
Preliminary Information
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Quartus II Version 7.2 Handbook
Volume 1: Design and Synthesis

QII5V1-7.2

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii Altera Corporation
Preliminary

Altera Corporation iii
Preliminary

Contents

Chapter Revision Dates .. xv

About this Handbook .. xvii
How to Contact Altera ... xvii
Third-Party Software Product Information .. xvii
Typographic Conventions .. xviii

Section I. Design Flows

Chapter 1. Design Planning with the Quartus II Software
Introduction .. 1–1
Device and Programming/
Configuration Method Selection ... 1–2

Device Selection .. 1–2
Device Migration Planning ... 1–3
Programming/Configuration Method Selection ... 1–4

Early Planning Tools for Power and I/O ... 1–5
Early Power Estimation ... 1–5
Early Pin Planning and I/O Analysis ... 1–6

Selecting Third-Party EDA Tool Flows ..1–9
Synthesis Tools ... 1–9
Simulation Tools ... 1–10
Formal Verification Tools .. 1–10

Planning for On-Chip Debugging Options .. 1–11
Planning for an Incremental Compilation Flow ... 1–13

Flat Compilation Flow with No Design Partitions .. 1–13
Incremental Compilation with Design Partitions .. 1–14
Top-Down Versus Bottom-Up Incremental Flows .. 1–15
Planning Design Partitions ... 1–17
Creating a Design Floorplan ... 1–18

Early Timing Estimation ... 1–19
Conclusion .. 1–20
Referenced Documents ... 1–20
Document Revision History ... 1–21

Chapter 2. Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Introduction .. 2–1
Choosing a Quartus II Compilation Flow .. 2–3

iv Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Flat Compilation Flow with No Design Partitions .. 2–3
Incremental Compilation Flow with Design Partitions .. 2–5
Top-Down versus Bottom-Up Compilation Flows ... 2–9

Quick Start Guide – Summary of Steps for an Incremental Compilation Flow 2–11
Top-Down Incremental Compilation Flow .. 2–11
Bottom-Up Incremental Compilation .. 2–13

Design Partitions .. 2–17
Design Partition Assignments Compared to Physical Placement Assignments 2–18

Creating Design Partitions ... 2–19
Partition Name .. 2–21

Setting the Netlist Type for Design Partitions ... 2–22
Fitter Preservation Level ... 2–24
Empty Partitions ... 2–26
What Represents a Source Change for Incremental Compilation? ... 2–27

Creating a Design Floorplan With LogicLock Location Assignments ... 2–29
Taking Advantage of the Early Timing Estimator .. 2–31

Exporting and Importing Partitions for Bottom-Up Design Flows .. 2–32
Quartus II Exported Partition File (.qxp) .. 2–32
Exporting a Lower-Level Partition to be Used in a Top-Level Project 2–33
Exporting a Lower-Level Block within a Project ... 2–35
Importing a Lower-Level Partition Into the Top-Level Project ... 2–36
Importing Assignments and Advanced Import Settings ... 2–37
Generating Bottom-Up Design Partition Scripts for Project Management 2–40

Guidelines for Creating Good Design Partitions and LogicLock Regions 2–46
Creating Good Design Partitions ... 2–47
Partition Statistics Reports .. 2–50
Resource Balancing .. 2–51
Timing Budgeting .. 2–53
Methodology to Check Partition Quality during Partition Planning 2–54
The Importance of Floorplan Location Assignments in Incremental Compilation 2–55
Creating Good Floorplan Location Assignments .. 2–57
Incremental Compilation Advisor ... 2–60
Criteria for Successful Partition and Floorplan Schemes ... 2–61

Recommended Design Flows and Compilation Application Examples 2–62
Top-Down Incremental Design Flows .. 2–62
Bottom-Up Incremental Design Flows .. 2–67

Incremental Compilation Restrictions .. 2–76
Using Incremental Synthesis Only Instead of Full Incremental Compilation 2–76
Preserving Exact Timing Performance .. 2–77
Using Incremental Compilation with Quartus II Archive Files .. 2–77
Formal Verification Support ... 2–78
OpenCore Plus MegaCore Functions in Bottom-Up Flows ... 2–78
Importing Encrypted IP Cores in Bottom-Up Flows .. 2–78
SignalProbe Pins and Engineering Change Management with the Chip Planner 2–78
SignalTap II Embedded Logic Analyzer in Bottom-Up Compilation Flows 2–80
Logic Analyzer Interface in Bottom-Up Compilation Flows ... 2–81
Migrating Projects with Design Partitions to Different Devices ... 2–81

Altera Corporation v
Preliminary

Contents

HardCopy Compilation Flows ... 2–82
Assignments Made in HDL Source Code in Bottom-Up Flows .. 2–83
Compilation Time with Physical Synthesis Optimizations ... 2–83
Restrictions on Megafunction Partitions ... 2–84
Routing Preservation in Bottom-Up Compilation Flows ... 2–84
Bottom-Up Design Partition Script Limitations ... 2–84
Register Packing and Partition Boundaries .. 2–87
I/O Register Packing ... 2–87

Scripting Support ... 2–99
Generate Incremental Compilation Tcl Script Command .. 2–99
Preparing a Design for Incremental Compilation ... 2–100
Creating Design Partitions .. 2–100
Setting Properties of Design Partitions ... 2–101
Creating Good Floorplan Location Assignments—Excluding or Filtering Certain Device
Elements (Such as RAM or DSP Blocks) ... 2–102
Generating Bottom-Up Design Partition Scripts ... 2–103
Exporting a Partition to be Used in a Top-Level Project .. 2–105
Importing a Lower-Level Partition into the Top-Level Project ... 2–106
Makefiles .. 2–106
Recommended Design Flows and Compilation Application Examples 2–107

Conclusion .. 2–109
Referenced Documents ... 2–109
Document Revision History ... 2–111

Chapter 3. Quartus II Design Flow for MAX+PLUS II Users
Introduction .. 3–1
Chapter Overview ... 3–1
Typical Design Flow .. 3–2
Device Support ... 3–3
Quartus II GUI Overview ... 3–4

Project Navigator .. 3–4
Node Finder .. 3–4
Tcl Console .. 3–4
Messages .. 3–4
Status .. 3–5

Setting Up MAX+PLUS II Look and Feel in Quartus II...3–6
MAX+PLUS II Look and Feel ..3–7
Compiler Tool ..3–9

Analysis and Synthesis .. 3–10
Partition Merge ... 3–10
Fitter ... 3–10
Assembler .. 3–11
Timing Analyzer ... 3–11
EDA Netlist Writer ... 3–11
Design Assistant ... 3–11

MAX+PLUS II Design Conversion ...3–12
Converting an Existing MAX+PLUS II Design .. 3–12

vi Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Converting MAX+PLUS II Graphic Design Files .. 3–13
Importing MAX+PLUS II Assignments .. 3–14

Quartus II Design Flow ... 3–15
Creating a New Project .. 3–16
Design Entry ... 3–16
Making Assignments ... 3–20
Synthesis .. 3–23
Functional Simulation .. 3–24
Place and Route .. 3–26
Timing Analysis .. 3–27
Timing Closure Floorplan ... 3–29
Timing Simulation .. 3–31
Power Estimation ... 3–33
Programming .. 3–33

Conclusion .. 3–34
Quick Menu Reference .. 3–35
Quartus II Command Reference for MAX+PLUS II Users..3–36
Referenced Documents ... 3–45
Document Revision History ... 3–46

Chapter 4. Quartus II Support for HardCopy Series Devices
Introduction .. 4–1
HardCopy II Device Support ... 4–1

HardCopy II Design Benefits .. 4–1
Quartus II Features for HardCopy II Planning .. 4–2

HardCopy II Development Flow ... 4–3
Designing the Stratix II FPGA First ... 4–4
Designing the HardCopy II Device First .. 4–6

HardCopy II Device Resource Guide ...4–8
HardCopy II Companion Device Selection ... 4–10
HardCopy II Recommended Settings in the Quartus II Software .. 4–12

Limit DSP and RAM to HardCopy II Device Resources .. 4–12
Enable Design Assistant to Run During Compile ... 4–12
Timing Settings ... 4–13
Constraints for Clock Effect Characteristics ... 4–15
Quartus II Software Features Supported for HardCopy II Designs 4–17

Performing ECOs with Quartus II Engineering Change Management with the Chip Planner
.. 4–20

Migrating One-to-One Changes ... 4–20
Migrating Changes that Must be Implemented Differently .. 4–21
Changes that Cannot be Migrated ... 4–22

Overall Migration Flow .. 4–22
Preparing the Revisions ... 4–22
Applying ECO Changes .. 4–23

Formal Verification of Stratix II and HardCopy II Revisions ... 4–24
HardCopy II Utilities Menu ... 4–25

Companion Revisions .. 4–26
Compiling the HardCopy II Companion Revision ... 4–28

Altera Corporation vii
Preliminary

Contents

Comparing HardCopy II and Stratix II Companion Revisions ... 4–28
Generate a HardCopy II Handoff Report ... 4–29
Archive HardCopy II Handoff Files .. 4–29
HardCopy II Advisor ... 4–30
HardCopy II Floorplan View .. 4–32

HardCopy Stratix Device Support .. 4–34
Features ... 4–35
HARDCOPY_FPGA_PROTOTYPE, HardCopy Stratix and Stratix Devices 4–36
HardCopy Design Flow .. 4–38

The Design Flow Steps of the One-Step Process .. 4–39
How to Design HardCopy Stratix Devices .. 4–40

Tcl Support for HardCopy Migration ... 4–44
Design Optimization and Performance Estimation .. 4–45

Design Optimization .. 4–45
Performance Estimation .. 4–45
Buffer Insertion ... 4–48
Placement Constraints ... 4–48

Location Constraints ... 4–49
LAB Assignments ... 4–49
LogicLock Assignments .. 4–50

Checking Designs for HardCopy Design Guidelines .. 4–51
Altera-Recommended HDL Coding Guidelines ... 4–51
Design Assistant ... 4–51
Reports and Summary ... 4–52

Generating the HardCopy Design Database ... 4–53
Static Timing Analysis .. 4–55
Early Power Estimation .. 4–55

HardCopy Stratix Early Power Estimation .. 4–55
HardCopy APEX Early Power Estimation ... 4–56

Tcl Support for HardCopy Stratix ... 4–56
Targeting Designs to HardCopy APEX Devices ... 4–57
Conclusion .. 4–57
Referenced Documents ... 4–58
Document Revision History ... 4–59

Section II. Design Guidelines

Chapter 5. Design Recommendations for Altera Devices and the Quartus II Design
Assistant

Introduction .. 5–1
Synchronous FPGA Design Practices ... 5–2

Fundamentals of Synchronous Design ... 5–2
Hazards of Asynchronous Design ... 5–3

Design Guidelines ... 5–4
Combinational Logic Structures ... 5–4

viii Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Clocking Schemes ... 5–9
Checking Design Violations Using the Design Assistant .. 5–15

Quartus II Design Flow with the Design Assistant ... 5–15
The Design Assistant Settings Page ... 5–17
Message Severity Levels .. 5–18
Design Assistant Rules .. 5–18
Enabling and Disabling Design Assistant Rules .. 5–37
Viewing Design Assistant Results ... 5–40

Targeting Clock and Register-Control Architectural Features ... 5–44
Clock Network Resources ... 5–44
Reset Resources .. 5–45
Register Control Signals .. 5–46

Conclusion .. 5–46
Referenced Documents ... 5–46
Document Revision History...5–47

Chapter 6. Recommended HDL Coding Styles
Introduction .. 6–1
Quartus II Language Templates .. 6–2
Using Altera Megafunctions .. 6–3
Instantiating Altera Megafunctions in HDL Code ... 6–4

Instantiating Megafunctions Using the MegaWizard Plug-In Manager 6–4
Creating a Netlist File for Other Synthesis Tools .. 6–6
Instantiating Megafunctions Using the Port and Parameter Definition 6–7

Inferring Multiplier and DSP Functions from HDL Code ... 6–7
Multipliers—Inferring the lpm_mult Megafunction from HDL Code 6–7
Multiply-Accumulators and Multiply-Adders—Inferring altmult_accum and altmult_add
Megafunctions from HDL Code .. 6–10

Inferring Memory Functions from HDL Code .. 6–13
RAM Functions—Inferring altsyncram and altdpram Megafunctions from HDL Code 6–14
ROM Functions—Inferring altsyncram and lpm_rom Megafunctions from HDL Code 6–31
Shift Registers—Inferring the altshift_taps Megafunction from HDL Code 6–33

Coding Guidelines for Registers and Latches ... 6–37
Register Power-Up Values in Altera Devices ... 6–37
Secondary Register Control Signals Such as Clear and Clock Enable 6–39
Latches ... 6–43

General Coding Guidelines .. 6–48
Tri-State Signals .. 6–49
Adder Trees ... 6–50
State Machines .. 6–52
Multiplexers .. 6–60
Cyclic Redundancy Check Functions .. 6–69
Comparators ... 6–71
Counters ... 6–73

Designing with Low-Level Primitives .. 6–73
Conclusion .. 6–74
Referenced Documents ... 6–74
Document Revision History ... 6–75

Altera Corporation ix
Preliminary

Contents

Section III. Synthesis

Chapter 7. Synplicity Synplify and Synplify Pro Support
Introduction .. 7–1
Altera Device Family Support ...7–2
Design Flow .. 7–3

Output Netlist File Name and Result Format .. 7–7
Synplify Optimization Strategies .. 7–8

Implementations in Synplify Pro ... 7–8
Timing-Driven Synthesis Settings ... 7–9
FSM Compiler ... 7–11
Optimization Attributes and Options ... 7–12
Altera-Specific Attributes .. 7–15

Exporting Designs to the Quartus II Software Using NativeLink Integration 7–17
Running the Quartus II Software from within the Synplify Software 7–18
Using the Quartus II Software to Run the Synplify Software .. 7–19
Running the Quartus II Software Manually Using the Synplify-Generated Tcl Script 7–19
Passing TimeQuest SDC Timing Constraints to the Quartus II Software in the .scf File 7–20
Passing Constraints to the Quartus II Software using Tcl Commands 7–22

Guidelines for Altera Megafunctions and Architecture-Specific Features 7–32
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 7–33
Inferring Altera Megafunctions from HDL Code .. 7–37

Incremental Compilation and Block-Based Design .. 7–44
Hierarchy and Design Considerations with Multiple VQM Files .. 7–46
Creating a Design with Separate Netlist Files .. 7–46
Creating a Design with Multiple VQM Files Using Synplify Pro MultiPoint Synthesis 7–47
Generating a Design with Multiple VQM Files Using Black Boxes .. 7–54

Conclusion .. 7–60
Referenced Documents ...7–61
Document Revision History ... 7–61

