DSP A

EP25130F1020C5
EP25130F102014

ER25180F1020C3
<

Migration compatbilty

Migration Devices...

0 migration devices sslected

72768 4520442
4! 8

E: :

4520448 48
106032 6747840 B3
106032 BT47E40 B3

72768

106032 6747840 B3

106032 G747840 63

143520 9323040 96 A
| >

Companion device

HardCopy Il |HC230F1020C =

Iw Limit DSP & RAM to HardCopy |l device resources

Cancel

set _global assignment -name)
DEVICE_TECHNOLOGY MIGRATION_ LIST <HardCopy II Device Part Number>

set_global assignment -name\
DEVICE_ TECHNOLOGY MIGRATION LIST HC230F1020C

Altera Corporation

October 2007

You can also specify your HardCopy II companion device using the
following tool command language (Tcl) command:

For example, to select the HC230F1020 device as your HardCopy II
companion device for the EP25130F1020C4 Stratix Il FPGA, the Tcl
command is:

4-11

Quartus Il Handbook, Volume 1

HardCopy li
Recommended
Settings in the
Quartus I
Software

4-12

The HardCopy II development flow involves additional planning and
preparation in the Quartus II software compared to a standard FPGA
design. This is because you are developing your design to be
implemented in two devices: a prototype of your design in a Stratix II
prototype FPGA, and a companion revision in a HardCopy II device for
production. You need additional settings and constraints to make the
Stratix II design compatible with the HardCopy II device and, in some
cases, you must remove certain settings in the design. This section
explains the additional settings and constraints necessary for your design
to be successful in both Stratix Il FPGA and HardCopy II structured ASIC
devices.

Limit DSP and RAM to HardCopy Il Device Resources

On the Assignments menu, click Settings to view the Settings dialog box.
In the Category list, select Device. In the Family list, select Stratix II.
Under Companion device, Limit DSP & RAM to HardCopy II device
resources is turned on by default (Figure 4-7). This maintains
compatibility between the Stratix Il and HardCopy Il devices by ensuring
your design does not use resources in the Stratix II device that are not
available in the selected HardCopy 1II device.

Il=~ If you require additional memory blocks or DSP blocks for
debugging purposes using SignalTap® II, you can temporarily
turn this setting off to compile and verify your design in your
test environment. However, your final Stratix IT and
HardCopy II designs submitted to Altera for back-end
migration must be compiled with this setting turned on.

Figure 4-7. Limit DSP & RAM to HardCopy Il Device Resources Check Box

Companion device
HardCopy Il |HC230F1020C =]
[v Limit DSP & RAM to HardCopy || device resources

Enable Design Assistant to Run During Compile

You must use the Quartus II Design Assistant to check all HardCopy
series designs for design rule violations before submitting the designs to
the Altera HardCopy Design Center. Additionally, you must fix all
critical and high-level errors.

I'=" Altera recommends turning on the Design Assistant to run
automatically during each compile, so that during development,
you can see the violations you must fix.

Altera Corporation
October 2007

HardCopy Il Recommended Settings in the Quartus Il Software

Altera Corporation
October 2007

For more information about the Design Assistant and the rules it uses,
refer to the Design Guidelines for HardCopy Series Devices chapter of the
HardCopy Series Handbook.

To enable the Design Assistant to run during compilation, on the
Assignment menu, click Settings. In the Category list, select Design
Assistant and turn on Run Design Assistant during compilation

(Figure 4-8) or by entering the following Tcl command in the Tcl Console:

set_global_assignment -name ENABLE_DRC_SETTINGS ON

Figure 4-8. Enabling Design Assistant

Settings - demo_design @

Categany:

EEEIRES

EIE

=

General

Files

User Libraries [Current Project])
Device

Timing Requirements & Options
EDA Tool Settings

Compilation Process Settings
Analysis & Synthesis Settings
Fitter Settings

Timing &nalyzer
nt
SignalTap Il Logic Analyzer
Logic &nalyzer Interface
SignalProbe Settings
Simulator Settings
PowerPlay Power Snalyzer Settings
Software Build Settings
HardCopy Settings

Design Assistant

Specify the potential design problems that you want the Design Assistant to check. You can choose
to check the design for individual problems. or a category of design problems.

¥ Run Design Assistant during compilation

Select the rules you want the Design Assistant ta apply to the project:

= Design Assistant configuration ule names
Clock

Reset

Timing closure

Nervsprchronous design structure
Signal race

Aspnchronous clock domain:
HardCopy ules

¥

=
e
=
=
=
=

Cancel

Timing Settings

Beginning in Quartus II Software version 7.1, TimeQuest is the

recommended timing analysis tool for all designs. Classic Timing
Analyzer is no longer supported and the HardCopy Design Center will
not accept any designs which use Classic Timing Analyzer for timing
closure.

If you are still using the Classic Timing Analyzer, Altera strongly

recommends that you switch to TimeQuest.

4-13

Quartus Il Handbook, Volume 1

4-14

= For more information on how to switch to TimeQuest, refer to
the Switching to the TimeQuest Timing Analyzer chapter of the
Quartus Il Handbook, volume 3, on the Altera website at
www.altera.com.

When you specify the TimeQuest analyzer as the timing analysis tool, the
TimeQuest analyzer guides the Fitter and analyzes timing results after
compilation.

TimeQuest

The TimeQuest Timing Analyzer is a powerful ASIC-style timing
analysis tool that validates timing in your design by using an
industry-standard constraint, analysis, and reporting methodology. You
can use the TimeQuest Timing Analyzer’s GUI or command-line
interface to constrain, analyze, and report results for all timing paths in
your design.

Before running the TimeQuest Timing Analyzer, you must specify initial
timing constraints that describe the clock characteristics, timing
exceptions, and signal transition arrival and required times. You can
specify timing constraints in the Synopsys Design Constraints (SDC) file
format using the GUI or command-line interface. The Quartus II Fitter
optimizes the placement of logic to meet your constraints.

During timing analysis, the TimeQuest Timing Analyzer analyzes the
timing paths in the design, calculates the propagation delay along each
path, checks for timing constraint violations, and reports timing results as
slack in the Report pane and in the Console pane. If the TimeQuest
Timing Analyzer reports any timing violations, you can customize the
reporting to view precise timing information about specific paths, and
then constrain those paths to correct the violations. When your design is
free of timing violations, you can be confident that the logic will operate
as intended in the target device.

The TimeQuest Timing Analyzer is a complete static timing analysis tool
that you can use as a sign-off tool for Altera FPGAs and structured ASICs.

Setting Up the TimeQuest Timing Analyzer

If you want use TimeQuest for timing analysis, from the Assignments tab
in the Quartus II software, click on Timing Analysis Settings, and in the
pop-up window, click the Use TimeQuest Timing Analyzer during
compilation tab.

Altera Corporation
October 2007

HardCopy Il Recommended Settings in the Quartus Il Software

Altera Corporation
October 2007

Use the following Tcl command to use TimeQuest as your timing analysis
engine:

set_global assignment -name \
USE_TIMEQUEST TIMING ANALYZER ON

You can launch the TimeQuest analyzer in one of the following modes:

B Directly from the Quartus II software
B Stand-alone mode
B Command-line mode

In order to perform a thorough Static Timing Analysis, you would need
to specify all the timing requirements. The most important timing
requirements are clocks and generated clocks, input and output delays,
false paths and multi-cycle paths, minimum and maximum delays.

In TimeQuest, clock latency, and recovery and removal analysis are
enabled by default.

For more information about TimeQuest, refer to the Quartus II TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook on the
Altera website at www.altera.com.

Constraints for Clock Effect Characteristics

The create clock, create_generated clock commands create
ideal clocks and do not account for board effects. In order to account for
clock effect characteristics, you can use the following commands:

B set _clock_latency
B set_clock uncertainty

= For more information about how to use these commands, refer
to the Quartus II TimeQuest Timing Analyzer chapter in volume 3
of the Quartus II Handbook.

Beginning in Quartus II version 7.1, you can use the new command
derive_ clock uncertainty to automatically derive the clock
uncertainties. This command is useful when you are not sure what the
clock uncertainties might be. The calculated clock uncertainty values are
based on I/O buffer, static phase errors (SPE) and jitter in the PLL's, clock
networks, and core noises.

4-15

Quartus Il Handbook, Volume 1

4-16

The derive clock_uncertainty command applies inter-clock,
intra-clock, and I/O interface uncertainties. This command automatically
calculates and applies setup and hold clock uncertainties for each
clock-to-clock transfer found in your design.

In order to get I/O interface uncertainty, you must create a virtual clock,
then assign delays to the input/output ports by using the
set_input_ delayand set_output_ delay commands for that
virtual clock.

s These uncertainties are applied in addition to those you
specified using the set _clock_uncertainty command.
However, if a clock uncertainty assignment for a source and
destination pair was already defined, the new one will be
ignored. In this case, you can use either the -overwrite
command to overwrite the previous clock uncertainty
command or manually remove them by using the
remove_clock uncertainty command.

The syntax for the derive_clock_uncertainty is as follows:

derive clock_uncertainty [-h | -help] [-long help]
[-dtw] [-overwritel

where the arguments are listed in Table 4-2:

Table 4-2. Arguments for derive_clock_uncertainty

Option Description
-h | -help Short help

-long_help | Long help with examples and possible return values

-dtw Creates PLLJ_PLLSPE_INFO.txt file

-overwrite Overwrites previously performed clock uncertainty assignments

When the dtw option is used, a PLLJ_PLLSPE_INFO.txt file is generated.
This file lists the name of the PLLs, as well as their jitter and SPE values
in the design. This text file can be used by HCII_DTW_CU_Calculator.
When this option is used, clock uncertainties are not calculated.

For more information on the derive clock uncertaintycommand,
refer to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of
the Quartus Il Handbook.

Altera Corporation
October 2007

HardCopy Il Recommended Settings in the Quartus Il Software

Altera Corporation
October 2007

Altera strongly recommends that you use the

derive clock uncertainty command in the HardCopy II revision.
The HardCopy Design Center will not be accepting designs that do not
have clock uncertainty constraint by either using the
derive_clock_uncertainty command or the HardCopy II Clock
Uncertainty Calculator, and then using the set_clock_uncertainty
command.

For more information on how to use the HardCopy II Clock Uncertainty
Calculator, refer to the HardCopy II Clock Uncertainty User Guide available
on the Altera website at www.altera.com.

Quartus Il Software Features Supported for HardCopy Il Designs

The Quartus II software supports optimization features for HardCopy 11
prototype development, including;:

Physical Synthesis Optimization

LogicLock Regions

PowerPlay Power Analyzer

Incremental Compilation (Synthesis and Fitter)
Maximum Fan-Out Assignments

Physical Synthesis Optimization

To enable Physical Synthesis Optimizations for the Stratix II FPGA
revision of the design, on the Assignments menu, click Settings. In the
Settings dialog box, in the Category list, select Fitter Settings. These
optimizations are migrated into the HardCopy II companion revision for
placement and timing closure. When designing with a HardCopy II
device first, physical synthesis optimizations can be enabled for the
HardCopy II device, and these post-fit optimizations are migrated to the
Stratix I FPGA revision.

LogicLock™ Regions

The use of LogicLock Regions in the Stratix II FPGA is supported for
designs migrating to HardCopy II. However, LogicLock Regions are not
passed into the HardCopy II Companion Revision. You can use
LogicLock in the HardCopy II design but you must create new
LogicLock Regions in the HardCopy II companion revision. In addition,
LogicLock Regions in HardCopy II devices can not have their properties
set to Auto Size. However, Floating LogicLock regions are supported.
HardCopy II LogicLock Regions must be manually sized and placed in
the floorplan. When LogicLock Regions are created in a HardCopy 11
device, they start with width and height dimensions set to (1,1), and the
origin coordinates for placement are at X1_Y1 in the lower left corner of

4-17

Quartus Il Handbook, Volume 1

the floorplan. You must adjust the size and location of the LogicLock
Regions you created in the HardCopy II device before compiling the
design.

«® For information about using LogicLock Regions, refer to the Quartus II
Analyzing and Optimizing Design Floorplan chapter in volume 2 of the
Quartus II Handbook.

PowerPlay Power Analyzer

You can perform power estimation and analysis of your HardCopy Il and
Stratix II devices using the PowerPlay Early Power Estimator. Use the
PowerPlay Power Analyzer for more accurate estimation of your device’s
power consumption. The PowerPlay Early Power Estimator is available
in the Quartus II software version 5.1 and later. The PowerPlay Power
Analyzer supports HardCopy II devices in version 6.0 and later of the
Quartus II software.

«® For more information about using the PowerPlay Power Analyzer, refer
to the Quartus II PowerPlay Power Analysis chapter in volume 3 of the
Quartus IT Handbook on the Altera website at www.altera.com.

Incremental Compilation

The use of the Quartus II Incremental Compilation in the Stratix Il FPGA
is supported when migrating a design to a HardCopy II device.
Incremental compilation is supported in the Stratix II First design flow or
HardCopy II First design flow.

To take advantage of Quartus II Incremental Compilation, organize your
design into logical and physical partitions for synthesis and fitting (or
place-and-route). Incremental compilation preserves the compilation
results and performance of unchanged partitions in your design. This
feature dramatically reduces your design iteration time by focusing new
compilations only on changed design partitions. New compilation results
are then merged with the previous compilation results from unchanged
design partitions. You can also target optimization techniques, such as
physical synthesis, to specific partitions while leaving other partitions
untouched.

In addition, be aware of the following guidelines:

e User partitions and synthesis results are migrated to a
companion device.

e LogicLock regions are suggested for user partitions, but are not
migrated automatically.

4-18 Altera Corporation
October 2007

HardCopy Il Recommended Settings in the Quartus Il Software

e The first compilation after migration to a companion device
requires a full compilation (all partitions are compiled), but
subsequent compilations can be incremental if changes to the
source RTL are not required. For example, PLL phase changes
can be implemented incrementally if the blocks are partitioned.

e The entire design must be migrated between Stratix IT and
HardCopy II companion devices. The Quartus II software does
not support migration of partitions between companion
devices.

e Bottom-up Quartus Il Incremental Compilation is not supported
for HardCopy II devices.

e Physical Synthesis can be run on individual partitions within
the originating device only. The resulting optimizations are
preserved in the migration to the companion device.

«® For information about using Quartus II Incremental Compilation, refer
to the Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook.

Maximum Fanout Assignments

This feature is supported beginning in Quartus II 6.1. In order to meet
timing, it may be necessary to limit the number of fanouts of a net in your
design. You can limit the maximum fanout of a given net by using this
feature.

For example, you can use the following Tcl command to enable the
maximum fanout setting:

set_instance_assignment -name MAX FANOUT <number>
- to\ <net name>

For example, if you want to limit the maximum fanout of net called
"m3122_combout_1" to 25, the Tcl command is as follows:

set instance assignment -name MAX FANOUT 25 -to\
m3122 combout 1

Altera Corporation 4-19
October 2007

Quartus Il Handbook, Volume 1

Performing
ECOs with
Quartus I
Engineering
Change
Management
with the Chip
Planner

4-20

As designs grow larger and larger in density, the need to analyze the
design for performance, routing congestion, logic placement, and
executing Engineering Change Orders (ECOs) becomes critical. In
addition to design analysis, you can use various bottom-up and
top-down flows to implement and manage the design. This becomes
difficult to manage since ECOs are often implemented as last minute
changes to your design.

With the Altera Chip Planner tool, you can shorten the design cycle time
significantly. When changes are made to your design as ECOs, you do not
have to perform a full compilation in the Quartus II software. Instead,
you would make changes directly to the post place-and-route netlist,
generate a new programming file, test the revised design by performing
a gate-level simulation and timing analysis, and proceed to verify the fix
on the system (if you are using a Stratix Il FPGA as a prototype). Once the
fix has been verified on the Stratix Il FPGA, switch to the HardCopy II
revision, apply the same ECOs, run the timing analyzer and assembler,
perform a revision compare and then run the HardCopy II Netlist Writer
for design submission.

There are three scenarios from a migration point of view:

B There are changes which can map one-to-one (that is, the same
change can be implemented on each architecture—Stratix II FPGA
and HardCopy II).

B There are changes that must be implemented differently on the two
architectures to achieve the same result.

B There are some changes that cannot be implemented on both
architectures.

The following sections outline the methods for migrating each of these
types of changes.

Migrating One-to-One Changes

One-to-one changes are implemented using identical commands in both
architectures. In general, such changes include those that affect only I/O
cells or PLL cells. Some examples of one-to-one changes are changes such
as creating, deleting or moving pins, changing pin or PLL properties, or
changing pin connectivity (provided the source and destination of the
connectivity changes are I/Os or PLLs). These can be implemented
identically on both architectures.

If such changes are exported to Tcl, a direct reapplication of the generated
Tel script (with a minor text edit) on the companion revision should
implement the appropriate changes as follows:

Altera Corporation
October 2007

Performing ECOs with Quartus Il Engineering Change Management with the Chip Planner

B Export the changes from the Change Manager to Tcl.

B Open the generated Tcl script, change the line "project_open
<project> -revision <revision>" to refer to the appropriate companion
revision.

B Apply the Tcl script to the companion revision.

A partial list of examples of this type are as follows:

B I/0O creation, deletion, and moves

B I/O property changes (for example, I/O standards, delay chain
settings, etc.)

B PLL property changes

B Connectivity changes between non-LCELL_COMB atoms (for
example, PLL to1/O, DSP to I/O, etc.)

Migrating Changes that Must be Implemented Differently

Some changes must be implemented differently on the two architectures.
Changes affecting the logic of the design may fall into this category.
Examples are LUTMASK changes, LC_COMB/HSADDER creation and
deletion, and connectivity changes not covered in the previous section.

Another example of this would be to have different PLL settings for the
Stratix II and the HardCopy II revisions.

e« For more information about how to use different PLL settings for the
Stratix II and HardCopy II Devices, refer to AN432: Using Different PLL
Settings Between Stratix I and HardCopy II Devices.

Table 4-3 summarizes suggested implementation for various changes.

Table 4-3. Implementation Suggestions for Various Changes (Part 1 of 2)

Change Type Suggested Implementation

LUTMASK changes Because a single Stratix Il atom may require
multiple HardCopy Il atoms to implement, it may be
necessary to change multiple HardCopy Il atoms to
implement the change, including adding or
modifying connectivity

Make/Delete LC_COMB If you are using a Stratix Il LC_COMB in extended
mode (7-LUT) or using a SHARE chain, you must
create multiple atoms to implement the same logic
functions in HardCopy II. Additionally, the
placement of the LC_COMB cell has no meaning in
the companion revision as the underlying
resources are different.

Altera Corporation 4-21
October 2007

Quartus Il Handbook, Volume 1

Overall
Migration Flow

4-22

Table 4-3. Implementation Suggestions for Various Changes (Part 2 of 2)

Change Type Suggested Implementation

Make/Delete LC_FF The basic creation and deletion is the same on both
architectures. However, as with LC_COMB
creation and deletion, the location ofan LC_FFina
HardCopy Il revision has no meaning in the
Stratix |l revision and vice versa.

Editing Logic Connectivity | Because a Stratix || LCELL_COMB atom may have
to be broken up into several HardCopy |
LCELL_COMB atoms, the source or destination
ports for connectivity changes may need to be
analyzed to properly implement the change in the
companion revision.

Changes that Cannot be Migrated

A small set of changes cannot be implemented in the other architecture
because they do not make sense in the other architecture. The best
example of this occurs when moving logic in a design; because the logic
fabric is different between the two architectures, locations in Stratix II
make no sense in HardCopy II and vice versa.

This section outlines the migration flow and the suggested procedure for
implementing changes in both revisions to ensure a successful Revision
Compare such that the design can be submitted to the HardCopy Design
Center.

Preparing the Revisions

The general procedure for migrating changes between devices is the
same, whether going from Stratix II to HardCopy II or vice versa. The
major steps are as follows:

1. Compile the design on the initial device.

2. Migrate the design from the initial device to the target device in the

companion revision.

Compile the companion revision.

4. Perform a Revision Compare operation. The two revisions should
pass the Revision Compare.

@

If testing identifies problems requiring ECO changes, equivalent changes
can be applied to both Stratix II and HardCopy II revisions, as described
in the next section.

Altera Corporation
October 2007

Overall Migration Flow

Applying ECO Changes

The general flow for applying equivalent changes in companion revisions
is as follows:

1. Make changes in one revision using the Chip Planner tools (Chip
Planner, Resource Property Editor, and Change Manager), then
verify and export these changes. The procedure for doing this is as
follows:

a. Make changes using the Chip Planner tool.

b. Perform a netlist check using the Check and Save All Netlist
Changes command.

c. Verify correctness using timing analysis, simulation, and
prototyping (Stratix II only). If more changes are required,

repeat steps a-b.

d. Export change records from the Change Manager to Tcl scripts,
or .csv or .txt file formats.

This exported file is used to assist in making the equivalent
changes in the companion revision.

2. Open the companion revision in the Quartus II software.

3. Using the exported file, manually reapply the changes using the
Chip Planner tool.

As stated previously, some changes can be reapplied directly to the
companion revision (either manually or by applying the Tcl

commands), while others require some modifications.

4. Perform a Revision Compare operation. The revisions should now
match once again.

5. Verify the correctness of all changes (you may need to run timing
analysis).

6. Run the HardCopy II Assembler and the HardCopy II Netlist Writer
for design submission along with handoff files.

The Tcl command for running the HardCopy II Assembler is as follows:

execute module -tool asm -args "--
read settings files=\ off --write settings files=off"

Altera Corporation 4-23
October 2007

Quartus Il Handbook, Volume 1

Formal

Verification of
Stratix Il and
HardCopy Il

Revisions

4-24

The Tcl command for the HardCopy II Netlist Writer is as follows:

execute _module -tool cdb \
-args "--generate hardcopyii files"\

For more information about using Chip Planner, refer to the Quartus II
Engineering Change Management with Chip Planner chapter in volume 3 of
the Quartus II Handbook at www.altera.com.

Third-party formal verification software is available for your

HardCopy Il design. Cadence Encounter Conformal verification software
is used for Stratix I and HardCopy II families, as well as several other
Altera product families.

To use the Conformal software with the Quartus II software project for
your Stratix II and HardCopy II design revisions, you must enable the
EDA Netlist Writer. It is necessary to turn on the EDA Netlist Writer so
it can generate the necessary netlists and command files needed to run the
Conformal software. To automatically run the EDA Netlist Writer during
the compile of your Stratix Il and HardCopy II design revisions, perform
the following steps:

1. On the Assignment menu, click EDA Tool Settings. The Settings
dialog box displays.

2. Inthe EDA Tool Settings list, select Formal Verification, and in the
Tool name list, select Conformal LEC.

3. Compile your Stratix II and Hardcopy II design revisions, with both
the EDA Tool Settings and the Conformal LEC turned on so the
EDA Netlist Writer automatically runs.

The Quartus I EDA Netlist Writer produces one netlist for Stratix II
when it is run on that revision, and generates a second netlist when it runs
on the HardCopy II revision. You can compare your Stratix II
post-compile netlist to your RTL source code using the scripts generated
by the EDA Netlist Writer. Similarly, you can compare your HardCopy II
post-compile netlist to your RTL source code with scripts provided by
the EDA Netlist Writer.

For more information about using the Cadence Encounter Conformal
verification software, refer to the Cadence Encounter Conformal Support
chapter in volume 3 of the Quartus II Handbook.

Altera Corporation
October 2007

HardCopy Il Utilities Menu

HardCopy li
Utilities Menu

Altera Corporation
October 2007

The HardCopy II Utilities menu in the Quartus II software is shown
Figure 4-9. To access this menu, on the Project menu, click HardCopy II
Utilities. This menu contains the main functions you use to develop your
HardCopy II design and Stratix Il FPGA prototype companion revision.
From the HardCopy II Utilities menu, you can:

Create or update HardCopy II companion revisions

Set which HardCopy II companion revision is the current revision
Generate a HardCopy II Handoff Report for design reviews
Archive HardCopy Il Handoff Files for submission to the HardCopy
Design Center

Compare the companion revisions for functional equivalence

Track your design progress using the HardCopy II Advisor

Figure 4-9. HardCopy Il Utilities Menu

Add/Remave Files in Project...

Revisions. ..,

Zopy Project..,

Archive Project...

Restare Archived Project...

Import Database. ..

Expott Database. ..

Import Design Partition. ..

Export Project as Design Partition. ..

Generate Tel File For Project...

Generate PowerPlay Early Power Estimator File

HardCopy Ukilities 4

HardCopy I Utilities #* Create/Overwrite HardCopy II Companion Revision, ..

#* Set Cutrent HardCopy 11 Companion Revision, .
Locate]
Compare HardCopy II Companion Revisions

Generate HardCopy 11 Handoff Report

Archive HardCopy II Handoff Files. ..
Hierarchy .

#* HardCopy II Adwisar

4-25

Quartus Il Handbook, Volume 1

Each of the features within HardCopy II Utilities is summarized in
Table 4-4. The process for using each of these features is explained in the

following sections.

Table 4-4. HardCopy Il Utilities Menu Options

Applicable Design

Companion Revision

companion revision for your
Stratix Il and HardCopy |
design.

Companion Revision

Menu Description L Restrictions
Revision
Create/Overwrite Create a new companion Stratix Il prototype @ Must disable Auto Device
HardCopy I revision or update an existing | design and HardCopy Il selection

® Must set a Stratix Il device
and a HardCopy Il
companion device

Set Current
HardCopy I
Companion Revision

Specify which companion
revision to associate with
current design revision.

Stratix Il prototype
design and HardCopy |
Companion Revision

Companion Revision must
already exist

HardCopy Il Handoff
Report

important design information
files and messages generated
by the Quartus Il compile

design and HardCopy Il
Companion Revision

Compare Compares the Stratix |l design | Stratix Il prototype Compilation of both revisions
HardCopy Il revision with the HardCopy Il | design and HardCopy Il | must be complete
Companion companion design revision Companion Revision

Revisions and generates a report.

Generate Generate a report containing | Stratix Il prototype e Compilation of both

revisions must be complete
e Compare HardCopy Il

Companion Revisions

must have been executed

Archive HardCopy Il
Handoff Files

Generate a Quartus Il Archive
File specifically for submitting
the design to the HardCopy
Design Center. Similar to the
HardCopy Files Wizard for
HardCopy Stratix and APEX.

HardCopy I
Companion Revision

e Compilation of both
revisions must be
completed

e Compare HardCopy Il
Companion Revisions
must have been executed

e Generate HardCopy
Handoff Report must have
been executed

HardCopy Il Advisor

Open an Advisor, similar to the
Resource Optimization
Advisor, helping you through
the steps of creating a
HardCopy Il project.

Stratix Il prototype
design and HardCopy Il
Companion Revision

None

4-26

Companion Revisions

HardCopy II designs follow a different development flow in the
Quartus II software compared with previous HardCopy families. You
can create multiple revisions of your Stratix II prototype design, but you
can also create separate revisions of your design for a HardCopy II
device. The Quartus II software creates specific HardCopy II design

Altera Corporation
October 2007

HardCopy Il Utilities Menu

revisions of the project in conjunction to the regular project revisions.

These parallel design revisions for HardCopy II devices are called

companion revisions.

I'=~ Although you can create multiple project revisions, Altera
recommends that you maintain only one Stratix II FPGA
revision once you have created the HardCopy II companion
revision.

When you have successfully compiled your Stratix II prototype FPGA,
you can create a HardCopy II companion revision of your design and
proceed with compiling the HardCopy II companion revision. To create
a companion revision, on the Project menu, point to HardCopy II Utilities
and click Create/Overwrite HardCopy II Companion Revision. Use the
dialog box to create a new companion revision or overwrite an existing
companion revision (Figure 4-10).

Figure 4-10. Create or Overwrite HardCopy Il Companion Revision

Create/Overwrite HardCopy Il Companion Revision E]

Create a companion HardCopy |l revision to an existing Stratix |l design. The companion
revision must have the same assignments and settings a3 the current revision. Submit both
revisions to the HardCopy || Design Center.
Curent revigion: demo_design
Curent companion revigion: demo_design_hcii

Cieate/overwite companion revisions

% Dverarite current companion revision with assignments fram the curent revision

" Create new companion revision with assignments from the current revision

Cancel

You can associate only one Stratix II revision to one HardCopy II
companion revision. If you created more than one revision or more than
one companion revision, set the current companion for the revision you
are working on. On the Project menu, point to HardCopy II Utilities and
click Set Current HardCopy II Companion Revision (Figure 4-11).

Figure 4-11. Set Current HardCopy Il Companion Revision

Set Current HardCopy |l Companion Revision

Allows you ta change the companion revision associated with the current revision.

Current revision: demo_design

Current companion revision; ‘damuﬁdas\gnﬁhc\iﬁllﬂ j

demo desiEn hil lri2

Altera Corporation 4-27
October 2007

Quartus Il Handbook, Volume 1

4-28

Compiling the HardCopy Il Companion Revision

The Quartus II software allows you to compile your HardCopy II design
with preliminary timing information. The timing constraints for the
HardCopy II companion revision can be the same as the Stratix II design
used to create the revision. The Quartus II software contains preliminary
timing models for HardCopy II devices and you can gauge how much
performance improvement you can achieve in the HardCopy II device
compared to the Stratix I FPGA. Altera verifies that the HardCopy II
Companion Device timing requirements are met in the HardCopy Design
Center.

After you create your HardCopy II companion revision from your
compiled Stratix Il design, select the companion revision in the Quartus II
software design revision drop-down box (Figure 4-12) or from the
Revisions list. Compile the HardCopy II companion revision. After the
Quartus II software compiles your design, you can perform a comparison
check of the HardCopy II companion revision to the Stratix II prototype
revision.

Figure 4-12. Changing Current Revision

File Edit View Project Assignments Processing Tools Window Help

0O = | Y4 |dem07design j
dernn_design

Comparing HardCopy Il and Stratix Il Companion Revisions

Altera uses the companion revisions in a single Quartus II project to
maintain the seamless migration of your design from a Stratix Il FPGA to
a HardCopy II structured ASIC. This methodology allows you to design
with one set of Register Transfer Level (RTL) code to be used in both
Stratix Il FPGA and HardCopy II structured ASIC, guaranteeing
functional equivalency.

When making changes to companion revisions, use the Compare
HardCopy II Companion Revisions feature to ensure that your Stratix II
design matches your HardCopy II design functionality and compilation
settings. To compare companion revisions, on the Project menu, point to
HardCopy II Utilities and click Compare HardCopy II Companion
Revisions.

I'=" You must perform this comparison after both Stratix II and
HardCopy II designs are compiled in order to hand off the
design to Altera’s HardCopy Design Center.

Altera Corporation
October 2007

HardCopy Il Utilities Menu

The Comparison Revision Summary is found in the Compilation Report
and identifies where assignments were changed between revisions or if

there is a change in the logic resource count due to different compilation
settings.

Generate a HardCopy Il Handoff Report

In order to submit a design to the HardCopy Design Center, you must
generate a HardCopy II Handoff Report providing important
information about the design that you want the HardCopy Design Center
to review. To generate the HardCopy Il Handoff Report, you must:

B Successfully compile both Stratix II and HardCopy II revisions of
your design

B Successfully run the Compare HardCopy II Companion Revisions
utility

Once you generate the HardCopy Il Handoff Report, you can archive the
design using the Archive HardCopy II Handoff Files utility described in
“Archive HardCopy II Handoff Files” on page 4-29.

Archive HardCopy Il Handoff Files

The last step in the HardCopy II design methodology is to archive the
HardCopy II project for submission to the HardCopy Design Center for
back-end migration. The HardCopy II archive utility creates a different
Quartus II Archive File than the standard Quartus II project archive
utility generates. This archive contains only the necessary data from the
Quartus II project needed to implement the design in the HardCopy
Design Center.