Chapter 8. Quartus II Integrated Synthesis
Introduction .. 8–1
Design Flow .. 8–2
Language Support ... 8–5

Verilog HDL Support .. 8–5
VHDL Support .. 8–10
AHDL Support ... 8–12
Schematic Design Entry Support ... 8–13
State Machine Editor .. 8–13
Design Libraries .. 8–14
Using Parameters/Generics ... 8–18

Incremental Synthesis and Incremental Compilation .. 8–23
Partitions for Preserving Hierarchical Boundaries .. 8–23

Quartus II Synthesis Options ... 8–24
Setting Synthesis Options ... 8–25

x Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Optimization Technique .. 8–30
Speed Optimization Technique for Clock Domains .. 8–30
PowerPlay Power Optimization .. 8–31
Restructure Multiplexers ... 8–32
State Machine Processing .. 8–34
Manually Specifying State Assignments Using the syn_encoding Attribute 8–35
Manually Specifying Enumerated Types Using the enum_encoding Attribute 8–38
Safe State Machines .. 8–40
Power-Up Level .. 8–42
Power-Up Don’t Care .. 8–43
Remove Duplicate Registers ... 8–44
Remove Redundant Logic Cells ... 8–44
Preserve Registers .. 8–44
Disable Register Merging/Don’t Merge Register .. 8–45
Noprune Synthesis Attribute/Preserve Fan-out Free Register Node 8–46
Keep Combinational Node/Implement as Output of Logic Cell ... 8–47
Don't Retime, Disabling Synthesis Netlist Optimizations ... 8–48
Don't Replicate, Disabling Synthesis Netlist Optimizations .. 8–49
Maximum Fan-Out ... 8–50
Controlling Clock Enable Signals with Auto Clock Enable Replacement and direct_enable
...8–51
Megafunction Inference Control .. 8–52
RAM Style and ROM Style—for Inferred Memory ... 8–55
Turning Off Add Pass-Through Logic to Inferred RAMs/ no_rw_check Attribute Setting
.. .8–57
RAM Initialization File—for Inferred Memory ... 8–59
Multiplier Style—for Inferred Multipliers .. 8–59
Full Case .. 8–62
Parallel Case .. 8–63
Translate Off and On / Synthesis Off and On ... 8–65
Ignore translate_off and synthesis_off Directives ... 8–65
Read Comments as HDL ... 8–66
Use I/O Flipflops ... 8–67
Specifying Pin Locations with chip_pin ... 8–68
Using altera_attribute to Set Quartus II Logic Options .. 8–70

Analyzing Synthesis Results .. 8–73
Analysis and Synthesis Section of the Compilation Report ... 8–73
Project Navigator .. 8–74

Analyzing and Controlling Synthesis Messages ... 8–74
Quartus II Messages ... 8–74
VHDL and Verilog HDL Messages ... 8–75

Node-Naming Conventions in Quartus II Integrated Synthesis .. 8–79
Hierarchical Node-Naming Conventions ... 8–79
Node-Naming Conventions for Registers (DFF or D Flipflop Atoms) 8–80
Register Changes During Synthesis .. 8–81
Preserving Register Names ... 8–84
Node-Naming Conventions for Combinational Logic Cells ... 8–84

Altera Corporation xi
Preliminary

Contents

Preserving Combinational Logic Names .. 8–86
Scripting Support ... 8–86

Adding an HDL File to a Project and Setting the HDL Version .. 8–87
Quartus II Synthesis Options .. 8–88
Assigning a Pin ... 8–89
Creating Design Partitions for Incremental Compilation .. 8–90

Conclusion .. 8–91
Referenced Documents ... 8–91
Document Revision History...8–92

Chapter 9. Mentor Graphics LeonardoSpectrum Support
Introduction .. 9–1
Design Flow .. 9–2
Optimization Strategies .. 9–5

Timing-Driven Synthesis .. 9–5
Other Constraints ... 9–6

Timing Analysis with the Leonardo-Spectrum Software .. 9–8
Exporting Designs Using NativeLink Integration .. 9–9

Generating Netlist Files ... 9–9
Including Design Files for Black-Boxed Modules ... 9–9
Passing Constraints with Scripts .. 9–9
Integration with the Quartus II Software ... 9–10

Guidelines for Altera Megafunctions and LPM Functions ... 9–10
Inferring Multipliers and DSP Functions ... 9–12
Controlling DSP Block Inference ... 9–13

Block-Based Design with the Quartus II Software ... 9–19
Hierarchy and Design Considerations .. 9–20
Creating a Design with Multiple EDIF Files .. 9–21
Generating Multiple EDIF Files Using Black Boxes .. 9–25
Incremental Synthesis Flow .. 9–31

Conclusion .. 9–34
Referenced Documents ... 9–34
Document Revision History...9–35

Chapter 10. Mentor Graphics Precision RTL Synthesis Support
Introduction .. 10–1
Device Family Support ...10–2
Design Flow .. 10–2
Creating a Project and Compiling the Design...10–6

Creating a Project ... 10–6
Compiling the Design .. 10–7

Mapping the Precision Synthesis Design ... 10–7
Setting Timing Constraints ... 10–8
Setting Mapping Constraints .. 10–9
Assigning Pin Numbers and I/O Settings .. 10–9
Assigning I/O Registers .. 10–10
Disabling I/O Pad Insertion ... 10–11

xii Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Controlling Fan-Out on Data Nets .. 10–12
Synthesizing the Design and Evaluating the Results ... 10–13

Obtaining Accurate Logic Utilization and Timing Analysis Reports 10–13
Exporting Designs to the Quartus II Software Using NativeLink Integration 10–14

Running the Quartus II Software from within the Precision RTL Software 10–14
Running the Quartus II Software Manually Using the Precision RTL Synthesis-Generated Tcl
Script .. 10–16
Using Quartus II Software to Launch the Precision RTL Synthesis Software 10–17
Passing Constraints to the Quartus II Software ... 10–17

Megafunctions and Architecture-Specific Features .. 10–23
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 10–24
Inferring Altera Megafunctions from HDL Code .. 10–25

Incremental Compilation and Block-Based Design .. 10–32
Hierarchy and Design Considerations .. 10–34
Creating a Design with Separate Netlist Files .. 10–34
Creating Quartus II Projects for Multiple EDIF Files .. 10–39

Conclusion .. 10–41
Referenced Documents ...10–42
Document Revision History ... 10–42

Chapter 11. Synopsys Design Compiler FPGA Support
Introduction .. 11–1
Design Flow Using the DC FPGA Software and the Quartus II Software 11–2
Setup of the DC FPGA Software Environment for Altera Device Families 11–3
Megafunctions and Architecture-Specific Features..11–5
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 11–6

Clear Box Methodology ... 11–6
Black Box Methodology ... 11–9

Inferring Altera Megafunctions from HDL Code ... 11–11
Reading Design Files into the DC FPGA Software ... 11–13
Selecting a Target Device .. 11–15
Timing and Synthesis Constraints .. 11–16
Compilation and Synthesis .. 11–18
Reporting Design Information ... 11–20
Saving Synthesis Results .. 11–21
Exporting Designs to the Quartus II Software .. 11–22

write_fpga Command .. 11–22
write and write_par_constraint Commands .. 11–23

Using Tcl Scripts with Quartus II Software ... 11–23
Place and Route with the Quartus II Software .. 11–25
Formality Software Support ... 11–26
Conclusion .. 11–26
Referenced Documents ... 11–26
Document Revision History...11–27

Chapter 12. Analyzing Designs with Quartus II Netlist Viewers
Introduction .. 12–1

Altera Corporation xiii
Preliminary

Contents

When to Use Viewers: Analyzing Design Problems .. 12–2
Quartus II Design Flow with Netlist Viewers ... 12–3
RTL Viewer Overview .. 12–4
State Machine Viewer Overview ... 12–6
Technology Map Viewer Overview .. 12–6
Introduction to the User Interface ... 12–7

Schematic View ... 12–8
Hierarchy List ... 12–16
State Machine Viewer .. 12–18

Navigating the Schematic View .. 12–21
Traversing and Viewing the Design Hierarchy ... 12–21
Viewing Contents of Atom Primitives in the Technology Map Viewer 12–22
Viewing the Properties of Instances and Primitives ... 12–24
Viewing LUT Representations in the Technology Map Viewer .. 12–24
Zooming and Magnification ... 12–26
Partitioning the Schematic into Pages ... 12–28

Customizing the Schematic Display in the RTL Viewer .. 12–31
Grouping Combinational Logic into Logic Clouds ... 12–32

Filtering in the Schematic View ... 12–34
Filter Sources Command ... 12–35
Filter Destinations Command .. 12–35
Filter Sources and Destinations Command .. 12–36
Filter Between Selected Nodes Command ... 12–36
Filter Selected Nodes and Nets Command .. 12–37
Filter Bus Index Command ... 12–37
Filter Command Processing .. 12–37
Filtering Across Hierarchies ... 12–38
Expanding a Filtered Netlist ... 12–40
Reducing a Filtered Netlist ... 12–41

Probing to Source Design File and Other Quartus II Windows ... 12–42
Moving Selected Nodes to Other Quartus II Windows .. 12–42

Probing to the Viewers from Other Quartus II Windows ... 12–44
Viewing a Timing Path ... 12–45
Other Features in the Schematic Viewer .. 12–47

Tooltips .. 12–47
Radial Menu .. 12–50
Rollover .. 12–52
Displaying Net Names .. 12–53
Displaying Node Names ... 12–53
Find Command ... 12–53
Exporting and Copying a Schematic Image ... 12–55
Printing .. 12–55

Debugging HDL Code with the State Machine Viewer ... 12–56
Simulation of State Machine Gives Unexpected Results .. 12–56

Conclusion .. 12–60
Document Revision History...12–60

xiv Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Altera Corporation xv
Preliminary

Chapter Revision Dates

The chapters in this book, Quartus II Handbook, Volume 1, were revised on the following dates. Where
chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Design Planning with the Quartus II Software
Revised: October 2007
Part number: QII51016-7.2.0

Chapter 2. Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Revised: October 2007
Part number: QII51015-7.2.0

Chapter 3. Quartus II Design Flow for MAX+PLUS II Users
Revised: October 2007
Part number: QII51002-7.2.0

Chapter 4. Quartus II Support for HardCopy Series Devices
Revised: October 2007
Part number: QII51004-7.2.0

Chapter 5. Design Recommendations for Altera Devices and the Quartus II Design Assistant
Revised: October 2007
Part number: QII51006-7.2.0

Chapter 6. Recommended HDL Coding Styles
Revised: October 2007
Part number: QII51007-7.2.0

Chapter 7. Synplicity Synplify and Synplify Pro Support
Revised: October 2007
Part number: QII51009-7.2.0

Chapter 8. Quartus II Integrated Synthesis
Revised: October 2007
Part number: QII51008-7.2.0

Chapter 9. Mentor Graphics LeonardoSpectrum Support
Revised: October 2007
Part number: QII51010-7.2.0

xvi Altera Corporation
Preliminary

Chapter Revision Dates Quartus II Handbook, Volume 1

Chapter 10. Mentor Graphics Precision RTL Synthesis Support
Revised: October 2007
Part number: QII51011-7.2.0

Chapter 11. Synopsys Design Compiler FPGA Support
Revised: October 2007
Part number: QII51014-7.2.0

Chapter 12. Analyzing Designs with Quartus II Netlist Viewers
Revised: October 2007
Part number: QII51013-7.2.0

Altera Corporation xvii
Preliminary

About this Handbook

This handbook provides comprehensive information about the Altera®
Quartus® II design software, version 7.2.

How to Contact
Altera

For the most up-to-date information about Altera products, refer to the
following table.

Third-Party
Software
Product
Information

Third-party software products described in this handbook are not Altera
products, are licensed by Altera from third parties, and are subject to change
without notice. Updates to these third-party software products may not be
concurrent with Quartus II software releases. Altera has assumed
responsibility for the selection of such third-party software products and its
use in the Quartus II 7.2 software release. To the extent that the software
products described in this handbook are derived from third-party software, no
third party warrants the software, assumes any liability regarding use of the
software, or undertakes to furnish you any support or information relating to
the software. EXCEPT AS EXPRESSLY SET FORTH IN THE APPLICABLE
ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT UNDER
WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH
RESPECT TO THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR
DOCUMENTATION IN THE SOFTWARE, INCLUDING, WITHOUT
LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT. For more
information, including the latest available version of specific third-party
software products, refer to the documentation for the software in question.

Information Type Contact (1)

Technical support www.altera.com/mysupport/

Technical training www.altera.com/training/
custrain@altera.com

Product literature www.altera.com/literature/

Altera literature services literature@altera.com (1)

FTP site ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

http://www.altera.com/mysupport/
http://www.altera.com/training/
mailto:custrain@altera.com
http://www.altera.com/literature/
ftp://ftp.altera.com

xviii Altera Corporation
Preliminary

Typographic Conventions Quartus II Handbook, Volume 1

Typographic
Conventions

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75: High-
Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples: Delete
key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are shown in
quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi,
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

v, —, N/A Used in table cells to indicate the following: v indicates a “Yes” or “Applicable”
statement; — indicates a “No” or “Not Supported” statement; N/A indicates that the
table cell entry is not applicable to the item of interest.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or destroy
the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury to the
user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Altera Corporation Section I–i

Section I. Design Flows

The Altera® Quartus® II, version 7.2 design software provides a complete
multi-platform design environment that easily adapts to your specific
design needs. The Quartus II software also allows you to use the
Quartus II graphical user interface, EDA tool interface, or command-line
interface for each phase of the design flow. This section explains the
Quartus II, version 7.2 software options that are available for each of
these flows.

This section includes the following chapters:

■ Chapter 1, Design Planning with the Quartus II Software
■ Chapter 2, Quartus II Incremental Compilation for Hierarchical and

Team-Based Design
■ Chapter 3, Quartus II Design Flow for MAX+PLUS II Users
■ Chapter 4, Quartus II Support for HardCopy Series Devices

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section I–ii Altera Corporation

Design Flows Quartus II Handbook, Volume 1

Altera Corporation 1–1
October 2007

1. Design Planning with the
Quartus II Software

Introduction Due to the significant increase in FPGA device densities over the last few
years, designs are increasingly complex and may involve multiple
designers. The inherent flexibility of advanced FPGAs means that the pin
layout, power consumption, and timing performance for each design
block are all dependent on the final design implementation. The system
architect must resolve these design issues when integrating design
blocks, often leading to problems that affect the overall time to market
and thereby increase cost. Many potential problems can be solved earlier
in the design cycle by selecting the optimal device and programming
method, properly planning I/O pin locations, estimating power
consumption, selecting appropriate third-party tools, planning for
in-system debugging options, performing good design partitioning for
incremental compilation, and obtaining early timing estimates.

This chapter discusses these important FPGA design planning issues,
provides recommendations, and describes various tools available for
Altera® FPGAs to help you improve design productivity. This chapter
contains the following sections:

■ “Device and Programming/ Configuration Method Selection” on
page 1–2

■ “Early Planning Tools for Power and I/O” —“Early Power
Estimation” on page 1–5

■ “Early Pin Planning and I/O Analysis” on page 1–6
■ “Selecting Third-Party EDA Tool Flows” on page 1–9
■ “Planning for On-Chip Debugging Options” on page 1–11
■ “Planning for an Incremental Compilation Flow” on page 1–13
■ “Early Timing Estimation” on page 1–19

Before reading the design planning guidelines discussed in this chapter,
consider your design priorities: What are the important factors for your
design? More device features, density, or performance can increase
system cost. Signal integrity and board issues may impact I/O pin
locations. Power, timing performance, and area utilization affect each
other, and compilation time is affected by optimizations for these factors.
The Quartus® II software optimizes designs for the best average results,
but you can change settings to focus on one aspect of the design results
and trade off other aspects. Certain tools or debugging options can lead
to restrictions in your design flow. If you know what is important in a
particular design, this knowledge will help you choose the tools, features,
and methodologies that you should use with the design. This chapter

QII51016-7.2.0

1–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

cannot cover every possible consideration for planning a complex FPGA
design, but once you understand your design priorities, you can use the
design planning issues described here as a guide to help ensure a
productive and successful FPGA design flow.

f This chapter provides an introduction to various design and planning
features in the Quartus® II software. For a general overview of the
Quartus II design flow and features, refer to the Introduction to Quartus II
Manual. For more details about specific Quartus II features and
methodologies, this chapter provides references to other appropriate
chapters in the Quartus II Handbook.

Device and
Programming/
Configuration
Method
Selection

The first stage in design planning is choosing the best device for your
application and determining how you want to program or configure the
device in your system. These factors affect the rest of your design cycle,
including board specification and layout. Most of this planning is
performed outside of the Quartus II software, but this section provides a
few suggestions to aid in the planning process.

Device Selection

It is important to choose the device family that best suits your design
needs. Different families offer different trade-offs, including cost,
performance, logic and memory density, I/O density, power utilization,
and packaging. You should also consider feature requirements such as
I/O standards support, high-speed transceivers, and the number of
phase-locked loops (PLLs) available in the device. You can review
important features of each device family in the Selector Guides available
on the Altera website (www.altera.com/literature/lit-sg.jsp). Each device
family also has a device handbook or set of data sheets that documents
the device features in detail.

Determining the required device density can be a challenging part of the
design planning process. Devices with more logic resources and higher
I/O counts can implement larger and potentially more complex designs,
but may have a higher cost. Select a device that meets your design needs
with some safety margin, in case you want to add more logic later in the
design cycle or reserve logic and memory for on-chip debugging (refer to
“Planning for On-Chip Debugging Options” on page 1–11). Consider
needs for specific types of dedicated logic blocks, such as memory blocks
of different sizes, or digital signal processing (DSP) blocks to implement
certain arithmetic functions.

If you have prior designs targeting Altera devices, you can use their
resource utilization as an estimate for your new design. You can compile
existing designs in the Quartus II software with the device selection set to

Altera Corporation 1–3
October 2007

Design Planning with the Quartus II Software

Auto to review the resource utilization and find out which device density
fits the design. Note that coding style, device architecture, and the
optimization options used in the Quartus II software can significantly
affect a design’s resource utilization.

To obtain resource utilization estimates for certain configurations of
Altera’s intellectual property (IP) designs, refer to the User Guides for
Altera Megafunctions and IP MegaCores on the IP Megafunctions page
on the Altera website (www.altera.com/literature/lit-ip.jsp). You can use
these numbers to help estimate the resource utilization of your design.

Device Migration Planning

Determine if you want the option of migrating your design to another
device density to allow flexibility when the design nears completion, or if
you want to migrate to a HardCopy® structured ASIC device when the
design reaches volume production. In some cases, designers may target a
smaller (and less expensive) device and then move to a larger device if
necessary to fit their design. Other designers may prototype their design
in a larger device to reduce optimization time and achieve timing closure
more quickly, and then migrate to a final smaller device after
prototyping. Similarly, many designers compile and optimize their
design for an FPGA device before moving to a HardCopy structured
ASIC when the design is complete and ready for higher-volume
production. If you would like this flexibility, you should specify these
migration options in the Quartus II software at the beginning of your
design cycle. Specify the target migration devices in the Migration
compatibility section of the Device page in the Settings dialog box.

Selecting a migration device has an impact on pin placement because
some pins may serve different functions in different device densities or
package sizes. When making pin assignments in the Quartus II software,
the Pin Migration View in the Pin Planner highlights pins that change
function between your migration devices. (Refer to “Early Pin Planning
and I/O Analysis” on page 1–6 for more details.) Selecting a migration
device may force you to restrict logic utilization to ensure that your
design is compatible with a selected HardCopy device. Adding migration
devices later in the design cycle is possible, but requires extra effort to
check pin assignments, and may require design changes to fit into the
new target device. It is much easier to consider these issues early in the
design cycle than at the end, when the design is near completion and
ready for migration.

1–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

In addition, if you are planning to use a HardCopy device, review
HardCopy guidelines early in the design cycle for any Quartus II settings
that should be used or other restrictions you should consider. It is
especially important to use complete timing constraints if you want to
migrate to a HardCopy device because of the rigorous verification
requirements for structured ASICs.

f For more information about timing requirements and analysis for
HardCopy designs, refer to the HardCopy Handbook.

Programming/Configuration Method Selection

Choosing your programming or configuration method up-front allows
system and board designers to determine what companion devices, if
any, are needed for your system. Your board layout also depends on the
type of programming or configuration method you plan to use for
programmable devices. Many programming options use a JTAG interface
to connect to the devices, so your design may require a JTAG chain be set
up on the board.

The device family handbooks describe the configuration options
available for a given device family. For more details about configuration
options, refer to the Configuration Handbook. For information about
programming CPLD devices, refer to your device data sheet or
handbook. Programming and configuration of Altera devices includes
the following options:

■ Using enhanced configuration devices—These devices combine
industry-standard flash memory with a feature-rich configuration
controller, including device features such as concurrent and dynamic
configuration, data compression, clock division, and an external
flash memory interface. You can also implement remote and local
system updates with enhanced configuration devices.

■ Using Flash memory devices with a memory controller, such as an
Altera MAX® device—The flash memory controller can interface
with a PC or microprocessor to receive configuration data via a
parallel port.

■ Using the Quartus II Serial Flash Loader (SFL)—This scheme allows
you to configure the FPGA and program serial configuration devices
using the same JTAG interface.

■ Using the Quartus II Parallel Flash Loader (PFL)—This solution
quickly retrieves data from a JTAG interface and generates data
formatted for the receiving target flash device, significantly reducing
the flash device programming time. If your system already contains
a common flash interface (CFI) flash memory, you can utilize it for
the FPGA configuration storage as well, because the PFL feature
supports many common industry-standard flash devices. If you

Altera Corporation 1–5
October 2007

Design Planning with the Quartus II Software

choose this method, you should check the list of supported flash
devices early in your system design cycle and plan accordingly.
Refer to AN 386: Using the MAX II Parallel Flash Loader with the
Quartus II Software for the list of supported Flash devices.

Early Planning
Tools for Power
and I/O

You can use the Quartus II early power and I/O planning tools to provide
information to PCB board and system designers. Providing FPGA device
information early in the design process enables earlier planning for
power and board design requirements. You can perform early power
estimation, as well as early pin planning and analysis, before you have
created any source code, or when you have a preliminary version of the
design, and then perform the most accurate analysis when the design is
complete.

Early Power Estimation

Device power consumption must be accurately estimated to develop an
appropriate power budget and to design the power supplies, voltage
regulators, heat sink, and cooling system. Power estimation and analysis
has two significant planning requirements:

■ Thermal planning—You must ensure that the cooling solution is
sufficient to dissipate the heat generated by the device. In particular,
the computed junction temperature must fall within normal device
specifications.

■ Power supply planning—Power supplies must provide adequate
current to support device operation.

Power consumption in FPGA devices is dependent on the design,
providing a challenge during early board specification and layout. The
Altera PowerPlay Early Power Estimator spreadsheet allows you to
estimate power utilization before the design is complete, by processing
information about the device resources that will be used in the design, as
well as the operating frequency, toggle rates, and environmental
considerations.

If you have an existing design or a partially-completed design, the power
estimator file generated by the Quartus II software can provide input to
the spreadsheet for your current design (refer to “Early Power Estimator
File” on page 1–6).

When the design is complete, the PowerPlay Power Analyzer tool in the
Quartus II software provides an accurate estimation of power to help
ensure that thermal and supply budgets are not violated.

1–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

The PowerPlay Early Power Estimator spreadsheets for each supported
device family are available on the Altera website:
(www.altera.com/support/devices/estimator/pow-powerplay.jsp).

Estimating power consumption early in the design cycle allows planning
of power budgets and avoids surprises for designers developing the PCB.

f For more information about power estimation and analysis, refer to the
PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Early Power Estimator File

When entering data into the Early Power Estimator spreadsheet, you
must include the device resources, operating frequency, toggle rates, and
other parameters. Specifying these values requires familiarity with the
design. If you do not have an existing design, estimate the number of
device resources used in your design and enter it manually. If you have
an existing design or a partially completed design, you can generate a
power estimator file.

First, compile your design in the Quartus II software. After compilation
is complete, on the Project menu, click Generate PowerPlay Early Power
Estimator File. This command instructs the Quartus II software to write
out a power estimator Comma-Separated Value (.csv) file (or a text [.txt]
file for older device families).

The PowerPlay Early Power Estimator spreadsheet includes the Import
Data macro, which parses the information in the power estimation file
and transfers it into the spreadsheet. If you do not want to use the macro,
you can transfer the data into the Early Power Estimator spreadsheet
manually.

If the existing Quartus II project represents only a portion of your full
design, you should enter the additional resources used in the final design
manually. You can edit the spreadsheet and add additional device
resources after importing the power estimation file information.

Early Pin Planning and I/O Analysis

It is important to plan top-level FPGA I/O pins early, so board designers
can start developing the PCB design and layout. The FPGA device’s I/O
capabilities influence pin locations and other types of assignments. In
cases where the board design team specifies an FPGA pin-out, it is crucial
that the pin locations be verified in the FPGA place-and-route software as
soon as possible to avoid the need for board design changes.

Altera Corporation 1–7
October 2007

Design Planning with the Quartus II Software

Traditionally, designers and system architects could not check the
validity of FPGA pin assignments until the design was complete. You can
now create a preliminary pin-out for an Altera FPGA using the Quartus
II Pin Planner before the source code is designed, based on standard I/O
interfaces (such as memory and bus interfaces) and any other I/O-related
assignments defined by system requirements. Refer to “Creating a Top-
Level Design File for I/O Analysis” on page 1–8. Quartus II I/O
Assignment Analysis checks that the pin locations and assignments are
supported in the target FPGA architecture. You can use I/O Assignment
Analysis to validate I/O-related assignments that you make or modify
throughout the design process.

The Pin Planner enables easy I/O pin assignment planning, assignment,
and validation. Use the Pin Planner Package view to make pin location
and other assignments using a device package view instead of pin
numbers. The Pads view displays I/O pads in order around the silicon
die to help you follow pad distance and pin placement guidelines. With
the Pin Planner, you can identify I/O banks, voltage reference (VREF)
groups, and differential pin pairings to help you through the I/O
planning process. If migration devices are selected (including HardCopy
devices), as described in “Device Migration Planning” on page 1–3, the
Pin Migration view highlights pins that change function in the migration
device when compared to the currently selected device. Selecting pins in
the Device Migration view cross-probes to the rest of the Pin Planner, so
you can use device migration information when planning your pin
assignments. You can also configure board trace models of selected pins
for use in “board-aware” signal integrity reports generated with the
Enable Advanced I/O Timing option. You have the option to use a
Microsoft Excel spreadsheet to start the I/O planning process if you
normally use a spreadsheet in your design flow, and you can export a
Comma-Separated Value (.csv) file containing your I/O assignments for
spreadsheet use when all pins are assigned.

When planning is complete, the pin location information can be passed to
PCB designers. The Pin Planner is tightly integrated with certain PCB
design EDA tools, and can read pin location changes from these tools to
check the suggested changes. It is important that pin assignments match
between the Quartus II software and your schematic and board layout
tools to ensure the design works correctly on the board where it is placed,
especially if changes to the pin-out must be made. The system architect
can use the Quartus II software to pass pin information to team members
designing individual logic blocks, for better timing closure when they
compile their design. Once the design is complete, the Quartus II Fitter
reports should be used for the final sign-off of pin assignments.

1–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Starting FPGA pin planning early—before the HDL design is complete—
improves the confidence in early board layouts, reduces the chance of
error, and improves the design’s overall time to market.

f For more information about I/O assignment and analysis, refer to the
I/O Management chapter in volume 2 of the Quartus II Handbook. For more
information about passing I/O information between the Quartus II
software and third-party EDA tools, refer to the Mentor Graphics PCB
Design Tools Support and Cadence PCB Design Tools Support chapters in
the I/O and PCB Tools section in volume 2 of the Quartus II Handbook.

Creating a Top-Level Design File for I/O Analysis

Early in the design process, before the source code is created, the system
architect typically has information about the I/O interfaces and IP cores
that to used in the design. You can use this information with the
Create/Import Megafunction feature in the Pin Planner to specify details
about the design I/O interfaces.

The Pin Planner interfaces with the MegaWizard® Plug-In Manager, and
allows you to create or import custom megafunctions and IP cores that
use I/O interfaces. Configure the way in which they are connected to
each other by specifying matching node names for selected ports in the
Set Up Top-Level Design File dialog box. Make any other I/O-related
assignments for these interfaces or other design I/O pins in the Pin
Planner.

When you have entered as much information as possible, generate a
top-level design netlist file using the Create Top-Level Design File
command. The Pin Planner creates virtual pin assignments for internal
nodes, so internal nodes will not be assigned to device pins during
compilation. Use the generated netlist to perform I/O Analysis with the
Start I/O Assignment Analysis command.

You can use the I/O analysis results to change pin assignments or IP
parameters and repeat the checking process until the I/O interface meets
your design requirements and passes the pin checks in the Quartus II
software. When this initial pin planning is complete, you can create a
Quartus II Revision based on the Quartus II-generated netlist. You then
have a choice for how to proceed: you can use the generated netlist to
develop the top-level file for the actual design, or disregard the generated
netlist and use the generated Quartus II Settings File (.qsf) with the actual
design.