In order to use the Archive HardCopy II Handoff Files utility, you must
complete the following:

B Compile both the Stratix Il and HardCopy Il revisions of your design
B Run the Compare HardCopy II Revisions utility
B Generate the HardCopy II Handoff Report

To select this option, on the Project menu, point to HardCopy II Utilities
and click Archive HardCopy II Handoff File utility.

Altera Corporation 4-29
October 2007

Quartus Il Handbook, Volume 1

4-30

HardCopy Il Advisor

The HardCopy II Advisor provides the list of tasks you should follow to
develop your Stratix II prototype and your HardCopy II design. To run
the HardCopy II Advisor, on the Project menu, point to HardCopy II
Utilities and click HardCopy II Advisor. The following list highlights the
checkpoints that the HardCopy II Advisor reviews. This list includes the
major check points in the design process; it does not show every step in
the process for completing your Stratix II and HardCopy II designs:

1. Select a Stratix II device.

2. Select a HardCopy II device.

3. Turn on the Design Assistant.

4. Set up timing constraints.

5. Check for incompatible assignments.

6. Compile and check the Stratix II design.

7. Create or overwrite the companion revision.

8. Compile and check the HardCopy II companion results.

9. Compare companion revisions.

10. Generate a Handoff Report.

11. Archive Handoff Files and send to Altera.

The HardCopy II Advisor shows the necessary steps that pertain to your
current selected device. The Advisor shows a slightly different view for a
design with Stratix II selected as compared to a design with HardCopy II
selected.

In the Quartus II software, you can start designing with the HardCopy II
device selected first, and build a Stratix II companion revision second.
When you use this approach, the HardCopy II Advisor task list adjusts
automatically to guide you from HardCopy II development through
Stratix I FPGA prototyping, then completes the comparison archiving
and handoff to Altera.

When your design uses the Stratix Il FPGA as your starting point, Altera

recommends following the Advisor guidelines for your Stratix II FPGA
until you complete the prototype revision.

Altera Corporation
October 2007

HardCopy Il Utilities Menu

Altera Corporation
October 2007

When the Stratix II FPGA design is complete, create and switch to your

HardCopy II companion revision and follow the Advisor steps shown in
that revision until you are finished with the HardCopy Il revision and are
ready to submit the design to Altera for back-end migration.

Each category in the HardCopy II Advisor list has an explanation of the
recommended settings and constraints, as well as quick links to the
features in the Quartus II software that are needed for each section. The

HardCopy II Advisor displays:

B A green check box when you have successfully completed one of the
steps

B A yellow caution sign for steps that must be completed before
submitting your design to Altera for HardCopy development

B Aninformation callout for items you must verify

I'=~ Selecting an item within the HardCopy II flow menu provides a

description of the task and recommended action. The view in
the HardCopy II Advisor differs depending on the device you

select.

Figure 4-13 shows the HardCopy II Advisor with the Stratix II device
selected.

Figure 4-13. HardCopy Il Advisor with Stratix Il Selected

® HardCopy Il Advisor

HardCopy II Advisor
&2 Getting more information
«wf Choose a Stratix IT device
wf Choose a HardCopy I companion device
—wd Setup Stratix II revision
i/ Turn on the Design Assistant
/' Turn on the Assembler
)+ Setup timing canstrainks
o Check for Incompatible Assignments
A Compile and check Stratix IT revision
wf Create a HardCopy IT companion revision
A Verify HardCopy IT revision
A Compile and check HardCopy IT companion revision
A Compare companion revisions
A Generate Handoff Report
A Archive Handoff Files and Send to Altera

B

Recommendation Campile and check, Stratiz || revizion

Deescription Compile the design and verify the specified companion
HardCopyg |l device is compatible with the design, Design
Assistant passes with no errors, iming requirements were
successfully met and all paths were timing constrained, and
1#0 types are fully defined for all the |10 pins.

Action Fress the butlan below to verify the campilation was
successiul for HardCopy || development

Compile znd Check Results

Open Device Resource Guide [Compilation Repart]
Open Design Assistant Summary [Compilation Report]
Open Timing Corstraint Check Summan [Compilation

Repor]

4-31

Quartus Il Handbook, Volume 1

4-32

Figure 4-14 shows the HardCopy II Advisor with the HardCopy II device
selected.

Figure 4-14. HardCopy Il Advisor with HardCopy Il Device Selected

® HardCopy Il Advisor

HardCopy II Advisor
&) Getting more infarmation
o Chaose a HardCopy 11 devics Fiecommendstion| Compile and check HardCopy [l revision
w/ Chaose & Stratix I companion device Description Compile the design and verify the specified companion
=1+ Setup HardCopy IT revision HardCopy Il device is compatible with the design, Design
wd Turn on the Design Assistant Assistant passes with no errars, timing requirements were

successHully met and all paths were timing constrained, and

o/ Turn on the Assembler 190 types are full defined for althe 10 pirs.

#-d Setup timing constrainks

Action Press the button below to verify the compilation was
suceessful for HardCopy Il devvelopment.
/' Create a Stratix IT companion revision Compile and Check Results
-7 Verify Stratix IT revision
A Compile and check Strati: IT companion revision Open Device Resource Guide [Compilation Report]
/% Compare companion revisions Open Desion Assistant Summary [Compilation Report]
1 Generats Handoff Repart Open Timing Constraint Check Summary [Compilation
A Archive Handoff Flles and Send ta Altera Fiepart

HardCopy Il Floorplan View

The Quartus II software displays the preliminary timing closure
floorplan and placement of your HardCopy II companion revision. This
floorplan shows the preliminary placement and connectivity of all /O
pins, PLLs, memory blocks, HCell macros, and DSP HCell macros.
Congestion mapping of routing connections can be viewed using the
Layers Setting dialog box (in the View menu) settings. This is useful in
analyzing densely packed areas of your floorplan that could be reducing
the peak performance of your design. The HardCopy Design Center
verifies final HCell macro timing and placement to guarantee timing
closure is achieved.

Altera Corporation
October 2007

HardCopy Il Utilities Menu

Figure 4-15 shows an example of the HC230F1020 device floorplan.

Figure 4-15. HC230F1020 Device Floorplan

1
CEEEA 1]
|
I
I

£

R R Ay

£

!
T

O T OO, OO T

In this small example design, the logic is placed near the bottom edge.
You can see the placement of a DSP block constructed of HCell Macros,
various logic HCell Macros, and an M4K memory block. A labeled
close-up view of this region is shown in Figure 4-16.

Figure 4-16. Close-Up View of Floorplan

Altera Corporation 4-33
October 2007

Quartus Il Handbook, Volume 1

The HardCopy Design Center performs final placement and timing
closure on your HardCopy II design based on the timing constraints
provided in the Stratix II design.

«® For more information about the HardCopy Design Center’s process,
refer to the Back-End Design Flow for HardCopy Series Devices chapter in
volume 1 of the HardCopy Series Device Handbook.

i Altera HardCopy devices provide a comprehensive alternative to ASICs.
Harqcopv Stratlx HardCopy structured ASICs offer a complete solution from prototype to
Device Su ppo rt high-volume production, and maintain the powerful features and
high-performance architecture of their equivalent FPGAs with the
programmability removed. You can use the Quartus II design software to
design HardCopy devices in a manner similar to the traditional ASIC
design flow and you can prototype with Altera’s high density Stratix,
APEX 20KC, and APEX 20KE FPGAs before seamlessly migrating to the
corresponding HardCopy device for high-volume production.

HardCopy structured ASICs provide the following key benefits:

B Improves performance, on the average, by 40% over the
corresponding -6 speed grade FPGA device

B Lowers power consumption, on the average, by 40% over the
corresponding FPGA

B Preserves the FPGA architecture and features and minimizes risk

B Guarantees first-silicon success through a proven, seamless
migration process from the FPGA to the equivalent HardCopy
device

B Offers a quick turnaround of the FPGA design to a structured ASIC
device—samples are available in about eight weeks

Altera’s Quartus II software has built-in support for HardCopy Stratix
devices. The HardCopy design flow in Quartus II software offers the
following advantages:

B Unified design flow from prototype to production

B Performance estimation of the HardCopy Stratix device allows you
to design systems for maximum throughput

B Easy-to-use and inexpensive design tools from a single vendor

B Anintegrated design methodology that enables system-on-a-chip
designs

4-34 Altera Corporation
October 2007

Features

Features

Altera Corporation
October 2007

This section discusses the following areas:

B How to design HardCopy Stratix and HardCopy APEX structured
ASICs using the Quartus II software

B An explanation of what the HARDCOPY_FPGA_PROTOTYPE
devices are and how to target designs to these devices

B Performance and power estimation of HardCopy Stratix devices

B How to generate the HardCopy design database for submitting
HardCopy Stratix and HardCopy APEX designs to the HardCopy
Design Center

Beginning with version 4.2, the Quartus II software contains several
powerful features that facilitate design of HardCopy Stratix and
HardCopy APEX devices:

B HARDCOPY FPGA PROTOTYPE Devices
These are virtual Stratix FPGA devices with features identical to
HardCopy Stratix devices. You must use these FPGA devices to
prototype your designs and verify the functionality in silicon.

B HardCopy Timing Optimization Wizard
Using this feature, you can target your design to HardCopy Stratix
devices, providing an estimate of the design’s performance in a
HardCopy Stratix device.

B HardCopy Stratix Floorplans and Timing Models
The Quartus II software supports post-migration HardCopy Stratix
device floorplans and timing models and facilitates design
optimization for design performance.

B Placement Constraints
Location and LogicLock constraints are supported at the HardCopy
Stratix floorplan level to improve overall performance.

B Improved Timing Estimation
Beginning with version 4.2, the Quartus II software determines
routing and associated buffer insertion for HardCopy Stratix
designs, and provides the Timing Analyzer with more accurate
information about the delays than was possible in previous versions
of the Quartus II software. The Quartus II Archive File automatically
receives buffer insertion information, which greatly enhances the
timing closure process in the back-end migration of your HardCopy
Stratix device.

4-35

Quartus Il Handbook, Volume 1

HARDCOPY_FPGA
_PROTOTYPE,
HardCopy Stratix
and Stratix
Devices

B Design Assistant
This feature checks your design for compliance with all HardCopy
device design rules and establishes a seamless migration path in the
quickest time.

B HardCopy Files Wizard
This wizard allows you to deliver to Altera the design database and
all the deliverables required for migration. This feature is used for
HardCopy Stratix and HardCopy APEX devices.

The HardCopy Stratix and HardCopy APEX PowerPlay Early Power
Estimator is available on the Altera website at www.altera.com.

You must use the HARDCOPY_FPGA_PROTOTYPE virtual devices
available in the Quartus II software to target your designs to the actual
resources and package options available in the equivalent post-migration
HardCopy Stratix device. The programming file generated for the
HARDCOPY_FPGA_PROTOTYPE can be used in the corresponding
Stratix FPGA device.

The purpose of the HARDCOPY_FPGA_PROTOTYPE is to guarantee
seamless migration to HardCopy by making sure that your design only
uses resources in the FPGA that can be used in the HardCopy device after
migration. You can use the equivalent Stratix FPGAs to verify the
design’s functionality in-system, then generate the design database
necessary to migrate to a HardCopy device. This process ensures the
seamless migration of the design from a prototyping device to a
production device in high volume. It also minimizes risk, assures samples
in about eight weeks, and guarantees first-silicon success.

'~ HARDCOPY_FPGA_PROTOTYPE devices are only available
for HardCopy Stratix devices and are not available for the
HardCopy II or HardCopy APEX device families.

Table 4-5 compares HARDCOPY_FPGA_PROTOTYPE devices, Stratix
devices, and HardCopy Stratix devices.

Table 4-5. Qualitative Comparison of HARDCOPY_FPGA_PROTOTYPE to Stratix and HardCopy Stratix

Devices (Part 1 of 2)

Stratix Device HARDCOPY_FPGA_PROTOTYPE Device HardCopy Stratix Device
FPGA Virtual FPGA Structured ASIC
FPGA Architecture identical to Stratix FPGA Architecture identical to Stratix FPGA

4-36

Altera Corporation
October 2007

HARDCOPY_FPGA_PROTOTYPE, HardCopy Stratix and Stratix Devices

Table 4-5. Qualitative Comparison of HARDCOPY_FPGA_PROTOTYPE to Stratix and HardCopy Stratix
Devices (Part 2 of 2)

Stratix Device

HARDCOPY_FPGA_PROTOTYPE Device HardCopy Stratix Device

FPGA

Resources identical to HardCopy Stratix device M-RAM resources different than

Stratix FPGA in some devices

Ordered through

Altera part number

Cannot be ordered, use the Altera Stratix FPGA | Ordered by Altera part number
part number

Table 4-6 lists the resources available in each of the HardCopy Stratix
devices.

Table 4-6. HardCopy Stratix Device Physical Resources

Device LEs ASICEquivalent | M512 M4K | M-RAM | DSP PLLs Maximulp
Gates (K) (7) | Blocks | Blocks | Blocks | Blocks User 1/0 Pins
HC1S25F672 | 25,660 250 224 138 2 10 6 473
HC1S30F780 | 32,470 325 295 171 2(2) 12 6 597
HC1S40F780 | 41,250 410 384 183 2(2) 14 6 615
HC1S60F1020 | 57,120 570 574 292 6 18 12 773
HC1S80F1020 | 79,040 800 767 364 6(2) 22 12 773

Notes to Table 4-6:
(1) Combinational and registered logic do not include DSP blocks, on-chip RAM, or PLLs.
(2) The M-RAM resources for these HardCopy devices differ from the corresponding Stratix FPGA.

Altera Corporation

October 2007

For a given device, the number of available M-RAM blocks in
HardCopy Stratix devices is identical with the corresponding
HARDCOPY_FPGA_PROTOTYPE devices, but may be different from
the corresponding Stratix devices. Maintaining the identical resources
between HARDCOPY_FPGA_PROTOTYPE and HardCopy Stratix
devices facilitates seamless migration from the FPGA to the structured
ASIC device.

For more information about HardCopy Stratix devices, refer to the
HardCopy Stratix Device Family Data Sheet section in volume 1 of the
HardCopy Series Handbook.

The three devices, Stratix FPGA, HARDCOPY_FPGA_PROTOTYPE, and
HardCopy device, are distinct devices in the Quartus II software. The
HARDCOPY_FPGA_PROTOTYPE programming files are used in the
Stratix FPGA for your design. The three devices are tied together with the
same netlist, thus a single SRAM Object File (.sof) can be used to achieve
the various goals at each stage. The same SRAM Object File is generated

4-37

Quartus Il Handbook, Volume 1

HardCopy
Design Flow

4-38

in the HARDCOPY_FPGA_PROTOTYPE design, and is used to program
the Stratix FPGA device, the same way that it is used to generate the
HardCopy Stratix device, guaranteeing a seamless migration.

For more information about the SRAM Object File and programming
Stratix FPGA devices, refer to the Programming and Configuration chapter
of the Introduction to Quartus I Manual.

Figure 4-17 shows a HardCopy design flow diagram. The design steps
are explained in detail in the following sections of this chapter. The
HardCopy Stratix design flow utilizes the HardCopy Timing
Optimization Wizard to automate the migration process into a one-step
process. The remainder of this section explains the tasks performed by
this automated process.

For a detailed description of the HardCopy Timing Optimization Wizard
and HardCopy Files Wizard, refer to “HardCopy Timing Optimization
Wizard” on page 442 and “Generating the HardCopy Design Database”
on page 4-53.

Altera Corporation
October 2007

HardCopy Design Flow

Figure 4-17. HardCopy Stratix and HardCopy APEX Design Flow Diagram

Stratix

(Siart Quartus HardCopy Fluw>

v

v

Select FPGA Family

APEX

Select Stratix

HARDCOPY_FPGA_PROTOTYPE

Device
One Step Process (3
\/ v
Compile ‘ Compile ‘
: P Two Step Process (2 J
Mirgrate the Migrate the Migrate the

Compiled Project
Migrate Only (7)

v

Compiled Project

Compiled Project

v

v

Close the Quartus Il
FPGA Project

Close the Quartus Il
FPGA Project

Close the Quartus Il
FPGA Project

v

v

v

Open the Quartus Il
HardCopy Project

Open the Quartus Il
HardCopy Project

Open the Quartus Il
HardCopy Project

v

v

v

Compile to HardCopy
Stratix Device (Actual

HardCopy Floorplan)

Compile to HardCopy
Stratix Device (Actual
HardCopy Floorplan)

Compile to HardCopy
Stratix Device (Actual
HardCopy Floorplan)

v

Select APEX FPGA
Device Supported by

HardCopy APEX

;

v

Placement
Info for

Y,

Notes for Figure 4-17:

@
@
®G)

HardCopy

P

Run HardCopy Files
Wizard (Quartus Il
Archive File for
delivery to Altera)

Migrate-Only Process: The displayed flow is completed manually.
Two-Step Process: Migration and Compilation are done automatically (shaded area).
One-Step Process: Full HardCopy Compilation. The entire process is completed automatically (shaded area).

Altera Corporation
October 2007

The Design Flow Steps of the One-Step Process

The following sections describe each step of the full HardCopy
compilation (the One Step Process), as shown in Figure 4-17.

Compile the Design for an FPGA

This step compiles the design for a HARDCOPY_FPGA_PROTOTYPE
device and gives you the resource utilization and performance of the

FPGA.

4-39

Quartus Il Handbook, Volume 1

How to Design
HardCopy Stratix
Devices

4-40

Migrate the Compiled Project

This step generates the Quartus II Project File (.qpf) and the other files
required for HardCopy implementation. The Quartus II software also
assigns the appropriate HardCopy Stratix device for the design
migration.

Close the Quartus FPGA Project

Because you must compile the project for a HardCopy Stratix device, you
must close the existing project which you have targeted your design to a
HARDCOPY_FPGA_PROTOTYPE device.

Open the Quartus HardCopy Project

Open the Quartus II project that you created in the “Migrate the
Compiled Project” step. The selected device is one of the devices from the
HardCopy Stratix family that was assigned during that step.

Compile for HardCopy Stratix Device

Compile the design for a HardCopy Stratix device. After successful
compilation, the Timing Analysis section of the compilation report shows
the performance of the design implemented in the HardCopy device.

This section describes the process for designing for a HardCopy Stratix
device using the HARDCOPY_FPGA_PROTOTYPE as your initial
selected device. In order to use the HardCopy Timing Optimization
Wizard, you must first design with the
HARDCOPY_FPGA_PROTOTYPE in order for the design to migrate to a
HardCopy Stratix device.

To target a design to a HardCopy Stratix device in the Quartus II
software, follow these steps:

1. If you have not yet done so, create a new project or open an existing
project.

2. Onthe Assignments menu, click Settings. In the Category list, select
Device.

3. On the Device page, in the Family list, select Stratix. Select the
desired HARDCOPY_FPGA_PROTOTYPE device in the Available
Devices list (Figure 4-18).

Altera Corporation
October 2007

How to Design HardCopy Stratix Devices

Altera Corporation
October 2007

Figure 4-18. Selecting a HARDCOPY_FPGA_PROTOTYPE Device

Settings - retiming_small

Category:

General

Files

User Libraries [Current Project]
Device

Timing Requirements & Options
ED& Tool Settings

Compilation Process Settings
Analysis & Synthesis Settings
Fitter Settings

Assembler

Timing Analyzer

Design Assistant

SignalTap |l Logic Analyzer
Logic Analyzer Interface
SignalPrabe Settings

Simulator Settings

PowerPlay Power Analyzer Settings
Software Build Settings
HardCopy Settings

[4]

Ees

+

Select the family and device you want to target for compilation.

Family [Stratix |

Device & Pin Options... ‘

Target device

" Auto device selected by the Fitter

& Specific device selected in ‘4vailable devices' list
~

Ayailable devices:

Show in ‘tvaiable devices list
Package: [any -
Pingcount: [any -

Speed grade: [ny -

Coie voltage: 1.5%

v Show advanced devices

X

EP1540F780C5_HARDCOPY_FPGA_PROTOTYPE 41250
412

Harme [LEs [Memor. [DSP[PLL =~
EP1540B956/6 41250 3423744 14 12
EF1540F760C5 41250 23744 14 B

224409 14

O migration devices selected =

[
EP1540F7B0CE 3423744 14 6
E| 2 L E
El 423744 14 B
EP1S40F7E0CT_HARDCOPY_FPGA_PROTOTYPE 41250 2244096 14 6
EP1540F780CE 41250 2374 14 6
EP1540F780I6 41250 3423744 14 6 hd
L2 | D

Migration compatibility
Migration Devices.. J

By choosing the HARDCOPY_FPGA_PROTOTYPE device, all the
design information, available resources, package option, and pin
assignments are constrained to guarantee a seamless migration of
your project to the HardCopy Stratix device. The netlist resulting
from the HARDCOPY_FPGA_PROTOTYPE device compilation
contains information about the electrical connectivity, resources
used, I/O placements, and the unused resources in the FPGA device.

On the Assignments menu, click Settings. In the Category list, select

HardCopy Settings and specify the input transition timing to be
modeled for both clock and data input pins. These transition times
are used in static timing analysis during back-end timing closure of
the HardCopy device.

Add constraints to your HARDCOPY_FPGA_PROTOTYPE device,

and on the Processing menu, click Start Compilation to compile the

design.

4-41

Quartus Il Handbook, Volume 1

HardCopy Timing Optimization Wizard

After you have successfully compiled your design in the
HARDCOPY_FPGA_PROTOTYPE, you must migrate the design to the
HardCopy Stratix device to get a performance estimation of the
HardCopy Stratix device. This migration is required before submitting
the design to Altera for the HardCopy Stratix device implementation. To
perform the required migration, on the Project menu, point to HardCopy
Utilities and click HardCopy Timing Optimization Wizard.

At this point, you are presented with the following three choices to target
the designs to HardCopy Stratix devices (Figure 4-19):

4-42

Migration Only: You can select this option after compiling the
HARDCOPY_FPGA_PROTOTYPE project to migrate the project to a
HardCopy Stratix project.

You can now perform the following tasks manually to target the

design to a HardCopy Stratix device. Refer to”Performance

Estimation” on page 445 for additional information about how to

perform these tasks.

e Close the existing project

e Open the migrated HardCopy Stratix project

e Compile the HardCopy Stratix project for a HardCopy Stratix
device

Migration and Compilation: You can select this option after

compiling the project. This option results in the following actions:

e Migrating the project to a HardCopy Stratix project

e Opening the migrated HardCopy Stratix project and compiling
the project for a HardCopy Stratix device

Full HardCopy Compilation: Selecting this option results in the

following actions:

e Compiling the existing HARDCOPY_FPGA_PROTOTYPE
project

e Migrating the project to a HardCopy Stratix project

e Opening the migrated HardCopy Stratix project and compiling
it for a HardCopy Stratix device

Altera Corporation
October 2007

How to Design HardCopy Stratix Devices

Figure 4-19. HardCopy Timing Optimization Wizard Options

HardCopy Timing Optimization Wizard: New Project [page 1 of 2] g|

‘wihat iz the working directary for the migrated project? This directory will contain the wgm
design file and other related files associated with this project. [you twpe a directory name
that does not exist, Quartus || can create it for you.

C./fpga_nizc8/hc_risc8 hardcopy_optimatiol

‘which flow do you want this wizard to run?

" Migration Only: migrate the curent project to a HardCopy project

" Migration and Compilation: migrate the curnent project to a HardCopy project, and
then open and compile the new HardCopy project

* Full HardCopy Compilation: compile the curent project, migrate the praject to a
HardCopy project. and then open and compile the new HardCopy project

| Mext > | Cancel

The main benefit of the HardCopy Timing Wizard’s three options is
flexibility of the conversion process automation. The first time you
migrate your HARDCOPY_FPGA_PROTOTYPE project to a HardCopy
Stratix device, you may want to use Migration Only, and then work on
the HardCopy Stratix project in the Quartus II software. As your
prototype FPGA project and HardCopy Stratix project constraints
stabilize and you have fewer changes, the Full HardCopy Compilation is
ideal for one-click compiling of your HARDCOPY_FPGA_PROTOTYPE
and HardCopy Stratix projects.

Altera Corporation 4-43
October 2007

Quartus Il Handbook, Volume 1

After selecting the wizard you want to run, the “HardCopy Timing
Optimization Wizard: Summary” page shows you details about the
settings you made in the Wizard, as shown in Figure 4-20.

Figure 4-20. HardCopy Timing Optimization Wizard Summary Page

HardCopy Timing Optimization Wizard: Summary [page 2 of 2] El

Wwihen you click Finish, a new project will be created bazed on the curent project with the
fallawing zattings:

Praject name: he_riscB

Project directory: C:/fpga_rizc8/he_nisc8_hardcopy_optimatio/

Device family: HardCopy Stratix

Target device: HC1540F 730

The wizard will corpile the current project, rigrate the current project to a new HardCopy
project, and then apen and compile the new HardCopy praject.

‘whhen the wizard has successfully compiled the HardCopy project. and pou have finished
optimizing the timing of the project, use the HardCopy Files wizard to generate the files
necesszary for a HardCopy device.

< Back Cancel

When either of the second two options in Figure 4-19 are selected
(Migration and Compilation or Full HardCopy Compilation), designs
are targeted to HardCopy Stratix devices and optimized using the
HardCopy Stratix placement and timing analysis to estimate
performance. For details on the performance optimization and estimation
steps, refer to “Performance Estimation” on page 4-45. If the performance
requirement is not met, you can modify your RTL source, optimize the
FPGA design, and estimate timing until you reach timing closure.

Tcl Support for HardCopy Migration

To complement the GUI features for HardCopy migration, the Quartus II
software provides the following command-line executables (which
provide the tool command language (Tcl) shell to run the --flow Tcl
command) to migrate the HARDCOPY_FPGA_PROTOTYPE project to
HardCopy Stratix devices:

quartus_sh --flow migrate_ to_hardcopy <project_name> [-C <revision>] +

This command migrates the project compiled for the
HARDCOPY_FPGA_PROTOTYPE device to a HardCopy Stratix device.

quartus_sh --flow hardcopy full compile <project_name> [-cC <revision>] +

4-44 Altera Corporation
October 2007

Design Optimization and Performance Estimation

Design
Optimization
and
Performance
Estimation

Altera Corporation
October 2007

This command performs the following tasks:

B Compiles the exsisting project for a
HARDCOPY_FPGA_PROTOTYPE device.

B Migrates the project to a HardCopy Stratix project.

B Opens the migrated HardCopy Stratix project and compiles it for a
HardCopy Stratix device.

The HardCopy Timing Optimization Wizard creates the HardCopy
Stratix project in the Quartus II software, where you can perform design
optimization and performance estimation of your HardCopy Stratix
device.

Design Optimization

Beginning with version 4.2, the Quartus II software supports HardCopy
Stratix design optimization by providing floorplans for placement
optimization and HardCopy Stratix timing models. These features allows
you to refine placement of logic array blocks (LAB) and optimize the
HardCopy design further than the FPGA performance. Customized
routing and buffer insertion done in the Quartus II software are then used
to estimate the design’s performance in the migrated device. The
HardCopy device floorplan, routing, and timing estimates in the
Quartus II software reflect the actual placement of the design in the
HardCopy Stratix device, and can be used to see the available resources,
and the location of the resources in the actual device.

Performance Estimation

Figure 4-21 illustrates the design flow for estimating performance and
optimizing your design. You can target your designs to
HARDCOPY_FPGA_PROTOTYPE devices, migrate the design to the
HardCopy Stratix device, and get placement optimization and timing
estimation of your HardCopy Stratix device.

In the event that the required performance is not met, you can:

B Work to improve LAB placement in the HardCopy Stratix project.
or

B Go back to the HARDCOPY_FPGA_PROTOTYPE project and
optimize that design, modify your RTL source code, repeat the

migration to the HardCopy Stratix device, and perform the
optimization and timing estimation steps.

4-45

Quartus Il Handbook, Volume 1

Il Onaverage, HardCopy Stratix devices are 40% faster than the
equivalent -6 speed grade Stratix FPGA device. These
performance numbers are highly design dependent, and you
must obtain final performance numbers from Altera.

Figure 4-21. Obtaining a HardCopy Performance Estimation

Proven Netlist,
Pin Assignments, & Timing
Constraints
. HardCopy Placement
Stratix FPGA > & Timing Analysis

Proven Netlist & New
Timing & Placement
Constraint

HardCopy Stratix

To perform Timing Analysis for a HardCopy Stratix device, follow these
steps:

1. Open an existing project compiled for a
HARDCOPY_FPGA_PROTOYPE device.

2. On the Project menu, point to HardCopy Utilities and click
HardCopy Timing Optimization Wizard.

3. Select a destination directory for the migrated project and complete
the HardCopy Timing Optimization Wizard process.

On completion of the HardCopy Timing Optimization Wizard, the
destination directory created contains the Quartus II project file, and
all files required for HardCopy Stratix implementation. At this stage,
the design is copied from the HARDCOPY_FPGA_PROTOTYPE
project directory to a new directory to perform the timing analysis.
This two-project directory structure enables you to move back and
forth between the HARDCOPY_FPGA_PROTOTYPE design
database and the HardCopy Stratix design database. The Quartus II
software creates the <project name>_hardcopy_optimization
directory.

You do not have to select the HardCopy Stratix device while
performing performance estimation. When you run the HardCopy
Timing Optimization Wizard, the Quartus II software selects the
HardCopy Stratix device corresponding to the specified
HARDCOPY_FPGA_PROTOTYPE FPGA. Thus, the information
necessary for the HardCopy Stratix device is available from the
earlier HARDCOPY_FPGA_PROTOTYPE device selection.

4-46 Altera Corporation
October 2007

Design Optimization and Performance Estimation

Altera Corporation
October 2007

All constraints related to the design are also transferred to the new
project directory. You can modify these constraints, if necessary, in
your optimized design environment to achieve the necessary timing
closure. However, if the design is optimized at the
HARDCOPY_FPGA_PROTOTYPE device level by modifying the
RTL code or the device constraints, you must migrate the project
with the HardCopy Timing Optimization Wizard.

If an existing project directory is selected when the HardCopy
Timing Optimization Wizard is run, the existing information is
overwritten with the new compile results.

CAUTION

The project directory is the directory that you chose for the migrated
project. A snapshot of the files inside the

<project name>_hardcopy_optimization directory is shown in

Table 4-7.

Table 4-7. Directory Structure Generated by the HardCopy Timing
Optimization Wizard

<project name>_hardcopy_optimization\

<project name>.qsf

<project name>.qpf

<project name>.sof

<project name>.macr

<project name>.gclk

db\

hardcopy_fpga_prototype\
fpga_<project name>_violations.datasheet
fpga_<project name>_target.datasheet
fpga_<project name>_rba_pt_hcpy_v.tcl
fpga_<project name>_pt_hcpy_v.tcl
fpga_<project name>_hcpy_v.sdo
fpga_<project name>_hcpy.vo
fpga_<project name>_cpld.datasheet
fpga_<project name>_cksum.datasheet
fpga_<project name>.tan.rpt
fpga_<project name>.map.rpt
fpga_<project name>.map.atm
fpga_<project name> fit.rpt
fpga_<project name>.db_info
fpga_<project name>.cmp.xml
fpga_<project name>.cmp.rcf
fpga_<project name>.cmp.atm
fpga_<project name>.asm.rpt
fpga_<project name>.qarlog
fpga_<project name>.qar
fpga_<project name>.qsf
fpga_<project name>.pin
fpga_<project name>.qpf

db_export\
<project name>.map.atm
<project name>.map.hdbx

<project name>.db_info

4-47

Quartus Il Handbook, Volume 1

4-48

4. Open the migrated Quartus II project created in Step 3.
5. Perform a full compilation.

After successful compilation, the Timing Analysis section of the
Compilation Report shows the performance of the design.

=" Performance estimation is not supported for HardCopy APEX
devices in the Quartus II software. Your design can be
optimized by modifying the RTL code or the FPGA design and
the constraints. You should contact Altera to discuss any desired
performance improvements with HardCopy APEX devices.