Altera Corporation 1–9
October 2007

Design Planning with the Quartus II Software

Selecting Third-
Party EDA Tool
Flows

Your complete FPGA design flow may include third-party EDA tools in
addition to the Quartus II software. Determine which tools you want to
use with the Quartus II software to ensure that they are supported and set
up correctly, and that you are aware of any useful features or undesired
limitations.

Synthesis Tools

You can synthesize your design using the Quartus II software’s
integrated synthesis tool or your preferred third-party synthesis tool.
Different synthesis tools may give different results. If you want to select
the best-performing tool for your application, you can experiment by
synthesizing typical designs for your application and coding style and
comparing the results. Be sure to perform placement and routing in the
Quartus II software to get accurate timing analysis and logic utilization
results. Results from synthesis are estimates before place-and-route and
do not include logic that is treated as a black box for synthesis (such as
megafunctions or Altera IP cores in some synthesis tools). In addition,
these estimates do not take into account logic usage reduction achieved
in the Quartus II Fitter through register packing or other Quartus II
optimizations, such as Physical Synthesis, that may change both timing
and resource utilization results.

Altera recommends that you use the most recent version of third-party
synthesis tools, because tool vendors are continuously adding new
features, fixing tool issues, and enhancing performance for Altera
devices. The Quartus II Release Notes lists the version of each synthesis tool
that is officially supported by that version of the Quartus II software.

Specify your synthesis tool in the New Project Wizard or the EDA Tools
Settings page of the Settings dialog box to use the correct Library
Mapping File for your synthesis netlist.

Synthesis tools may offer the capability to create a Quartus II project and
pass constraints such as the EDA tool setting, device selection, and timing
requirements that you specified in your synthesis project. You can use
this capability to save time when setting up your Quartus II project for
placement and routing.

If you want to take advantage of an incremental compilation
methodology, you should partition your design for synthesis and
generate multiple output netlist files. Refer to “Incremental Compilation
with Design Partitions” on page 1–14 for more information.

f For more information about synthesis tool flows, refer to the appropriate
chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

1–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Simulation Tools

You can use the built-in Quartus II Simulator to perform quick and easy
functional and timing simulations. Altera also provides the
ModelSim-Altera simulator with Quartus II license subscriptions, which
allows you to take advantage of advanced testbench capabilities and
other features. In addition, the Quartus II software can generate timing
netlist files to support other third-party simulation tools.

If you use a third-party simulation tool, ensure that you use the software
version that is supported with your Quartus II version. The Quartus II
Release Notes list the version of each simulation tool that is officially
supported with that particular version of the Quartus II software. Also
ensure that you use the model libraries provided with your Quartus II
software version. Libraries can change between versions, which might
cause a mismatch with your simulation netlist.

Specify your simulation tool in the EDA Tools Settings page of the
Settings dialog box to generate the appropriate output simulation netlist.

f For more information about simulation tool flows, refer to the
appropriate chapter in the Simulation section in volume 3 of the
Quartus II Handbook.

Formal Verification Tools

The Quartus II software supports some formal verification flows.
Consider whether your desired formal verification flow impacts the
design and compilation stages of your design.

Using a formal verification flow can impact performance results because
it requires that certain logic optimizations be turned off, such as register
retiming, and forces hierarchy blocks to be preserved, which can restrict
optimization. Formal verification treats memory blocks as black boxes.
Therefore, it is best to keep memory in a separate hierarchy block so that
other logic does not get incorporated into the black box for verification.
There are other restrictions that may also limit your design, so consult the
documentation for details. If formal verification is important to your
design, it is easier to plan for limitations and restrictions in the beginning
than to make changes later in the design flow.

Specify your formal verification tool in the EDA Tools Settings page of
the Settings dialog box to generate the appropriate output netlist.

f For more information about formal verification flows, refer to the
appropriate chapter in the Formal Verification section in volume 3 of the
Quartus II Handbook.

Altera Corporation 1–11
October 2007

Design Planning with the Quartus II Software

Planning for
On-Chip
Debugging
Options

Altera’s in-system debugging tools offer different advantages and
trade-offs, so different debugging tools may work better for different
systems and different designers. It is beneficial to evaluate on-chip
debugging options early in your design process, to ensure that your
system board, Quartus II project, and design are all set up to support the
appropriate options. Planning can reduce time spent during debugging
and eliminate the need to make changes later to accommodate your
preferred debugging methodologies.

The Quartus II portfolio of verification tools includes the following
in-system debugging features:

■ SignalProbe incremental routing—This feature makes design
verification more efficient by quickly routing internal signals to I/O
pins without affecting the design. Starting with a fully routed design,
you can select and route signals for debugging to either previously
reserved or currently unused I/O pins.

■ SignalTap® II Embedded Logic Analyzer—This logic analyzer helps
you debug an FPGA design by probing the state of the internal
signals in the design without the use of external equipment or extra
I/O pins, while the design is running at full speed in an FPGA
device. Defining custom trigger-condition logic provides greater
accuracy and improves the ability to isolate problems. The SignalTap
II Embedded Logic Analyzer does not require external probes or
changes to the design files to capture the state of the internal nodes
or I/O pins in the design; all captured signal data is conveniently
stored in device memory until you are ready to read and analyze the
data.

■ Logic Analyzer Interface—This interface enables you to connect and
transmit internal FPGA signals to an external logic analyzer for
analysis. You can use this feature to connect a large set of internal
device signals to a small number of output pins for debugging
purposes, and allows you to take advantage of advanced features in
your external logic analyzer or mixed signal oscilloscope.

■ In-System Memory Content Editor—This feature provides read and
write access to in-system FPGA memories and constants through the
JTAG interface, making it easy to test changes to memory contents
and constant values in the FPGA while the device is functioning in a
system.

■ In-System Sources and Probes—This feature sets up customized
register chains to drive or sample the instrumented nodes in your
logic design, providing an easy way to input simple virtual stimuli
and an easy way to capture the current value of instrumented nodes.
You can force trigger conditions set up using the SignalTap II Logic
Analyzer, create simple test vectors to exercise your design without
the use of external test equipment, and dynamically control run-time
control signals with the JTAG chain.

1–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

■ Virtual JTAG Megafunction—The sld_virtual_jtag megafunction
allows you to build your own system-level debugging infrastructure,
including both processor-based debugging solutions and debugging
tools in software for system-level debugging. The sld_virtual_jtag
megafunction can be instantiated directly in your HDL code to
provide one or more transparent communication channels to access
parts of your FPGA design using the JTAG interface of the device.

f For more information about debugging tools, refer to “Referenced
Documents” on page 1–20.

If you intend to use any of these features, you may have to plan for the
features when developing your system board, Quartus II project, and
design. The following paragraphs describe various factors to consider
during your design planning stages.

The SignalTap II Embedded Logic Analyzer, Logic Analyzer Interface, In-
System Memory Content Editor, In-System Sources and Probes, and
Virtual JTAG Megafunction all require JTAG connections to perform in-
system debugging. Plan your system and board with JTAG ports that are
available for debugging.

The JTAG debugging features also require a small amount of additional
logic resources to implement the JTAG hub logic. If you set up the
appropriate feature early in your design cycle, you can include these
device resources in your early resource estimations to ensure you do not
over-fill the device with logic.

The SignalTap II Embedded Logic Analyzer uses device memory to
capture data during system operation. Consider reserving device
memory to be used during debugging, to ensure that you have enough
memory resources to take advantage of this debugging technique.

To use incremental debugging with the SignalTap II Embedded Logic
Analyzer, the Full incremental compilation option must be turned on.
This option is on by default for projects created in the Quartus II software
version 6.1 or later, but is not turned on automatically for existing
projects. If incremental compilation is not enabled, you must recompile
the entire design when you want to add debugging functions, or when
you make certain changes to SignalTap II settings. Using incremental
compilation with the SignalTap II Embedded Logic Analyzer greatly
reduces the compilation time required for debugging.

SignalProbe and the Logic Analyzer Interface require I/O pins for
debugging. Consider reserving I/O pins for debugging so that you do not
have to change the design or board to accommodate debugging signals
later. Keep in mind that the Logic Analyzer Interface can multiplex

Altera Corporation 1–13
October 2007

Design Planning with the Quartus II Software

signals with design I/O pins if required. Ensure that your board supports
some kind of debugging mode, where debugging signals do not affect
system operation.

If you want to use the Virtual JTAG megafunction for custom debugging
applications, you must instantiate it and incorporate it as part of the
design process.

The In-System Sources and Probes feature also requires that you
instantiate a megafunction in your HDL code. In addition, you have the
option to instantiate the SignalTap II Embedded Logic Analyzer as a
megafunction so that you can connect it up to nodes in your design
manually and ensure that the tapped node names are not changed during
synthesis. You can add the debugging block as a separate design partition
for incremental compilation to minimize recompilation times.

To use the In-System Memory Content Editor for RAM or ROM blocks or
the LPM_CONSTANT megafunction, ensure that you turn on the option
Allow In-System Memory Content Editor to capture and update
content independently of the system clock when you create the memory
block in the MegaWizard Plug-In Manager.

Planning for an
Incremental
Compilation
Flow

If you want to take advantage of the compilation-time savings and
performance preservation of Quartus II incremental compilation, plan for
an incremental compilation flow from the beginning of your design cycle.
The following subsections describe the flat compilation flow, where the
design hierarchy is flattened without design partitions, and then the
incremental compilation flows that use design partitions in top-down,
bottom-up, or mixed design methodologies. Incremental compilation
flows offer several advantages but require more design planning to
ensure good quality of results. The last subsections discuss factors to
consider when planning an incremental compilation flow: planning
design partitions and creating a design floorplan.

f For details about using the incremental compilation flows in the
Quartus II software, as well as important guidelines for creating design
partitions and a design floorplan, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook.

Flat Compilation Flow with No Design Partitions

In this compilation flow in the Quartus II software, the entire design is
compiled together in a “flat” netlist. This flow is used if you do not create
any design partitions. Your source code can have hierarchy, but the
design is flattened during compilation and all of the design source code

1–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

is synthesized and fit in the target device whenever the design is
recompiled after any change in the design. By processing the entire
design, the software performs all available logic and placement
optimizations on the entire design to improve area and performance. You
can use debugging tools incrementally, such as the SignalTap II Logic
Analyzer, but you do not specify any design partitions to preserve design
hierarchy during compilation.

The flat compilation flow is easy to use; you do not have to plan any
design partitions. However, because the entire design is recompiled
whenever there are any changes to the design, compilation times can be
relatively long for large devices. In addition, you may find that the results
for one part of the design change when you change a different part of
your design.

1 The full incremental compilation option is turned on by default
in the Quartus II software (beginning with version 6.1), so the
project is ready for you to create design partitions for
incremental compilation. If you do not create any lower-level
design partitions, the entire design is considered as a single
design partition, and the software uses a flat compilation flow.

Incremental Compilation with Design Partitions

In an incremental compilation flow, the system architect splits a large
design into smaller partitions which can be designed separately. Team
members can work on partitions independently, which can simplify the
design process and reduce compilation time.

When hierarchical design partitions are well chosen and placed in the
device floorplan, you can speed up your design compilation time while
maintaining or even improving the quality of results.

You may want to use incremental compilation later in the design cycle
when you are not interested in improving the majority of the design any
further, and want to make changes to, or optimize, one specific block. In
this case, you may want to preserve the performance of modules that are
unmodified and reduce compilation time on subsequent iterations.

Incremental compilation may also be useful for both reducing
compilation time and achieving timing closure. For example, you may
want to specify which partitions should be preserved in subsequent
incremental compilations and then recompile the other partitions with
advanced optimizations turned on.

Altera Corporation 1–15
October 2007

Design Planning with the Quartus II Software

If a part of your design is not yet complete, you can create an empty
partition for the incomplete part of the design while compiling the
completed partitions. Then save the results for the complete partitions
while you work on the new part of the design.

Alternately, different designers or IP providers may be working on
different blocks of the design using a team-based methodology, and you
may want to combine these blocks in a bottom-up compilation flow.

In an incremental compilation flow, after you partition the design, the
software performs logic synthesis and technology mapping for each
partition individually. The Analysis and Synthesis stage reads the project
assignments to determine the partition boundaries. If any part of the
design changes, Analysis and Synthesis processes the changed partitions
and keeps the existing netlist for the unchanged partitions.

If you use a third-party synthesis tool, you should create separate VQM
or EDIF netlists for each design partition in your synthesis tool. You may
have to create separate projects within your synthesis tool so that the tool
synthesizes each partition separately and generates separate output
netlist files. Refer to your synthesis tool documentation for information
about support for Quartus II incremental compilation. The netlists are
then considered the “source files” for incremental compilation. After
completion of the Quartus II Analysis and Synthesis step, each partition
has one post-synthesis netlist.

The Quartus II Partition Merge step creates a complete netlist that
consists of post-synthesis netlists, post-fitting netlists, or both, or netlists
imported from lower-level projects, depending on the netlist type you
specify for each partition. The Fitter then processes the merged netlist,
preserving the placement or placement and routing of unchanged
partitions, and refitting only those partitions that have changed.

Top-Down Versus Bottom-Up Incremental Flows

The Quartus II incremental compilation feature supports both top-down
and bottom-up compilation flows that are suitable for different design
methodologies. You can also combine these flows in a mixed compilation
flow. The following subsections briefly describe each of these compilation
flows so that you can choose the flow that best meets your design needs.

Top-Down Incremental Compilation Flow

With top-down compilation, one designer or project lead compiles the
entire design in the software. Different designers or IP providers can
design and verify different parts of the design, and the project lead can
add design entities to the project as they are completed. You can also

1–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

target optimizations on one part of the design while designating the rest
of the design as “empty.” Regardless of the source for all the design logic,
the project lead compiles and optimizes the top-level project as a whole.

Incremental compilation preserves the compilation results and
performance of unchanged partitions in your design, greatly reducing
design iteration time by focusing new compilations only on changed
design partitions. New compilation results are then merged with the
previous compilation results from unchanged design partitions.
Additionally, you can target optimization techniques, such as physical
synthesis, to specific design partitions while leaving other partitions
untouched. You can also use this flow with empty partitions if parts of
your design are incomplete or missing.

Bottom-Up and Team-Based Incremental Compilation Flow

Bottom-up design flows allow individual designers to complete the
optimization of their design in separate projects and then integrate each
lower-level project into one top-level project. Bottom-up methodologies
include team-based design flows in which design partitions are created
by team members in another location or by third-party IP providers.

Incremental compilation provides export and import features to enable
bottom-up design methodologies. Designers of lower-level blocks can
export the optimized netlist for their design, along with a set of
assignments, such as LogicLock™ regions. The system architect then
imports each design block as a design partition in a top-level project.

In bottom-up design flows, it is very important that the system architect
provide guidance to designers of lower-level blocks to ensure that each
partition uses the appropriate device resources. Because the designs are
developed independently, each lower-level designer has no information
about the overall design or how their partition connects with other
partitions. This lack of information can lead to problems during system
integration. The top-level project information, including pin locations,
physical constraints, and timing requirements, should be communicated
to the designers of lower-level partitions before they start their design.

The system architect can plan design partitions at the top level and use
Quartus II incremental compilation to communicate information to
lower-level designers through automatically-generated scripts. The
Quartus II option Generate bottom-up design partition scripts
automates the process of transferring top-level project information to
lower-level modules. The software provides a project manager interface
for managing project information in the top-level design.

Altera Corporation 1–17
October 2007

Design Planning with the Quartus II Software

The scripts can create Quartus II projects for all the lower-level design
blocks and pass all the relevant project assignments. Using these scripts
makes it easier for designers of lower-level modules to implement the
instructions from the project lead, and avoid conflicts between projects
when importing and incorporating the projects into the top-level design.
Using this methodology helps reduce the need to further optimize the
designs after integration and improves overall designer productivity and
team collaboration.

Mixed Incremental Compilation Flow

You can combine top-down and bottom-up compilation flows to take
advantage of top-down flows for part of your design, while importing
parts of the design that are developed independently.

The top-down flow is generally simpler to perform than its bottom-up
counterpart. For example, the need to export and import lower-level
designs is eliminated. A top-down approach also provides the design
software with information about the entire design, so it can perform
global placement optimizations when no part of the design is locked
down to a specific location.

In a bottom-up design methodology, you must perform very careful
resource balancing and time-budgeting, because the software does not
have any information about the other partitions in the top-level design
when it compiles individual lower-level partitions. Using bottom-up
compilation flows where required, in combination with top-down
compilation flows to reduce compilation time and preserve results for
other parts of the design, can be an effective way to improve your
productivity.

Planning Design Partitions

Partitioning a design for an FPGA requires planning to ensure optimal
results when the partitions are integrated, and ensure that each partition
is placed well relative to other partitions in the device. Following Altera’s
recommendations for creating design partitions improves the overall
quality of results. For example, registering partition I/O boundaries
keeps critical timing paths inside one partition that can be optimized
independently. When the design partitions are specified, you can use the
Incremental Compilation Advisor to ensure that partitions meet Altera’s
recommendations.

Determining a timing budget before designers develop their individual
blocks reduces the chance of timing problems during system integration.
If you optimize lower-level partitions separately, any unregistered paths
that cross between partitions are not optimized as an entire path. To

1–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

ensure that the software correctly optimizes the input and output logic in
each partition, you may be required to perform some manual timing
budgeting. For each unregistered timing path that crosses between
partitions, you should make timing assignments on the corresponding
I/O path in each partition to constrain both ends of the path to the
budgeted timing delay. Assigning a timing budget for each part of the
connection ensures that the software optimizes paths appropriately so
they meet the top-level design requirements.

It is important to plan and balance resource utilization. When performing
incremental compilation, the software synthesizes each partition
separately, with no data about the resources used in other partitions.
Therefore, device resources can be overused in the individual partitions
during synthesis, and the design may not fit in the target device when the
partitions are merged.

In a bottom-up design flow in which designers optimize their lower-level
designs and export them to a top-level design, the software also places
and routes each partition separately. In some cases, partitions can use
conflicting resources when combined at the top level. Balancing resource
utilization between the design partitions avoids any problems with
conflicting resources when all the partitions are integrated.

Creating a Design Floorplan

To take full advantage of incremental compilation, you should create a
design floorplan to avoid conflicts between design partitions, and to
ensure that each partition is placed well relative to other partitions.
Creating location assignments for each partition ensures that no conflicts
occur for locations between different partitions. In addition, a design
floorplan helps to avoid a situation in which the Fitter is directed to place
or replace a portion of the design in an area of the device where most
resources have already been claimed. Without floorplan assignments,
this situation can lead to increased compilation time and reduced quality
of results.

You can use the Quartus II Timing Closure Floorplan or Chip Planner,
depending on your target device, to create a design floorplan using
LogicLock region assignments for each design partition. With a basic
design framework for the top-level design, these floorplan editors allow
you to view connections between regions, estimate physical timing
delays on the chip, and move regions around the device floorplan. When
you have compiled the full design, you can also view logic placement and
locate areas of routing congestion to improve the floorplan assignments.

Altera Corporation 1–19
October 2007

Design Planning with the Quartus II Software

Good partition and floorplan design helps lower-level designs meet top-
level design requirements when integrated with the rest of the design,
reducing the time spent integrating and verifying the timing of the top-
level design.

f For details about creating placement assignments in the design
floorplan, refer to the Analyzing and Optimizing the Design Floorplan
chapter in volume 2 of the Quartus II Handbook.

Early Timing
Estimation

It is much less costly to find design issues early in the design cycle than
to find problems in the final timing closure stages. Once the first version
of the design source code is complete, you may want to perform a quick
compilation to create a kind of silicon virtual prototype, or SVP, that you
can use to perform timing analysis.

Regardless of your compilation flow, when the design source code is
complete you can use the Start Early Timing Estimate option to perform
a quick compilation and timing analysis of your design. The software
chooses a device automatically if required, places any LogicLock regions
used to create a floorplan, finds a quick initial placement for all the design
logic, and provides a useful estimate of the final design performance. If
you have entered timing constraints, timing analysis reports on these
constraints.

1 Early Timing Estimation is supported with both the TimeQuest
and Classic Timing Analyzers. Use the TimeQuest Timing
Analyzer with Synopsys Design Constraint (SDC) format
constraints to enable advanced timing analysis capabilities that
are not available in the Classic Timing Analyzer.

Designers of individual blocks in bottom-up design flows can use this
feature as they develop the design. Any issues the feature highlights in
the lower level design blocks can be communicated to the system
architect. Resolving these issues may require allocating additional device
resources to the individual block or changing its timing budget.

A top-level designer can also use early timing estimation to prototype the
entire design. Incomplete partitions can be marked as empty in an
incremental compilation flow, while the rest of the design is compiled to
get an early timing estimate and detect any problems with design
integration.

A system architect can use early timing estimation along with design
partition scripts (as described in “Bottom-Up and Team-Based
Incremental Compilation Flow” on page 1–16) to pass additional
constraints to lower-level designers, and provide more information about

1–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

the other partitions in the design. This information can be especially
useful to optimize cross-partition paths. Running early timing
estimations helps designers find and resolve design problems during the
early design stages.

Conclusion Modern FPGAs support large, complex designs with fast timing
performance. By planning several aspects of your design early in the
process, you can reduce unnecessary time spent handling issues in later
stages of the process. You can use various features of the Quartus II
software to quickly plan your design and achieve the best possible
results. Choosing the correct device and programming method, planning
I/O pin locations, estimating power consumption, selecting appropriate
third-party tools, planning for debugging options, performing good
design partitioning, and obtaining early timing estimates all improve
productivity, which reduces the design cost and improves the final
product’s time to market.

Referenced
Documents

This chapter references the following documents:

■ AN 386: Using the MAX II Parallel Flash Loader with the Quartus II
Software

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of
the Quartus II Handbook

■ Cadence PCB Design Tools chapter in volume 2 of the Quartus II
Handbook

■ Configuration Handbook
■ Design Debugging Using the SignalTap II Embedded Logic Analyzer

chapter in volume 3 of the Quartus II Handbook
■ Design Debugging Using In-System Sources and Probes chapter in

volume 3 of the Quartus II Handbook
■ Formal Verification section in volume 3 of the Quartus II Handbook
■ I/O Management chapter in volume 2 of the Quartus II Handbook
■ In-System Debugging Using External Logic Analyzers chapter in

volume 3 of the Quartus II Handbook
■ In-System Updating of Memory and Constants chapter in volume 3 of

the Quartus II Handbook
■ Introduction to Quartus II Manual
■ Mentor Graphics PCB Design Tools Support chapter in volume 2 of the

Quartus II Handbook
■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II

Handbook
■ Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Quick Design Debugging Using SignalProbe chapter in volume 3 of the

Quartus II Handbook
■ Simulation section in volume 3 of the Quartus II Handbook

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www/literature/hb/qts/qts_qii52015.pdf
http://www/literature/hb/qts/qts_qii52014.pdf
http://www/literature/hb/qts/qts_qii53021.pdf
http://www.altera.com/literature/an/an386.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www/literature/hb/qts/qts_qii5v3_06.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53012.pdf

Altera Corporation 1–21
October 2007

Design Planning with the Quartus II Software

■ sld_virtual_jtag Megafunction User Guide
■ Synthesis section in volume 1 of the Quartus II Handbook

Document
Revision History

Table 1–1 shows the revision history for this chapter.

Table 1–1. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 1–20. Updated for the Quartus II
7.2 software release.

May 2007 v7.1.0 Updated for the Quartus II 7.1 software release, including:
● Expanded Introduction, Device Migration Planning, and

Early Pin Planning and Analysis sections.
● Added new sections: Selecting Third-Party EDA Tool Flows

and Planning for Debug Options.
● Other minor changes and reorganization.
● Added Referenced Documents.

Updated for the Quartus II
7.1 software release and
expanded topic coverage.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No
other changes made to chapter.

—

November 2006
v6.1.0

Initial release. —

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/ug/ug_virtualjtag.pdf

1–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Altera Corporation 2–1
October 2007 Preliminary

2. Quartus II Incremental
Compilation for Hierarchical

and Team-Based Design

Introduction For today’s high-density, high-performance FPGA designs, the ability to
iterate rapidly during the design and debugging stages is critical. The
Quartus® II software delivers advanced technology to create designs for
high-density FPGAs. Altera® introduced the FPGA industry’s first true
incremental design and compilation flow, which provides the following
benefits:

■ Preserves the results and performance for unchanged logic in your
design as you make changes elsewhere.

■ Reduces design iteration time by up to 70%, so you can perform more
design iterations per day and achieve timing closure efficiently.

■ Easy to use in the graphical user interface (GUI).
■ Includes Tcl scripting, command-line, and makefile support.
■ Facilitates modular hierarchical and team-based design flows using

top-down or bottom-up methodologies.
■ Supports the Arria™ GX devices, and Stratix® and Cyclone® series of

devices. Supports some incremental compilation flows for
HardCopy® II devices (for details, refer to “HardCopy Compilation
Flows” on page 2–82).

Quartus II incremental compilation is an optional compilation flow.
“Choosing a Quartus II Compilation Flow” on page 2–3 provides an
overview of the Quartus II design flow with and without incremental
compilation to help you decide if you should take advantage of this
feature for your project. The remainder of the chapter includes the
following sections:

■ “Quick Start Guide – Summary of Steps for an Incremental
Compilation Flow” on page 2–11

■ “Design Partitions” on page 2–17
■ “Creating Design Partitions” on page 2–19
■ “Setting the Netlist Type for Design Partitions” on page 2–22
■ “Creating a Design Floorplan With LogicLock Location

Assignments” on page 2–29
■ “Exporting and Importing Partitions for Bottom-Up Design Flows”

on page 2–32
■ “Guidelines for Creating Good Design Partitions and LogicLock

Regions” on page 2–46
■ “Recommended Design Flows and Compilation Application

Examples” on page 2–62
■ “Incremental Compilation Restrictions” on page 2–76

QII51015-7.2.0

2–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

■ “Scripting Support” on page 2–99
■ “Conclusion” on page 2–109

To take advantage of incremental compilation, you organize your design
into logical partitions and physical regions for synthesis and fitting (or
placement and routing). Incremental compilation preserves the
compilation results and performance of unchanged partitions in your
design, dramatically reducing design iteration time by focusing new
compilations only on changed design partitions. New compilation results
are then merged with the previous compilation results from unchanged
design partitions. Additionally, you can target optimization techniques,
such as physical synthesis, to specific design partitions while leaving
other partitions untouched.

Incremental compilation supports two design methodologies: top-down,
in which one designer manages a single project for the entire design, and
bottom-up, in which each design block can be developed independently.
Bottom-up methodologies include team-based design flows in which
design partitions are created by team members in another location or by
third-party intellectual property (IP) providers. For bottom-up flows, you
can generate scripts from the top-level design that pass constraints to
lower-level design blocks compiled in separate Quartus II projects.

This chapter contains information to satisfy the following goals:

■ Provide an overview of the Quartus II compilation flow and help
you decide whether to use incremental compilation

■ Describe how to use the Quartus II incremental compilation feature
with a quick start guide and then more detailed information

■ Provide you with the level of understanding required to make good
design decisions to achieve timing closure while speeding up design
iterations

■ Present several recommended design flows for incremental
compilation in the form of examples, along with the rationale behind
them and the steps required to carry out the tasks:
● “Design Flow 1—Changing a Source File for One of Multiple

Partitions in a Top-Down Compilation Flow” on page 2–62
● “Design Flow 2—Optimizing the Placement for One of Multiple

Partitions in a Top-Down Compilation Flow” on page 2–63
● “Design Flow 3—Preserving One Critical Partition in a

Multiple-Partition Design in a Top-Down Compilation Flow” on
page 2–64

● “Design Flow 4—Placing All but One Critical Partition in a
Multiple-Partition Design in a Top-Down Compilation Flow” on
page 2–65

● “Design Flow 5—Implementing a Team-Based Bottom-Up
Design Flow” on page 2–67

Altera Corporation 2–3
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

● “Design Flow 6—Performing Design Iteration in a Bottom-Up
Design Flow” on page 2–71

● “Design Flow 7—Creating Hard-Wired Macros for IP Reuse” on
page 2–73

Choosing a
Quartus II
Compilation
Flow

Quartus II incremental compilation enhances the standard Quartus II
design flow by allowing you to reuse satisfactory results from previous
compilations and save compilation time. This section outlines the flat
compilation flow with no design partitions and the incremental flow, and
explains the differences. The section explains when a flat compilation
flow is satisfactory, and highlights some of the reasons you might want
to create design partitions and use the incremental flow.

The full incremental compilation option is turned on by default in the
Quartus II software, so the project is ready for you to create design
partitions for incremental compilation. If you do not create any design
partitions, the software uses a flat compilation flow.

Flat Compilation Flow with No Design Partitions

The standard Quartus II compilation flow consists of the following
essential modules:

■ Analysis and Synthesis—performs logic synthesis to minimize the
design logic and performs technology mapping to implement the
design logic using device resources such as logic elements. This stage
also generates the project database that integrates the design files
(including netlists from third-party synthesis tools). When you are
using EDIF or VQM netlists created by third-party synthesis tools,
the Analysis and Synthesis stage performs logic synthesis and
technology mapping only for black boxes and Altera megafunctions.

■ Fitter—places and routes the logic of a design into a device.
■ Assembler—converts the Fitter’s device, logic, and pin assignments

into programming files for the device.
■ Timing Analyzer—analyzes and validates the timing performance

of all the logic in a design.

2–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 2–1 shows a block diagram of the Quartus II design flow with no
design partitions.