Buffer Insertion

Beginning with version 4.2, the Quartus II software provides improved
HardCopy Stratix device timing closure and estimation, to more
accurately reflect the results expected after back-end migration. The
Quartus II software performs the necessary buffer insertion in your
HardCopy Stratix device during the Fitter process, and stores the location
of these buffers and necessary routing information in the Quartus II
Archive File. This buffer insertion improves the estimation of the
Quartus II Timing Analyzer for the HardCopy Stratix device.

Placement Constraints

Beginning with version 4.2, the Quartus II software supports placement
constraints and LogicLock regions for HardCopy Stratix devices.
Figure 4-22 shows an iterative process to modify the placement
constraints until the best placement for the HardCopy Stratix device is
achieved.

Altera Corporation
October 2007

Location Constraints

Location
Constraints

Altera Corporation
October 2007

Figure 4-22. Placement Constraints Flow for HardCopy Stratix Devices

Compile the Design for
HARDCOPY_FPGA_PROTOTYPE

Migrate to HardCopy Stratix
Device Using the HardCopy
Timing Optimization Wizard

\4

g Add/Update
Placement Constraints

v

- Add/Update
LogicLock Constraints

\4

\ 4

Compile for HardCopy
Stratix Device

No

Performance
Met?

(Generate HardCopy Files)

This section provides information about HardCopy Stratix logic location
constraints.

LAB Assignments

Logic placement in HardCopy Stratix is limited to LAB placement and
optimization of the interconnecting signals between them. In a Stratix
FPGA, individual logic elements (LE) are placed by the Quartus II Fitter
into LABs. The HardCopy Stratix migration process requires that LAB
contents cannot change after the Timing Optimization Wizard task is
done. Therefore, you can only make LAB-level placement optimization
and location assignments after migrating the
HARDCOPY_FPGA_PROTOTYPE project to the HardCopy Stratix
device.

4-49

Quartus Il Handbook, Volume 1

The Quartus II software supports these LAB location constraints for
HardCopy Stratix devices. The entire contents of a LAB is moved to an
empty LAB when using LAB location assignments. If you want to move
the logic contents of LAB A to LAB B, the entire contents of LAB A are
moved to an empty LAB B. For example, the logic contents of
LAB_X33_Y65 can be moved to an empty LAB at LAB_X43_Y56 but
individual logic cell LC_X33_Y65_N1 can not be moved by itself in the
HardCopy Stratix Timing Closure Floorplan.

LogicLock Assignments

The LogicLock feature of the Quartus II software provides a block-based
design approach. Using this technique you can partition your design and
create each block of logic independently, optimize placement and area,
and integrate all blocks into the top level design.

To learn more about this methodology, refer to the Quartus II Analyzing
and Optimizing Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

LogicLock constraints are supported when you migrate the project from
a HARDCOPY_FPGA_PROTOTYPE project to a HardCopy Stratix
project. If the LogicLock region was specified as “Size=Fixed” and
“Location=Locked” in the HARDCOPY_FPGA_PROTOTYPE project, it
is converted to have “Size=Auto” and “Location=Floating” as shown in
the following LogicLock examples. This modification is necessary
because the floorplan of a HardCopy Stratix device is different from that
of the Stratix device, and the assigned coordinates in the
HARDCOPY_FPGA_PROTOTYPE do not match the HardCopy Stratix
floorplan. If this modification did not occur, LogicLock assignments
would lead to incorrect placement in the Quartus II Fitter. Making the
regions auto-size and floating, maintains your LogicLock assignments,
allowing you to easily adjust the LogicLock regions as required and lock
their locations again after HardCopy Stratix placement.

Example 4-1 and Example 4-2 show two examples of LogicLock
assignments.

Example 4-1. LogicLock Region Definition in the HARDCOPY FPGA_PROTOTYPE Quartus Il Settings File
set global assignment -name LL HEIGHT 15 -entity risc8 -section id test
set _global assignment -name LL _WIDTH 15 -entity risc8 -section_id test
set_global_assignment -name LL_STATE LOCKED -entity risc8 -section_id test
set global assignment -name LL AUTO SIZE OFF -entity risc8 -section id test

4-50

Altera Corporation
October 2007

Checking Designs for HardCopy Design Guidelines

Example 4-2. LogicLock Region Definition in the Migrated HardCopy Stratix Quartus Il Settings File

set global assignment -name LL HEIGHT 15 -entity risc8 -section id test
set_global assignment -name LL _WIDTH 15 -entity risc8 -section_id test
set global assignment -name LL_ STATE FLOATING -entity risc8 -section id

test

set _global assignment -name LL_AUTO_SIZE ON -entity risc8 -section_id test

Checking
Designs for
HardCopy
Design
Guidelines

Altera Corporation
October 2007

When you develop a design with HardCopy migration in mind, you must
follow Altera-recommended design practices that ensure a
straightforward migration process or the design will not be able to be
implemented in a HardCopy device. Prior to starting migration of the
design to a HardCopy device, you must review the design and identify
and address all the design issues. Any design issues that have not been
addressed can jeopardize silicon success.

Altera-Recommended HDL Coding Guidelines

Designing for Altera PLD, FPGA, and HardCopy structured ASIC
devices requires certain specific design guidelines and hardware
description language (HDL) coding style recommendations be followed.

For more information about design recommendations and HDL coding
styles, refer to the Design Guidelines section in volume 1 of the Quartus II
Handbook.

Design Assistant

The Quartus II software includes the Design Assistant feature to check
your design against the HardCopy design guidelines. Some of the design
rule checks performed by the Design Assistant include the following
rules:

B Design should not contain combinational loops
B Design should not contain delay chains
B Design should not contain latches

To use the Design Assistant, you must run Analysis and Synthesis on the
design in the Quartus II software. Altera recommends that you run the
Design Assistant to check for compliance with the HardCopy design
guidelines early in the design process and after every compilation.

4-51

Quartus Il Handbook, Volume 1

Design Assistant Settings

You must select the design rules in the Design Assistant page prior to
running the design. On the Assignments menu, click Settings. In the
Settings dialog box, in the Category list, select Design Assistant and turn
on Run Design Assistant during compilation. Altera recommends
enabling this feature to run the Design Assistant automatically during
compilation of your design.

Running Design Assistant

To run Design Assistant independently of other Quartus II features, on
the Processing menu, point to Start and click Start Design Assistant.

The Design Assistant automatically runs in the background of the
Quartus II software when the HardCopy Timing Optimization Wizard is
launched, and does not display the Design Assistant results immediately
to the display. The design is checked before the Quartus II software
migrates the design and creates a new project directory for performing
timing analysis.

Also, the Design Assistant runs automatically whenever you generate the
HardCopy design database with the HardCopy Files Wizard. The Design
Assistant report generated is used by the Altera HardCopy Design Center
to review your design.

Reports and Summary

The results of running the Design Assistant on your design are available
in the Design Assistant Results section of the Compilation Report. The
Design Assistant also generates the summary report in the

<project name>\hardcopy subdirectory of the project directory. This
report file is titled <project name>_violations.datasheet. Reports include
the settings, run summary, results summary, and details of the results
and messages. The Design Assistant report indicates the rule name,
severity of the violation, and the circuit path where any violation
occurred.

a® To learn about the design rules and standard design practices to comply
with HardCopy design rules, refer to the Quartus II Help and the
HardCopy Series Design Guidelines chapter in volume 1 of the HardCopy
Series Handbook.

4-52 Altera Corporation
October 2007

Generating the HardCopy Design Database

Generating the You can use the HardCopy Files Wizard to generate the complete set of
deliverables required for migrating the design to a HardCopy device in a

Hardcopv single click. The HardCopy Files Wizard asks questions related to the

Design des.ign and archives your design, settings, re.sults, an‘d database ﬁl.es for
delivery to Altera. Your responses to the design details are stored in

Database <project name>_hardcopy_optimization\<project name>.hps.txt.

You can generate the archive of the HardCopy design database only after
compiling the design to a HardCopy Stratix device. The Quartus II
Archive File is generated at the same directory level as the targeted
project, either before or after optimization.

s The Design Assistant automatically runs when the HardCopy
Files Wizard is started.

Altera Corporation 4-53
October 2007

Quartus Il Handbook, Volume 1

Table 4-8 shows the archive directory structure and files collected by the
HardCopy Files Wizard.

Table 4-8. HardCopy Stratix Design Files Collected by the HardCopy Files

Wizard

<project name>_hardcopy_optimization\

<project name>.flow.rpt
<project name>.qpf
<project name>.asm.rpt
<project name>.blf
<project name>.fit.rpt
<project name>.gclk
<project name>.hps.txt
<project name>.macr
<project name>.pin
<project name>.qsf
<project name>.sof
<project name>.tan.rpt

hardcopy\
<project name>.apc
<project name>_cksum.datasheet
<project name>_cpld.datasheet
<project name>_hcpy.vo
<project name>_hcpy_v.sdo
<project name>_pt_hcpy_v.tcl
<project name>_rba_pt_hcpy_v.tcl
<project name>_target.datasheet
<project name>_violations.datasheet

hardcopy_fpga_prototype\
fpga_<project name>.asm.rpt
fpga_<project name>.cmp.rcf
fpga_<project name>.cmp.xml
fpga_<project name>.db_info
fpga_<project name> fit.rpt
fpga_<project name>.map.atm
fpga_<project name>.map.rpt
fpga_<project name>.pin
fpga_<project name>.qsf
fpga_<project name>.tan.rpt
fpga_<project name>_cksum.datasheet
fpga_<project name>_cpld.datasheet
fpga_<project name>_hcpy.vo
fpga_<project name>_hcpy_v.sdo
fpga_<project name>_pt_hcpy_v.tcl
fpga_<project name>_rba_pt_hcpy_v.tcl
fpga_<project name>_target.datasheet
fpga_<project name>_violations.datasheet

db_export\
<project name>.db_info
<project name>.map.atm
<project name>.map.hdbx

4-54

After creating the migration database with the HardCopy
Timing Optimization Wizard, you must compile the design

before generating the project archive. You will receive an error

if you create the archive before compiling the design.

Altera Corporation
October 2007

Static Timing Analysis

Static Timing
Analysis

Early Power
Estimation

Altera Corporation
October 2007

In addition to performing timing analysis, the Quartus II software also
provides all of the requisite netlists and Tcl scripts to perform static
timing analysis (STA) using the Synopsys STA tool, PrimeTime. The
following files, necessary for timing analysis with the PrimeTime tool, are
generated by the HardCopy Files Wizard:

B <project name>_hcpy.vo—Verilog HDL output format
B <project name>_hpcy_v.sdo—Standard Delay Format Output File
B <project name>_pt_hcpy_v.tcl—Tcl script

These files are available in the <project name>\hardcopy directory.
PrimeTime libraries for the HardCopy Stratix and Stratix devices are
included with the Quartus II software.

Ils7 Use the HardCopy Stratix libraries for PrimeTime to perform
STA during timing analysis of designs targeted to
HARDCOPY_FPGA_PROTOTYPE device.

For more information about static timing analysis, refer to the Classic
Timing Analyzer and the Synopsys PrimeTime Support chapters in
volume 3 of the Quartus II Handbook.

You can use PowerPlay Early Power Estimation to estimate the amount
of power your HardCopy Stratix or HardCopy APEX device will
consume. This tool is available on the Altera website. Using the Early
Power Estimator requires some knowledge of your design resources and
specifications, including;:

Target device and package

Clock networks used in the design

Resource usage for LEs, DSP blocks, PLL, and RAM blocks
High speed differential interfaces (HSDI), general I/O power
consumption requirements, and pin counts

B Environmental and thermal conditions

HardCopy Stratix Early Power Estimation

The PowerPlay Early Power Estimator provides an initial estimate of I¢
for any HardCopy Stratix device based on typical conditions. This
calculation saves significant time and effort in gaining a quick
understanding of the power requirements for the device. No stimulus
vectors are necessary for power estimation, which is established by the
clock frequency and toggle rate in each clock domain.

4-55

Quartus Il Handbook, Volume 1

Tel Support for
HardCopy Stratix

4-56

This calculation should only be used as an estimation of power, not as a
specification. The actual I should be verified during operation because
this estimate is sensitive to the actual logic in the device and the
environmental operating conditions.

For more information about simulation-based power estimation, refer to
the Power Estimation and Analysis Section in volume 3 of the Quartus II
Handbook.

I'=~ Onaverage, HardCopy Stratix devices are expected to consume
40% less power than the equivalent FPGA.

HardCopy APEX Early Power Estimation

The PowerPlay Early Power Estimator can be run from the Altera website
in the device support section
(http://www.altera.com/support/devices/dvs-index.html). You cannot
open this feature in the Quartus II software.

With the HardCopy APEX PowerPlay Early Power Estimator, you can
estimate the power consumed by HardCopy APEX devices and design
systems with the appropriate power budget. Refer to the web page for
instructions on using the HardCopy APEX PowerPlay Early Power
Estimator.

Il'=~ HardCopy APEX devices are generally expected to consume
about 40% less power than the equivalent APEX 20KE or
APEX 20KC FPGA devices.

The Quartus II software also supports the HardCopy Stratix design flow
at the command prompt using Tcl scripts.

For details on Quartus II support for Tcl scripting, refer to the
Tcl Scripting chapter in volume 2 of the Quartus II Handbook.

Altera Corporation
October 2007

Targeting Designs to HardCopy APEX Devices

Targeting
Designs to
HardCopy APEX
Devices

Conclusion

Altera Corporation
October 2007

Beginning with version 4.2, the Quartus II software supports targeting
designs to HardCopy APEX device families. After compiling your design
for one of the APEX 20KC or APEX 20KE FPGA devices supported by a
HardCopy APEX device, run the HardCopy Files Wizard to generate the
necessary set of files for HardCopy migration.

The HardCopy APEX device requires a different set of design files for
migration than HardCopy Stratix. Table 4-9 shows the files collected for
HardCopy APEX by the HardCopy Files Wizard.

Table 4-9. HardCopy APEX Files Collected by the HardCopy Files Wizard

<project name>.tan.rpt

<project name>.asm.rpt

<project name>.fit.rpt

<project name>.hps.txt

<project name>.map.rpt

<project name>.pin

<project name>.sof

<project name>.qsf

<project name>_cksum.datasheet
<project name>_cpld.datasheet
<project name>_hcpy.vo

<project name>_hcpy_v.sdo
<project name>_pt_hcpy_v.tcl
<project name>_rba_pt_hcpy_v.tcl
<project name>_target.datasheet
<project name>_violations.datasheet

Refer to “Generating the HardCopy Design Database” on page 4-53 for
information about generating the complete set of deliverables required
for migrating the design to a HardCopy APEX device. After you have
successfully run the HardCopy Files Wizard, you can submit your design
archive to Altera to implement your design in a HardCopy device. You
should contact Altera for more information about this process.

The methodology for designing HardCopy Stratix devices using the
Quartus II software is the same as that for designing the Stratix FPGA
equivalent. You can use the familiar Quartus II software tools and design
flow, target designs to HardCopy Stratix devices, optimize designs for
higher performance and lower power consumption than the Stratix
FPGAs, and deliver the design database for migration to a HardCopy
Stratix device. Compatible APEX FPGA designs can migrate to
HardCopy APEX after compilation using the HardCopy Files Wizard to
archive the design files. Submit the files to the HardCopy Design Center
to complete the back-end migration.

4-57

Quartus Il Handbook, Volume 1

Referenced This chapter references the following documents:
Documents B AN432: Using Different PLL Settings Between Stratix 11 and HardCopy II
Devices

B Back-End Design Flow for HardCopy Series Devices chapter in volume 1 of
the HardCopy Series Device Handbook

B Cadence Encounter Conformal Support chapter in volume 3 of the
Quartus II Handbook

B Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook

B Description, Architecture and Features chapter in the HardCopy II Device
Family Data Sheet in the HardCopy Series Handbook

B Design Guidelines for HardCopy Series Devices chapter of the HardCopy
Series Handbook

B Design Guidelines Section in volume 1 of the Quartus II Handbook

B HardCopy Series Handbook

B HardCopy Stratix Device Family Data Sheet section in volume 1 of the
HardCopy Series Handbook

B Introduction to Quartus II Manual

B Introduction to HardCopy II Devices chapter in the HardCopy II Device
Family Data Sheet in the HardCopy Series Handbook

B Power Estimation and Analysis section in volume 3 of the Quartus II
Handbook

B Programming and Configuration chapter of the Introduction to Quartus IT
Manual

B Quartus Il Analyzing and Optimizing Design Floorplan chapter in
volume 2 of the Quartus II Handbook

B Quartus II Handbook

B Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook

B Quartus II PowerPlay Power Analysis chapter in volume 3 of the

Quartus II Handbook

B Quartus I TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus Il Handbook

B Synopsys PrimeTime Support chapter in volume 3 of the Quartus II
Handbook

B Tcl Scripting chapter in volume 2 of the Quartus II Handbook

4-58 Altera Corporation
October 2007

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/hrd/hc_h5v1.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/an/AN432.pdf
http://www.altera.com/literature/hb/hrd/hc_h51015.pdf
http://www.altera.com/literature/hb/hrd/hc_h51016.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53011.pdf
http://www.altera.com/literature/hb/hrd/hc_h51019.pdf
http://www.altera.com/literature/hb/hrd/hc_h5v1_05.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_02.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53005.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

Document Revision History

Document Table 4-10 shows the revision history for this chapter.

Revision History

Table 4-10. Document Revision History (Part 1 of 2)

Date and Document
Version

Changes Made

Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 4-58.

Updated for Quartus Il
version 7.2

May 2007
v7.1.0

Updated Timing Settings.

Updated TimeQuest.

Added Setting Up the TimeQuest Timing Analzyer.
Added Constraints for Clock Effect Characteristics.
Changed Performing ECOs with Change Manager and
Chip Planner title to Performing ECOs with Quartus Il
Engineering Change Management with the Chip
Planner.

Updated Migrating Changes that must be Implemented
Differently.

Added Referenced Documents.

Updated for Quartus II
version 7.1

March 2007 v7.0.0

Updated Quartus Il software 7.0 revision and date only. No
other changes made to chapter.

November 2006 Minor updates for the Quartus Il software version 6.1 A medium update to the
v6.1.0 e Added Performing ECOs with Change Manager and chapter, due to changes in
Chip Planner and Overall Migration Flow sections. the Quartus Il software
e Updated Quartus Il Software Features Supported for | version 6.1 release; most
HardCopy Il Designs section. changes were in the
Performing ECOs with
Change Manager and Chip
Planner and Overall
Migration Flow sections.
May 2006 v6.0.0 Minor updates for the Quartus Il software version 6.0. —

October 2005 v5.1.0

Updated for the Quartus |l software version 5.1.

May 2005 v5.0.0

Chapter 3 was formerly Chapter 2.

Updated for consistency with the Quartus Il Support for
HardCopy Il Devices and Quartus Il Support for
HardCopy Stratix Devices chapters in the HardCopy
Series Handbook.

Jan. 2005 v2.1

Added HardCopy Il Device Material.

Dec. 2004 v2.1

Chapter 2 was formerly Chapter 3.
Updates to tables, figures.
New functionality for Quartus Il software 4.2

Altera Corporation
October 2007

4-59

Quartus Il Handbook, Volume 1

Table 4-10. Document Revision History (Part 2 of 2)

Date and Document
Version

Changes Made

Summary of Changes

June 2004 v2.0

e Updates to tables, figures.

o New functionality for Quartus Il software 4.1.

Feb. 2004 v1.0

Initial release.

4-60

Altera Corporation
October 2007

A |:| E DY/A Section Il. Design

® Guidelines

Altera Corporation

Today's programmable logic device (PLD) applications have reached the
complexity and performance requirements of ASICs. In the development
of such complex system designs, good design practices have an
enormous impact on your device's timing performance, logic utilization,
and system reliability. Designs coded optimally will behave in a
predictable and reliable manner, even when re-targeted to different
device families or speed grades. This section presents design and coding
style recommendations for Altera® devices.

This section includes the following chapters:

B Chapter 5, Design Recommendations for Altera Devices and the
Quartus II Design Assistant

B Chapter 6, Recommended HDL Coding Styles

185 For information about the revision history for chapters in this

section, refer to each individual chapter for that chapter’s
revision history.

Section Il-i

Design Guidelines Quartus Il Handbook, Volume 1

Section Il-ii Altera Corporation

. Design R dati
iAN |:| —E D)/A 5. Design Recommendations

for Altera Devices and the
Quartus Il Design Assistant

®

QI151006-7.2.0

Introduction

Altera Corporation
October 2007

Current FPGA applications have reached the complexity and
performance requirements of ASICs. In the development of such complex
system designs, good design practices have an enormous impact on your
device’s timing performance, logic utilization, and system reliability.
Well-coded designs behave in a predictable and reliable manner even
when re-targeted to different families or speed grades. Good design
practices also aid in successful design migration between FPGA and
HardCopy® or ASIC implementations for prototyping and production.

For optimal performance, reliability, and faster time-to-market when
designing with Altera® devices, you should adhere to the following
guidelines:

B Understand the impact of synchronous design practices

B Follow recommended design techniques including hierarchical
design partitioning

B Take advantage of the architectural features in the targeted device

This chapter presents design recommendations in these areas, and
describes the Quartus® II Design Assistant that can help you check your
design for violations of design recommendations.

This chapter contains the following sections:

B “Synchronous FPGA Design Practices” on page 5-2

B “Design Guidelines” on page 54

B “Checking Design Violations Using the Design Assistant” on
page 5-15

B “Targeting Clock and Register-Control Architectural Features” on
page 544

For specific HDL coding examples and recommendations, including
coding guidelines for targeting dedicated device hardware, such as
memory and DSP blocks, refer to the Recommended HDL Coding Styles
chapter in volume 1 of the Quartus II Handbook. For information about
migrating designs to HardCopy devices, refer to the Design Guidelines for
HardCopy Series Devices chapter in the HardCopy Series Handbook. For
guidelines on partitioning a hierarchical design for incremental
compilation, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Quartus Il Handbook, Volume 1

Synchronous
FPGA Design
Practices

5-2

The first step in a good design methodology is to understand the
implications of your design practices and techniques. This section
outlines some of the benefits of optimal synchronous design practices and
the hazards involved in other techniques. Good synchronous design
practices can help you meet your design goals consistently. Problems
with other design techniques can include reliance on propagation delays
in a device, incomplete timing analysis, and possible glitches.

In a synchronous design, a clock signal triggers all events. As long as all
of the registers’ timing requirements are met, a synchronous design
behaves in a predictable and reliable manner for all process, voltage, and
temperature (PVT) conditions. You can easily target synchronous designs
to different device families or speed grades. In addition, synchronous
design practices help ensure successful migration if you plan to migrate
your design to a high-volume solution such as Altera HardCopy devices,
or if you are prototyping an ASIC.

Fundamentals of Synchronous Design

In a synchronous design, everything is related to the clock signal. On
every active edge of the clock (usually the rising edge), the data inputs of
registers are sampled and transferred to outputs. Following an active
clock edge, the outputs of combinational logic feeding the data inputs of
registers change values. This change triggers a period of instability due to
propagation delays through the logic as the signals go through a number
of transitions and finally settle to new values. Changes happening on data
inputs of registers do not affect the values of their outputs until the next
active clock edge.

Because the internal circuitry of registers isolates data outputs from
inputs, instability in the combinational logic does not affect the operation
of the design as long as the following timing requirements are met:

B Before an active clock edge, the data input has been stable for at least
the setup time of the register

B After an active clock edge, the data input remains stable for at least
the hold time of the register

When you specify all of your clock frequencies and other timing
requirements, the Quartus II Classic Timing Analyzer issues actual
hardware requirements for the setup times (tsy) and hold times (ty) for
every pin of your design. By meeting these external pin requirements and
following synchronous design techniques, you ensure that you satisfy the
setup and hold times for all registers within the Altera device.

Altera Corporation
October 2007

Synchronous FPGA Design Practices

Altera Corporation
October 2007

=" Tomeet setup and hold time requirements on all input pins, any
inputs to combinational logic that feeds a register should have a
synchronous relationship with the clock of the register. If signals
are asynchronous, you can register the signals at the input of the
Altera device to help prevent a violation of the required setup
and hold times.

When the setup or hold time of a register is violated, the output can be set
to an intermediate voltage level between the high and low levels, called a
metastable state. In this unstable state, small perturbations like noise in
power rails can cause the register to assume either the high or low voltage
level, resulting in an unpredictable valid state. Various undesirable effects
can occur, including increased propagation delays and incorrect output
states. In some cases, the output can even oscillate between the two valid
states for a relatively long period of time.

For details about timing requirements and analysis in the Quartus II
software, refer to the Quartus 1I Classic Timing Analyzer or the Quartus II
TimeQuest Timing Analyzer chapters in volume 3 of the Quartus Il
Handbook.

Hazards of Asynchronous Design

In the past, designers have often used asynchronous techniques such as
ripple counters or pulse generators in programmable logic device (PLD)
designs, enabling them to take “short cuts” to save device resources.
Asynchronous design techniques have inherent problems such as relying
on propagation delays in a device, which can result in incomplete timing
constraints and possible glitches and spikes. Because current FPGAs
provide many high-performance logic gates, registers, and memory,
resource and performance trade-offs have changed. Now it is more
important to focus on design practices that help you meet design goals
consistently than to save device resources using problematic
asynchronous techniques.

Some asynchronous design structures rely on the relative propagation
delays of signals to function correctly. In these cases, race conditions can
arise where the order of signal changes can affect the output of the logic.
PLD designs can have varying timing delays, depending on how the
design is placed and routed in the device with each compilation.
Therefore, it is almost impossible to determine the timing delay
associated with a particular block of logic ahead of time. As devices
become faster because of device process improvements, the delays in an
asynchronous design may decrease, resulting in a design that does not
function as expected. Specific examples are provided in “Design

5-3

Quartus Il Handbook, Volume 1

Design
Guidelines

5-4

Guidelines” on page 5-4. Relying on a particular delay also makes
asynchronous designs very difficult to migrate to different architectures,
devices, or speed grades.

The timing of asynchronous design structures is often difficult or
impossible to model with timing assignments and constraints. If you do
not have complete or accurate timing constraints, the timing-driven
algorithms used by your synthesis and place-and-route tools may not be
able to perform the best optimizations, and reported results may not be
complete.

Some asynchronous design structures can generate harmful glitches,
which are pulses that are very short compared with clock periods. Most
glitches are generated by combinational logic. When the inputs of
combinational logic change, the outputs exhibit a number of glitches
before they settle to their new values. These glitches can propagate
through the combinational logic, leading to incorrect values on the
outputs in asynchronous designs. In a synchronous design, glitches on
the data inputs of registers are normal events that have no negative
consequences because the data is not processed until the clock edge.

When designing with HDL code, it is important to understand how a
synthesis tool interprets different HDL design techniques and what
results to expect. Your design techniques can affect logic utilization and
timing performance, as well as the design’s reliability. This section
discusses some basic design techniques that ensure optimal synthesis
results for designs targeted to Altera devices while avoiding several
common causes of unreliability and instability. Design your
combinational logic carefully to avoid potential problems and pay
attention to your clocking schemes so you can maintain synchronous
functionality and avoid timing problems.

Combinational Logic Structures

Combinational logic structures consist of logic functions that depend
only on the current state of the inputs. In Altera FPGAs, these functions
are implemented in the look-up tables (LUTs) of the device’s architecture,
using either logic elements (LEs) or adaptive logic modules (ALMs). For
some cases in which combinational logic feeds registers, the register
control signals can also be used to implement part of the logic function to
save LUT resources. By following the recommendations in this section,
you can improve the reliability of your combinational design.

Altera Corporation
October 2007

Design Guidelines

Altera Corporation
October 2007

Combinational Loops

Combinational loops are among the most common causes of instability
and unreliability in digital designs, and should be avoided whenever
possible. In a synchronous design, feedback loops should include
registers. Combinational loops generally violate synchronous design
principles by establishing a direct feedback loop that contains no
registers. For example, a combinational loop occurs when the left-hand
side of an arithmetic expression also appears on the right-hand side in
HDL code. A combinational loop also occurs when you feed back the
output of a register to an asynchronous pin of the same register through
combinational logic, as shown in Figure 5-1.

Figure 5-1. Combinational Loop through Asynchronous Control Pin

——D Q

Ctooe
CLRN

Il Userecovery and removal analysis to perform timing analysis
on asynchronous ports such as clear or reset in the
Quartus II software. On the Assignments menu, click Settings.
In the Settings dialog box, under Timing Analysis Settings,
select Classic Timing Analyzer Settings. On the Classic Timing
Analyzer Settings page, click More Settings, and turn on the
Enable Recovery/Removal Analysis option.

Combinational loops are inherently high-risk design structures for the
following reasons:

B Combinational loop behavior generally depends on the relative
propagation delays through the logic involved in the loop. As
discussed, propagation delays can change, which means the
behavior of the loop is unpredictable.

B Combinational loops can cause endless computation loops in many
design tools. Most tools break open combinational loops to process
the design. The various tools used in the design flow may open a
given loop in a different manner, processing it in a way that is
inconsistent with the original design intent.

Latches

A latch is a small combinational loop that holds the value of a signal until
a new value is assigned. Latches can also be inferred from HDL code
when you did not intend to use a latch. FPGA architectures are based on

5-5

Quartus Il Handbook, Volume 1

registers. In FPGA devices, latches actually use more logic resources and
lead to lower performance than registers. This is different from other
device architectures where latches may add less delay and can be
implemented with less silicon area than registers.

Latches can cause various difficulties in the design. Although latches are
memory elements, they are fundamentally different from registers. When
a latch is in feed-through or transparent mode, there is a direct path
between the data input and the output. Glitches on the data input can
pass through the output. The timing for latches is also inherently
ambiguous. For example, when analyzing a design with a D-latch, the
software cannot determine whether you intended to transfer data to the
output on the leading edge of the clock or on the trailing edge. In many
cases, only the original designer knows the full intent of the design;
therefore, another designer cannot easily modify the design or reuse the
code.

In some cases, your synthesis tool can infer a latch that does not exhibit
problems with glitches. Inferring the Altera lpm_latch function ensures
that the implementation is glitch-free in Altera architectures. Some third-
party synthesis tools list the number of Ipm_latch functions that are
inferred. When using Quartus II integrated synthesis, these latches are
reported in the User-Specified and Inferred Latches section of the
Compilation Report. If a latch or combinational loop in your design is not
listed in this report, it means that it was not inferred as a “safe” latch by
the software and is not considered glitch-free.

However, even glitch-free latches may not be analyzed completely during
timing analysis. The Analyze latches as synchronous elements option in
the Quartus II software allows you to treat latches as start and end points
for timing analysis (a typical analysis performed in FPGA design tools).
With this option turned on, latches are analyzed as registers (with an
inverted clock). The Quartus II software does not perform
cycle-borrowing analysis, such as that performed by third-party timing
analysis tools such as Synopsys PrimeTime.

In addition, latches have a limited support in formal verification tools.
Therefore, it is especially important to ensure that you do not use latches
when using formal verification.

Altera recommends avoiding using latches to ensure that you can
completely analyze and verify the timing performance and reliability of
your design.

5-6 Altera Corporation
October 2007

Design Guidelines

Altera Corporation
October 2007

Delay Chains

Delay chains occur when two or more consecutive nodes with a single
fan-in and a single fan-out are used to cause delay. Inverters are often
chained together to add delay. Delay chains are sometimes used to
resolve race conditions created by other asynchronous design practices.

As described earlier in this chapter, delays in PLD designs can change
with each place-and-route cycle. Effects such as rise/fall time differences
and on-chip variation mean that delay chains, especially those placed on
clock paths, can cause significant problems in your design. See “Hazards
of Asynchronous Design” on page 5-3 for examples of the kinds of
problems that delay chains can cause. Avoid using delay chains to
prevent these kind of problems.

In some ASIC designs, delays are used for buffering signals as they are
routed around the device. This functionality is not needed in FPGA
devices because the routing structure provides buffers throughout the
device.

Pulse Generators and Multivibrators

Delay chains are sometimes used to generate either one pulse (pulse
generators) or a series of pulses (multivibrators). There are two common
methods for pulse generation, as shown in Figure 5-2. These techniques
are purely asynchronous and should be avoided.

Figure 5-2. Asynchronous Pulse Generators

Using an AND Gate

:

rigger

Using a Register

Trigger Pulse

Clock
CLRN
i

In “Using an AND Gate” (Figure 5-2), a trigger signal feeds both inputs
of a 2-input AND gate, but the design inverts or adds a delay chain to one
of the inputs. The width of the pulse depends on the relative delays of the
path that feeds the gate directly and the one that goes through the delay.

Ql

5-7

Quartus Il Handbook, Volume 1

This is the same mechanism responsible for the generation of glitches in
combinational logic following a change of input values. This technique
artificially increases the width of the glitch by using a delay chain.

In “Using a Register” (Figure 5-2), a register’s output drives the same
register’s asynchronous reset signal through a delay chain. The register
resets itself asynchronously after a certain delay.

The width of pulses generated in this way are difficult for synthesis and
place-and-route software to determine, set, or verify. The actual pulse
width can only be determined after placement and routing, when routing
and propagation delays are known. You cannot reliably determine the
width of the pulse when creating HDL code, and it cannot be set by EDA
tools. The pulse may not be wide enough for the application under all
PVT conditions, and the pulse width changes if you change to a different
device. In addition, static timing analysis cannot be used to verify the
pulse width, so verification is very difficult.

Multivibrators use a glitch generator to create pulses, together with a
combinational loop that turns the circuit into an oscillator. This creates
additional problems because of the number of pulses involved. In
addition, when the structures generate multiple pulses, they also create a
new artificial clock in the design that has to be analyzed by the design
tools.

When you must use a pulse generator, use synchronous techniques, as
shown in Figure 5-3.

Figure 5-3. Recommended Pulse-Generation Technique

Pulse

Trigger Signal — D Q D Q

_ U

Clock

In this design, the pulse width is always equal to the clock period. This
pulse generator is predictable, can be verified with timing analysis, and is
easily moved to other architectures, devices, or speed grades.

5-8 Altera Corporation
October 2007

Design Guidelines

Altera Corporation
October 2007

Clocking Schemes

Like combinational logic, clocking schemes have a large effect on your
design’s performance and reliability. Avoid using internally generated
clocks wherever possible because they can cause functional and timing
problems in the design. Clocks generated with combinational logic can
introduce glitches that create functional problems, and the delay inherent
in combinational logic can lead to timing problems. The following
sections provide some specific examples and recommendations for
avoiding these problems.

s Specify all clock relationships in the Quartus II software to allow
for the best timing-driven optimizations during fitting and to
allow correct timing analysis. Use clock setting assignments on
any derived or internal clocks to specify their relationship to the
base clock.

Altera recommends using global device-wide, low-skew
dedicated routing for all internally-generated clocks, instead of
routing clocks on regular routing lines. See “Clock Network
Resources” on page 5-44 for a detailed explanation.

Avoid data transfers between different clocks wherever
possible. If a data transfer between different clocks is needed,
use FIFO circuitry. You can use the clock uncertainty features in
the Quartus II software to compensate for the variable delays
between clock domains. Consider setting a Clock Setup
Uncertainty and Clock Hold Uncertainty value of 10% to 15% of
the clock delay.

Internally Generated Clocks

If you use the output from combinational logic as a clock signal or as an
asynchronous reset signal, you should expect to see glitches in your
design. In a synchronous design, glitches on data inputs of registers are
normal events that have no consequences. However, a glitch or a spike on
the clock input (or an asynchronous input) to a register can have
significant consequences. Narrow glitches can violate the register’s
minimum pulse width requirements. Setup and hold times may also be
violated if the data input of the register is changing when a glitch reaches
the clock input. Even if the design does not violate timing requirements,
the register output can change value unexpectedly and cause functional
hazards elsewhere in the design.

Because of these problems, always register the output of combinational
logic before you use it as a clock signal. See Figure 5-4.

5-9

Quartus Il Handbook, Volume 1

Figure 5-4. Recommended Clock-Generation Technique

Clock
Generation
Logic

Internally Generated Clock
Routed on Global Clock Resource

5-10

Registering the output of combinational logic ensures that the glitches
generated by the combinational logic are blocked at the data input of the
register.

Divided Clocks

Designs often require clocks created by dividing a master clock. Most
Altera FPGAs provide dedicated phase-locked loop (PLL) circuitry for
clock division. Using dedicated PLL circuitry can help you to avoid many
of the problems that can be introduced by asynchronous clock division
logic.

When you must use logic to divide a master clock, always use
synchronous counters or state machines. In addition, create your design
so that registers always directly generate divided clock signals, as
described in “Internally Generated Clocks” on page 5-9, and route the
clock on global clock resources. To avoid glitches, you should not decode
the outputs of a counter or a state machine to generate clock signals.

Ripple Counters

To simplify verification, Altera recommends avoiding ripple counters in
your design. In the past, FPGA designers implemented ripple counters to
divide clocks by a power of two because the counters are easy to design
and may use fewer gates than their synchronous counterparts. Ripple
counters use cascaded registers, in which the output pin of each register
feeds the clock pin of the register in the next stage. This cascading can
cause problems because the counter creates a ripple clock at each stage.
These ripple clocks have to be handled properly during timing analysis,
which can be difficult and may require you to make complicated timing
assignments in your synthesis and place-and-route tools.

Altera Corporation
October 2007

Design Guidelines

Altera Corporation
October 2007

Ripple clock structures are often used to make ripple counters out of the
smallest amount of logic possible. However, in all Altera devices
supported by the Quartus II software, using a ripple clock structure to
reduce the amount of logic used for a counter is unnecessary because the
device allows you to construct a counter using one logic element per
counter bit. Altera recommends that you avoid using ripple counters
under any circumstances.

Multiplexed Clocks

Clock multiplexing can be used to operate the same logic function with
different clock sources. In these designs, multiplexing selects a clock
source, as in Figure 5-5. For example, telecommunications applications
that deal with multiple frequency standards often use multiplexed clocks.

Figure 5-5. Multiplexing Logic and Clock Sources

Multiplexed Clock Routed —Ip Ql—
Clock 1 on Global Clock Resource
Clock 2
Select Signal P ar—
—b al—

Adding multiplexing logic to the clock signal can create the problems
addressed in the previous sections, but requirements for multiplexed
clocks vary widely depending on the application. Clock multiplexing is
acceptable when the clock signal uses global clock routing resources, if
the following criteria are met:

B The clock multiplexing logic does not change after initial
configuration

B The design uses multiplexing logic to select a clock for testing
purposes

B Registers are always reset when the clock switches

B A temporarily incorrect response following clock switching has no
negative consequences

5-11

Quartus Il Handbook, Volume 1

If the design switches clocks in real time with no reset signal, and your
design cannot tolerate a temporarily incorrect response, you must use a
synchronous design so that there are no timing violations on the registers,
no glitches on clock signals, and no race conditions or other logical
problems. By default, the Quartus II software optimizes and analyzes all
possible paths through the multiplexer and between both internal clocks
that may come from the multiplexer. This may lead to more restrictive
analysis than required if the multiplexer is always selecting one particular
clock. If you do not need the more complete analysis, you can assign the
output of the multiplexer as a base clock in the Quartus II software, so
that all register-register paths are analyzed using that clock.

Altera recommends using dedicated hardware to perform clock
multiplexing when it is available, instead of using multiplexing logic. For
example, you can use the Clock Switchover feature or the Clock Control
Block available in certain Altera devices. These dedicated hardware
blocks ensure that you use global low-skew routing lines and avoid any
possible hold time problems on the device due to logic delay on the clock
line.

e Refer to the appropriate device data sheet or handbook for
device-specific information about clocking structures.

Gated Clocks

Gated clocks turn a clock signal on and off using an enable signal that
controls some sort of gating circuitry, as shown in Figure 5-6. When a
clock is turned off, the corresponding clock domain is shut down and
becomes functionally inactive.

Figure 5-6. Gated Clock

Clock

— ™\
Gating Signal 4|_/

Gated Clock

You can use gated clocks to reduce power consumption in some device
architectures by effectively shutting down portions of a digital circuit
when they are not in use. When a clock is gated, both the clock network
and the registers driven by it stop toggling, thereby eliminating their
contributions to power consumption. However, gated clocks are not part
of a synchronous scheme and therefore can significantly increase the

5-12 Altera Corporation
October 2007

Design Guidelines

effort required for design implementation and verification. Gated clocks
contribute to clock skew and make device migration difficult. These
clocks are also sensitive to glitches, which can cause design failure.

Altera recommends that you use dedicated hardware to perform clock
gating rather than using multiplexing logic, if it is available in your target
device. For example, you can use the clock control block in newer Altera
devices to shut down an entire clock network. Dedicated hardware blocks
ensure that you use global routing with low skew and avoid any possible
hold time problems on the device due to logic delay on the clock line.

«® Refer to the appropriate device data sheet or handbook for
device-specific information about clocking structures.

From a functional point of view, you can shut down a clock domain in a
purely synchronous manner using a synchronous clock enable signal.
However, when using a synchronous clock enable scheme, the clock
network continues toggling. This practice does not reduce power
consumption as much as gating the clock at the source does. In most
cases, you should use a synchronous scheme such as those described in
“Synchronous Clock Enables”. For improved power reduction when
gating clocks with logic, refer to “Recommended Clock-Gating Methods”
on page 5-14.

Synchronous Clock Enables

To turn off a clock domain in a synchronous manner, use a synchronous
clock enable signal. FPGAs efficiently support clock enable signals
because there is a dedicated clock enable signal available on all device
registers. This scheme does not reduce power consumption as much as
gating the clock at the source because the clock network keeps toggling,
but it will perform the same function as a gated clock by disabling a set of
registers. Insert a multiplexer in front of the data input of every register
to either load new data or copy the output of the register (Figure 5-7).

Figure 5-7. Synchronous Clock Enable

Data

Enable

Altera Corporation 5-13
October 2007

Quartus Il Handbook, Volume 1

Recommended Clock-Gating Methods

Use gated clocks only when your target application requires power
reduction and when gated clocks are able to provide the required
reduction in your device architecture. If you must use clocks gated by
logic, implement these clocks using the robust clock-gating technique
shown in Figure 5-8 and ensure that the gated clock signal uses dedicated
global clock routing.

You can gate a clock signal at the source of the clock network, at each
register, or somewhere in between. Because the clock network contributes
to switching power consumption, gate the clock at the source whenever
possible, so you can shut down the entire clock network instead of gating
it further along the clock network at the registers.

Figure 5-8. Recommended Clock Gating Technigue

Clock

—D Qr— —D Qr—

} [[
Gated Clock Routed on
Global Clock Resources

Gating Signal

]

Enable

5-14

In the technique shown in Figure 5-8, a register generates the enable
signal to ensure that the signal is free of glitches and spikes. The register
that generates the enable signal is triggered on the inactive edge of the
clock to be gated (use the falling edge when gating a clock that is active
on the rising edge, as shown in Figure 5-8). Using this technique, only
one input of the gate that turns the clock on and off changes at a time. This
prevents any glitches or spikes on the output. Use an AND gate to gate a
clock that is active on the rising edge. For a clock that is active on the
falling edge, use an OR gate to gate the clock and register the enable
command with a positive edge-triggered register.

When using this technique, pay attention to the duty cycle of the clock
and the delay through the logic that generates the enable signal, because
the enable signal must be generated in half the clock cycle. This situation
might cause problems if the logic that generates the enable command is
particularly complex, or if the duty cycle of the clock is severely
unbalanced. However, careful management of the duty cycle and logic
delay may be an acceptable solution when compared with problems
created by other methods of gating clocks.

Altera Corporation
October 2007

Checking Design Violations Using the Design Assistant

Checking Design
Violations Using
the Design
Assistant

Altera Corporation
October 2007

Ensure that you apply a clock setting to the gated clock in the Quartus II
software. As shown in Figure 5-8, apply a clock setting to the output of
the AND gate. Otherwise, the timing analyzer may analyze the circuit
using the clock path through the register as the longest clock path and the
path that skips the register as the shortest clock path, resulting in artificial
clock skew.

To improve the reliability, timing performance, and logic utilization of
your design, practicing good design methodology and understanding
how to avoid design rule violations are important. The Quartus II
software provides a tool that automatically checks for design rule
violations, and tells you where they occur.

The Design Assistant is a design rule checking tool that allows you to
check for design issues early in the design flow. The Design Assistant
checks your design for adherence to Altera-recommended design
guidelines. You can specify which rules you want the Design Assistant to
apply to your design. This is useful if you know that your design violates
particular rules that are not critical, so you want to allow these rule
violations. The Design Assistant generates design violation reports with
clear details about each violation, based on the settings you specified.

The first parts in this section provide an introduction to the Quartus II
design flow with Design Assistant, message severity levels, and an
explanation about how to set up the Design Assistant. The last parts of the
section describe the design rules and the reports generated by the Design
Assistant.

Quartus Il Design Flow with the Design Assistant

You can run the Design Assistant after Analysis and Elaboration,
Analysis and Synthesis, fitting, or a full compilation. To run the Design
Assistant, on the Processing menu, point to Start, and click Start Design
Assistant.

To set the Design Assistant to run automatically during compilation, on
the Assignments menu, click Settings. In the Category list, select Design
Assistant. Turn on Run Design Assistant during compilation. This
enables the Design Assistant to perform a post-fitting netlist analysis of
your design. The default is to apply all of the rules to your project. But if
there are some rules that are unimportant to your design, you can turn off
the rules that you do not want the Design Assistant to use. Refer to “The
Design Assistant Settings Page” on page 5-17.

5-15

Quartus Il Handbook, Volume 1

Figure 5-9 shows the Quartus II software design flow with the Design
Assistant.

Figure 5-9. Quartus Il Design Flow with the Design Assistant

Design Files
Analysis & »
Elaboration 'U
Pre-Synthesis
Netlist
 / . etlis v
Synthesis
(Logic Synthesis & Design Assistant
Technology Mapping 7y
Post-Synthesis Rule Violation
Netlist Report
\ 4
Fitter >
Post-Fitting
\ 4 Netlist

Timing Analysis

5-16

The Design Assistant analyzes your design netlist at different stages of
the compilation flow and may yield different warnings or errors, even
though the netlists are functionally the same. Your pre-synthesis,
post-synthesis, and post-fitting netlists may be different due to
optimizations performed by the Quartus II software. For example, a
warning message in a pre-synthesis netlist may be removed after the
netlist has been synthesized into a post-synthesis or post-fitting netlist.

When you run the Design Assistant after running a full compilation or
fitting, the Design Assistant performs a post-fitting analysis on the
design. When you start the Design Assistant after performing Analysis
and Synthesis, the Design Assistant performs post-synthesis analysis on
the design. When you start the Design Assistant after performing
Analysis and Elaboration, the Design Assistant performs a pre-synthesis
analysis on the design. You can also perform pre-synthesis analysis with
the Design Assistant using the command-line. You can use -rt1 option
with the quartus_drc executable, as shown in the following example:

quartus_drc <project_name> --rtl=on +

Altera Corporation
October 2007

Checking Design Violations Using the Design Assistant

The Design Assistant generates warning messages when your design
violates design rules, and generates information messages to provide
information regarding the rules. The Design Assistant supports all Altera
devices supported by the Quartus II software.

The Design Assistant Settings Page

To apply design rules in the Design Assistant, on the Assignments menu,
click Settings. In the Settings dialog box, in the Category list, select
Design Assistant. In the Design Assistant page, turn on the rules that
you want the Design Assistant to apply during analysis. By default, all of
the rules except the finite state machine rules are turned on.

In the Timing Closure category, if Nodes with more than specified
number of fan-outs or Top nodes with highest fan-out are turned on,
you can use the High Fan-Out Net Settings dialog box to specify the
number of fan-out a node must have to be reported by the Design
Assistant. To open the High Fan-Out Net Settings dialog box, in the
Design Assistant page, in the Timing Closure category, select Nodes
with more than specified number of fan-outs or Top nodes with highest
fan-out. Click High Fan-Out Net Settings.

In the Clock category, if you turn on Clock signal should be a global
signal, you can use the Global Clock Threshold Settings dialog box to
specify the number of nodes with the highest fan-out which you want the
Design Assistant to report. To open the Global Clock Threshold Settings
dialog box, on the Design Assistant page, in the Clock category, select
Clock signal should be a global signal. Click Global Clock Threshold
Settings.

To specify the maximum number of messages reported by the Design
Assistant, on the Design Assistant page, click Report Settings, and enter
the maximum number of violation messages and detail messages to be
reported.

Altera Corporation 5-17
October 2007

Quartus Il Handbook, Volume 1

Message Severity Levels

The Design Assistant classifies messages and rules using the four severity
levels described in Table 5-1. Following Altera guidelines is very
important for designs that are migrated to the HardCopy series of
devices, therefore the table highlights the impact of a rule violation on a
HardCopy migration. Designs that adhere to Altera recommended
design guidelines do not produce any messages with critical, high, or
medium level of severity.

Table 5-1. Design Assistant Message Severity Levels

Severity Level

Explanation

Critical A violation of the rule critically affects the reliability of the design. Altera may not
be able to implement the design successfully without closely reviewing the
violations with the designer for HardCopy device conversions.

High A violation of the rule affects the reliability of the design. Altera must review the
violation before implementing the design for HardCopy device conversions.

Medium The rule violation may result in implementation complexity which may have an

impact for HardCopy device conversions.

Information Only

The rule provides information regarding the design.

5-18

Design Assistant Rules

This section describes the Design Assistant rules and details some of the
reasons that Altera recommends following certain guidelines. Many of
the Design Assistant rules enforce the design guidelines discussed in
previous sections of this chapter.

Every rule is represented by a rule ID and has its own severity level. The
rule ID is normally used in Tcl commands for rule suppression. The letter
in each rule ID corresponds to the group of rules based on the following
scheme.

A—Asynchronous design structure rules
C—Clock rules

R—Reset rules

S—Signal race rules

T—Timing closure rules
D—Asynchronous clock domain rules
H—HardCopy rules

M—Finite state machine rules

Altera Corporation
October 2007

Checking Design Violations Using the Design Assistant

For example, the rule “Design Should Not Contain Combinational
Loops” is the first rule in the asynchronous design structure rules;

therefore it is represented by rule ID A101.

'~ The finite state machine rules are applicable only to RTL level
verification.
Summary of Rules and IDs

Table 5-2 lists the rules, their rule IDs, and their severity level.

Table 5-2. Summary of Rules and IDs (Part 1 of 2)

Rule ID Rule Name Severity Level
A101 | Design Should Not Contain Combinational Loops Critical
A102 | Register Output Should Not Drive lts Own Control Signal Directly or through Critical
Combinational Logic

A103 | Design Should Not Contain Delay Chains High

A104 | Design Should Not Contain Ripple Clock Structures Medium

A105 | Pulses Should Not Be Implemented Asynchronously Critical

A106 | Multiple Pulses Should Not Be Generated in the Design Critical

A107 | Design Should Not Contain SR Latches High

A108 | Design Should Not Contain Latches High

A109 | Combinational Logic Should Not Directly Drive Write Enable Signal of Asynchronous Medium
RAM

A110 | Design Should Not Contain Asynchronous Memory Medium

C101 | Gated Clocks Should Be Implemented According to Altera Standard Scheme Critical

C102 | Logic Cell Should Not Be Used to Generate Inverted Clock High

C103 | Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock Ports to High
Effectively Save Power: <n>

C104 | Clock Signal Source Should Drive Only Input Clock Ports Medium

C105 | Clock Signal Should Be a Global Signal High

C106 | Clock Signal Source Should Not Drive Registers that Are Triggered by Different Medium
Clock Edges

R101 | Combinational Logic Used as a Reset Signal Should Be Synchronized High

R102 | External Reset Should Be Synchronized Using Two Cascaded Registers Medium

R103 | External Reset Should Be Synchronized Correctly High

R104 | Reset Signal Generated in One Clock Domain and Used in Other Asynchronous High
Clock Domains Should Be Synchronized Correctly

R105 | Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Medium
Clock Domains Should Be Synchronized

Altera Corporation 5-19

October 2007

Quartus Il Handbook, Volume 1

Table 5-2. Summary of Rules and IDs (Part 2 of 2)

Rule ID Rule Name Severity Level
S101 | Output Enable and Input of the Same Tri-state Nodes Should Not Be Driven by the High
Same Signal Source
S102 | Synchronous Port and Asynchronous Port of the Same Register Should Not Be High
Driven by the Same Signal Source
S103 | More Than One Asynchronous Signal Source of the Same Register Should Not Be High
Driven by the Same Source
S104 | Clock Port and Any Other Signal Port of the Same Register Should Not Be Driven High
by the Same Signal Source
T101 | Nodes with More Than Specified Number of Fan-outs: <n> Information Only
T102 | Top Nodes with Highest Fan-out: <n> Information Only
D101 | Data Bits Are Not Synchronized When Transferred between Asynchronous Clock High
Domains
D102 | Multiple Data Bits Transferred Across Asynchronous Clock Domains Are Medium
Synchronized, But Not All Bits May Be Aligned in the Receiving Clock Domain
D103 | Data Bits Are Not Correctly Synchronized When Transferred Between High
Asynchronous Clock Domains
H101 | Only One VREF Pin Should Be Assigned to HardCopy Test Pin in an I/O Bank Medium
H102 | A PLL Drives Multiple Clock Network Types Medium
M101 | Data Bits Are Not Synchronized When Transferred to the State Machine of High
Asynchronous Clock Domains
M102 | No Reset Signal Defined to Initialize the State Machine Medium
M103 | State Machine Should Not Contain Unreachable State Medium
M104 | State Machine Should Not Contain a Deadlock State Medium
M105 | State Machine Should Not Contain a Dead Transition Medium
Design Should Not Contain Combinational Loops
Severity Level: Critical
Rule ID: A101
A combinational loop is created by establishing a direct feedback loop on
combinational logic that is not synchronized by a register. A
combinational loop also occurs when the output of a register is fed back
to an asynchronous pin of the same register through combinational logic.
Combinational loops are among the most common causes of instability
and reliability in your designs, and should be avoided whenever possible.
Refer to “Combinational Loops” on page 5-5 for examples of the kinds of
problems that combinational loops can cause.
5-20 Altera Corporation

October 2007

Checking Design Violations Using the Design Assistant

Altera Corporation
October 2007

Register Output Should Not Drive Its Own Control Signal Directly or
through Combinational Logic

Severity Level: Critical
Rule ID: A102

A combinational loop occurs when you feed back the output of a register
to an asynchronous pin of the same register (for example, the register’s
preset or asynchronous load signal), or the register drives combinational
logic that drives one of the control signals on the same register.
Combinational loops are among the most common causes of instability
and reliability in your designs, and should be avoided whenever possible.
Refer to “Combinational Loops” on page 5-5 for examples of the kinds of
problems that combinational loops can cause.

Design Should Not Contain Delay Chains

Severity Level: High
Rule ID: A103

Delay chains are created when one or more consecutive nodes with a
single fan-in and a single fan-out are used to cause delay. Delay chains are
sometimes used to create intentional delay to resolve race conditions.
Delay chains may cause significant problems, because they affect the rise
and fall time differences in your design.

This rule applies only for delay chains implemented in logic cells, and is
limited to the clock and reset path of your design. This rule does not apply
to delay chains in the data path. Altera recommends that you do not
instantiate a cell that does not benefit the design, and is used only to delay
the signal. Refer to “Delay Chains” on page 5-7 for examples of the kinds
of problems that delay chains can cause.

Design Should Not Contain Ripple Clock Structures

Severity Level: Medium
Rule ID: A104

Designs should not contain ripple clock structures. These structures use
two or more cascaded registers in which the output of each register feeds
the clock pin of the register in the next stage. Cascading structures cause
large skew in the output signal because each stage of the structure causes
a new clock domain to be defined. The additional clock domains from
each stage of the ripple clock are difficult for static timing analysis tools
to analyze. Refer to “Ripple Counters” on page 5-10 for examples of the
kinds of problems that ripple clock structures can cause.

5-21

Quartus Il Handbook, Volume 1

Pulses Should Not Be Implemented Asynchronously

Severity Level: Critical
Rule ID: A105

There are two common methods for pulse generation:

B Increasing the width of a glitch using a 2-input AND, NAND, OR, or NOR
gate, where the source for the two gate inputs are the same, but one
of the gate inputs is inverted

B Using a register where the register output drives the register’s own
asynchronous reset signal through a delay chain (refer to “Delay
Chains” on page 5-7 for more details).

These techniques are purely asynchronous and therefore should be
avoided. Refer to “Pulse Generators and Multivibrators” on page 5-7 for
recommended pulse generation guidelines.

Multiple Pulses Should Not Be Generated in the Design

Severity Level: Critical
Rule ID: A106

A common asynchronous multiple-pulse-generation technique consists
of a combinational logic gate in which the inverted output feeds back to
one of the inputs of the same gate. This feedback path causes a
combinational loop which forces the output to change state, and therefore
oscillate. Sometimes multiple pulse generators or multivibrator circuits
are built out of a series of cascaded inverters in a structure called a “ring
oscillator.” Oscillation creates a new artificial clock in your design that is
difficult for the Quartus II software to determine, set, or verify.

Structures that generate multiple pulses cause more problems than pulse
generators because of the number of pulses involved. In addition,
multi-pulse generators also increase the frequency of the design. See
“Pulse Generators and Multivibrators” on page 5-7 for recommended
pulse generation guidelines.

5-22 Altera Corporation
October 2007

Checking Design Violations Using the Design Assistant

Altera Corporation
October 2007

Design Should Not Contain SR Latches

Severity Level: High
Rule ID: A107

Alatch is a combinational loop that holds the value of a signal until a new
value is assigned. Combinational loops are hazardous to your design and
are the most common causes of instability and reliability. Refer to
“Combinational Loops” on page 5-5 for examples of the kinds of
problems that combinational loops can cause.

Rule A107 triggers only when your design contains SR latches. An SR
latch can cause glitches and ambiguous timing, which complicates the
timing analysis of your design. Refer to “Latches” on page 5-5 for details
about latches, and for more examples of the kinds of problems that latches
can cause.

Design Should Not Contain Latches

Severity Level: High
Rule ID: A108

The Design Assistant generates warnings when it identifies one or more
structures as latches.

Refer to “Latches” on page 5-5 for details about latches, and for examples
of the kinds of problems that latches can cause.

Il The difference between A107 (“Design Should Not Contain SR
Latches”) and A108 is that A107 triggers only when an SR latch
is detected. A108 triggers when there’s an unidentified latch in
your design.

Combinational Logic Should Not Directly Drive Write Enable Signal of
Asynchronous RAM

Severity Level: Medium
Rule ID: A109

Altera FPGA devices contain flexible embedded memory structures that
can be configured into many different modes. One possible mode is
asynchronous RAM. The definition of an asynchronous RAM circuit is
one in which the write-enable signal driving into the RAM causes data to
be written into it without a clock being required.

5-23

Quartus Il Handbook, Volume 1

5-24

You should not use combinational logic to directly drive the write-enable
signal of an asynchronous RAM. Any glitches that exist on the
write-enable signal can cause the asynchronous RAM to be corrupted.
Also, the data and write address ports of the RAM should be stable before
the write pulse is asserted, and must remain stable until the write pulse is
de-asserted. Because of the limitations to using memory structures in this
asynchronous mode, synchronous memories are always preferred. In
addition, synchronous memories provide higher design performance.

As a guideline, a register should be used between the combinational logic
and the asynchronous RAM, or the asynchronous RAM should be
replaced with synchronous memory. Refer to “Hazards of Asynchronous
Design” on page 5-3 for examples of the kinds of problems asynchronous
techniques can cause.

This rule applies only to device families that support asynchronous RAM.

Design Should Not Contain Asynchronous Memory

Severity Level: Medium
Rule ID: A110

You should avoid using asynchronous memory (for example,
asynchronous RAM) in your design, because asynchronous memory can
become corrupted by glitches created in the combinational logic that
drives the write-enable signal of the memory. Asynchronous memory
requires that the data and write address ports of the memory be stable
before the write pulse is asserted, and must remain stable until the write
pulse is de-asserted. In addition, asynchronous memory has lower
performance than synchronous memory.

As a guideline, a register should be used between the combinational logic
and the asynchronous RAM, or the asynchronous RAM should be
replaced with synchronous memory. Immediately registering both input
and output of the RAM improves performance and timing closure. Refer
to “Hazards of Asynchronous Design” on page 5-3 for examples of the
kinds of problems asynchronous techniques can cause.

This rule applies only to device families that support asynchronous RAM.

Altera Corporation
October 2007

Checking Design Violations Using the Design Assistant

Gated Clocks Should Be Implemented According fo Altera Standard
Scheme

Severity Level: Critical
Rule ID: C101

Clock gating is sometimes used to turn parts of a circuit on and off to
reduce the total power consumption of a device. Clock gating is
implemented using an enable signal that controls some sort of gating
circuitry. The gated clock signal prevents any of the logic driven by it from
switching so the logic does not consume any power. For example, when
a clock is turned off, the corresponding clock domain is shut down and
becomes functionally inactive. However, the disadvantage of using this
type of circuit is that it can lead to unexpected glitches on the resultant
gated clock signal if certain rules are not followed.

Refer to “Gated Clocks” on page 5-12 for examples of the kinds of
problems gated clocks can cause. Refer to “Recommended Clock-Gating
Methods” on page 5-14 for a recommended clock gating technique.
However, when following the recommended clock gating techniques,
your design must have a minimum number of fan-outs to meet rule C103,
“Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock
Ports to Effectively Save Power: <n>."

Logic Cell Should Not Be Used to Generate Inverted Clock

Severity Level: High
Rule ID: C102

Your design may require both positive and negative edges of a clock to
operate. However, you should not implement an inverter to drive the
clock input of a register in your design with a logic cell. Implementing the
inverter with a logic cell can lead to clock insertion delay and skew, which
is hazardous to your design and can cause problems with the timing
closure of the design.

In addition, using a logic cell to implement an inverter is unnecessary.
You should use the programmable clock inversion featured in the register
to generate the inverted clock signal. Refer to “Clocking Schemes” on
page 5-9 for details about different types of clocking methods.

Altera Corporation 5-25
October 2007

Quartus Il Handbook, Volume 1

5-26

Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock Ports
to Effectively Save Power: <n>

Severity Level: Medium
Rule ID: C103

Your design can contain an input clock pin that fans out to more than one
gated clock. However, to effectively reduce power consumption, Altera
recommends that the gated clock feed at least a pre-defined number of
clock ports (n ports). The default value for # is 30. You can set the number
of clock ports (1) by clicking Settings on the Assignments menu. In the
Category list, select Design Assistant. On the Design Assistant page,
expand the Clock category, and turn on Gated clock is not feeding at
least a pre-defined number of clock port to effectively save power: <n>.
Click on the Gated Clock Settings button, and in the Gated Clock
Settings dialog box, set the number of clock ports a gated clock should
feed. Refer to “Clocking Schemes” on page 5-9, and “Recommended
Clock-Gating Methods” on page 5-14 for proper clock-gating techniques.

Clock Signal Source Should Drive Only Input Clock Ports

Severity Level: Medium
Rule ID: C104

Clock signal sources in a design should drive only input clock ports of
registers. Rule C104 triggers when a design contains a clock signal source
of a register that connects to port rather than the clock port of another
register. Note that if the clock signal source and ports are of the same
register, rule 5104 “Clock Port and Any Other Signal Port of the Same
Register Should Not Be Driven by the Same Signal Source” is triggered
instead. Such a design is considered asynchronous and should be
avoided. Asynchronous design structures can be hazardous to your
design because some of them rely on the relative propagation delays of
signals to function correctly, which can result in incomplete timing
constraints and possible glitches and spikes. Refer to “Hazards of
Asynchronous Design” on page 5-3 for examples of the kinds of
problems that asynchronous design structures can cause. Also refer to
“Clocking Schemes” on page 5-9 for proper clocking techniques.