Figure 2–1. Quartus II Design Flow with No Design Partitions

Note to Figure 2–1:
(1) When you are using EDIF or VQM netlists created by third-party EDA synthesis

tools, the Analysis and Synthesis stage of the compilation is performed to create
the design database, but logic synthesis and technology mapping are performed
only for black boxes and Altera megafunctions.

In any Quartus II compilation flow, you can use smart compilation to
allow the compiler to determine which compiler modules are required
based on the changes made to the design since the last smart compilation,
and then skip any modules that are not required. For example, when
smart compilation is selected, the compiler skips the Analysis & Synthesis
module if the design source files were unchanged. Smart compilation
skips only entire compiler stages. It cannot make incremental changes

Fitter
Place-and-Route

Verilog
HDL
(.v)

VHDL
(.vhd)

AHDL
(.tdf)

 Block
Design

File
(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Analysis & Synthesis
Settings &

Assignments

Post-Fit
Netlist

Post-Synthesis
Netlist

Assembler

Settings &
Assignments

Make Design & Assignment
Modifications

Timing Analyzer

Requirements
Satisfied?

Yes

No

Program/Configure Device

(1)

Altera Corporation 2–5
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

within a given stage of the compilation flow. To turn on smart
compilation, on the Assignments menu, click Settings. In the Category
list, select Compilation Process Settings and click Use Smart
Compilation.

In the default flat compilation flow, all of the source code is processed
with the Analysis & Synthesis module, and all the logic is placed by the
Fitter module whenever the design is recompiled after a change in any
part of the design. One reason for this behavior is to obtain optimal
quality of results. By processing the entire design, the compiler can
perform global optimizations to improve area and performance.

You can use a flat compilation flow for small designs, such as designs in
CLPD devices or low-density FPGA devices, when the timing
requirements are met easily with a push-button compilation. A flat
design is satisfactory when compilation time and preserving results for
timing closure are not concerns.

Incremental Compilation Flow with Design Partitions

There are many situations in which an incremental compilation flow is
more desirable than the simple flat compilation flow. Using an
incremental flow allows you to preserve the results and performance for
unchanged logic in your design as you make changes elsewhere. It
reduces design iteration time by up to 70%, allowing you to perform more
design iterations per day and achieve timing closure more efficiently.
Incremental compilation is recommended for large designs and high
device densities, as well as designs that require high performance relative
to the speed of the device architecture. The feature also facilitates
team-based design environments, allowing designers to create and
optimize design blocks independently.

In conventional FPGA design, as described in the previous section, a
hierarchical design is flattened into a single netlist before logic synthesis
and fitting, and the entire design is recompiled every time the design
changes. To use the Quartus II incremental compilation flow, you start by
splitting your design along any of its hierarchical boundaries into blocks
called design partitions. Refer to “Design Partitions” on page 2–17 for
more details. The Quartus II software synthesizes each individual
hierarchical design partition separately, then merges the partitions into a
complete netlist for subsequent stages of the compilation flow. When
recompiling the design, you can choose to use source code, post-synthesis
results, or post-fitting results for each partition. If you want to preserve
the Fitter results, you can choose to keep just the Fitter netlist, keep the
placement results, or keep both the placement and routing results.

2–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

You may want to use incremental compilation later in the design cycle
when you are not interested in improving the majority of the design any
further, and want to make changes to or optimize one specific block. In
this case, you may want to preserve the performance of modules that are
unmodified and to reduce compilation time on subsequent iterations.
There are also situations in which incremental compilation is useful both
for reducing compilation time and for achieving timing closure. For
example, you may want to specify which partitions should be preserved
in subsequent incremental compilations, and then recompile the other
partitions with advanced optimizations turned on.

You might also have part of your design that is not yet complete, for
which you can create an empty partition while compiling the completed
partitions, and then save the results for the complete partitions while you
work on the new part of the design. Alternatively, different designers or
IP providers may be working on different blocks of the design using a
team-based methodology, and you might want to combine them in a
bottom-up compilation flow. In these cases, the Fitter can perform
placement and routing on each partition independently.

If you want to use the incremental compilation feature at any point in
your design flow, it is beneficial to start planning for incremental
compilation from the start of your design development. It is easier to
accommodate the guidelines for partitioning and creating a floorplan if
you start planning at the beginning of your design cycle. Refer to
“Guidelines for Creating Good Design Partitions and LogicLock
Regions” on page 2–46 for more information. For more detailed examples
that describe recommended design flows to take advantage of the
incremental compilation features, refer to “Recommended Design Flows
and Compilation Application Examples” on page 2–62.

Altera Corporation 2–7
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Figure 2–2 shows a block diagram of the Quartus II design flow using
incremental compilation with design partitions.

Figure 2–2. Quartus II Design Flow Using Incremental Compilation

Note to Figure 2–2:
(1) When you are using EDIF or VQM netlists created by third-party EDA synthesis

tools, the Analysis and Synthesis stage of the compilation is performed to create
the design database, but logic synthesis and technology mapping are performed
only for black boxes and Altera megafunctions.

Verilog
HDL
(.v)

VHDL
(.vhd)

AHDL
(.tdf)

Block
Design File

(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Analysis & Synthesis
Synthesize Changed Partitions,

Preserve Others

Partition Merge
Create Complete Netlist Using Appropriate Source Netlists for Each

Partition (Post-Fit, Post-Synthesis, or Imported Netlist)

Single Netlist for
Complete Design

One Post-Fit
Netlist per
Partition

One Post-Synthesis
Netlist per Partition

Single Post-Fit
Netlist for
Complete Design

Fitter
Place-and-Route Changed Partitions,

Preserve Others

Create Individual Netlists and
Complete Netlists

Assembler

Settings &
Assignments

Make Design &
Assignment Modifications

Settings &
Assignments

Design Partition
Assignments

Floorplan
Location

Assignments

Timing Analyzer

Requirements
Satisfied?

Yes

No

Program/Configure Device

Partition Top

Partition 1

Partition 2

(1)

2–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

In this flow, Analysis and Synthesis reads the project assignments to
determine the partition boundaries, and performs logic synthesis and
technology mapping for each partition individually.

The diagram in Figure 2–2 shows a top-level partition and two
lower-level partitions. If any part of the design changes, Analysis and
Synthesis processes the changed partitions and keeps the existing netlists
for the unchanged partitions. After completion of Analysis and Synthesis,
there is one post-synthesis netlist for each partition.

The partition merge step creates a single, complete netlist that consists of
post-synthesis netlists, post-fit netlists, and netlists imported from
lower-level projects, depending on the netlist type you specify for each
partition.

The Fitter then processes the merged netlist, preserving the placement or
placement and routing of unchanged partitions, refitting only those
partitions that have changed. The Fitter generates the complete netlist for
use in further stages of the compilation flow, including timing analysis
and programming file generation. It also generates individual netlists for
each partition so that the partition merge step can use the post-fit netlist
to preserve the placement and routing of a partition if you specify to do
so in future compilations.

If the design does not meet its requirements (functionality, timing, or
area), you can make changes to the design and recompile. The Quartus II
software does not resynthesize or refit unchanged partitions that have a
netlist type assignment that specifies the use of a post-synthesis or post-fit
netlist, respectively.

For more information about using the incremental compilation feature,
refer to the “Quick Start Guide – Summary of Steps for an Incremental
Compilation Flow” on page 2–11.

See Table 2–1 for a summary of the impact of incremental compilation on
your compilation results.

Table 2–1. Summary of the Impact of Full Incremental Compilation (Part 1 of 2)

Characteristic Impact of Full Incremental Compilation

Compilation Time
Savings

Typically saves 50-70% of compilation time when post-fit netlists are preserved; savings in
both Quartus II integrated synthesis and the Fitter.

Performance
Preservation

Excellent when critical paths are contained within a partition, because you can preserve
post-fitting information for unchanged partitions.

Node Name
Preservation

Preserves post-fitting node names for unchanged partitions.

Altera Corporation 2–9
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Top-Down versus Bottom-Up Compilation Flows

The Quartus II incremental compilation feature supports both top-down
and bottom-up compilation flows. With top-down compilation, one
designer or project lead compiles the entire design in the software.
Different designers or IP providers can design and verify different parts
of the design, and the project lead can add design entities to the project as
they are completed. You can use a top-down flow to optimize one block
or IP core in which timing is critical before adding the rest of the design.
However, one person (generally the project lead or system architect)
compiles the top-level project as a whole. Completed parts of the design
can have fitting results and performance fixed as other parts of the design
are changing.

Bottom-up design flows allow individual designers or IP providers to
complete the optimization of their design in separate projects and then
integrate each lower-level project into one top-level project. Incremental
compilation provides export and import features to enable this design
methodology. Designers of lower-level blocks can export the optimized
placed and routed netlist for their design, along with a set of assignments
such as LogicLock™ regions. The project lead then imports each design
block as a design partition in a top-level project.

Area Changes Area might increase because cross-boundary optimizations are no longer possible, and
placement and register packing are restricted.

fM A X Changes fM A X might be reduced because cross-boundary optimizations are no longer possible. If the
design is partitioned and the floorplan location assignments are created appropriately, no
negative impact on fM A X.

Floorplan
Creation

Required for critical partitions to ensure the best quality of results when making design
changes. Required in bottom-up flows to avoid placement conflicts.

When Design is
Resynthesized

When you set the Netlist Type to use the source file. It is also resynthesized automatically
any time you make changes to the source code, unless you specify a Post-Fit (Strict) netlist,
or it is an imported partition.

When Design is
Refit

When you set the Netlist Type to use the source file, a post-synthesis netlist, or a post-fit
netlist with a Fitter preservation level of Netlist Only. It is also refit automatically any time you
make changes to the source code, unless you specify a Post-Fit (Strict) netlist, or it is an
imported partition.

Table 2–1. Summary of the Impact of Full Incremental Compilation (Part 2 of 2)

Characteristic Impact of Full Incremental Compilation

2–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The following two benefits are associated with a bottom-up design flow:

■ It facilitates team-based development
■ It permits the reuse of compilation results from another project, with

the ultimate goals of performance preservation and compilation time
reduction.

A bottom-up design flow also has the following potential drawbacks that
require careful planning:

■ It may be difficult to achieve timing closure for the full design
because you compile the lower-level blocks independently without
any information about each other. This problem may be avoided by
careful timing budgeting and special design rules, such as always
registering the ports at the module boundaries.

■ For the same reason, resource budgeting and allocation may be
required to avoid resource conflicts and overuse. Floorplan creation
is typically very important in a bottom-up flow.

In a bottom-up design flow, the top-level project lead can do much of the
design planning, and then pass constraints on to the designers of
lower-level blocks. For more information about the export and import
operations, and how to use design partition scripts to help with design
planning, refer to “Exporting and Importing Partitions for Bottom-Up
Design Flows” on page 2–32.

It is important to understand that with the full incremental compilation
flow, users who traditionally relied on a bottom-up approach for the sole
reason of performance preservation can now employ a top-down
approach to achieve the same goal. This ability is important for two
reasons. First, a top-down flow is generally simpler to perform than its
bottom-up counterpart. For example, the need to export and import
lower-level designs is eliminated. Second, a top-down approach provides
the design software with information about the entire design so it can
perform global placement and routing optimizations.

You can also mix top-down and bottom-up flows within a single project.
If the top-level design includes one or more design blocks that are created
by different designers or IP providers, you can import those blocks (using
a bottom-up methodology) into a project that also includes partitions for
a top-down incremental methodology.

Altera Corporation 2–11
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Quick Start
Guide –
Summary of
Steps for an
Incremental
Compilation
Flow

This section provides a summary of the steps required to perform an
incremental compilation flow. Detailed descriptions for some of these
steps are included in later sections of this chapter. For more examples of
design flows that take advantage of the incremental compilation features,
refer to “Recommended Design Flows and Compilation Application
Examples” on page 2–62.

Top-Down Incremental Compilation Flow

The flow chart in Figure 2–3 illustrates the complete incremental
compilation flow using a top-down methodology (all partitions are
contained in one top-level project). The following subsections describe
the steps in the flow. First, prepare the design for incremental
compilation and perform a full compilation. Then proceed to verify or
debug your design and make design changes as required. When you
perform additional design iterations and recompile your design, you can
choose which netlists to reuse and perform incremental compilations.

Figure 2–3. Summary of Top-Down Incremental Compilation Flow

Perform Analysis & Elaboration

Repeat as Needed
During Design, Verification,
& Debugging Stages

Create Floorplan Location
Assignments using LogicLock Regions

Perform Complete Compilation
(All Partitions are Compiled)

Set Netlist Type for Each Partition

Make Changes to Design

Perform Incremental Compilation
(Partitions are Compiled if Required)

Create Design Partitions

2–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Preparing a Design for Top-Down Incremental Compilation

To set up your design for incremental compilation, use the following
general steps:

1. Elaborate the design. On the Processing menu, point to Start and
click Start Analysis & Elaboration, or run any compilation flow
that includes this step. Elaboration is part of the synthesis process
that identifies your design’s hierarchy.

2. Create partitions in your design by applying the Set as Design
Partition assignment to the appropriate instances.

Refer to “Design Partitions” on page 2–17 for an explanation of
design partitions and what part of your design can be specified as a
design partition. Refer to “Creating Design Partitions” on page 2–19
for details about assigning design partitions. For guidelines, refer to
“Guidelines for Creating Good Design Partitions and LogicLock
Regions” on page 2–46. The most important guidelines include using
registers at the I/O boundaries of each partition, and minimizing the
number of signals that cross between partitions.

3. Use LogicLock regions to make location assignments for each
partition to create a design floorplan. Depending on your design
flow and requirements, each partition may be required to be
assigned to a physical region on the device. Refer to the section
“Creating a Design Floorplan With LogicLock Location
Assignments” on page 2–29 for details about these assignments. For
guidelines, refer to “Guidelines for Creating Good Design Partitions
and LogicLock Regions” on page 2–46.

4. On the Processing menu, click Start Compilation to compile the
design. The first compilation after making partition and LogicLock
assignments is a complete compilation that prepares the design for
subsequent incremental compilations.

Compiling a Design Using Incremental Compilation

After compiling the design once and then making changes, you can take
advantage of incremental compilation to recompile the changed parts of
the design while preserving the results for the unchanged partitions, thus
saving time on subsequent compilations. To do this, perform the
following general steps:

1. Choose which compilation results you would like to reuse for each
partition. To preserve previous placement results for a partition, set
the Netlist Type assignment for that partition to Post-Fit. To
preserve routing information as well, set the Fitter Preservation

Altera Corporation 2–13
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Level to Placement and Routing. To save only the synthesis results,
set the Netlist Type assignment for that partition to Post-Synthesis.
Partitions with source code changes are recompiled automatically.
You can also direct the software to recompile from the source code
by choosing the Source File netlist type. If you do not want to
compile a specific partition at all, set its Netlist Type to Empty.