This rule does not apply in the following conditions:
B When the clock signal source drives combinational logic that is used
as a clock signal, and the combinational logic is implemented

according to the Altera standard scheme

B When the clock signal source drives only a clock multiplexer that
selects one clock source from a number of different clock sources

Altera Corporation
October 2007

Checking Design Violations Using the Design Assistant

Altera Corporation
October 2007

=" This type of multiplexer adds complexity to the timing analysis
of a design. You should avoid using the multiplexer in the
design.

B Using a clock multiplexer causes the “Gated Clocks Should Be
Implemented According to Altera Standard Scheme” rule (C101) to
be applied; refer to “Multiplexed Clocks” on page 5-11 for
recommended clock multiplexing techniques

Clock Signal Should Be a Global Signal

Severity Level: High
Rule ID: C105

You should ensure that all clock signals in your design use the global
clock networks that exist in the target FPGA. Mapping clock signals to use
non-dedicated clock networks can negatively affect the performance of
your design. A non-global signal can be slower and have larger skew than
a global signal because the clock must be distributed using regular FPGA
routing resources.

To specify the number of minimum fan-outs that you want the Design
Assistant to report, on the Design Assistant page, in the Clock category,
select Clock signal should be a global signal. Click Global Clock
Threshold Settings, and enter the number in the dialog box.

If a design contains more clock signals than are available in the target
device, you should consider reducing the number of clock signals in the
design, such that only dedicated clock resources are used for clock
distribution. However, if the design must use more clock signals than you
can specify as global signals, implement the clock signals with the lowest
fan-out using regular routing resources. Also, implement the fastest clock
signals as global signals. Refer to “Clock Network Resources” on

page 544 for detailed information about clock resources.

Clock Signal Source Should Not Drive Registers that Are Triggered by
Different Clock Edges

Severity Level: Medium
Rule ID: C106

This rule triggers an error message if your design contains a clock signal
source that drives the clock inputs of both positive and negative
edge-sensitive registers. This error also triggers if your design contains an
inverted clock signal that drives the clock inputs of either positive or
negative edge-sensitive registers.

5-27

Quartus Il Handbook, Volume 1

5-28

These two scenarios can cause an increase in timing requirement
complexity and difficulties in design optimization. Also, because those
registers are clocked on the different edges, synchronous resetting is
impossible. Refer to “Clocking Schemes” on page 5-9 for some specific
examples and recommended clocking methods.

Combinational Logic Used as a Reset Signal Should Be Synchronized

Severity Level: High
Rule ID: R101

All combinational logic used to drive reset signals in your design should
be synchronized. This means that a register should be placed between the
combinational logic that drives reset signal and the input reset pin.
Unsynchronized combinational logic can cause glitches and spikes that
lead to unintentional reset signals. Synchronizing the combinational logic
that drives the reset signal delays the resulting reset signal by an extra
clock cycle and avoids unintentional reset. You should consider the extra
clock cycle delay when using this method in your design.

Rule R101 does not trigger if the combinational logic used is either a
2-input AND or NOR that feeds active low reset port, or either a 2-input OR
or NAND that feeds active high reset port.

External Reset Should Be Synchronized Using Two Cascaded Registers

Severity Level: Medium
Rule ID: R102

The only way to put your design into a reset state in the absence of a clock
signal is to use an asynchronous reset or external reset. However, the
asynchronous reset can affect the recovery time of a register, cause design
stability problems, and unintentionally reset the state machines in your
design to incorrect states.

As a guideline, you can synchronize an external reset signal by using a
double-buffer circuit, which consists of two cascaded registers triggered
on the same clock edge, and on the same clock domain as the targeted
registers.

This rule does not apply in the following two conditions:

B When the targeted registers use active-high reset ports, and the
external reset signal drives the PRE ports on the cascaded registers
with the input port of the first cascaded registers is fed to GND. Refer
to Figure 5-11.

Altera Corporation
October 2007

Checking Design Violations Using the Design Assistant

Figure 5-10. Active-Low Reset Ports

inst4
PRE
—D Q
Clock >
ENA
HesetDJ——\ CLR
PRE PRE
0—b Q D Q -
inst9
ENA ENA PRE
—D Q
CLR CLR
inst6 inst5 ENA
CLR
Cascaded Registers

Targeted
/" Registers

B When the targeted registers use active-low reset ports, and the
external reset signal drives the CLR ports on the cascaded registers
with the input port of the first cascaded registers is fed to V. Refer

to Figure 5-10.

Figure 5-11. Active-High Reset Ports

PRE
—D
Clock >
ENA
CLR
inst3 inst2 Targeted
PRE PRE + Registers
—D Q D Q - 4
inst
ENA ENA PRE |
—b ol
CLR CLR
ENA
Reset[_> -
Cascaded Registers
Altera Corporation 5-29

October 2007

Quartus Il Handbook, Volume 1

External Reset Should Be Synchronized Correctly

Severity Level: High
Rule ID: R103

The only way to put your design into a reset state in the absence of a clock
signal is to use an asynchronous reset or external reset. However, the
asynchronous reset can affect the recovery time of a register, cause design
stability problems, and unintentionally reset the state machines in your
design to incorrect states.

As a guideline, you can synchronize an external reset signal by using two
cascaded registers. The registers should be triggered on the same clock
edge, and on the same clock domain as the targeted registers.

This rule applies when an asynchronous reset or external reset signal is
synchronized but fails to follow the recommended guidelines as
described in rule R102 (“External Reset Should Be Synchronized Using
Two Cascaded Registers”). This violation happens when the external
reset is synchronized with only one register, or the cascaded
synchronization registers are triggered on different clock edges.

L=~ R102 triggers when you don’t use two cascaded registers to
synchronize the external reset. R103 triggers when the external
reset is synchronized but fails to follow the recommended
guidelines.

Reset Signal Generated in One Clock Domain and Used in Other
Asynchronous Clock Domains Should Be Synchronized Correctly

Severity Level: High
Rule ID: R104

If your design uses an internally generated reset signal generated in one
clock domain and used in one or more other asynchronous clock domain,
the reset signal should be synchronized. An unsynchronized reset signal
can cause metastability issues. To synchronize reset signals across clock
domains, use the following guidelines:

B The reset signal should be synchronized with two or more cascading
registers in the receiving asynchronous clock domain.
B The cascading registers should be triggered on the same clock edge.

5-30 Altera Corporation
October 2007

Checking Design Violations Using the Design Assistant

Altera Corporation
October 2007

B There should be no logic between the output of the transmitting
clock domain and the cascaded registers in the receiving
asynchronous clock domain. The synchronization registers may
sample unintended data due to the glitches caused by the logic.

This rule applies when the internal reset signal is synchronized but fails
to follow the recommended guidelines. This happens when the external
reset is only synchronized with one register, or the cascaded
synchronization registers are triggered on different clock edges, or there
is logic between the output of the transmitting clock domain and the
cascaded registers in the receiving asynchronous clock domain.
Synchronizing the reset signal delays the signal by an extra clock cycle.
You should consider this delay when using the reset signal in a design.

Reset Signal Generated in One Clock Domain and Used in Other
Asynchronous Clock Domains Should Be Synchronized

Severity Level: Medium
Rule ID: R105

If your design uses an internally generated reset signal that is generated
in one clock domain and used in one or more other asynchronous clock
domain, the reset signal should be synchronized. An unsynchronized
reset signal can cause metastability issues. To synchronize reset signals
across clock domains, you should follow guidelines described in Rule
R104 (“Reset Signal Generated in One Clock Domain and Used in Other
Asynchronous Clock Domains Should Be Synchronized Correctly”).

This rule applies when the internally generated reset signal is not being
synchronized.

Output Enable and Input of the Same Tri-state Nodes Should Not Be
Driven by the Same Signal Source

Severity Level: High
Rule ID: 5101

This rule applies when your design contains a tri-state node in which the
input and output enable are driven by the same signal source. Signal race
occurs between the input and output enable signals of the tri-state when
they are propagated simultaneously. Race conditions lead to incorrect
design function and unpredictable results. To avoid violation of this rule,
the input and output enable of the tri-state should be driven by separate
signal sources.

5-31

Quartus Il Handbook, Volume 1

5-32

Synchronous Port and Asynchronous Port of the Same Register Should
Not Be Driven by the Same Signal Source

Severity Level: High
Rule ID: 5102

A purely synchronous design is free of signal race conditions as long as
the clock signal is properly distributed and the timing requirements of the
registers are met. However, race conditions can occur typically when the
synchronous and asynchronous input pins of the register are driven by
the same signal source. Race conditions can cause incorrect design
function and unpredictable results. Rule S102 triggers when the
synchronous and asynchronous pins of a register are driven by the same
signal source. Rule S102 does not trigger if the signal source is from a
negative-edge sensitive register of the same clock, and if the source
register is directly feeding the reset port, provided there is no
combinational logic in-between the signal and the register.

More Than One Asynchronous Signal Source of the Same Register
Should Not Be Driven by the Same Source

Severity Level: High
Rule ID: S103

To avoid race conditions in your design, Altera recommends that you
avoid using the same signal source to drive more than one port on a
register. The following ports are affected: ALOAD, ADATA, Preset, and
Clear.

Clock Port and Any Other Signal Port of the Same Register Should Not Be
Driven by the Same Signal Source

Severity Level: High
Rule ID: S104

Any clock signal source in your design should drive only input clock
ports of registers. Rule 5104 triggers only when your design contains
clock signal sources that connect to ports other than the clock ports of the
same register. Rule 5104 is a sub rule of C104 “Clock Signal Source Should
Drive Only Input Clock Ports.” Such a design is considered asynchronous
and should be avoided. Refer to “Hazards of Asynchronous Design” for
examples of the kinds of problems that asynchronous design structures
can cause. Refer to “Clocking Schemes” for proper clocking techniques.

Altera Corporation
October 2007

Checking Design Violations Using the Design Assistant

Altera Corporation
October 2007

Nodes with More Than Specified Number of Fan-outs: <n>

Severity Level: Information Only
Rule ID: T101

This rule reports nodes that have more than a specified number of
fan-outs, which can create timing challenges for your design.

To specify the number of fan-outs, on the Assignments menu, click
Settings. In the Category list, select Design Assistant. On the Design
Assistant page, expand the Timing closure category by clicking the =
icon next to Timing closure. Turn on Nodes with more than specified
number of fan-outs. Click High Fan-Out Net Settings. In the High
Fan-Out Net Settings dialog box, enter the number of fan-outs a node
must have to be reported by the Design Assistant.

Top Nodes with Highest Fan-out: <n>

Severity Level: Information Only
Rule ID: T102

This rule reports the specified number of nodes with the highest fan-out,
which can create timing challenges for your design.

To specify the number of fan-outs, on the Assignments menu, click
Settings. In the Category list, select Design Assistant. On the Design

Assistant page, click the ¥ icon next to Timing closure to expand the
folder. Select Nodes with more than specified number of fan-outs. Click
High Fan-out Net Settings. In the High Fan-Out Net Settings dialog box,
enter the number of nodes with the highest fan-out to be reported by the
Design Assistant.

Data Bits Are Not Synchronized When Transferred between
Asynchronous Clock Domains

Severity Level: High
Rule ID: D101

The data bits transferred between asynchronous clock domains in a
design should be synchronized to avoid metastability problems.

If the data bits belong to single-bit data, each data bit should be
synchronized with two cascading registers in the receiving asynchronous
clock domain, in which the cascaded registers are triggered on the same
clock edge. There should be no logic between the output of the
transmitting clock domain and the cascaded registers in the receiving
asynchronous clock domain.

5-33

Quartus Il Handbook, Volume 1

5-34

If the data bits belong to multiple-bit data, a handshake protocol should
be used to guarantee that all bits of the data bus are stable when the
receiving clock domain samples the data. If a handshake protocol is used,
only the data bits that act as REQ (request) and ACK (acknowledge) signals
should be synchronized. The data bits that belong to multiple-bit data do
not need to be synchronized. You can ignore the violation on the data bits
that use a handshake protocol.

Multiple Data Bits Transferred Across Asynchronous Clock Domains Are
Synchronized, But Not All Bits May Be Aligned in the Receiving Clock
Domain

Severity Level: Medium
Rule ID: D102

This rule applies when data bits from a multiple-bit data that are
transferred between asynchronous clock domains are synchronized.
However, not all data bits may be aligned in the receiving clock domain.
Propagation delays may cause skew when the data reaches the receiving
clock domain.

If the data bits belong to multiple-bit data and a handshake protocol is
used, only the data bits that act as REQ, ACK, or both signals for the
transfer should be synchronized with two or more cascading registers in
the receiving asynchronous clock domain.

If all of the data bits belong to single-bit data, the synchronization of the
data bits does not cause problems in the design.

Data Bits Are Not Correctly Synchronized When Transferred Between
Asynchronous Clock Domains

Severity Level: High
Rule ID: D103

The data bits that are transferred between asynchronous clock domains in
a design should be synchronized to avoid metastability problems.

If the data bits belong to single-bit data, each data bit should be
synchronized with two cascading registers in the receiving asynchronous
clock domain. In this case, the cascaded registers are triggered on the
same clock edge, and there should be no logic between the output of the
transmitting clock domain. The cascaded registers in the receiving
asynchronous clock domain.

This rule only applies when the data bits across asynchronous clock

domains are synchronized but fail to follow the guidelines.

Altera Corporation
October 2007

Checking Design Violations Using the Design Assistant

Altera Corporation
October 2007

Only One VREF Pin Should Be Assigned to HardCopy Test Pin in an
/0 Bank

Severity Level: Medium
Rule ID: H101

If your design targets a HardCopy APEX™ 20K device, you should not
assign more than one VREF pin to a HardCopy test pin in an I/O bank in
that targeted device. The assignment of more than one VREF pin to a
HardCopy test pin can cause contention of the VREF bus.

You can find the list of the HardCopy test pins that are in each of a
HardCopy APEX 20K device’s I/O banks in the Messages window, the
Design Assistant Messages report, and the Design Assistant HardCopy
Test Pins report. You should use this information to ensure that only one
VREEF pin is assigned to a HardCopy test pin.

However, the Fitter may have assigned the VREF pins to the HardCopy
test pins during compilation. To prevent the Fitter from making these
assignments during the next compilation, create and assign the VREF
pins manually instead of allowing the Fitter to do so automatically.

This rule applies only to designs that target HardCopy APEX 20K
devices.

A PLL Drives Multiple Clock Network Types

Severity Level: Medium
Rule ID: H102

A PLL can compensate only one of the clock network types; therefore, the
other non-compensated clock network types have a non-zero delay.
However, the non-zero delay for the non-compensated clock network
types can change between a Stratix device and its corresponding
HardCopy Stratix device, or a Stratix II device and its corresponding
HardCopy II device.

Therefore, if a Stratix FPGA design relies on the relative offset between
the compensated clock network type and the non-compensated clock
network types driven by a PLL, an error can occur in the corresponding
HardCopy Stratix design because the relative offset in the HardCopy
Stratix design may differ from the relative offset in the original Stratix
FPGA design.

This rule reports only nodes in a design where a PLL drives multiple
clock network types.

5-35

Quartus Il Handbook, Volume 1

5-36

Data Bits Are Not Synchronized When Transferred to the State Machine of
Asynchronous Clock Domains

Severity Level: High
Rule ID: M101

The data bits that are transferred between asynchronous clock domains in
your design should be synchronized to avoid metastability problems.
Rule M101 is a state machine specific rule that triggers when input signals
of a state machine across asynchronous clock domains are not
synchronized or improperly synchronized. Rule M101 applies to state
machines only, while the “Data Bits Are Not Synchronized When
Transferred between Asynchronous Clock Domains” rule (D101) and the
“Data Bits Are Not Correctly Synchronized When Transferred Between
Asynchronous Clock Domains” rule (D103) apply only for data
synchronization between registers.

No Reset Signal Defined to Initialize the State Machine

Severity Level: Medium
Rule ID: M102

A finite state machine (FSM) should have a reset signal that initializes to
its initial state. A finite state machine without a proper initialization state
is susceptible to functional problems and can introduce extra difficulty in
analysis, verification, and maintenance.

State Machine Should Not Contain Unreachable State

Severity Level: Medium
Rule ID: M103

An unreachable state is a state that can never be reached from the initial
state. Having an unreachable state in your design causes logic
redundancy and affects your design functionality. Rule M103 triggers
when the initial state cannot traverse to a state through any of the
reachable states and transitions.

State Machine Should Not Contain a Deadlock State

Severity Level: Medium
Rule ID: M104

A deadlock state is a state that does not have any transitions to another
state except to loop to itself. When the state machine enters a deadlock
state, it stays in that state until the state machine is reset. Your design may

Altera Corporation
October 2007

Checking Design Violations Using the Design Assistant

Altera Corporation
October 2007

have a single state, or a few states forming a deadlock structure. Having
a deadlock state in your design leads to design functionality problems,
and theoretically may consume more power.

You can change the maximum number of states to be detected as a
deadlock structure by clicking Settings on the Assignments menu, and in
the Settings dialog box, in the Category list, select Design Assistant. In
the Design Assistant page, click Finite State Machine Deadlock
Settings. In the Finite State Machine Deadlock Settings dialog box,
specify the maximum number of states to be reported as a deadlock
structure. The default setting is 2.

State Machine Should Not Contain a Dead Transition

Severity Level: Medium
Rule ID: M105

A dead transition is a redundant transition that never occurs regardless
of the event sequence input to the state machine. A dead transition
indicates logic redundancy in your design, although it may not affect
your design functionality. Rule M105 triggers when the condition
required to trigger a transition is not possible.

Enabling and Disabling Design Assistant Rules

You can selectively enable or disable Design Assistant rules on individual
nodes by making an assignment in the Assignment Editor, or using the
altera_attribute synthesis attribute in Verilog HDL or VHDL, or
using a Tcl command.

For a list of the types of nodes that allow Design Assistant rule
suppression, refer to Node Types Eligible for Rule Suppression in the
Quartus II Help.

I Assignments made with Assignment Editor, the Quartus
Settings File (.qsf), and Tcl scripts and commands take
precedence over assignments made with the
altera_attribute synthesis attribute. Assignments made to
nodes, entities, or instances take precedence over global
assignments.

Using the Assignment Editor

You can enable or disable a Design Assistant rule on selected nodes in
your design by using the Assignments Editor. You must first compile
your design if you have not already done so. On the Assignments menu,
click Assignment Editor. In the spreadsheet, for the desired node, entity,

5-37

Quartus Il Handbook, Volume 1

5-38

or instance, double-click the cell in the Assignment Name column and
select Enable Design Assistant Rule or Disable Design Assistant Rule
in the pull-down menu. Then double-click the Value cell and type in the
Rule ID, or click Browse to open the Design Assistant Rules dialog box.
In the Design Assistant Rules dialog box, select the rule you want to
enable or disable for that particular node.
Il'=" You can enable or disable multiple rules by typing more than
one Rule ID in the cell, and separating each Rule ID with a
comma.

Using Verilog HDL

You can use the altera_attributes synthesis attribute in your
Verilog HDL code to enable or disable a Design Assistant rule on the
selected nodes in your design.

To enable the rule on the selected node, the syntax is as shown in the
following example:

<entity class> <object> /* synthesis
altera_attribute="enable da_rule=<rule]D>" */

You can enable more than one rule on a selected node as shown in the
following example:

<entity class> <object> /* synthesis
altera_attribute="enable da_rule=\"<ruleID>, <ruleID>,
<ruleID>\""*/

To disable the rule on the selected node, the syntax is as shown in the
following example:

<entity class> <object> /* synthesis
altera_attribute="disable da_rule=<ruleID>" */

You can disable more than one rule on a selected node as shown in the
following example:

<entity class> <object> /* synthesis
altera_attribute="disable da_rule=\"<ruleID>,
<rulelD>, <ruleID>\""*/

s When enabling or disabling multiple rules in Verilog HDL, you
must separate the Rule ID strings with commas and spaces only,
and they must be enclosed with the \" and \" characters.

Altera Corporation
October 2007

Checking Design Violations Using the Design Assistant

Using VHDL

You canuse thealtera_attributes synthesis attribute in your VHHDL
code to enable or disable a Design Assistant rule on the selected nodes in
your design.

To enable the rule on the selected node, use the following syntax:

attribute altera attribute : string;attribute
altera attribute of <object>: <entity class> is
"enable da_rule=<ruleID>"

You can enable more than one rule on a selected node as shown in the
following example:

attribute altera attribute : string;attribute
altera_attribute of <object>: <entity class> is
"enable da_rule=""<ruleID>, <ruleID>, <ruleID>"""

To disable the rule on the selected node, use the following syntax:

attribute altera attribute : string;attribute
altera_attribute of <object>: <entity class> is
"disable da_rule=<rule]D>"

You can disable more than one rule on a selected node as shown in the
following example:

attribute altera attribute : string;attribute
altera_attribute of <object>: <entity class> is
"disable da_ rule=""<ruleID>, <ruleID>, <ruleID>"""

s When enabling or disabling multiple rules in VHDL, you must
separate the Rule ID strings with commas and spaces only, and
they must be enclosed with double quotation mark (")
characters.

Altera Corporation 5-39
October 2007

Quartus Il Handbook, Volume 1

Using TCL Commands

To enable a Design Assistant rule on the selected node in your design
using Tcl in a script or at a command or Tcl prompt, use the following Tcl
command:

set_instance assignment -name enable da rule "<ruleID>" -to <design element> +

To enable more than one rule on a selected node, use the following Tcl
command:

set_instance_assignment -name enable_da_rule "<ruleID>, <ruleID>" -to <design element> +

To disable a Design Assistant rule on a selected node in your design using
Tel in a script, or at a command or Tel prompt, use the following Tcl
command:

set_instance_assignment -name disable da_rule "<ruleID>" -to <design element> +

To disable more than one rule on a selected node, use the following Tcl
command:

set_instance_assignment -name disable_da_rule "<ruleID>,<ruleID>" -to <design element> +

Viewing Design Assistant Results

If your design violates a design rule, the Design Assistant generates
warning messages and information messages about the violated design
rule. The Design Assistant displays these messages in the Messages
window, in the Design Assistant Messages report, and in the Design
Assistant report files. You can find the Design Assistant report files called
<project_name>.drc.rpt in the <project_name> subdirectory of the project
directory.

The Design Assistant generates the following reports based on the
settings specified in the Design Assistant page:

Summary Report

Settings Report

Detailed Results Report

Messages Report

HardCopy Test Pins Report

Rule Suppression Assignments Report
Ignored Design Assistant Assignments Report

5-40 Altera Corporation
October 2007

Checking Design Violations Using the Design Assistant

Altera Corporation
October 2007

Summary Report

The Design Assistant Summary report contains summary of the Design
Assistant process on a particular project. This includes Design Assistant
Status, Revision Name, Top-level Entity, Targeted Family Device, and
total number of design violations of the project. The Design Assistant
Summary report provides the following information:

B Design Assistant Status—the status, end date, and end time of the
Design Assistant operation

B Revision Name—the revision name specified in the Revisions
dialog box

B Top-level Entity Name—the top-level entity of your design

B Family—the device family name specified in the Device page of the
Settings dialog box

B Total Critical Violations, Total High Violations, Total Medium
Violations, and Total Information Only Violations—the total
violations of the rules organized by level, some of which might affect
the reliability of the design

I'=" Youmust first review the violations closely before converting
your design for HardCopy devices to achieve a successful
conversion.

Settings Report

The Design Assistant Settings report contains a list of enabled Design
Assistant rules and options that you specified in the Design Assistant
Settings page, as shown in Figure 5-12.

5-41

Quartus Il Handbook, Volume 1

Figure 5-12. The Design Assistant Settings Report

% Compilation Report - Design Assistant Settings

% Compilation Report Design Assistant Settings

EB LegalNotice Option Setting Ta b
ST Flow Summary - " o
SHER Flow Settings 1 F Design Assistant mode Post-Fitting
BB Flow Non-Default Global 5¢ | 2| Threshald value for clock net not mapped to clack spines rule 25
@g Flow Elapsed Time 3_ inimurn nurmber of node fan-out a0
@ Flow Log 4_ b aximum number of nodes to report a0
+-&G1) Analysis & Synthesis |5 | Rule £101: Gated clock should be implemented accarding to Altera standard scheme On
* @D Fitter B_ Fiule C102: Logic cell should not be used to generate inverted clock On
+ gg iss.emlier | T | Rule C103: Input clock pin hould fan out to only one set of clock gating logic On
+ iming Analyzer —
- &3 Desig?1 Assi:tant |8 | Rule C104: Clock signal source shauld drive anly input clock ports On
@E 5 Fiule C105: Clock signal should be a global signal (Rule applies during post-fiting analysis.
um!'nary 9 | This rule applies during both post-fitting analyzis and post-synthesis analysiz if the design On
@5 Settings | | targets a Mak< 3000 or MAX 7000 device. For more information, see the Help for the rule.)
&HER Medium Violations 10| Fule C108: Clack signal saurce should nat drive registers that are tiggered by different clack | o
EHE Information only Violat || edges
5}; Messages l Fiule F107: Combinational logic used as reset signal should be synchronized On
+ @[:I EDA Netlist Writer E Rule R102: External reset shauld be synchronized using hwo cascaded registers On
E Fiule R103: External reset should be comectly synchronized On
14 Rule R104: Reset signal that iz generated in ane clock domain and used in ather, On
|| asynchronous clock domaing should be comectly synchronized
15 Rule R105: Reset signal that iz generated in one clock domain and used in ather, On
| " | aspnchronous clock domaing should be synchronized
16| Rule T101: Modes with more than specified number of fan-outs On
? Duls TAN Tam emdmn skl bimlmsb Foae sk M v
< paIN K ¥
Detailed Results Report
The Detailed Results report contains detailed information of every rule
violation including the rule name, the node name, and the fan-out. This
report only appears if you specify settings in the Design Assistant
Settings page. Refer to “The Design Assistant Settings Page” on
page 5-17 for more information about how to specify the settings.
Separate Detailed Results reports are generated for critical, high,
medium, and information only results. Figure 5-13 shows the
Information Only Violations report.
5-42 Altera Corporation

October 2007

Checking Design Violations Using the Design Assistant

Figure 5-13. The Design Detailed Results Report, Information Only

% Compilation Report - Information only Violations

Information only Viclations

% Compilation Report

EB Legal Notice

Fiule ~
S Flow Summary hame Name
EHE Flow Settings 1 | Rule T102: Top nodes with highest far-out | clock
@% Flow Non-Default Global Settings 2_ Fule T102: Top nodes with highest fan-out | clken
g :Z: floapsed Time 3_ Rule T102: Top nodes with highest fan-out | ach
w & Analysisg& Synthesis 4_ Fule T102: Top nodes with highest fan-out | my_divider:instlpm_divide:lpm_divide_componentlipm_divide_Bis:aul
+ @D Fitter 5_ Fule T102: Top nodes with highest fan-out | my_divider:instlpm_divide:lpm_divide_componentlipm_divide_Bis:aul
+1- ¢S50 Assembler |6 [Fule T102: Top nodes with highest fan-out | my_divider:instlipm_divide:lpm_divide_componentllpm_divide_Bis: aul
+ @D Timing Analyzer ?_ Fule T102: Top nodes with highest fan-out | denom(0]
= %a Design Assistant 8 | Rule T102: Top nodes with highest fan-out | my_divider:instllpm_divide: lpm_divide_componentllpr_divide_Bis: aul
@E Summary 9_ Fiule T102: Top nodes with highest fan-out | denom(1]
@E Seth:ngs o E Fiule T102: Top nodes with highest fan-out | my_divider:instlpm_divide:lpm_divide_componentllpm_divide_Gis: aul
@E Medium \f'lolahons E 11| Rule T102: Top nodes with highest fan-out | denom(3]
ég Information only Violations
59 Messages £ Fule T102: Top nodes with highest fan-out | my_divider:instlipr_divide: lpr_divide_componentilprm_divide_Bis: aul
= EDA Netist Writer E Fiule T102: Top nodes with highest fan-out | denom[2]
i Fule T102: Top nodes with highest fan-out | my_divider:instlpm_divide:lpm_divide_componentllpm_divide_Bis:aul
E Rule T102: Top nodes with highest fan-out | my_divider:instlipm_divide:lpr_divide_componentlipr_divide_Bis: aul
E Fule T102: Top nodes with highest fan-out | my_divider:instlpm_divide:lpm_divide_componentllpm_divide_Bis:aul
i Fule T102: Top nodes with highest fan-out | my_divider:instliprm_divide:lpm_divide_componentllpm_divide_Bis: aul
E Fule T102: Top nodes with highest fan-out | my_divider:instlpm_divide:lpm_divide_componentllpm_divide_Bis:aul
13| Rule T102: Top nodes with highest fan-out | my_divider:instllpm_divide: lpm_divide_componentlipm_divide_Bis: aul »
< >

Messages Report

The Messages report contains current information, warning, and error
messages generated during the Design Assistant process. You can
right-click a message in the Messages report and click Help to display the
Quartus II software Help with details about the selected message, or click
Locate to trace or cross-probe the selected node and locate the source of
the violation.

HardCopy Test Pins Report

The HardCopy Test Pins report appears only if you turn on Run Design
Assistant during compilation in the Design Assistant page, and if your
design violates the “Only One VREF Pin Should Be Assigned to
HardCopy Test Pin in an I/O Bank” rule (H101). The report lists all the
HardCopy design rule violations, and also list all of the test pins in the
HardCopy device.

Altera Corporation
October 2007

5-43

Quartus Il Handbook, Volume 1

Targeting

Clock and
Register-Control
Architectural
Features

5-44

Rule Suppression Assignments Report

The Rule Suppression Assignments report contains detailed information
about which Design Assistant rules are enabled or disabled, as explained
in the “Enabling and Disabling Design Assistant Rules” on page 5-37.
The report shows you the following information:

B Assignment—shows the name of the assignment
B Value—identifies the rule
B To—shows the name of the node where the rule is being applied

Ignored Design Assistant Assignments Report

The Ignored Design Assistant Assignments report lists detailed
information about the invalid and conflicting rule assignments reported
by the Design Assistant. Note that this report is generated only if you
specify an invalid rule ID in the rule suppression, or a conflicting rule
assignment. The following information appears in the report:

Assignment—shows the name of the assignment
Value—identifies the rule

To—shows the name of the node where the rule is being applied
Comment—shows why the assignment is being ignored

In addition to following general design guidelines, it is important to code
your design with the device architecture in mind. FPGAs provide
device-wide clocks and register control signals that can improve
performance.

Clock Network Resources

Altera FPGAs provide device-wide global clock routing resources and
dedicated inputs. You should use the FPGA’s low-skew, high fan-out,
dedicated routing where available. By assigning a clock input to one of
these dedicated clock pins or using a Quartus II logic option to assign
global routing, you can take advantage of the dedicated routing available
for clock signals.

In ASIC design, balancing the clock delay as it is distributed across the
device can be important. Because Altera FPGAs provides device-wide
global clock routing resources and dedicated inputs, there is no need to
manually balance delays on the clock network.

Altera recommends limiting the number of clocks in your design to the
number of dedicated global clock resources available in your FPGA.
Clocks feeding multiple locations that do not use global routing may
exhibit clock skew across the device that could lead to timing problems.

Altera Corporation
October 2007

Targeting Clock and Register-Control Architectural Features

Altera Corporation
October 2007

In addition, when you use combinational logic to generate an internal
clock, it adds delays on the clock line. In some cases, delay on a clock line
can result in a clock skew greater than the data path length between two
registers. If the clock skew is greater than the data delay, the timing
parameters of the register (such as hold time requirements) are violated
and the design will not function correctly.

Current FPGAs offer increasing numbers of global clocks to address large
designs with many clock domains. Many large FPGA devices provide
dedicated global clock networks, regional clock networks, and dedicated
fast regional clock networks. These clocks are typically organized into a
hierarchical clock structure that allows many clocks in each device region
with low skew and delay. There are typically a number of dedicated clock
pins to drive either the global or regional clock networks and both PLL
outputs and internal clocks can drive various clock networks.

To reduce the clock skew within a given clock domain and ensure that
hold times are met within that clock domain, assign each clock signal to
one of the global high fan-out, low-skew clock networks in the FPGA
device. Quartus II automatically uses global routing for high fan-out
control signals, PLL outputs, and signals feeding the global clock pins on
the device. You can make explicit Global Signal logic option settings by
turning on the signal logic option settings. On the Assignment menu,
click Assignment Editor. Use this option when it is necessary to force the
software to use the global routing for particular signals.

To take full advantage of these routing resources, the sources of clock
signals in a design (input clock pins or internally-generated clocks)
should drive only the clock input ports of registers. In older Altera device
families (such as FLEX® 10K and ACEX® 1K), if a clock signal feeds the
data ports of a register, the signal may not be able to use the dedicated
routing, which can lead to decreased performance and clock skew
problems. In general, allowing clock signals to drive the data ports of
registers is not considered synchronous design, and it can complicate
timing analysis. It is not a recommended practice.

Reset Resources

ASIC designs may use local resets to avoid long routing delays on the
signal. You should take advantage of the device-wide asynchronous reset
pin available on most FPGAs to eliminate these problems. This reset
signal provides low-skew routing across the device.

5-45

Quartus Il Handbook, Volume 1

Conclusion

Referenced
Documents

5-46

Register Control Signals

Avoid using an asynchronous load signal if the design target device
architecture does not include registers with dedicated circuitry for
asynchronous loads. Also, avoid using both asynchronous clear and
preset if the architecture provides only one of those control signals. APEX
devices, for example, directly support an asynchronous clear function,
but not a preset or load function. When the target device does not directly
support the signals, the place-and-route software must use combinational
logic to implement the same functionality. In addition, if you use signals
in a priority other than the inherent priority in the device architecture,
combinational logic may be required to implement the desired control
signals. The combinational logic is less efficient and can cause glitches
and other problems; it is best to avoid these implementations.

For Verilog HDL and VHDL examples of registers with various control
signals, and information about the inherent priority order of register
control signals in Altera device architecture, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Following the design practices outlined in this chapter can help you meet
your design goals consistently. Asynchronous design techniques may
result in incomplete timing analysis, may clause glitches on data signals,
and may rely on propagation delays in a device leading to race conditions
and unpredictable results. Taking advantage of the architectural features
in your FPGA device can also improve your quality of results.

This chapter references the following documents:

B Design Guidelines for HardCopy Series Devices chapter in the HardCopy
Series Handbook

B Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook

B Quartus II Classic Timing Analysis chapter in volume 3 of the
Quartus Il Handbook

B Quartus I TimeQuest Timing Analysis chapter in volume 3 of the
Quartus Il Handbook

B Quartus II Handbook

B Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook

Altera Corporation
October 2007

http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Document Revision History

Document

Table 5-3 shows the revision history for this chapter.

Revision History

Table 5-3. Document Revision History (Part 1 of 2)

Date and
Document
Version

Changes Made

Summary of Changes

October 2007
v7.2.0

@ Added restrictions to the rule “External Reset

Should Be Synchronized Using Two Cascaded
Registers” on page 5-28

e Added Figure 5-11 and 5-10 on page 5-29
e Some changes regarding the Delay Chain rule

description (page 5-21)

e Added hyperlinks to referenced documents

Updated for Quartus Il software version
7.2.

May 2007
v7.1.0

e Changed chapter name to Design

Recommendations for Altera Devices and the
Quartus Il Design Assistant

e Removed Hierarchical Design Partitioning

section

page 5-36

e Added Enabling and Disabling Design

Assistant Rules on page 5-38

e Added Rule Suppression Assignments Report

on page 5-45

e Added Ignored Design Assistant Assignments

Report on page 5-45
e Updated Table 5-2
e Added Referenced Documents on page 5-47

Updated Design Assistant Rules on page 5-19
e Added Finite State Machine Rules on

Updated for Quartus Il software version
7.1.

March 2007
v7.0.0

Updated Quartus Il software 7.0 revision and date
only. No other changes made to chapter.

November 2006
v6.1.0

Added the following sections (with additional

subsections):

e “Checking Design Violations Using the Design
Assistant”

e “Quartus Il Design Flow with the Design

Assistant”

“The Design Assistant Page”

“Message Severity Levels”

“Design Assistant Rules”

“Viewing Design Assistant Results”

Quartus Il software version 6.1 added the
Design Assistant; the bulk of the changes
to this chapter are related to this update.

May 2006
v6.0.0

Minor updates for the Quartus Il version 6.0.

October 2005
v5.1.0

Updated for the Quartus |l software version 5.1.

Altera Corporation

October 2007

5-47

Quartus Il Handbook, Volume 1

Table 5-3. Document Revision History (Part 2 of 2)

Date and
Document
Version

Changes Made

Summary of Changes

May 2005
v.5.0.0

Chapter 5 was formerly Chapter 4 in version 4.2.

December2004
va.1

Updated for Quartus Il software version 4.2:

e Chapter 5 was formerly Chapter 6 in version
4.1.

e General formatting and editing updates.

e Updated hardware requirements for the
Quartus Il Timing Analyzer.

e Added timing requirements and analysis

details.

Updated Design Guidelines.

Added information about performing timing

analysis on asynchronous ports.

Added inferred latches information.

Updated Delay Chains description.

Updated figures, tables.

Added Clocking Schemes information.

Added details to Multiplexed Clocks details.

Added clock gating details.

Updated Hierarchical Design Partitioning to

include synthesis and incremental synthesis.

Added global routing information.

June 2004
v.2.0

e Updates to tables, figures, coding examples.
e New functionality for Quartus Il software 4.1.

February 2004
vi1.0

Initial release.

5-48

Altera Corporation

October 2007

- R ded HDL
ZA\”] —ED A 6. Recommende

Coding Styles

®

QI151007-7.2.0

Introduction

Altera Corporation
October 2007

HDL coding styles can have a significant effect on the quality of results
that you achieve for programmable logic designs. Synthesis tools
optimize HDL code for both logic utilization and performance. However,
sometimes the best optimizations require human understanding of the
design, and synthesis tools have no information about the purpose or
intent of the design. You are often in the best position to improve your
quality of results.

This chapter addresses HDL coding style recommendations to ensure
optimal synthesis results when targeting Altera® devices, including the
following sections:

B “Quartus II Language Templates” on page 62

B “Using Altera Megafunctions” on page 6-3

B “Instantiating Altera Megafunctions in HDL Code” on page 6—4

B “Inferring Multiplier and DSP Functions from HDL Code” on
page 6-7

B “Inferring Memory Functions from HDL Code” on page 613

B “Coding Guidelines for Registers and Latches” on page 6-37

B “General Coding Guidelines” on page 648

B “Designing with Low-Level Primitives” on page 6-73

For additional guidelines on structuring your design, refer to the Design
Recommendations for Altera Devices chapter in volume 1 of the Quartus II
Handbook.

For style recommendations, options, or HDL attributes specific to your
synthesis tool (including Quartus® Il Integrated Synthesis and other EDA
tools), refer to the tool vendor’s documentation or the appropriate
chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

Quartus Il Handbook, Volume 1

Quartus I
Language
Templates

The Quartus II software provides Verilog HDL, VHDL, AHDL, Tel script,
and megafunction language templates that can help you with your
design.

Many of the Verilog HDL and VHDL examples in this document
correspond with examples in the templates. You can easily insert
examples from this document into your HDL source code using the Insert
Template dialog box in the Quartus I user interface, shown in Figure 6-1.

Figure 6-1. Insert Template Dialog Box

Insert Template

Language templates:

X

Preview:

+|- Shift Registers

+- Arithretic
—I- Constructs

+|- Design Units

+- Declarations

—-wHDL
+- Full Designs
+- Constructs
= AHDL
+- &rchitecture
Quartug [TCL
- TCL

+- Commands
=1 Megafunctions
+- Instances

= Werilog HOL A4 Quartug |l Verilog Template
= Full Designs /¢ Single port RAM with zingle read/write address
= RésM s and ROMs
- ot FAM [modu\e single_port_ram
Simple Dual Port RaM [single clock) input [[DATA_wADTH-110] data,
Simple Dual Port Rak [dual clock) input [[ADD;E_W|DTH'1 1:0] addr,
True Dual Part RAM [single clock) input we, clk, .
True Dual Poit RAM [dual clock] p Cuputea [DATAWIDTH Il a
Single Port ROM ’
Drual Port ROM parameter DATA_WIDTH = 8;

+- State Machines

Sequential Statements

parameter ADDR_WIDTH =E;

/1 Declare the RAM wariable
reg [DATA_WIDTH-1:0] ram(2=4DDA_WID TH-1:01;

alwayz @ [posedae clk)
begin
£t
if [we]
ram[addr] = data;

/¢ Read returns NEW data at addr if we == 101, This iz the
/¢ natural behavior of Tribd atrix memory blocks in Single Port
£ mode
q <= ram[addr];

L=l

endmodule

Ingert Cloze

6-2

To open the Insert Template dialog box when you have a file open in the
Quartus II Text Editor, on the Edit menu, click Insert Template.
Alternately, you can right-click in the Text Editor window and choose
Insert Template.

Altera Corporation
October 2007

Using Altera Megafunctions

Using Altera Altera provides parameterizable megafunctions that are optimized for
. Altera device architectures. Using megafunctions instead of coding your
Me gafu nctions own logic saves valuable design time. Additionally, the Altera-provided
megafunctions may offer more efficient logic synthesis and device
implementation. You can scale the megafunction’s size and set various
options by setting parameters. Megafunctions include the library of
parameterized modules (LPM) and Altera device-specific megafunctions.

To use megafunctions in your HDL code, you can instantiate them as
described in “Instantiating Altera Megafunctions in HDL Code” on
page 6-4.

Sometimes it is preferable to make your code independent of device
family or vendor, and you do not want to instantiate megafunctions
directly. For some types of logic functions, such as memory and DSP
functions, you can infer a megafunction instead of instantiating it.
Synthesis tools, including Quartus II integrated synthesis, recognize
certain types of HDL code and automatically infer the appropriate
megafunction. The synthesis tool uses the Altera megafunction code
when compiling your design—even when you do not specifically
instantiate the megafunction. Synthesis tools infer megafunctions to take
advantage of logic that is optimized for Altera devices or to target
dedicated architectural blocks.

In cases where you prefer to use generic HDL code instead of
instantiating a megafunction, follow the guidelines and coding examples
in “Inferring Multiplier and DSP Functions from HDL Code” on page 6-7
and “Inferring Memory Functions from HDL Code” on page 6-13 to
ensure your HDL code infers the appropriate Altera megafunction.

I You must use megafunctions to access some Altera
device-specific architecture features. You can infer or instantiate
megafunctions to target some features such as memory and DSP
blocks. You must instantiate megafunctions to target certain
device and high-speed features such as LVDS drivers, PLLs,
transceivers, and double-data rate input/output (DDIO)
circuitry.

Altera Corporation 6-3
October 2007

Quartus Il Handbook, Volume 1

Instantiating
Altera
Megafunctions
in HDL Code

6-4

For some designs, generic HDL code can provide better results than
instantiating a megafunction. Refer to the following general guidelines
and examples that describe when to use standard HDL code and when to
use megafunctions:

B For simple addition or subtraction functions, use the + or - symbol
instead of an LPM function. Instantiating an LPM function for simple
arithmetic operations can result in a less efficient result because the
function is hard coded and the synthesis algorithms cannot take
advantage of basic logic optimizations.

B For simple multiplexers and decoders, use array notation (such as
out = data[sell)instead of an LPM function. Array notation
works very well and has simple syntax. You can use the 1pm mux
function to take advantage of architectural features such as cascade
chains in APEX" series devices, but use the LPM function only if you
understand the device architecture in detail and want to force a
specific implementation.

B Avoid division operations where possible. Division is an inherently
slow operation. Many designers use multiplication creatively to
produce division results.

The following sections describe how to use megafunctions by
instantiating them in your HDL code with the following methods:

B “Instantiating Megafunctions Using the MegaWizard Plug-In
Manager”—You can use the MegaWizard® Plug-In Manager to
parameterize the function and create a wrapper file.

B “Creating a Netlist File for Other Synthesis Tools”—You can
optionally create a netlist file instead of a wrapper file.

B “Instantiating Megafunctions Using the Port and Parameter
Definition”—You can instantiate the function directly in your HDL
code.

Instantiating Megafunctions Using the MegaWizard Plug-In
Manager

Use the MegaWizard Plug-In Manager as described in this section to
create megafunctions in the Quartus II GUI that you can instantiate in
your HDL code. The MegaWizard Plug-In Manager provides a graphical
user interface to customize and parameterize megafunctions, and ensures
that you set all megafunction parameters properly. When you finish
setting parameters, you can specify which files you want to be generated.
Depending on which language you choose, the MegaWizard Plug-In

Altera Corporation
October 2007

Instantiating Altera Megafunctions in HDL Code

Manager instantiates the megafunction with the correct parameters and
generates a megafunction variation file (wrapper file) in Verilog HDL
(.v), VHDL (.vhd), or AHDL (.tdf) along with other supporting files.

The MegaWizard Plug-In Manager provides options to create the
following files:

B Asample instantiation template for the language of the variation file
(Uinst.v | vhd | tdf).

B Component Declaration File (.cmp) that can be used in VHDL

Design Files

ADHL Include File (.inc) that can be used in Text Design Files (.tdf)

Quartus II Block Symbol File (.bsf) for schematic designs

Verilog HDL module declaration file that can be used when

instantiating the megafunction as a black box in a third-party

synthesis tool (_bb.v).

B If you enable the option to generate a synthesis area and timing
estimation netlist, the MegaWizard Plug-In Manager generates an
additional synthesis netlist file (_syn.v). Refer to “Creating a Netlist
File for Other Synthesis Tools” on page 66 for details.

Refer to Table 6-1 for a list and description of files generated by the
MegaWizard Plug-In Manager.

Table 6-1. MegaWizard Plug-In Manager Generated Files (Part 1 of 2)

File Description

<output file>.v (1) Verilog HDL Variation Wrapper File—Megafunction wrapper file for instantiation in a
Verilog HDL design.

<output file>.vhd (1) VHDL Variation Wrapper File—Megafunction wrapper file for instantiation in a VHDL
design.

<output file>tdf (1) AHDL Variation Wrapper File—Megafunction wrapper file for instantiation in an
AHDL design.

<output file>.inc ADHL Include File—Used in AHDL designs.

<output file>.cmp Component Declaration File—Used in VHDL designs.

<output file>.bsf Block Symbol File—Used in Quartus Il Block Design Files (.bdf).

<output file>_inst.v Verilog HDL Instantiation Template—Sample Verilog HDL instantiation of the module

in the megafunction wrapper file.

<output file>_inst.vhd VHDL Instantiation Template—Sample VHDL instantiation of the entity in the
megafunction wrapper file.

<output file>_inst.tdf Text Design File Instantiation Template—Sample AHDL instantiation of the
subdesign in the megafunction wrapper file.

Altera Corporation 6-5
October 2007

Quartus Il Handbook, Volume 1

Table 6-1. MegaWizard Plug-In Manager Generated Files (Part 2 of 2)

File

Description

<output file>_bb.v

Black box Verilog HDL Module Declaration—Hollow-body module declaration that
can be used in Verilog HDL designs to specify port directions when creating black
boxes in third-party synthesis tools.

<output file>_syn.v (2)

Synthesis area and timing estimation netlist—Megafunction netlist used by certain
third-party synthesis tools to improve area and timing estimations.

Notes to Table 6-1:

(1) The MegaWizard Plug-In Manager generates either the Verilog HDL, VHDL, or AHDL Variation Wrapper File,
depending on the language you select for the output file on the megafunction-selection page of the wizard.

(2) The MegaWizard Plug-In Manager generates this file only if you turn on the Generate a synthesis area and timing
estimation netlist option on the EDA page of the wizard.

6-6

Creating a Netlist File for Other Synthesis Tools

When you use certain megafunctions with third-party EDA synthesis
tools (that is, tools other than Quartus II integrated synthesis), you can
optionally create a netlist for area and timing estimation instead of a
wrapper file.

The netlist file is a representation of the customized logic used in the
Quartus II software. The file provides the connectivity of architectural
elements in the megafunction but may not represent true functionality.
This information enables certain third-party synthesis tools to better
report area and timing estimates. In addition, synthesis tools can use the
timing information to focus timing-driven optimizations and improve
the quality of results.

For information about support for area and timing estimation netlists in
your synthesis tool, refer to the tool vendor’s documentation or the
appropriate chapter in the Synthesis section in volume 1 of the Quartus II
Handbook.

To generate the netlist, turn on Generate a synthesis area and timing
estimation netlist on the EDA page of the MegaWizard Plug-In Manager.
The netlist file is called <output file>_syn.v.

Altera Corporation
October 2007

Inferring Multiplier and DSP Functions from HDL Code

Inferring
Multiplier and
DSP Functions
from HDL Code

Altera Corporation
October 2007

Instantiating Megafunctions Using the Port and Parameter
Definition

You can instantiate the megafunction directly in your Verilog HDL,
VHDL, or AHDL code by calling the megafunction and setting its
parameters as you would any other module, component, or subdesign.

Refer to the specific megafunction in the Quartus II Help for a list of the
megafunction ports and parameters. Quartus II Help also provides a
sample VHDL component declaration and AHDL function prototype for
each megafunction.

I Altera strongly recommends that you use the MegaWizard
Plug-In Manager for complex megafunctions such as PLLs,
transceivers, and LVDS drivers. For details on using the
MegaWizard Plug-In Manager, refer to “Instantiating
Megafunctions Using the MegaWizard Plug-In Manager” on
page 6—4.

The following sections describe how to infer multiplier and DSP
functions from generic HDL code, and, if applicable, how to target the
dedicated DSP block architecture in Altera devices:

B “Multipliers—Inferring the Ipm_mult Megafunction from HDL
Code” on page 6-7

B “Multiply-Accumulators and Multiply-Adders—Inferring
altmult_accum and altmult_add Megafunctions from HDL Code” on
page 6-10

For synthesis tool features and options, refer to your synthesis tool
documentation or the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

Multipliers—Inferring the Ilpm_mult Megafunction from HDL
Code

To infer multiplier functions, synthesis tools look for multipliers and
convert them to 1pm mult or altmult add megafunctions, or may
map them directly to device atoms. For devices with DSP blocks, the
software can implement the function in a DSP block instead of logic,

6-7

Quartus Il Handbook, Volume 1

depending on device utilization. The Quartus II Fitter can also place
input and output registers in DSP blocks (that is, perform register
packing) to improve performance and area utilization.

For additional information about the DSP block and the supported
functions, refer to the appropriate Altera device family handbook and
Altera’s DSP Solutions Center website at www.altera.com.

The following four code samples show Verilog HDL and VHDL
examples for unsigned and signed multipliers that synthesis tools can
inferasan 1pm_mult oraltmult_add megafunction. Each example fits
into one DSP block 9-bit element. In addition, when register packing
occurs, no extra logic cells for registers are required.

= The signed declaration in Verilog HDL is a feature of the
Verilog 2001 Standard.

Example 6-1. Verilog HDL Unsigned Multiplier

module unsigned mult (out, a, b);

output [15:0] out;

input [7:0] a;

input [7:0] b;

assign out = a * b;
endmodule

Example 6-2. Verilog HDL Signed Multiplier with Input and Output Registers (Pipelining = 2)

module signed mult (out, clk, a, b);

output [15:0] out;
input clk;

input signed [7:0] a;
input signed [7:0] b;

reg signed [7:0] a_reg;
reg signed [7:0] b_reg;
reg signed [15:0] out;
wire signed [15:0] mult_out;

assign mult_out = a_reg * b_reg;

always @ (posedge clk)

begin
a_reg <= a;
b_reg <= b;
out <= mult_out;
end
endmodule
6-8 Altera Corporation

October 2007

http://www.altera.com

Inferring Multiplier and DSP Functions from HDL Code

Example 6-3. VHDL Unsigned Multiplier with Input and Output Registers (Pipelining = 2)
LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.numeric std.all;

ENTITY unsigned mult IS
PORT (
a: IN UNSIGNED (7 DOWNTO O0) ;
b: IN UNSIGNED (7 DOWNTO O0) ;
clk: IN STD LOGIC;
aclr: IN STD LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)
)
END unsigned mult;

ARCHITECTURE rtl OF unsigned mult IS
SIGNAL a_reg, b_reg: UNSIGNED (7 DOWNTO O0) ;
BEGIN
PROCESS (clk, aclr)
BEGIN
IF (aclr ='1') THEN
a_reg <= (OTHERS => '0');
b _reg <= (OTHERS => '0');
result <= (OTHERS => '0');

ELSIF (clk'event AND clk = 'l') THEN
a_reg <= a;
b _reg <= b;
result <= a_reg * b _reg;
END IF;
END PROCESS;
END rtl;

Example 6-4. VHDL Signed Multiplier
LIBRARY ieee;

USE ieee.std logic 1164 .ALL;
USE ieee.numeric_std.all;

ENTITY signed mult IS
PORT (
a: IN SIGNED (7 DOWNTO O0) ;
b: IN SIGNED (7 DOWNTO O0) ;
result: OUT SIGNED (15 DOWNTO O0)
)
END signed mult;

BEGIN
result <= a * b;
END rtl;
Altera Corporation 6-9

October 2007

Quartus Il Handbook, Volume 1

6-10

Multiply-Accumulators and Multiply-Adders—Inferring
altmult_accum and altmult_add Megafunctions from HDL Code

Synthesis tools detect multiply-accumulators or multiply-adders and
convert them to altmult_accum or altmult_add megafunctions,
respectively, or may map them directly to device atoms. The Quartus II
software then places these functions in DSP blocks during placement and
routing.

s Synthesis tools infer multiply-accumulator and multiply-adder
functions only if the Altera device family has dedicated DSP
blocks that support these functions.

A multiply-accumulator consists of a multiplier feeding an addition
operator. The addition operator feeds a set of registers that then feeds the
second input to the addition operator. A multiply-adder consists of two
to four multipliers feeding one or two levels of addition, subtraction, or
addition/subtraction operators. Addition is always the second-level
operator, if it is used. In addition to the multiply-accumulator and
multiply-adder, the Quartus II Fitter also places input and output
registers into the DSP blocks to pack registers and improve performance
and area utilization.

The Verilog HDL and VHDL code samples shown in Examples 6-5
through 6-8 infer specific multiply-accumulators and multiply-adders.

Altera Corporation
October 2007

Inferring Multiplier and DSP Functions from HDL Code

Example 6-5. Verilog HDL Unsigned Multiply-Accumulator with Input, Output and Pipeline Registers

(Latency = 3)

module unsig altmult accum (dataout, dataa, datab,

input [7:0] dataa;
input [7:0] datab;
input clk;

input aclr;

input clken;

output [31:0] dataout;
reg [31:0] dataout;
reg [7:0] dataa_reg;
reg [7:0] datab_reg;
reg [15:0] multa reg;
wire [15:0] multa;
wire [31:0] adder out;

assign multa = dataa_reg * datab_reg;
assign adder out = multa reg + dataout;
always @ (posedge clk or posedge aclr)

begin
if (aclr)
begin

dataa_reg <= 8'b0;
datab_reg <= 8'b0;
multa reg <= 16'b0;
dataout <= 32'b0;

end

else if (clken)

begin
dataa_reg <= dataa;
datab_reg <= datab;
multa_reg <= multa;
dataout <= adder_ out;

end

end
endmodule

clk,

aclr,

clken) ;

Example 6-6. Verilog HDL Signed Multiply-Adder (Latency = 0)

module sig_altmult_add (dataa, datab, datac, datad, result);

input signed [15:0] dataa;
input signed [15:0] datab;
input signed [15:0] datac;
input signed [15:0] datad;
output [32:0] result;

wire signed [31:0] multO_result;
wire signed [31:0] multl_result;

assign multO_result = dataa * datab;

assign multl_result = datac * datad;

assign result = (multO_result + multl_result);
endmodule

Altera Corporation
October 2007

6-11

Quartus Il Handbook, Volume 1

Example 6-7. VHDL Unsigned Multiply-Adder with Input, Output and Pipeline Registers (Latency = 3)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all;

ENTITY unsignedmult_add IS
PORT (
a: IN UNSIGNED (7 DOWNTO O0) ;
b: IN UNSIGNED (7 DOWNTO 0) ;
0)
0)

i

c: IN UNSIGNED (7 DOWNTO
d: IN UNSIGNED (7 DOWNTO
clk: IN STD LOGIC;
aclr: IN STD LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)
)i
END unsignedmult_add;

i

ARCHITECTURE rtl OF unsignedmult_add IS

SIGNAL a_reg, b_reg, c_reg, d_reg: UNSIGNED

(7 DOWNTO O0) ;

SIGNAL pdt_reg, pdt2_reg: UNSIGNED (15 DOWNTO O0) ;

SIGNAL result_reg: UNSIGNED (15 DOWNTO O0) ;

BEGIN
PROCESS (clk, aclr)
BEGIN
IF (aclr = '1l') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
c_reg <= (OTHERS => '0');
d_reg <= (OTHERS => '0');
pdt_reg <= (OTHERS => '0');
pdt2_reg <= (OTHERS => '0');
ELSIF (clk'event AND clk = 'l') THEN
a_reg <= aj
b_reg <= b;
c_reg <= c;
d_reg <= d;

pdt_reg <= a_reg * b_reg;
pdt2_reg <= c_reg * d_reg;
result_reg <= pdt_reg + pdt2_reg;
END IF;
END PROCESS;
result <= result_reg;
END rtl;

6-12

Altera Corporation
October 2007

Inferring Memory Functions from HDL Code

Example 6-8. VHDL Signed Multiply-Accumulator with Input, Output and Pipeline Registers (Latency = 3)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all;

ENTITY sig_altmult_accum IS
PORT (
a: IN SIGNED (7 DOWNTO 0) ;
b: IN SIGNED (7 DOWNTO O0) ;
clk: IN STD LOGIC;
accum_out: OUT SIGNED (15 DOWNTO 0)
)

END sig_altmult_accum;

ARCHITECTURE rtl OF sig_altmult_accum IS
SIGNAL a_reg, b _reg: SIGNED (7 DOWNTO 0) ;
SIGNAL pdt_reg: SIGNED (15 DOWNTO 0) ;
SIGNAL adder_out: SIGNED (15 DOWNTO 0) ;

BEGIN
PROCESS (clk)
BEGIN

IF (clk'event and clk = '1l') THEN

a_reg <= (a);
b_reg <= (b);

pdt_reg <= a_reg * b_reg;
adder_out <= adder_out + pdt_reg;

END IF;
END process;

accum_out <= adder_out;

END rtl;

|nfe rri ng The following sections describe how to infer memory functions from
generic HDL code and, if applicable, to target the dedicated memory

M emo rv architecture in Altera devices:

Functions from

HDL Code

Altera Corporation
October 2007

B “RAM Functions—Inferring altsyncram and altdpram
Megafunctions from HDL Code” on page 6-14

B “ROM Functions—Inferring altsyncram and lpm_rom
Megafunctions from HDL Code” on page 6-31

B “Shift Registers—Inferring the altshift_taps Megafunction from HDL
Code” on page 6-33

For synthesis tool features and options, refer to your synthesis tool
documentation or the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

Altera's dedicated memory architecture offers a number of advanced
features that can be easily targeted using the MegaWizard Plug-In
Manager as described in “Instantiating Altera Megafunctions in HDL
Code” on page 6—4. The coding recommendations in the following

6-13

Quartus Il Handbook, Volume 1

sections provide portable examples of generic HDL code that infer the
appropriate megafunction. However, if you want to use some of the
advanced memory features in Altera devices, consider using the
megafunction directly so that you can control the ports and parameters
more easily.

RAM Functions—Inferring altsyncram and altdpram
Megafunctions from HDL Code

To infer RAM functions, synthesis tools detect sets of registers and logic
that can be replaced with the altsyncram or altdpram megafunctions
for device families that have dedicated RAM blocks, or may map them
directly to device memory atoms.

Standard synthesis tools recognize single-port and simple dual-port (one
read port and one write port) RAM blocks. Some tools (such as the
Quartus II software) also recognize true dual port RAM blocks that map
to the memory blocks in certain Altera devices. Tools usually do not infer
small RAM blocks because small RAM blocks typically can be
implemented more efficiently using the registers in regular logic.
= If you are using Quartus II integrated synthesis, you can direct
the software to infer ROM blocks for all sizes with the Allow
Any RAM Size for Recognition option under More Settings on
the Analysis & Synthesis Settings page of the Settings dialog
box.

s If your design contains a RAM block that your synthesis tool
does not recognize and infer, the design might require a large
amount of system memory that potentially can cause
compilation problems.

Some synthesis tools provide options to control the implementation of
inferred RAM blocks for Altera devices with TriMatrix™ memory blocks.
For example, Quartus II integrated synthesis provides the ramstyle
synthesis attribute to specify the type of memory block or to specify the
use of regular logic instead of a dedicated memory block. Quartus II
integrated synthesis does not map inferred memory into Stratix III
MLABSs unless the HDL code specifies the appropriate ramstyle
attribute, although the Fitter may map some memories to MLABs.

e For details about using the ramstyle attribute, refer to the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook. For
information about synthesis attributes in other synthesis tools, refer to
the appropriate chapter in the Synthesis section in volume 1 of the
Quartus II Handbook.

6-14 Altera Corporation
October 2007

Inferring Memory Functions from HDL Code

Altera Corporation
October 2007

When you are using a formal verification flow, Altera recommends that
you create RAM blocks in separate entities or modules that contain only
the RAM logic. In certain formal verification flows, for example, when
using Quartus Il integrated synthesis, the entity or module containing the
inferred RAM is put into a black box automatically because formal
verification tools do not support RAM blocks. The Quartus II software
issues a warning message when this occurs. If the entity or module
contains any additional logic outside the RAM block, this logic also must
be treated as a black box for formal verification and therefore cannot be
verified.

This section presents several guidelines for inferring RAM functions that
match the dedicated memory architecture in Altera devices, and then
provides recommended HDL code for different types of memory logic.

Use Synchronous Memory Blocks

Altera recommends using synchronous memory blocks for Altera
designs. The TriMatrix memory blocks in Altera’s newest devices are
synchronous, so RAM designs that are targeted towards architectures
that contain these dedicated memory blocks must be synchronous to be
mapped directly into the device architecture. Asynchronous memory
logic is not inferred as a memory block or placed in the device dedicated
memory blocks; the logic is implemented in regular logic cells.

Synchronous memories are supported in all Altera device families. A
memory block is considered synchronous if it uses one of the following
read behaviors:

B Memory read occurs in a Verilog always block with a clock signal or
a VHDL clocked process.

B Memory read occurs outside a clocked block, but there is a
synchronous read address (that is, the address used in the read
statement is registered). This type of logic is not always inferred as a
memory block, depending on the target device architecture.

1= The synchronous memory structures in Altera devices differ
from the structures in other vendors’ devices. Match your
design to the target device architecture to achieve the best
results.

Later subsections provide coding recommendations for various memory
types. All of these examples are synchronous to ensure that they can be
directly mapped into the dedicated memory architecture available in
Altera FPGAs.

6-15

Quartus Il Handbook, Volume 1

For additional information about the dedicated memory blocks in your
specific device, refer to the appropriate Altera device family data sheet
on the Altera website at www.altera.com.