For details about setting these partition properties, refer to “Setting
the Netlist Type for Design Partitions” on page 2–22.

2. Compile the design. When you start a compilation for a partitioned
design with incremental compilation turned on, the Quartus II
software uses the incremental compilation flow, preserving the
results you specified in Step 1.

Bottom-Up Incremental Compilation

The flow chart in Figure 2–4 illustrates the incremental compilation flow
using a bottom-up methodology (lower-level partitions are compiled
separately before being imported into the top-level project). The
following subsections describe the steps involved in the flow.

First, prepare the top-level design for incremental compilation. Then
design, optimize, verify, and debug the lower-level projects. Export the
lower-level projects, and import them into the top-level design. Finally,
compile the entire top-level design.

Figure 2–4. Summary of Bottom-Up Incremental Compilation Flow

Prepare Top-Level Project for
Bottom-Up Incremental Compilation

Repeat as Needed
During Design, Verification,
& Debugging Stages

Design, Compile, & Optimize
Lower-Level Project(s)

Export Lower-Level Project(s)

Import Lower-Level Project(s)
into Top-Level Project

Perform Incremental Compilation
in Top-Level Project

Create Lower-Level Project(s)

2–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Preparing a Design for Bottom-Up Incremental Compilation

The design’s project lead or top-level designer should perform the
following steps to prepare the design for a successful bottom-up design
methodology:

1. Create the top-level Quartus II project that will eventually
incorporate the entire design, and apply project-wide settings and
global assignments.

a. Define source code for a “skeleton” of the entire design that
defines the hierarchy and the port interfaces for the lower-level
designs. The top-level design file must include the top-level
entity that instantiates the lower-level blocks you plan to
compile in separate Quartus II projects. Include wrapper HDL
files for each of these blocks that define at least the port
interface. Analysis and Elaboration requires this wrapper file
(also known as a “stub” or “black box” file) to connect all the
separate design partitions at the top level. For example, in
Verilog HDL you should include a module declaration, and in
VHDL you should include an entity and architecture
declaration. The wrapper file does not have to contain any logic
for the design partition.

b. Create all global assignments, including the device assignment,
pin location assignments, and timing assignments, so that the
final design meets its requirements. Lower-level project
designers can add their own constraints for their partitions as
needed, and later provide them to the top-level designer, but
the basic constraints can be passed down from the top level to
avoid any conflicts and ensure that lower-level projects use the
correct assignments.

2. Make design partition assignments for each lower-level design, and
set the Netlist Type to Empty for each partition that will be
imported. Refer to “Creating Design Partitions” on page 2–19 and
“Setting the Netlist Type for Design Partitions” on page 2–22 for
details. For guidelines, refer to “Guidelines for Creating Good
Design Partitions and LogicLock Regions” on page 2–46.

3. Create LogicLock regions for each of the lower-level partitions to
create a design floorplan. Refer to “Creating a Design Floorplan
With LogicLock Location Assignments” on page 2–29. For
guidelines, refer to “Guidelines for Creating Good Design Partitions
and LogicLock Regions” on page 2–46.

Altera Corporation 2–15
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

4. Optional: Perform a full compilation of the skeleton design and
create scripts to pass assignments to lower-level designers. After
compilation, on the Project menu, click Generate Bottom-Up
Design Partition Scripts. Refer to “Generating Bottom-Up Design
Partition Scripts for Project Management” on page 2–40 for details.
Provide each lower-level designer with the generated Tcl file to
create their project with the appropriate constraints. If you use
makefiles in your design environment, provide the makefile for
each partition.

Creating and Compiling Lower-Level Projects

The designer of each lower-level design should create and compile their
design in a separate Quartus II project.

If you are creating the project manually, create a new Quartus II project
for the subdesign with all the required settings. Create with LogicLock
region assignments and global assignments (including clock settings) as
specified by the project lead, as well as Virtual Pin assignments for ports
which represent connections to core logic instead of external device pins
in the top-level module.

If you have a bottom-up design partition script from the top-level
designer, source the Tcl script to create the Quartus II project with all the
required settings and assignments from the top-level design.

If you are using makefiles, use the make command and the makefile
provided by the project lead to create a Quartus II project with all the
required settings and assignments, and compile the project. Specify the
dependencies in the makefile to indicate which source file should be
associated with which partition.

Compile and optimize each lower-level design as a separate Quartus II
project.

Exporting Lower-Level Projects

When you have achieved the design requirements for the lower-level
design, export each design as a partition for the top-level design.

If you are not using makefiles, on the Project menu, use the Export
Design Partition dialog box to export each lower-level design. Refer to
“Exporting a Lower-Level Partition to be Used in a Top-Level Project” on
page 2–33. If you want to export only a portion of the design in the
lower-level project, refer to “Exporting a Lower-Level Block within a
Project” on page 2–35 for instructions. Each lower-level designer must
provide the Quartus II Exported Partition file (.qxp) to the project lead.

2–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

If your design team is using makefiles, the project lead can use the make
command with the master_makefile to export the lower-level partitions
and create Quartus II Exported Partition files, and then import them into
the top-level design.

Importing Lower-Level Projects into the Top-Level Project

The project lead then imports the files sent in by the designers of each
lower-level subdesign partition.

If you are not using makefiles, on the Project menu, click Import Design
Partition and specify the partition in the top-level project that is
represented by the subdesign Quartus II Exported Partition (QXP) file.
Refer to “Importing a Lower-Level Partition Into the Top-Level Project”
on page 2–36 for details. Repeat the import process for each partition in
the design.

If you are using makefiles, the master_makefile command imports each
partition into the top-level design. Be sure to specify which source files
should be associated with which partition so that the software can rebuild
the project if source files change.

For details about which assignments are imported, and how to avoid
conflicts, refer to “Importing Assignments and Advanced Import
Settings” on page 2–37.

Performing an Incremental Compilation in the Top-Level Project

After you have imported the design partitions that make up the top-level
project, you can perform a full compilation. The software compiles
imported partitions in the same way as partitions defined in the top-level
project. The software recompiles an imported partition only if it has been
imported since the last compilation.

Altera Corporation 2–17
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Design
Partitions

It is a common design practice to create modular or hierarchical designs
in which you develop each design entity separately and then instantiate
them in a higher-level entity, forming a complete design. The software
does not consider each design entity automatically to be a design
partition for incremental compilation; rather, you must designate one or
more design hierarchies below the top-level project to be a design
partition. Creating partitions prevents the compiler from performing
optimizations across partition boundaries, as discussed in “Guidelines
for Creating Good Design Partitions and LogicLock Regions” on
page 2–46 and illustrated in Figure 2–10. However, this allows for
separate synthesis and placement for each partition, making incremental
compilation possible.

Partitions must have the same boundaries as hierarchical blocks in the
design because a partition cannot be a portion of the logic within a
hierarchical entity. When you declare a partition, every hierarchical entity
within that partition becomes part of the same partition. You can create
new partitions for hierarchical entities within an existing partition, in
which case the entities within the new partition are no longer included in
the higher-level partition, as described in the following example.

In Figure 2–5, hierarchical entities B and F form partitions in the complete
design, which is made up of entities A, B, C, D, E, and F. The shaded
boxes in Representation A indicate design partitions in a “tree”
representation of the hierarchy. In Representation B, the lower-level
entities are represented inside the higher-level entities, and the partitions
are illustrated with different colored shading. The top-level partition,
called Top, automatically contains the top-level entity in the design, and
contains any logic not defined as part of another partition. The design file
for the top level may be just a wrapper for the hierarchical entities below
it, or it may contain its own logic. In this example, the partition for
top-level entity A also includes the logic in one of its lower-level entities,
C. Because entity F is contained in its own partition, it is not treated as
part of the top-level partition. Another separate partition, B, contains the
logic in entities B, D, and E.

2–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 2–5. Partitions in a Hierarchical Design

Design Partition Assignments Compared to Physical Placement
Assignments

Design partitions for incremental compilation are logical partitions,
different from physical placement assignments in the device floorplan. A
logical design partition does not refer to a physical area of the device and
does not directly control the placement of instances. A logical design
partition sets up a virtual boundary between design hierarchies so each is
compiled separately, preventing logical optimizations from occurring
between them. The software creates a separate post-synthesis and
post-fitting netlist for each partition, which allows the software to reuse
the synthesis results or reuse the fitting results (including placement and
routing information) in subsequent compilations.

If you preserve the compilation results using a Post-Fit netlist, it is not
necessary for you to back-annotate or make any location assignments for
specific logic nodes. You should not use the incremental compilation and
assignment back-annotation features in the same Quartus II project. The

Partition Top

Representation A

Representation B

Partition B Partition F

D

D

E

B

B C

A

A

F

C

E EF

Altera Corporation 2–19
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

incremental compilation feature does not use placement “assignments”
to preserve placement results; it simply reuses the netlist database that
includes the placement information.

You can assign design partitions to physical regions in the device
floorplan using LogicLock assignments. Altera recommends using
LogicLock regions to improve the quality of results and avoid placement
conflicts when performing incremental compilation. LogicLock regions
have a size and location on the device floorplan, and you can assign a
partition to a physical region to place it in a specific area of the device.
Creating floorplan location assignments for design partitions using
LogicLock regions is discussed in “Creating a Design Floorplan With
LogicLock Location Assignments” on page 2–29.

Creating Design
Partitions

To use incremental compilation, you must first split your design into
partitions, as described in “Design Partitions” on page 2–17 and “Quick
Start Guide – Summary of Steps for an Incremental Compilation Flow” on
page 2–11. You can make partition assignments to HDL or schematic
design instances, or to VQM or EDIF netlist instances (from third-party
synthesis tools). To take advantage of incremental compilation when
source files change, the top-level design entity of each partition should
have a unique design file. If you define two different entities of separate
partitions but they are in the same design file, you cannot maintain
incremental compilation because the software would have to recompile
both partitions if you changed either entity in the design file.

When you are using a third-party synthesis tool, create a separate netlist
file for each partition to allow each partition to be treated incrementally.
To create separate netlists for each partition, you may have to create a
top-level HDL wrapper file that instantiates the lower-level netlist files
and then create separate projects in your synthesis tool for each of the
lower-level partitions. In this case, the lower-level blocks should be
treated as a black box in the top-level design. Some synthesis tools allow
you to create separate netlist files for different design blocks within a
single project.

f For information about using incremental compilation with third-party
synthesis tools, refer to the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

For suggestions on determining which parts of your design should be set
as design partitions, refer to “Guidelines for Creating Good Design
Partitions and LogicLock Regions” on page 2–46.

2–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The full incremental compilation option is turned on by default (for new
projects created in the Quartus II software version 6.1 and later), so the
project is ready for you to create design partitions.

If full incremental compilation is not turned on when you specify your
first partition, a dialog box appears that asks whether you want to enable
incremental compilation. Selecting Full incremental compilation in this
dialog box turns on incremental compilation on the Incremental
Compilation page under Compilation Process Settings in the Settings
dialog box.

Selecting Off on the Incremental Compilation page of the Settings
dialog box does not remove any partition assignments. Partition
assignments have no effect on the design if incremental compilation is
turned off.

You can create design partitions in the Quartus II GUI with the Design
Partitions Window or the Project Navigator.

On the Assignments menu, click Design Partitions Window (Figure 2–6)
to create your partitions in one of the following ways:

■ Create new partitions for one or more instances by dragging and
dropping them from the Hierarchy tab of the Project Navigator, into
the Design Partitions window. Using this method, you can create
multiple partitions at once.

■ Create new partitions by double-clicking the <<new>> cell in the
Partition Name column. In the Create New Partitions dialog box,
select the design instance and click OK.

To delete partitions in the Design Partitions window, right-click a
partition and click Delete, or select the partition and press the Delete key.

Figure 2–6. Design Partitions Window

Altera Corporation 2–21
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Alternatively, you can use the list of instances under the Hierarchy tab in
the Project Navigator to create and delete design partitions. Right-click
on an instance in the Project Navigator and click Set as Design Partition.

1 A design partition icon appears next to each instance that is set
as a partition (Figure 2–7).

To remove an existing partition assignment, right-click the instance in the
Project Navigator and click Set as Design Partition again. (This process
turns off the option.)

Figure 2–7. Project Navigator Showing Design Partitions

Partition Name

When you create a partition, the Quartus II software automatically
generates a name based on the instance name and hierarchy path. You
can change the name by double-clicking on the partition name in the
Design Partitions window, or right-click the partition and click Rename.
Alternatively, you can right-click the partition in the Design Partitions
window and click Properties to open the Design Partition Properties
dialog box. On the General tab, enter the new name in the Name field.

By renaming your partitions you can avoid referring to them by their
hierarchy path, which can sometimes be long. This is especially important
when using command-line commands or assignments. Partition names
can be from 1 to 1024 characters in length and must be unique. The name
can only contain alphanumeric characters and the pipe (|), colon (:),
and underscore (_) characters.

2–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Setting the
Netlist Type for
Design
Partitions

The Netlist Type property controls the incremental compilation process,
as described in “Compiling a Design Using Incremental Compilation” on
page 2–12. The Netlist Type is a property of each design partition that
allows you to specify the type of netlist or source file that the compiler
should use as the input for each partition. This property determines
which netlist is used by the Partition Merge stage in the next compilation.

To view and modify the Netlist Type, on the Assignments menu, click
Design Partitions Window. Double-click the Netlist Type for an entry.
Alternatively, right-click on an entry, click Design Partition Properties,
then modify the Netlist Type on the Compilation tab.

Table 2–2 describes the different settings for the Netlist Type property,
explains the behavior of the Quartus II software for each setting, and
gives guidance on when to use a certain setting.

Table 2–2. Netlist Type Settings (Part 1 of 3)

Partition
Netlist Type Quartus II Behavior for Partition During Compilation

Source File Always compiles the partition using the associated design source file(s).

You can use this netlist type to recompile a partition from the source code using new synthesis
or Fitter settings.

If a partition has an associated imported netlist, compiling it with netlist type set to Source File
removes the imported netlist.

Post-Synthesis Preserves post-synthesis results for the partition and uses the post-synthesis netlist as long as
the following conditions are true:
● A post-synthesis netlist is available from a previous synthesis
● No change has been made to the associated source files since the previous synthesis
Compiles the partition from the source files if there are source changes or if a post-synthesis
netlist is not available. Changes to the assignments do not cause recompilation.

You can use this netlist type to preserve the synthesis results unless source files change, but
refit the partition using any new Fitter settings.

If a partition has an associated imported netlist, this setting is not available.

Altera Corporation 2–23
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Post-Fit Preserves post-fit results for the partition and uses the post-fit netlist as long as the following
conditions are true:
● A post-fit netlist is available from a previous fitting
● No change has been made to the associated source files since the previous fitting
Compiles the partition from the source files if there are source changes or if a post-fit netlist is
not available. Changes to assignments do not cause recompilation.