Avoid Unsupported Reset Conditions

You cannot clear the RAM contents of Altera memory blocks. If your
HDL code describes a RAM with a reset signal for the RAM contents, the
logic is not inferred as a memory block or mapped to dedicated memory
architecture. As a general rule, avoid putting RAM read or write
operations in an always block or process block with a reset signal.

Example 6-9 shows an example of undesirable code where there is a reset
signal that clears part of the RAM contents. Avoid this coding style
because it is not supported in Altera memories.

Example 6-9. Verilog RAM with Reset Signal that Clears RAM Contents: Not Supported in Device Architecture

modu

(

le clear_ram

input clock,

input reset,

input we,

input [7:0] data_in,
input [4:0] address,

output reg [7:0] data out

reg [7:0] mem [0:31]
integer i;

i

always @ (posedge clock or posedge reset)

begin
if (reset == 1'bl)
mem [address] <= 0;
else if (we == 1'bl)

mem [address]

<= data_in;

data_out <= mem[address];

end

endmodule

6-16

Altera Corporation
October 2007

http://www.altera.com

Inferring Memory Functions from HDL Code

Example 6-10 shows an example of undesirable code where the reset
signal affects the RAM, although the effect may not be intended. Avoid
this coding style because it is not supported in Altera memories.

Example 6-10. Verilog RAM with Reset Signal that Affects RAM: Not Supported in Device Architecture

module bad reset
(
input clock,
input reset,
input we,
input [7:0]
input [4:0]

output reg [7:0] data out,

input d,

output reg gq

reg [7:0] mem [0:31];

integer 1i;

always @ (posedge clock or posedge reset)

begin
if (reset == 1'bl)
q <= 0;
else
begin
if (we == 1'bl)
mem[address] <= data_in;
data_out <= mem[address];
q <= d;
end
end
endmodule

Altera Corporation
October 2007

Check Read-During-Write Behavior

It is important to check the read-during-write behavior of the memory
block described in your HDL design as compared to the behavior in your
target device architecture. HDL source code specifies the memory
behavior when you attempt to read and write from the same memory
address in the same clock cycle. The code specifies that the read returns
either the old data at the address, or the new data being written to the
address. This is referred to as the read-during-write behavior of the
memory block. Altera memory blocks have different read-during-write
behavior depending on the target device family, memory mode and block

type.

Synthesis tools map an HDL design into the target device architecture,
with the goal of maintaining the functionality described in your source
code. In some cases, memory blocks map directly into the device

6-17

Quartus Il Handbook, Volume 1

6-18

architecture; however, in some cases, the device architecture cannot
implement the memory behavior described in your source code, so the
logic is not mapped to the dedicated memory blocks in the device. In still
other cases, the software can implement the memory functionality using
some extra logic in addition to the dedicated RAM block. To implement
the behavior in the target device, synthesis software may add bypass
logic around the memory block, which increases the area utilization of the
design and decreases the performance if the memory block is part of the
design's critical path.

In many synthesis tools, you can specify that the read-during-write
behavior is not important to your design; for example, if you never read
from the same address to which you write in the same clock cycle. For
Quartus II integrated synthesis, add the synthesis attribute
ramstyle="no_rw_check" to allow the software to choose the
read-during-write behavior of a RAM, rather than use the behavior
specified by your HDL code. Using this type of attribute prevents the
synthesis tool from using extra logic to implement the memory block, and
in some cases, can allow memory inference when it would otherwise be
impossible.

For more information about attribute syntax, the no_rw_check
attribute value, or specific options for your synthesis tool, refer to your
synthesis tool documentation or to the appropriate chapter in the
Synthesis section in volume 1 of the Quartus II Handbook.

The following subsections provide coding recommendations for various
memory types. Each example describes the read-during-write behavior
and addresses the support for the memory type in Altera devices.

Single-Clock Synchronous RAM with Old Data Read-During-Write
Behavior

The code examples in this section show Verilog HDL and VHDL code
that infers simple dual port, single-clock synchronous RAM. Single-port
RAM blocks use a similar coding style.

The read-during-write behavior in these examples is to read the old data
at the memory address. Refer to “Check Read-During-Write Behavior” on
page 6-17 for details. Altera recommends that you use this coding style
as long as your design does not require that a simultaneous read and
write to the same RAM location read the new value that is currently being
written to that RAM location.

If you require that the read-during-write results in new data, refer to
“Single-Clock Synchronous RAM with New Data Read-During-Write
Behavior” on page 6-20.

Altera Corporation
October 2007

Inferring Memory Functions from HDL Code

The simple dual-port RAM code samples shown in Examples 6-11 and
6-12 map directly into Altera TriMatrix memory.

Single-port versions of memory blocks (that is, using the same read
address and write address signals) can allow better RAM utilization than
dual-port memory blocks, depending on the device family.

Example 6-11. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data Read-During-
Write Behavior
module single_clk ram(

output reg [7:0] g,

input [7:0] 4,

input [6:0] write address, read_address,

input we, clk

reg [7:0] mem [127:0];

always @ (posedge clk) begin
if (we)
mem[write_address] <= d;
g <= mem[read_address]; // g doesn't get d in this clock cycle
end
endmodule

Altera Corporation 6-19
October 2007

Quartus Il Handbook, Volume 1

Example 6-12. VHDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data Read-During-Write

Behavior
LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY single_clock_ram IS

PORT (

clock: IN STD_ LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO O0) ;
write_address: IN INTEGER RANGE 0 to 31;

read_address:

IN INTEGER RANGE 0 to 31;

we: IN STD_LOGIC;
q: OUT STD_LOGIC VECTOR (2 DOWNTO 0)

)
END single_clock_ram;

ARCHITECTURE rtl OF single clock_ram IS
TYPE MEM IS ARRAY (0 TO 31) OF STD_LOGIC_VECTOR (2 DOWNTO O0) ;
SIGNAL ram block: MEM;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = 'l') THEN
ram _block (write_address) <= data;

END IF;

q <= ram block (read address) ;
-- VHDL semantics imply that g doesn't get data
-- in this clock cycle

END IF;
END PROCESS;
END rtl;

6-20

Single-Clock Synchronous RAM with New Data Read-During-Write
Behavior

These examples describe RAM blocks in which a simultaneous read and
write to the same location reads the new value that is currently being
written to that RAM location.

To implement this behavior in the target device, synthesis software adds
bypass logic around the RAM block. This bypass logic increases the area
utilization of the design and decreases the performance if the RAM block
is part of the design’s critical path. Refer to “Check Read-During-Write
Behavior” on page 6-17 for details. If this behavior is not required for
your design, use the examples from “Single-Clock Synchronous RAM
with Old Data Read-During-Write Behavior” on page 6-18.

The simple dual-port RAM examples shown in Examples 6-13 and 6-14
require bypass the software to create this logic around the RAM block.

Altera Corporation
October 2007

Inferring Memory Functions from HDL Code

Single-port versions of the Verilog memory block (that is, using the same
read address and write address signals) do not require any logic cells to
create bypass logic in Arria™ GX devices, and Stratix® and Cyclone®
series of devices, because the device memory supports new data read-
during-write behavior when in single-port mode (same clock, same read
and write address).

Example 6-13. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with New Data Read-During-

Write Behavior

module single_clock wr_ram(

output reg [7:0]
input [7:0] 4,

input [6:0] write_address, read_address,

input we, clk

reg [7:0] mem

[127:0];

always @ (posedge clk) begin

if (we)
mem[write_address] = d;
g = mem[read_address]; // g does get d in this clock cycle if we is high
end
endmodule

Altera Corporation
October 2007

Note that Example 6-13 is similar to Example 611, but Example 6-13
uses a blocking assignment for the write so that the data is assigned
immediately.

An alternative way to create a single-clock RAM is to use an assign
statement to read the address of mem to create the output g, as shown in
following the coding style. By itself, the code describes new data
read-during-write behavior. However, if the RAM output feeds a register
in another hierarchy, then a read-during-write would result in the old
data. Synthesis tools may not infer a RAM block if the tool cannot
determine which behavior is described, such as when the memory feeds
a hard hierarchical partition boundary. For this reason, avoid using this
alternate type of coding style.

reg [7:0] mem [127:0];
reg [6:0] read_address_reg;

always @ (posedge clk) begin
if (we)

mem[write address] <= d;

read_address_reg <= read_address;
end

assign g = mem[read_address_reg];

6-21

Quartus Il Handbook, Volume 1

Example 6-14 uses a concurrent signal assignment to read from the RAM.
By itself, this example describes new data read-during-write behavior.
However, if the RAM output feeds a register in another hierarchy, then a
read-during-write would result in the old data. Synthesis tools may not
infer a RAM block if the tool cannot determine which behavior is
described, such as when the memory feeds a hard hierarchical partition
boundary.

Example 6-14. VHDL Single-Clock Simple Dual-Port Synchronous RAM with New Data Read-During-Write
Behavior

LIBRARY ieee;
USE ieee.std logic 1164 .ALL;

ENTITY single clock rw_ram IS

PORT (
clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0) ;
write address: IN INTEGER RANGE 0 to 31;
read address: IN INTEGER RANGE 0 to 31;
we: IN STD LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

)i

END single_ clock_rw_ram;

ARCHITECTURE rtl OF single_clock rw_ram IS
TYPE MEM IS ARRAY (0 TO 31) OF STD_LOGIC_VECTOR (2 DOWNTO O0) ;
SIGNAL ram_block: MEM;
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN
IF (clock'event AND clock = '1l') THEN
IF (we = 'l') THEN
ram_block (write_address) <= data;
END IF;
read_address_reg <= read_address;
END IF;

END PROCESS;
g <= ram block(read_address_reg) ;
END rtl;

This example does not infer a RAM block for APEX, ACEX, or FLEX
devices by default because the read-during-write behavior depends on
surrounding logic. For Quartus II integrated synthesis, if you do not
require the read-through-write capability, add the synthesis attribute
ramstyle="no rw_check" to allow the software to choose the
read-during-write behavior of a RAM, rather than use the behavior
specified by your HDL code.

6—22 Altera Corporation
October 2007

Inferring Memory Functions from HDL Code

Simple Dual-Port, Dual-Clock Synchronous RAM

In dual clock designs, synthesis tools cannot accurately infer the
read-during-write behavior because it depends on the timing of the two
clocks within the target device. Therefore, the read-during-write
behavior of the synthesized design is undefined and may differ from
your original HDL code. Refer to “Check Read-During-Write Behavior”
on page 6-17 for details.

When Quartus II integrated synthesis infers this type of RAM, it issues a
warning because of the undefined read-during-write behavior. If this
functionality is acceptable in your design, you can avoid the warning by
adding the synthesis attribute ramstyle="no_rw_check" to allow the
software to choose the read-during-write behavior of a RAM.

The code samples shown in Examples 6-15 and 6-16 show Verilog HDL
and VHDL code that infers dual-clock synchronous RAM. The exact
behavior depends on the relationship between the clocks.

Example 6-15. Verilog HDL Simple Dual-Port, Dual-Clock Synchronous RAM

module dual_ clock ram(
output reg [7:0] g,
input [7:0] 4,

input [6:0] write_address, read_address,

input we, clkl,

reg [6:0] read_address_reg;
reg [7:0] mem [127:0];

always @ (posedge clkl)

begin
if (we)

mem[write_address] <= d;

end

always @ (posedge clk2) begin
g <= mem[read address_reg];
read_address_reg <= read_address;

end
endmodule

Example 6-16. VHDL Simple Dual-Port, Dual-Clock Synchronous RAM

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY dual clock ram IS

PORT (
clockl,

IN STD LOGIC;

data: IN STD LOGIC_VECTOR (3 DOWNTO O0) ;

write address:
read_address:

IN INTEGER RANGE 0 to 31;
IN INTEGER RANGE 0 to 31;

we: IN STD_LOGIC;
g: OUT STD_LOGIC VECTOR (3 DOWNTO 0)

Altera Corporation
October 2007

6-23

Quartus Il Handbook, Volume 1

)
END dual_clock_ram;

ARCHITECTURE rtl OF dual_clock ram IS
TYPE MEM IS ARRAY (0 TO 31) OF STD_LOGIC_VECTOR (3 DOWNTO O0) ;
SIGNAL ram block: MEM;
SIGNAL read_address_reg : INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clockl)
BEGIN
IF (clockl'event AND clockl = 'l') THEN
IF (we = 'l') THEN
ram_block (write_address) <= data;
END IF;
END IF;

END PROCESS;
PROCESS (clock2)
BEGIN

IF (clock2'event AND clock2 = 'l') THEN
g <= ram_block(read address_reg) ;
read_address_reg <= read_address;

END IF;
END PROCESS;
END rtl;

6-24

True Dual-Port Synchronous RAM

The code examples in this section show Verilog HDL and VHDL code
that infers true dual-port synchronous RAM. Different synthesis tools
may differ in their support for these types of memories. This section
describes the inference rules for Quartus Il integrated synthesis. This type
of RAM inference is supported only for Arria GX devices, and the Stratix
and Cyclone series of devices.

Altera TriMatrix memory blocks have two independent address ports,
allowing for operations on two unique addresses simultaneously. A read
operation and a write operation can share the same port if they share the
same address. The Quartus II software infers true dual-port RAMs in
Verilog HDL and VHDL with any combination of independent read or
write operations in the same clock cycle, with at most two unique port
addresses, performing two reads and one write, two writes and one read,
or two writes and two reads in one clock cycle with one or two unique
addresses.

In the TriMatrix RAM block architecture, there is no priority between the
two ports. Therefore if you write to the same location on both ports at the
same time, the result is indeterminate. You must ensure your HDL code
does not imply priority for writes to the memory block. For example, if

both ports are defined in the same process block, the code is synthesized

Altera Corporation
October 2007

Inferring Memory Functions from HDL Code

and simulated sequentially so there would be a priority between the two
ports. If you code does imply a priority, the logic cannot be implemented
in the device RAM blocks.

You must also consider the read-during-write behavior of the RAM
block, to ensure that it can be mapped directly to the device RAM
architecture. Refer to “Check Read-During-Write Behavior” on page 6-17
for details.

When a read and write operation occur on the same port for the same
address, the read operation may behave as follows:

B Read new data. This mode matches the behavior of TriMatrix
memory blocks.

B Read old data. This mode is supported only by Stratix IIl and
Cyclone IIT TriMatrix memory blocks. This behavior is not possible
in TriMatrix memory blocks of other families.

When a read and write operation occur on different ports for the same
address (also known as mixed port), the read operation may behave as
follows:

B Read new data. Quartus Il integrated synthesis supports this mode
by creating bypass logic around the TriMatrix memory block.

B Read old data. This behavior is supported by TriMatrix memory
blocks.

The Verilog HDL single-clock code sample shown in Example 6-17 maps
directly into Altera TriMatrix memory. When a read and write operation
occur on the same port for the same address, the new data being written
to the memory is read. When a read and write operation occur on
different ports for the same address, the old data in the memory is read.
Simultaneous writes to the same location on both ports results in
indeterminate behavior.

A dual-clock version of this design describes the same behavior, but the
memory in the target device will have undefined mixed port read-
during-write behavior because it depends on the relationship between
the clocks.

Example 6-17. Verilog HDL True Dual-Port RAM with Single Clock
module true_dual_port_ram single clock
(

input [(DATA_WIDTH-1):0] data_a, data_b,

input [(ADDR_WIDTH-1) :0] addr_a, addr b,

input we_a, we_b, clk,

output reg [(DATA WIDTH-1):0] g a, g b

Altera Corporation 6-25
October 2007

Quartus Il Handbook, Volume 1

parameter DATA WIDTH =
parameter ADDR_WIDTH

8;
6;

// Declare the RAM variable

reg [DATA WIDTH-1:0]

always @ (posedge clk)
begin // Port A

if (we_a)
begin
ram[addr_al
g a <= data_a;
end
else

ram[2**ADDR_WIDTH-1:

0];

<= data_a;

g_a <= ram[addr_al;

always @ (posedge clk)
begin // Port b

if (we_b)
begin
ram[addr b] <= data_b;
g b <= data_b;
end
else
g_b <= ram[addr_bl;
end
endmodule
If you use Verilog read statements shown below instead of the if-else
statements in Example 617, the read results in old data when a read and
write operation occur at the same time for the same address on the same
port or mixed ports. This behavior is supported only in the TriMatrix
memories of Stratix III and Cyclone III devices, and is not inferred as
memory for other device families.
always @ (posedge clk)
begin // Port A
if (we_a)
ram[addr_al] <= data_a;
g_a <= ram[addr_a];
end
always @ (posedge clk)
begin // Port B
if (we_b)
ram[addr_b] <= data_b;
g_b <= ram[addr b];
end
The VHDL single-clock code sample shown in Example 6-18 maps
directly into Altera TriMatrix memory. When a read and write operation
occur on the same port for the same address, the new data being written
to the memory is read. When a read and write operation occur on
6-26 Altera Corporation

October 2007

Inferring Memory Functions from HDL Code

different ports for the same address, the old data in the memory is read.
Simultaneous writes to the same location on both ports results in

indeterminate behavior.

A dual-clock version of this design describes the same behavior, but the
memory in the target device will have undefined mixed port read-
during-write behavior because it depends on the relationship between

the clocks.

Example 6-18. VHDL True Dual-Port RAM with Single Clock

library ieee;
use ieee.std_logic_1164.all;

entity true dual port ram single clock is

generic

(
DATA WIDTH : natural
ADDR_WIDTH : natural

Il
o

)

port

(
clk : in std_logic;

addr_a: in natural range 0 to 2**ADDR WIDTH - 1;
addr_b: in natural range 0 to 2**ADDR WIDTH - 1;

data_a: in std logic_vector ((DATA WIDTH-1)

downto

data_b: in std _logic_vector ((DATA_WIDTH-1) downto

downto

we_a: in std logic := '1';

we_b: in std_logic := '1';

g a : out std logic vector ((DATA WIDTH -1)

g b out std_logic_vector ((DATA WIDTH -1) downto

)i

end true_dual_port_ram single_clock;

architecture rtl of true_dual_port_ram single_clock is

-- Build a 2-D array type for the RAM

subtype word_t is std_logic_vector ((DATA_WIDTH-1) downto 0);

type memory t is array(raddr'high downto 0) of word t;

-- Declare the RAM signal.
signal ram : memory t;

-- Read-during-write on the same port returns NEW data

begin
process (clk)
begin
if (rising edge(clk)) then -- Port A
if (we_a = '1') then
ram(addr_a) <= data_a;
g a <= data_a;
else

-- Read-during-write on the mixed port returns OLD data

Altera Corporation
October 2007

6-27

Quartus Il Handbook, Volume 1

g a <= ram(addr_a);
end if;

end process;

process (clk)

begin
if (rising edge(clk)) then -- Port B
if (we_b = '1') then
ram(addr b) <= data_b;
-- Read-during-write on the same port returns NEW data
g_b <= data_b;
else
-- Read-during-write on the mixed port returns OLD data
g b <= ram(addr_b) ;
end if;
end if;

end process;

end rtl;

Specifying Initial Memory Contents at Power-Up

Your synthesis tool may offer various ways to specify the initial contents
of an inferred memory.

U= Certain device memory types do not support initialized
memory, such as the M-RAM blocks in Stratix and Stratix II
devices.

s Note that there are slight power-up and initialization
differences between dedicated RAM blocks and the Stratix III
MLAB memory due to the continuous read of the MLAB. Altera
dedicated RAM block outputs always power-up to zero and are
set to the initial value on the first read. For example, if address 0
is pre-initialized to FF, the RAM block powers up with the
output at 0. A subsequent read after power up from address 0
outputs the pre-initialized value of FF. Therefore, if a RAM is
powered up and an enable (read enable or clock enable) is held
low, then the power-up output of “0” is maintained until the
first valid read cycle. The Stratix Il MLAB is implemented using
registers that power-up to 0, but are initialized to their initial
value immediately at power-up or reset. You will therefore see
the initial value regardless of the enable status. Quartus II
integrated synthesis does not map inferred memory to MLABs
unless the HDL code specifies the appropriate ramstyle
attribute.

6-28 Altera Corporation
October 2007

Inferring Memory Functions from HDL Code

Quartus II integrated synthesis supports the ram_init_file synthesis
attribute that allows you to specify a Memory Initialization File (.mif) for
an inferred RAM block.

e« Forinformation about the ram init_ file attribute, refer to the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus I
Handbook. For information about synthesis attributes in other synthesis
tools, refer to the tool vendor’s documentation.

In Verilog HDL, you can use an initial block to initialize the contents of
an inferred memory. Quartus II integrated synthesis automatically
converts the initial block into a MIF for the inferred RAM. Example 6-19
shows Verilog HDL code that infers a simple dual-port RAM block and
corresponding MIF file.

Example 6-19. Verilog HDL RAM with Initialized Contents

module ram_with_ init(

output reg [7:0] g,

input [7:0] 4,

input [4:0] write address, read_address,
input we, clk

reg [7:0] mem [0:31];
integer i;

initial begin
for (i = 0; 1 < 32; 1 =1 + 1)
mem[i] = i[7:0];
end

always @ (posedge clk) begin
if (we)
mem[write_address] <= d;
g <= mem[read_address];
end

endmodule

Quartus Il integrated synthesis and other synthesis tools also support the
$readmemb and $readmemh commands so that RAM and ROM
initialization work identically in synthesis and simulation. Example 6-20
shows an initial block that initializes an inferred RAM block using the
$readmemb command.

Example 6-20. Verilog HDL RAM Initialized with the readmemb Command

reg [7:0] ram[0:15];

initial
begin
Sreadmemb ("ram.txt", ram);
end
Altera Corporation 6-29

October 2007

Quartus Il Handbook, Volume 1

In VHDL, you can initialize the contents of an inferred memory by
specifying a default value for the corresponding signal. Quartus II
integrated synthesis automatically converts the default value into a MIF
for the inferred RAM. Example 6-21 shows VHDL code that infers a
simple dual-port RAM block and corresponding MIF file.

Example 6-21. VHDL RAM with Initialized Contents
LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

use ieee.numeric_std.all;

ENTITY ram with init IS
PORT (

clock:
data:
write_address:
read_address:
we: IN std logic;
g: OUT UNSIGNED (7 DOWNTO 0)) ;

IN STD LOGIC;
IN UNSIGNED (7 DOWNTO O0) ;

END;
ARCHITECTURE rtl OF ram with init IS

TYPE MEM IS ARRAY (31 DOWNTO 0)
FUNCTION initialize_ram
return MEM is
variable result
BEGIN
FOR i IN 31 DOWNTO 0 LOOP
result (i) := to_unsigned(natural (i),
END LOOP;
RETURN result;
END initialize_ ram;

MEM;

IN integer RANGE 0 to 31;
IN integer RANGE 0 to 31;

OF unsigned (7 DOWNTO 0) ;

natural' (8));

SIGNAL ram block : MEM := initialize_ram;
BEGIN
PROCESS (clock)
BEGIN
IF (clock'event AND clock = '1') THEN
IF (we = 'l') THEN
ram_block (write_address) <= data;
END IF;
g <= ram block(read_address) ;
END IF;
END PROCESS;
END rtl;
6-30 Altera Corporation

October 2007

Inferring Memory Functions from HDL Code

Altera Corporation
October 2007

ROM Functions—Inferring altsyncram and Ipm_rom
Megafunctions from HDL Code

To infer ROM functions, synthesis tools detect sets of registers and logic
that can be replaced with the altsyncram or 1pm_rom megafunctions,
depending on the target device family, only for device families that have
dedicated memory blocks.

ROMs are inferred when a case statement exists in which a value is set
to a constant for every choice in the case statement. Because small ROMs
typically achieve the best performance when they are implemented using
the registers in regular logic, each ROM function must meet a minimum
size requirement to be inferred and placed into memory.

L=~ If you are using Quartus Il integrated synthesis, you can direct
the software to infer ROM blocks for all sizes with the Allow
Any ROM Size for Recognition option under More Settings on
the Analysis & Synthesis Settings page of the Settings dialog
box.

Some synthesis tools provide options to control the implementation of
inferred ROM blocks for Altera devices with TriMatrix memory blocks.
For example, Quartus II integrated synthesis provides the romstyle
synthesis attribute to specify the type of memory block or to specify the
use of regular logic instead of a dedicated memory block.

For details about using the romstyle attribute, refer to the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook. For
information about synthesis attributes in other synthesis tools, refer to
the appropriate chapter in the Synthesis section in volume 1 of the
Quartus Il Handbook.

When you are using a formal verification flow, Altera recommends that
you create ROM blocks in separate entities or modules that contain only
the ROM logic because you may need to treat the entity and module as a
black box during formal verification.

I~ Because formal verification tools do not support ROM
megafunctions, Quartus II integrated synthesis does not infer
ROM megafunctions when a formal verification tool is selected.

The Verilog HDL and VHDL code samples shown in Examples 6-22
and 6-23 infer synchronous ROM blocks. Depending on the device
family’s dedicated RAM architecture, the ROM logic may have to be
synchronous; consult the device family handbook for details.

6-31

Quartus Il Handbook, Volume 1

For device architectures with synchronous RAM blocks, such as the
Stratix series devices and newer device families, either the address or the
output has to be registered for ROM code to be inferred. When output
registers are used, the registers are implemented using the input registers
of the RAM block, but the functionality of the ROM is not changed. If you
register the address, the power-up state of the inferred ROM can be
different from the HDL design. In this scenario, the synthesis software
issues a warning. The Quartus II Help explains the condition under
which the functionality changes when you are using Quartus II
integrated synthesis.

These ROM code samples map directly to the Altera TriMatrix memory
architecture.

Example 6-22. Verilog HDL Synchronous ROM

module sync_rom (clock,
input clock;

input [7:0] address;

address, data_out) ;

output [5:0] data_ out;

reg [5:0] data_out;

always @ (posedge clock)

begin
case (address)

8'b00000000:
8'b00000001:

8'b11111110:
8'b11111111:

endcase
end
endmodule

data_out = 6'b101111;
data_out = 6'b110110;

data_out = 6'b000001;
data_out = 6'b101010;

Example 6-23. VHDL Synchronous ROM

LIBRARY ieee;
USE ieee.std_logic_ 1164

ENTITY sync_rom IS
PORT (

.ALL;

clock: IN STD_LOGIC;
address: IN STD LOGIC VECTOR (7 downto 0) ;
data_out: OUT STD_LOGIC_VECTOR (5 downto 0)

)

END sync_rom;

ARCHITECTURE rtl OF sync_rom IS

BEGIN
PROCESS (clock)
BEGIN

IF rising_edge (clock) THEN

CASE address IS

6-32

Altera Corporation
October 2007

Inferring Memory Functions from HDL Code

END CASE;

END IF;

WHEN
WHEN
WHEN
WHEN
WHEN

END PROCESS;

END rtl;

"00000000"
"oooooo01"

"l1l1i1ii11io"
i e e e e

> data_out <
> data_out <

"101111";
"110110";

=> data_out <= "000001";
=> data_out <= "101010";

OTHERS => data_out <= "101111";

Altera Corporation

October 2007

Shift Registers—Inferring the altshift_taps Megafunction from
HDL Code

To infer shift registers, synthesis tools detect a group of shift registers of
the same length and convert them to an altshift_taps megafunction.
To be detected, all the shift registers must have the following
characteristics:

B Use the same clock and clock enable
B Do not have any other secondary signals
B Have equally spaced taps that are at least three registers apart

When you are using a formal verification flow, Altera recommends that
you create shift register blocks in separate entities or modules containing
only the shift register logic, because you may need to treat the entity or
module as a black box during formal verification.

s Because formal verification tools do not support shift register
megafunctions, the Quartus II integrated synthesis does not
infer the altshift_taps megafunction when a formal
verification tool is selected. You can select EDA tools for use
with your Quartus II project on the EDA Tool Settings page of
the Settings dialog box.

Synthesis software recognizes shift registers only for device families that
have dedicated RAM blocks and the software uses certain guidelines to
determine the best implementation. The following guidelines are
followed in Quartus II integrated synthesis and also are generally
followed by other EDA tools:

B For FLEX® 10K and ACEX® 1K devices, the software does not infer
altshift taps megafunctions because FLEX 10K and ACEX 1K
devices have a relatively small amount of dedicated memory.

B For APEX™ 20K and APEX II devices, the software infers the
altshift_taps megafunction only if the shift register has more
than a total of 128 bits. Smaller shift registers typically do not benefit
from implementation in dedicated memory.

6-33

Quartus Il Handbook, Volume 1

B For Arria GX devices, and the Stratix and Cyclone series devices, the
software determines whether to infer the altshift_taps
megafunction based on the width of the registered bus (W), the
length between each tap (L), and the number of taps (N).

e If the registered bus width is one (W = 1), the software infers
altshift taps if the number of taps times the length
between each tap is greater than or equal to 64 (N x L > 64).

e If the registered bus width is greater than one (W > 1), the
software infers altshift_taps if the registered bus width
times the number of taps times the length between each tap is
greater than or equal to 32 (W x N x L 212).

If the length between each tap (L) is not a power of two, the software uses
more logic to decode the read and write counters. This situation occurs
because for different sizes of shift registers, external decode logic that
uses logic elements (LEs) or Adaptive Logic Modules (ALMs) is required
to implement the function. This decode logic eliminates the performance
and utilization advantages of implementing shift registers in memory.

The registers that the software maps to the altshift taps
megafunction and places in RAM are not available in a Verilog HDL or
VHDL output file for simulation tools because their node names do not
exist after synthesis.

Simple Shift Register

The code sample shown in Example 624 and Example 6-25 show a
simple, single-bit wide, 64-bit long shift register. The synthesis software
implements the register (W=1and M = 64)inan altshift_taps
megafunction for supported devices. If the length of the register is less
than 64 bits, the software implements the shift register in logic.

Example 6-24. Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register
module shift_1x64 (clk, shift, sr_in, sr_out);

input clk, shift;

input sr_in;

output sr_out;

reg [63:0] sr;

always @ (posedge clk)

begin
if (shift == 1'bl)
begin
sr[63:1] <= sr[62:0];
sr[0] <= sr_in;
end
end
assign sr_out = sr[63];
endmodule
6-34 Altera Corporation

October 2007

Inferring Memory Functions from HDL Code

Example 6-25. VHDL Single-Bit Wide, 64-Bit Long Shift Register
LIBRARY IEEE;
USE IEEE.STD LOGIC_1164.ALL;
ENTITY shift 1x64 IS
PORT (
clk: IN STD LOGIC;
shift: IN STD_LOGIC;
sr_in: IN STD LOGIC;
sr_out: OUT STD_LOGIC
)i
END shift_lx64;

ARCHITECTURE arch OF Shift_lx64 IS
TYPE sr_ length IS ARRAY (63 DOWNTO 0) OF STD LOGIC;
SIGNAL sr: sr_length;

BEGIN
PROCESS (clk)
BEGIN
IF (clk'EVENT and clk = '1') THEN
IF (shift = '1') THEN
sr (63 DOWNTO 1) <= sr (62 DOWNTO O0) ;
sr(0) <= sr_in;
END IF;
END IF;

END PROCESS;
sr_out <= sr(63);
END arch;

Shift Register with Evenly Spaced Taps

The code samples shown in Examples 6-26 and 6-27 show a Verilog HDL
and VHDL 8-bit wide, 64-bit long shift register (W > 1 and M = 64) with
evenly spaced taps at 15, 31, and 47. The synthesis software implements
this function in a single altshift_taps megafunction and maps it to
RAM in supported devices.

Example 6-26. Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

module shift 8x64 taps (clk, shift, sr in, sr out, sr tap one, sr_tap two, sr tap three);
input clk, shift;
input [7:0] sr_in;
output [7:0] sr_tap_one, sr_tap two, sr_tap_ three, sr_out;

reg [7:0] sr [63:0];
integer n;

always @ (posedge clk)

begin

if (shift == 1'bl)

begin
for (n = 63; n>0; n = n-1)
begin

sr[n] <= sr[n-1];
end
Altera Corporation 6-35

October 2007

Quartus Il Handbook, Volume 1

sr[0] <= sr_in;
end

end

assign sr_ tap one = sr([l15];

assign sr_tap_two = sr[31];

assign sr_tap three = sr[47];

assign sr_out = sr[63];
endmodule

Example 6-27. VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

LIBRARY IEEE;
USE IEEE.STD LOGIC_1164.ALL;
ENTITY shift 8x64_ taps IS
PORT (
clk: IN STD LOGIC;
shift: IN STD_ LOGIC;
sr_in: IN STD LOGIC_VECTOR (7 DOWNTO 0) ;
sr_tap_one: OUT STD_LOGIC_VECTOR (7 DOWNTO O0) ;
sr_tap two : OUT STD LOGIC VECTOR (7 DOWNTO O0) ;
sr_tap_three: OUT STD_LOGIC_VECTOR (7 DOWNTO O0) ;
sr_out: OUT STD_LOGIC_VECTOR (7 DOWNTO O0)
)
END shift_ 8x64_taps;

ARCHITECTURE arch OF shift 8x64_ taps IS
SUBTYPE Sr_width Is STD_LOGIC_VECTOR(7 DOWNTO 0) ;
TYPE sr_length IS ARRAY (63 DOWNTO 0) OF sr_ width;
SIGNAL sr: sr_length;

BEGIN
PROCESS (clk)
BEGIN
IF (clk'EVENT and clk = '1l') THEN
IF (shift = '1') THEN

sr (63 DOWNTO 1) <= sr (62 DOWNTO O0) ;
sr(0) <= sr_in;
END IF;
END IF;

END PROCESS;

sr_tap_one <= sr(15);

sr_tap_two <= sr(31);

sr_tap_ three <= sr(47);

sr_out <= sr(63);

END arch;

6-36 Altera Corporation
October 2007

Coding Guidelines for Registers and Latches

Coding
Guidelines for
Registers and
Latches

Altera Corporation
October 2007

This section provides device-specific coding recommendations for Altera
registers and latches. Understanding the architecture of the target Altera
device helps ensure that your code provides the expected results and
achieves the optimal quality of results.

This section provides guidelines in the following areas:

B “Register Power-Up Values in Altera Devices”

B “Secondary Register Control Signals Such as Clear and Clock
Enable” on page 6-39

B “Latches” on page 6—43

Register Power-Up Values in Altera Devices

Registers in the device core always power up to a low (0) logic level on all
Altera devices. However, there are ways to implement logic such that
registers behave as if they were powering up to a high (1) logic level.

If you use a preset signal on a device that does not support presets in the
register architecture, then your synthesis tool may convert the preset
signal to a clear signal, which requires synthesis to perform an
optimization referred to as NOT gate push-back. NOT gate push-back adds
an inverter to the input and the output of the register so that the reset and
power-up conditions will appear to be high but the device operates as
expected. In this case, your synthesis tool may issue a message informing
you about the power-up condition. The register itself powers up low, but
the register output is inverted so the signal that arrives at all destinations
is high.

Due to these effects, if you specify a non-zero reset value, you may cause
your synthesis tool to use the asynchronous clear (ac1r) signals available
on the registers to implement the high bits with NOT gate push-back. In
that case, the registers look as though they power up to the specified reset
value. You see this behavior, for example, if your design targets

FLEX 10KE or ACEX devices.

When a load signal is available in the device, your synthesis tools can
implement a reset of 1 or 0 value by using an asynchronous load of 1 or
0. When the synthesis tool uses an asynchronous load signal, it is not
performing NOT gate push-back, so the registers power up to a 0 logic
level.

For additional details, refer to the appropriate device family handbook
or the appropriate handbook of the Altera website at www.altera.com.

6-37

Quartus Il Handbook, Volume 1

6-38

Designers typically use an explicit reset signal for the design, which
forces all registers into their appropriate values after reset but not
necessarily at power-up. You can create your design such that the
asynchronous reset allows the board to operate in a safe condition and
then you can bring up the design with the reset active. This is a good
practice so you do not depend on the power-up conditions of the device.

You can make the your design more stable and avoid potential glitches by
synchronizing external or combinational logic of the device architecture
before you drive the asynchronous control ports of registers.

For additional information about good synchronous design practices,
refer to the Design Recommendations for Altera Devices chapter in volume 1
of the Quartus IT Handbook.

If you want to force a particular power-up condition for your design, use
the synthesis options available in your synthesis tool. With Quartus II
integrated synthesis, you can apply the Power-Up Level logic option.
You can also apply the option with an altera_attribute assignment
in your source code. Using this option forces synthesis to perform NOT
gate push-back because synthesis tools cannot actually change the
power-up states of core registers.

You can apply the Quartus II integrated synthesis Power-Up Level
assignment to a specific register or to a design entity, module or
subdesign. If you do so, every register in that block receives the value.
Registers power up to 0 by default; therefore you can use this assignment
to force all registers to power up to 1 using NOT gate push-back.

I'=~ Beaware that using NOT gate push-back as a global assignment
could slightly degrade the quality of results due to the number
of inverters that are needed. In some situations, issues are
caused by enable or secondary control logic inference. It may
also be more difficult to migrate such a design to an ASIC or a
HardCopy® device. You can simulate the power-up behavior in
a functional simulation if you use initialization.

The Power-Up Level option and the altera_attribute assignment
are described in the Quartus II Integrated Synthesis chapter in volume 1 of
the Quartus Il Handbook.

Altera Corporation
October 2007

Coding Guidelines for Registers and Latches

Some synthesis tools can also read the default or initial values for
registered signals and implement this behavior in the device. For
example, Quartus II integrated synthesis converts default values for
registered signals into Power-Up Level settings. That way, the
synthesized behavior matches the power-up state of the HDL code
during a functional simulation.

For example, the code samples in Example 6-28 and Example 6-29 both
infer a register for g and set its power-up level to high (while the reset
value is 0).

Example 6-28. Verilog Register with Reset and High Power-Up Value
reg q = 1'bl;

always @ (posedge clk or posedge aclr)

begin
if (aclr)
g <= 1'b0;
else
q <= d;
end

Example 6-29. VHDL Register with Reset and High Power-Up Level

SIGNAL g : STD_LOGIC := 'l'; -- g has a default value of '1'

PROCESS (clk, reset)

BEGIN
IF (reset = 'l') THEN
q <= '0";
ELSIF (rising_edge(clk)) THEN
q <= d;
END IF;

END PROCESS;

Secondary Register Control Signals Such as Clear and Clock
Enable

FPGA device architectures contain registers, also known as “flipflops”.
The registers in Altera FPGAs provide a number of secondary control
signals (such as clear and enable signals) that you can use to implement
control logic for each register without using extra logic cells. Device
families vary in their support for secondary signals, so consult the device
family data sheet to verify which signals are available in your target
device.

Altera Corporation 6-39
October 2007

Quartus Il Handbook, Volume 1

To make the most efficient use of the signals in the device, your HDL code
should match the device architecture as closely as possible. The control
signals have a certain priority due to the nature of the architecture, so
your HDL code should follow that priority where possible.

Your synthesis tool can emulate any control signals using regular logic,
so getting functionally correct results is always possible. However, if
your design requirements are flexible in terms of which control signals
are used and in what priority, match your design to the target device
architecture to achieve the most efficient results. If the priority of the
signals in your design is not the same as that of the target architecture,
then extra logic may be required to implement the control signals. This
extra logic uses additional device resources, and can cause additional
delays for the control signals.

In addition, there are certain cases where using logic other than the
dedicated control logic in the device architecture can have a larger
impact. For example, the clock enable signal has priority over the
synchronous reset or clear signal in the device architecture. The clock
enable turns off the clock line in the logic array block (LAB), and the clear
signal is synchronous. So in the device architecture, the synchronous
clear takes effect only when a clock edge occurs.

If you code a register with a synchronous clear signal that has priority
over the clock enable signal, the software must emulate the clock enable
functionality using data inputs to the registers. Because the signal does
not use the clock enable port of a register, you cannot apply a Clock
Enable Multicycle constraint. In this case, following the priority of signals
available in the device is clearly the best choice for the priority of these
control signals, and using a different priority causes unexpected results
with an assignment to the clock enable signal.

Il=~ The priority order for secondary control signals in Altera
devices differs from the order for other vendors’ devices. If your
design requirements are flexible regarding priority, verify that
the secondary control signals meet design performance
requirements when migrating designs between FPGA vendors
and try to match your target device architecture to achieve the
best results.

6—40 Altera Corporation
October 2007

Coding Guidelines for Registers and Latches

The signal order is the same for all Altera device families, although as
noted previously, not all device families provide every signal. The
following priority order is observed:

Asynchronous Clear, aclr—highest priority
Preset, pre

Asynchronous Load, aload

Enable, ena

Synchronous Clear, sclr

Synchronous Load, sload

Data In, data—lowest priority

NG W

The following examples provide Verilog HDL and VHDL code that
creates a register with the aclr, aload, and ena control signals.

s The Verilog HDL example (Example 6-30) does not have adata
on the sensitivity list, but the VHDL example (Example 6-31)
does. This is a limitation of the Verilog HDL language—there is
no way to describe an asynchronous load signal (in which g
toggles if adata toggles while aload is high). All synthesis
tools should infer an aload signal from this construct despite
this limitation. When they perform such inference, you may see
information or warning messages from the synthesis tool.

Example 6-30. Verilog HDL D-Type Flipflop (Register) with ena, aclr and aload Control Signals
module dff control (clk, aclr, aload, ena, data, adata, q);

input clk, aclr, aload, ena, data, adata;

output q;

reg qi

always @ (posedge clk or posedge aclr or posedge aload)
begin
if (aclr)
g <= 1'b0;
else if (aload)
g <= adata;
else if (ena)

g <= data;
end
endmodule
Altera Corporation 6-41

October 2007

Quartus Il Handbook, Volume 1

Example 6-31. VHDL D-Type Flipflop (Register) with ena, aclr and aload Control Signals

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY dff control IS
PORT (

clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
aload: IN STD_LOGIC;
adata: IN STD_ LOGIC;
ena: IN STD LOGIC;
data: IN STD_LOGIC;

g: OUT STD_LOGIC

)i
END dff control;

ARCHITECTURE rtl OF dff_control IS

BEGIN
PROCESS (clk, aclr,
BEGIN
IF (aclr = '1')
q <= "'0";
ELSIF (aload =
g <= adata;
ELSE

aload, adata)
THEN

'1') THEN

IF (clk = '1l' AND clk'event) THEN
IF (ena ='1l') THEN
g <= data;

END IF;
END IF;
END IF;
END PROCESS;
END rtl;

6-42

The preset signal is not available in many device families, so the preset
signal is not included in the examples.

Creating many registers with different sload and sc1r signals can make
packing the registers into LABs difficult for the Quartus II Fitter because
the sclr and sload signals are LAB-wide signals. In addition, using the
LAB-wide sload signal prevents the Fitter from packing registers using
the quick feedback path in the device architecture, which means that
some registers cannot be packed with other logic.

Synthesis tools typically restrict use of sload and sclr signals to cases
in which there are enough registers with common signals to allow good
LAB packing. Using the LUT to implement the signals is always more
flexible if it is available. Because different device families offer different
numbers of control signals, inference of these signals is also device-
specific. For example, Stratix II devices have more flexibility than
Stratix devices with respect to secondary control signals, so synthesis
tools might infer more sload and sclr signals for Stratix II devices.

Altera Corporation
October 2007

Coding Guidelines for Registers and Latches

If you use these additional control signals, use them in the priority order
that matches the device architecture. To achieve the most efficient results,
ensure the sclr signal has a higher priority than the s1oad signal in the
same way that aclr has higher priority than aload in the previous
examples. Remember that the register signals are not inferred unless the
design meets the conditions described previously. However, if your HDL
described the desired behavior, the software always implements logic
with the correct functionality.

In Verilog HDL, the following code for sload and sclr could replace
theif (ena) g <= data; statementsin the Verilog HDL example
shown in Example 6-30 on page 6-41 (after adding the control signals to
the module declaration).

Example 6-32. Verilog HDL sload and scir Control Signals
if (ena) begin
if (sclr)
g <= 1'b0;
else if (sload)
g <= sdata;
else
g <= data;
end

In VHDL, the following code for sload and sclr could replace the IF

(ena ='1') THEN g <= data; END IF; statementsin the VHDL
example shown in Example 6-31 on page 6—42 (after adding the control
signals to the entity declaration).

Example 6-33. VHDL sload and scir Control Signals

IF (ena ='1l') THEN

IF (sclr = '1') THEN
q <= '0";
ELSIF (sload = '1l') THEN
g <= sdata;
ELSE
g <= data;
END IF;
END IF;
Latches
A latch is a small combinational loop that holds the value of a signal until
a new value is assigned.
1= Altera recommends that you design without the use of latches
whenever possible.
Altera Corporation 6-43

October 2007

Quartus Il Handbook, Volume 1

6-44

For additional information about the issues involved in designing with
latches and all combinational loops, refer to the Design Recommendations
for Altera Devices chapter in volume 1 of the Quartus II Handbook.

Latches can be inferred from HDL code when you did not intend to use a
latch as detailed in “Unintentional Latch Generation”. If you do intend to
infer a latch, it is important to infer it correctly to guarantee correct device
operation as detailed in “Inferring Latches Correctly” on page 6—45.

Unintentional Latch Generation

When you are designing combinational logic, certain coding styles can
create an unintentional latch. For example, when CASE or IF statements
do not cover all possible input conditions, latches may be required to hold
the output if a new output value is not assigned. Check your synthesis
tool messages for references to inferred latches. If your code
unintentionally creates a latch, make code changes to remove the latch.
s Latches have limited support in formal verification tools.
Therefore, ensure that you do not infer latches unintentionally.
For example, an incomplete CASE statement may create a latch
when you are using formal verification in your design flow.

The full_case attribute can be used in Verilog HDL designs to treat
unspecified cases as don’t care values (X). However, using the
full_case attribute can cause simulation mismatches because this
attribute is a synthesis-only attribute, so simulation tools still treat the
unspecified cases as latches.

Refer to the appropriate chapter in the Synthesis section in volume 1 of
the Quartus I Handbook for more information about using attributes in
your synthesis tool. The Quartus II Integrated Synthesis chapter provides
an example explaining possible simulation mismatches.

Omitting the final ELSE or WHEN OTHERS clause in an IF or CASE
statement can also generate a latch. Don’t care (X) assignments on the
default conditions are useful in preventing latch generation. For the best
logic optimization, assign the default CASE or final ELSE value to don’t
care (X) instead of a logic value.

The VHDL sample code shown in Example 6-34 prevents unintentional
latches. Without the final ELSE clause, this code creates unintentional
latches to cover the remaining combinations of the sel inputs. When you
are targeting a Stratix device with this code, omitting the final ELSE
condition can cause the synthesis software to use up to six LEs, instead of
the three it uses with the ELSE statement. Additionally, assigning the
final ELSE clause to 1 instead of X can result in slightly more LEs because
the synthesis software cannot perform as much optimization when you
specify a constant value compared to a don’t care value.

Altera Corporation
October 2007

Coding Guidelines for Registers and Latches

Example 6-34. VHDL Code Preventing Unintentional Latch Creation
LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY nolatch IS
PORT (a,b,c: IN STD_LOGIC;
sel: IN STD_LOGIC VECTOR (4 DOWNTO O0) ;
oput: OUT STD_LOGIC) ;
END nolatch;

ARCHITECTURE rtl OF nolatch IS

BEGIN
PROCESS (a,b,c,sel) BEGIN
IF sel = "00000" THEN
oput <= a;
ELSIF sel = "00001" THEN
oput <= b;
ELSIF sel = "00010" THEN
oput <= c¢;
ELSE --- Prevents latch inference
oput <= "'X'; --/
END IF;
END PROCESS;
END rtl;
Inferring Latches Correctly
Synthesis tools can infer a latch that does not exhibit the glitch and timing
hazard problems typically associated with combinational loops.
=" Any use of latches generates warnings and is flagged if the
design is migrated to a HardCopy structured ASIC. In addition,
timing analysis does not completely model latch timing in some
cases. Do not use latches unless you are very certain that your
design requires it, and you fully understand the impact of using
the latches.
When using Quartus II integrated synthesis, latches that are inferred by
the software are reported in the User-Specified and Inferred Latches
section of the Compilation Report. This report indicates whether the latch
is considered safe and free of timing hazards.
If a latch or combinational loop in your design is not listed in the
User-Specified and Inferred Latches report, it means that it was not
inferred as a safe latch by the software and is not considered glitch-free.
All combinational loops listed in the Analysis & Synthesis Logic Cells
Representing Combinational Loops table in the Compilation Report are
at risk of timing hazards. These entries indicate possible problems with
your design that you should investigate. However, it is possible to have
Altera Corporation 6-45

October 2007

Quartus Il Handbook, Volume 1

6-46

a correct design that includes combinational loops. For example, it is
possible that the combinational loop cannot be sensitized. This can occur
in cases where there is an electrical path in the hardware, but either the
designer knows that the circuit will never encounter data that causes that
path to be activated, or the surrounding logic is set up in a mutually
exclusive manner that prevents that path from ever being sensitized,
independent of the data input.

For macrocell-based devices such as MAX® 7000AE and MAX 30004, all
data (D-type) latches and set-reset (S-R) latches listed in the Analysis &
Synthesis User-Specified and Inferred Latches table have an
implementation free of timing hazards such as glitches. The
implementation includes a cover term to ensure there is no glitching, and
includes a single macrocell in the feedback loop.

For 4-input LUT-based devices such as Stratix devices, the Cyclone series,
and MAXII devices, all latches in the User-Specified and Inferred
Latches table with a single LUT in the feedback loop are free of timing
hazards when a single input changes. Because of the hardware behavior
of the LUT, the output does not glitch when a single input toggles
between two values that are supposed to produce the same output value.
For example, a D-type input toggling when the enable input is inactive,
or a set input toggling when a reset input with higher priority is active.
This hardware behavior of the LUT means that no cover term is needed
for aloop around a single LUT. The Quartus II software uses a single LUT
in the feedback loop whenever possible. A latch that has data, enable, set,
and reset inputs in addition to the output fed back to the input cannot be
implemented in a single 4-input LUT. If the Quartus II software cannot
implement the latch with a single-LUT loop because there are too many
inputs, then the User-Specified and Inferred Latches table indicates that
the latch is not free of timing hazards.

For 6-input LUT-based devices, the software can implement all latch
inputs with a single adaptive look-up table (ALUT) in the combinational
loop. Therefore, all latches in the User-Specified and Inferred Latches
table are free of timing hazards when a single input changes.

If a latch is listed as a safe latch, other Quartus II optimizations, such as
physical synthesis netlist optimizations in the Fitter, maintain the
hazard-free performance.

To ensure hazard-free behavior, only one control input may change at a
time. Changing two inputs simultaneously, such as deasserting set and
reset at the same time, or changing data and enable at the same time, can
produce incorrect behavior in any latch.

Altera Corporation
October 2007

Coding Guidelines for Registers and Latches

Quartus II integrated synthesis infers latches from always blocks in
Verilog HDL and process statements in VHDL, but not from
continuous assignments in Verilog HDL or concurrent signal
assignments in VHDL. These rules are the same as for register inference.
The software infers registers or flipflops only from always blocks and
process statements.

The Verilog HDL code sample shown in Example 6-35 infers a S-R latch
correctly in the Quartus II software.

Example 6-35. Verilog HDL Set-Reset Laich

module simple_latch (
input SetTerm,
input ResetTerm,
output reg LatchOut
)i

always @ (SetTerm or ResetTerm) begin
if (SetTerm)
LatchOut = 1'bl
else if (ResetTerm)
LatchOut = 1'b0
end
endmodule

The VHDL code sample shown in Example 6-36 infers a D-type latch
correctly in the Quartus II software.

Example 6-36. VHDL Data Type Latch
LIBRARY IEEE;
USE IEEE.std logic_1164.all;

ENTITY simple_latch IS

PORT (
enable, data : IN STD_LOGIC;
q : OUT STD_LOGIC

)
END simple_latch;

ARCHITECTURE rtl OF simple_latch IS
BEGIN

latch : PROCESS (enable, data)
BEGIN
IF (enable = 'l') THEN
g <= data;
END IF;
END PROCESS latch;
END rtl;

Altera Corporation 6-47
October 2007

Quartus Il Handbook, Volume 1

General Coding
Guidelines

6-48

The following example shows a Verilog HDL continuous assignment that
does not infer a latch in the Quartus II software. The behavior is similar
to a latch, but it may not function correctly as a latch and its timing is not
analyzed as a latch.

assign latch out = (~en & latch out) | (en & data);

Quartus Il integrated synthesis also creates safe latches when possible for
instantiations of the 1pm_latch megafunction. You can use this
megafunction to create a latch with any combination of data, enable, set,
and reset inputs. The same limitations apply for creating safe latches as
for inferring latches from HDL code.

Inferring the Altera 1pm_latch function in another synthesis tool
ensures that the implementation is also recognized as a latch in the
Quartus II software. If a third-party synthesis tool implements a latch
using the 1pm_latch megafunction, then the Quartus II integrated
synthesis lists the latch in the User-Specified and Inferred Latches table
in the same way as it lists latches created in HDL source code. The coding
style necessary to produce an 1pm_latch implementation may depend
on your synthesis tool. Some third-party synthesis tools list the number
of 1pm_latch functions that are inferred.

For LUT-based families, the Fitter uses global routing for control signals
including signals that Analysis and Synthesis identifies as latch enables.
In some cases the global insertion delay may decrease the timing
performance. If necessary, you can turn off the Quartus II Global Signal
logic option to manually prevent the use of global signals. Global latch
enables are listed in the Global & Other Fast Signals table in the
Compilation Report.

This section helps you understand how synthesis tools map various types
of HDL code into the target Altera device. Following Altera
recommended coding styles, and in some cases designing logic structures
to match the appropriate device architecture, can provide significant
improvements in the design’s quality of results.

This section provides coding guidelines for the following logic structures:

B “Tri-State Signals”. This section explains how to create tri-state
signals for bidirectional I/O pins.

B “Adder Trees” on page 6-50. This section explains the different
coding styles that lead to optimal results for devices with 4-input
look-up tables and 6-input adaptive look-up tables.

B “State Machines” on page 6-52. This section helps ensure the best
results when you use state machines.

Altera Corporation
October 2007

General Coding Guidelines

B “Multiplexers” on page 6-60. This section explains how multiplexers
can be synthesized for 4-input LUT devices, addresses common
problems, and provides guidelines to achieve optimal resource
utilization.

B “Cyclic Redundancy Check Functions” on page 6-69. This section
provides guidelines for getting good results when designing CRC
functions.

B “Comparators” on page 6-71. This section explains different
comparator implementations and provides suggestions for
controlling the implementation.

B “Counters” on page 6-73. This section provides guidelines to ensure
your counter design targets the device architecture optimally.

Tri-State Signals

When you are targeting Altera devices, you should use tri-state signals
only when they are attached to top-level bidirectional or output pins.
Avoid lower level bidirectional pins, and avoid using the z logic value
unless it is driving an output or bidirectional pin.

Synthesis tools implement designs with internal tri-state signals correctly
in Altera devices using multiplexer logic, but Altera does not recommend
this coding practice.

= In hierarchical block-based or incremental design flows, a
hierarchical boundary cannot contain any bidirectional ports,
unless the lower level bidirectional port is connected directly
through the hierarchy to a top-level output pin without
connecting to any other design logic. If you use boundary
tri-states in a lower level block, synthesis software must push
the tri-states through the hierarchy to the top-level to make use
of the tri-state drivers on output pins of Altera devices. Because
pushing tri-states requires optimizing through hierarchies,
lower level tri-states are restricted with block-based design
methodologies.

The code examples shown in Examples 6-37 and 6-38 show Verilog HDL
and VHDL code that creates tri-state bidirectional signals.

Example 6-37. Verilog HDL Tri-State Signal

module tristate (myinput, myenable, mybidir);
input myinput, myenable;
inout mybidir;
assign mybidir = (myenable ? myinput : 1'bZ);
endmodule

Altera Corporation 6-49
October 2007

Quartus Il Handbook, Volume 1

Example 6-38. VHDL Tri-State Signal
LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.std logic_arith.ALL;

ENTITY tristate IS
PORT (
mybidir : INOUT STD_ LOGIC;
myinput : IN STD_LOGIC;
myenable : IN STD_LOGIC
)
END tristate;

ARCHITECTURE rtl OF tristate IS
BEGIN

mybidir <= 'Z' WHEN (myenable = '0')

END rtl;

ELSE myinput;

Adder Trees

Structuring adder trees appropriately to match your targeted Altera
device architecture can result in significant performance and density
improvements. A good example of an application using a large adder tree
is a finite impulse response (FIR) correlator. Using a pipelined binary or
ternary adder tree appropriately can greatly improve the quality of your
results.

This section explains why coding recommendations are different for
Altera 4-input LUT devices and 6-input LUT devices.

Architectures with 4-Input LUTs in Logic Elements

Architectures such as Stratix devices and the Cyclone series, APEX series,
and FLEX series devices contain 4-input LUTs as the standard
combinational structure in the LE.

If your design can tolerate pipelining, the fastest way to add three
numbers A, B, and C in devices that use 4-input lookup tables is to add
A + B, register the output, and then add the registered output to C.
Adding A + B takes one level of logic (one bit is added in one LE), so this
runs at full clock speed. This can be extended to as many numbers as
desired.

Altera Corporation
October 2007

General Coding Guidelines

In the code sample shown in Example 6-39, five numbers &, B, C, D, and E
are added. Adding five numbers in devices that use 4-input lookup tables
requires four adders and three levels of registers for a total of 64 LEs
(for 16-bit numbers).

Example 6-39. Verilog HDL Pipelined Binary Tree
module binary adder tree (A, B, C, D, E, CLK, OUT);
parameter WIDTH = 16;
input [WIDTH-1:0] A, B, C, D, E;
input CLK;
output [WIDTH-1:0] OUT;

wire [WIDTH-1:0] suml, sum2, sum3, sum4;
reg [WIDTH-1:0] sumregl, sumreg2, sumreg3, sumreg4;
// Registers

always @ (posedge CLK)
begin
sumregl <= suml;
sumreg2 <= sumz2;
sumreg3 <= sum3;
sumreg4 <= sum4;
end

// 2-bit additions
assign suml = A + B;
assign sum2 = C + D;
assign sum3 sumregl + sumreg2;
assign sum4 sumreg3 + E;
assign OUT = sumreg4;

endmodule

Architectures with 6-Input LUTs in Adaptive Logic Modules

Newer high-performance Altera device families use a 6-input LUT in
their basic logic structure, so these devices benefit from a different coding
style from the previous example presented for 4-input LUTs. Specifically,
in these devices, ALMs can simultaneously add three bits. Therefore, the
tree in the previous example must be two levels deep and contain just two
add-by-three inputs instead of four add-by-two inputs.

Although the code in the previous example compiles successfully for
6-input LUT devices, the code is inefficient and does not take advantage
of the 6-input adaptive look-up table (ALUT). By restructuring the tree as
a ternary tree, the design becomes much more efficient, significantly
improving density utilization. Therefore, when you are targeting with
ALUTs and ALMs, large pipelined binary adder trees designed for
4-input LUT architectures should be rewritten to take advantage of the
advanced device architecture.

Altera Corporation 6-51
October 2007

Quartus Il Handbook, Volume 1

Example 640 uses just 32 ALUTs in a Stratix II device—more than a 4:1

advantage over the number of LUTs in the prior example implemented in

a Stratix device.

= You cannot pack a LAB full when using this type of coding style
because of the number of LAB inputs. However, in a typical
design, the Quartus II Fitter can pack other logic into each LAB
to take advantage of the unused ALMs.

Example 6-40. Verilog HDL Pipelined Ternary Tree

modu

le ternary adder tree (A, B, C, D, E, CLK, OUT);
parameter WIDTH = 16;

input [WIDTH-1:0] A, B, C, D, E;

input CLK;

output [WIDTH-1:0] OUT;

wire [WIDTH-1:0] suml, sum2;
reg [WIDTH-1:0] sumregl, sumreg2;
// Registers

always @ (posedge CLK)
begin
sumregl <= suml;
sumreg2 <= sumz2;
end

// 3-bit additions

assign suml = A + B + C;
assign sum2 = sumregl + D + E;
assign OUT = sumreg2;

endmodule

6-52

These examples show pipelined adders, but partitioning your addition
operations can help you achieve better results in nonpipelined adders as
well. If your design is not pipelined, a ternary tree provides much better
performance than a binary tree. For example, depending on your
synthesis tool, the HDL code sum = (A + B + C) + (D + E)is
more likely to create the optimal implementation of a 3-input adder for
A + B + Cfollowed by a 3-input adder for suml + D + E than the
code without the parentheses. If you do not add the parentheses, the
synthesis tool may partition the addition in a way that is not optimal for
the architecture.

State Machines

Synthesis tools can recognize and encode Verilog HDL and VHDL state
machines during synthesis. This section presents guidelines to ensure the
best results when you use state machines. Ensuring that your synthesis
tool recognizes a piece of code as a state machine allows the tool to recode
the state variables to improve the quality of results, and allows the tool to

Altera Corporation
October 2007

General Coding Guidelines

Altera Corporation
October 2007

use the known properties of state machines to optimize other parts of the
design. When synthesis recognizes a state machine it is often able to
improve the design area and performance.

To achieve the best results on average, synthesis tools often use one-hot
encoding for FPGA devices and minimal-bit encoding for CPLD devices,
although the choice of implementation can vary for different state
machines and different devices. Refer to your synthesis tool
documentation for specific ways to control the manner in which state
machines are encoded.

For information about state machine encoding in Quartus II integrated
synthesis, refer to the State Machine Processing section in the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

To ensure proper recognition and inference of state machines and to
improve the quality of results, Altera recommends that you observe the
following guidelines, which apply to both Verilog HDL and VHDL:

B Assign default values to outputs derived from the state machine so
that synthesis does not generate unwanted latches.

B Separate the state machine logic from all arithmetic functions and
data paths, including assigning output values.

B If your design contains an operation that is used by more than one
state, define the operation outside the state machine and cause the
output logic of the state machine to use this value.

B Use asimple asynchronous or synchronous reset to ensure a defined
power-up state. If your state machine design contains more elaborate
reset logic, such as both an asynchronous reset and an asynchronous
load, the Quartus II software generates regular logic rather than
inferring a state machine.

If a state machine enters an illegal state due to a problem with the device,
the design likely ceases to function correctly until the next reset of the
state machine. Synthesis tools do not provide for this situation by default.
The same issue applies to any other registers if there is some kind of fault
in the system. A default or when others clause does not affect this
operation, assuming that your design never deliberately enters this state.
Synthesis tools remove any logic generated by a default state if it is not
reachable by normal state machine operation.

Many synthesis tools (including Quartus II integrated synthesis) have an
option to implement a safe state machine. The software inserts extra logic
to detect an illegal state and force the state machine’s transition to the
reset state. It is commonly used when the state machine can enter an

6-53

Quartus Il Handbook, Volume 1

6-54

illegal state. The most common cause of this situation is a state machine
that has control inputs that come from another clock domain, such as the
control logic for a dual-clock FIFO.

Of course this option protects only state machines, and all other registers
in the design are not protected this way.

For additional information about tool-specific options for implementing
state machines, refer to the tool vendor’s documentation or the
appropriate chapter in the Synthesis section in volume 1 of the Quartus II
Handbook.

The following two sections, “Verilog HDL State Machines” and “VHDL
State Machines” on page 6-58, describe additional language-specific
guidelines and coding examples.

Verilog HDL State Machines

To ensure proper recognition and inference of Verilog HDL state
machines, observe the following additional Verilog HDL guidelines.
Some of these guidelines may be specific to Quartus II integrated
synthesis. Refer to your synthesis tool documentation for specific coding
recommendations.

If the state machine is not recognized by