The Fitter Preservation Level specifies what level of information is preserved from the post-fit
netlist. For details, refer to “Fitter Preservation Level” on page 2–24.

You can use this netlist type to preserve the Fitter results unless source files change. You can
also use this netlist type to apply global optimizations, such as Physical Synthesis
optimizations, to certain partitions while preserving the fitting results for other partitions.

If a partition has an associated imported netlist, this setting is not available.

Post-Fit (Strict) Always preserves post-fit results for the partition. Uses the post-fit netlist even if changes have
been made to the associated source files since the previous fitting. For more information, refer
to “Forcing Use of the Post-Fitting Netlist When a Source File has Changed” on page 2–28.

The Fitter Preservation Level specifies what level of information is preserved from the post-
fit netlist. For details, refer to “Fitter Preservation Level” on page 2–24.

If a partition has an associated imported netlist, this setting is not available.

Imported Compiles the design partition using a netlist imported from a Quartus II Exported Partition File
(.qxp).

The software does not modify or overwrite the original imported netlist during compilation. To
preserve changes made to the imported netlist (such as movement of an imported LogicLock
region), use the Post-Fit (Import-based) setting following a successful compilation with the
imported netlist. For additional details, refer to “Exporting and Importing Partitions for Bottom-
Up Design Flows” on page 2–32.

The Fitter Preservation Level specifies what level of information is preserved from the
imported netlist. For details, refer to “Fitter Preservation Level” on page 2–24.

If you have not imported a netlist for this partition using the Import Design Partition command,
this setting is not available.

Table 2–2. Netlist Type Settings (Part 2 of 3)

Partition
Netlist Type Quartus II Behavior for Partition During Compilation

2–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Fitter Preservation Level

The Fitter Preservation Level property specifies which information the
compiler will use from a post-fit or imported netlist. The property is only
available if the Netlist Type is set to Post-Fit, Post-Fit (Strict), Imported,
or Post-Fit (Import-based).

On the Assignments menu, click Design Partitions Window. You can
view and modify the Fitter Preservation Level by double-clicking an
entry. You can also right-click and click Properties, then edit the Fitter
Preservation Level on the Compilation tab.

Post-Fit
(Import-based)

Preserves post-fit results for the partition and uses the post-fit netlist as long as the following
conditions are true:
● A post-fit netlist is available from a previous fitting
● No change has been made to the associated imported netlist since the previous fitting
Compiles the partition from the imported netlist if the imported netlist changes (which means it
has been reimported) or if a post-fit netlist is not available. Changes to assignments do not
cause recompilation.

The Fitter Preservation Level specifies what level of information is preserved from the post-
fit netlist. For details, refer to “Fitter Preservation Level”.

You can use this netlist type to preserve changes to the placement and routing of an imported
netlist.

If a partition does not have an associated imported netlist, this setting is not available.

Empty Uses an empty placeholder netlist for the partition and uses virtual pins at the partition
boundaries.

You can use this netlist type to skip the compilation of a lower-level partition. For more details
on the Empty setting, refer to “Empty Partitions” on page 2–26.

Table 2–2. Netlist Type Settings (Part 3 of 3)

Partition
Netlist Type Quartus II Behavior for Partition During Compilation

Altera Corporation 2–25
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Table 2–3 describes the Fitter Preservation Level settings.

Table 2–3. Fitter Preservation Level Settings

Fitter Preservation
Level Quartus II Behavior for Partition During Compilation

Netlist Only Preserves the netlist atoms of the design partition, but replaces and reroutes the design
partition. Unlike a Post-Synthesis netlist, a Post-Fit netlist with the atoms preserved
contains any Fitter optimizations, for example, registers duplicated by Physical Synthesis
during a previous Fitting.

You can use this setting to:
● Preserve Fitter optimizations but allow the software to perform placement and routing

again
● Reapply certain Fitter optimizations (that is, physical synthesis) that would otherwise

be impossible when the placement is locked down
● Resolve resource conflicts between two imported partitions in a bottom-up design flow

Placement Preserves the netlist atoms and their placement in the design partition. Re-routes the
design partition.

This setting saves significant compilation time because the Fitter does not need to re-fit
the nodes in the partition. Note that the Fitter may need to modify the placement for timing
or legality reasons.

This setting might not be available if the netlist type is set to Imported and the imported
netlist does not contain placement data.

Placement and
Routing

Preserves the netlist atoms and their placement and routing in the design partition. The
minimum preservation level required to preserve Engineering Change Order (ECO)
changes made to the post-fitting netlist and SignalProbe pins added to the design.

This setting reduces compilation times compared to Placement only. Note that the Fitter
may need to modify the placement and routing for timing or legality reasons.

This setting may not be available if the netlist type is set to Imported and the imported
netlist does not contain routing data.

Placement, Routing,
and Tile

Preserves the netlist atoms and their placement and routing in the design partition, as well
as the power tile settings of high-speed or low-power.

Note that the Fitter may need to modify the placement and routing for timing or legality
reasons.

This setting is available only for devices with configurable power tiles (currently only
Stratix III devices).

2–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Empty Partitions

To set the Netlist Type to Empty, on the Assignments menu, click Design
Partitions Window, or double-click an entry, or right-click an entry and
click Design Partition Properties and select Empty. This setting specifies
that the Quartus II Compiler should use an empty placeholder netlist for
the partition.

You can use the Empty setting to skip the compilation of a lower-level
partition that is incomplete or missing from the top-level design. You can
also use it if you want to compile only some partitions in the design, such
as during optimization or if the compilation time is large for one partition
and you want to exclude it. This is useful if you want to optimize the
placement of a timing-critical block such as an IP core and then lock its
placement before adding the rest of your custom logic.

When a partition Netlist Type is defined as Empty, virtual pins are
created at the boundary of the partition. This means that the software
temporarily maps I/O pins in the lower-level design entity to internal
cells and not to pins during compilation.

Any subpartitions below an empty partition in the design hierarchy are
also treated as empty, regardless of their settings.

You can use a design flow in which some partitions are set to Empty in a
variation of a bottom-up design flow, where you develop pieces of the
design separately and then combine them at the top level at a later time.
When you implement part of the design without information about the
rest of the project, it is impossible for the Compiler to perform global
placement optimizations. One way to reduce this effect is to ensure the
input and output ports of the partitions are registered whenever possible,
as recommended in “Creating Good Design Partitions” on page 2–47.

When you set a design partition to Empty, a design file is required in
Analysis and Synthesis to specify, at minimum, the port interface
information so that it can connect the partition correctly to other logic and
partitions in the design. If the design file is missing, you must create a
wrapper file (called a black box or hollow-body file) that defines the
design block and specifies the input, output, and bidirectional ports. For
example, in Verilog HDL you should include a module declaration, and
in VHDL you should include an entity and architecture declaration.

Altera Corporation 2–27
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

What Represents a Source Change for Incremental Compilation?

Any change in any design source file that affects a partition triggers an
automatic recompilation of the partition. The only exception is if the
partition's Netlist Type is set to Post-Fit (Strict) – refer to “Forcing Use of
the Post-Fitting Netlist When a Source File has Changed” on page 2–28.
The Quartus II software uses an internal checksum to determine whether
the contents of a source file have changed. Source files are the design files
used to create the design, and consist of VHDL files, Verilog HDL files,
AHDL files, Block Design Files (.bdf), EDIF netlists, VQM netlists, and
memory initialization files. Changes in other files such as vector
waveform files for simulation do not trigger recompilation.

Changes to certain project-wide assignments, such as changing the device
family, also trigger automatic recompilation.

Synthesis and Fitter assignments, including optimization settings, timing
assignments, or Fitter location assignments such as pin assignments or
LogicLock assignments, do not trigger automatic recompilation in the
incremental compilation flow. To recompile a partition with new
assignments, change the Netlist Type assignment for that partition to one
of the following:

■ Source File to recompile with all new settings
■ Post-Synthesis to recompile using existing synthesis results but new

Fitter settings
■ Post-Fit with the Fitter preservation Level set to Placement to rerun

routing using existing placement results except for any new routing
settings including delay chain settings

The project database folder (\db) includes all the netlist information for
previous compilations. To avoid unnecessary recompilations, the
database files must not be altered or deleted.

If you want to archive or reproduce the project in another location, you
can use a Quartus II Archive (.qar) file. On the Project menu, click
Archive Project and turn on Include database from compilation and
simulation so that compilation results are preserved. To manually create
a project archive that preserves compilation results without keeping the
entire compilation database, you should keep all source and settings files
and create and save a Quartus II Exported Partition (.qxp) file for each
partition in the design. Refer to “Exporting a Lower-Level Block within a
Project” on page 2–35 for more details.

2–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Determining Which Partitions Will Be Recompiled

When design files in a partition have dependencies on other files,
changing one file may trigger an automatic recompilation of another file.
The Partition Dependent Files table in the Analysis and Synthesis report
lists the design files that contribute to each design partition. You can use
this table to determine which partitions will be recompiled when a
specific file is changed.

For example, if a design has files a.v that contains entity a, b.v that
contains entity b, and c.v that contains entity c, then the Partition
Dependent Files table for the partition containing entity a lists file a.v,
the table for the partition containing entity b lists file b.v, and the table for
the partition containing entity c lists file c.v. Any dependencies are
transitive, so if file a.v depends on b.v, and b.v depends on c.v, then the
entities in file a.v depend on files b.v and c.v. In this case, files b.v and c.v
are listed in the report table as dependent files for the partition containing
entity a.

If you define module parameters in a higher-level module, you will create
file dependencies. The Quartus II software checks the parameter values
when determining which partitions require resynthesis. If you change a
parameter in a higher-level module that affects a lower-level module, the
lower-level module will be resynthesized.

If a design contains common files, such as a file includes.v that is
referenced in each entity by the command ‘include includes.v, then
all partitions are dependent on this file. A change to includes.v causes the
entire design to be recompiled. The VHDL statement use work.all
also typically results in unnecessary recompilations, because it makes all
entities in the work library visible in the current entity, which results in
the current entity being dependent on all other entities in the design.

To avoid this type of problem, ensure that files common to all entities,
such as a common include file, contain only the set of information that is
truly common to all entities. Remove use work.all statements in your
VHDL file or replace them by including only the specific design units
needed for each entity.

Forcing Use of the Post-Fitting Netlist When a Source File has Changed

Forcing the use of the post-fitting netlist when the contents of a source file
has changed is recommended only for advanced users who thoroughly
understand when a partition must be recompiled. You might want to use
this assignment, for example, if you are making source code changes but
do not want to recompile the partition until you finish debugging a

Altera Corporation 2–29
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

different partition. To force the Fitter to use a previously generated post-
fit netlist even when there are changes to the source files, you can use the
Post-Fit (Strict) Netlist Type assignment.

Misuse of the Post-Fit (Strict) Netlist Type can result in the generation of
a functionally incorrect netlist when source design files change. Use
caution in applying this assignment.

Creating a
Design
Floorplan With
LogicLock
Location
Assignments

After you have partitioned the design, create floorplan location
assignments for the design as discussed in this section to improve the
quality of results when using the full incremental compilation flow.
Creating a design floorplan is not a requirement to use an incremental
compilation flow, but it is highly recommended in many cases. Floorplan
assignments are required if you want to import partition placement
results in a bottom-up flow to avoid placement conflicts at the top level.
You should also ensure that you have a LogicLock floorplan assignment
for any timing-critical blocks that will be recompiled as you make
changes to the design. Logic that is not timing-critical can float
throughout the device in a top-down compilation flow, so a floorplan
assignment might not be required in this case.

The simplest way to create a floorplan for a partitioned design is to create
one LogicLock region per partition (including the top-level partition).
Initially, you can leave each region with the default settings of Auto size
and Floating location to allow the Quartus II software to determine the
optimal size and location for the regions. Then, after compilation, use the
Fitter-determined size and origin location as a starting point for your
design floorplan. Check the quality of results obtained for your floorplan
location assignments and make changes to the regions as needed.
Alternately, you can perform synthesis, and then set the regions to the
required size based on resource estimates. In this case, use your
knowledge of the connections between partitions to place the regions in
the floorplan.

For more information about why creating a design floorplan is important
in many cases, refer to “The Importance of Floorplan Location
Assignments in Incremental Compilation” on page 2–55. For guidelines
on creating the floorplan, refer to “Creating Good Floorplan Location
Assignments” on page 2–57.

To create a LogicLock region for each design partition, use the following
general methodology:

1. On the Assignments menu, click Design Partitions Window and
ensure that all partitions have their Netlist Type set to Source File
or Post-Synthesis. If the Netlist Type is set to Post-Fit, floorplan
location assignments are not used when recompiling the design.

2–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

2. Create a LogicLock region for each partition (including the top-level
entity, which is automatically considered a partition) using one of
the following methods:

● In the Design Partitions window, right-click on a partition and
click Create New LogicLock Region. You can highlight
multiple (or all) partitions by holding down the Ctrl key and
clicking on each partition. Then you can choose the option to
create a separate LogicLock region for each highlighted
partition.

● Under Compilation Hierarchy in the Project Navigator,
right-click each instance that is denoted as a partition and click
Create New LogicLock Region.

1 A LogicLock icon appears in the Project Navigator next to
each instance that is set as a LogicLock region (Figure 2–8).

Figure 2–8. Project Navigator Showing LogicLock Regions

3. On the Processing menu, point to Start and click Start Early Timing
Estimate to place auto-sized, floating-location LogicLock regions.

1 You must perform Analysis and Synthesis and Partition
Merge before performing an Early Timing Estimate.

To run a full compilation instead of the Early Timing
Estimate, on the Processing menu, click Start Compilation.

4. On the Assignments menu, click LogicLock Regions Window, and
click on each LogicLock region while holding the Ctrl key to select
all regions (including the top-level region).

5. Right-click on the last selected LogicLock region, and click Set Size
and Origin to Previous Fitter Results.

Altera Corporation 2–31
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

1 It is important that you use the Fitter-chosen locations only
as a starting point to make the regions of a fixed size and
location. On average, regions with fixed size and location
yield better fMAX than auto-sized regions.

Do not back-annotate the contents of the region, just save
the size and origin. Placement is preserved through the use
of the post-fit netlist and not any back-annotated content
assignments.

6. If required, modify the size and location via the LogicLock Regions
Window or the Chip Planner. For example, make the regions bigger
to fill up the device and allow for future logic changes.

7. On the Processing menu, point to Start and click Start Early Timing
Estimate to estimate the timing performance of your design with
these LogicLock regions.

8. Repeat steps 6 and 7 until you are satisfied with the quality of
results for your design floorplan. On the Processing menu, click
Start Compilation to run a full compilation.

If you do not want to use auto-sized and floating-location regions, in
steps 3–5, you can estimate the size of the regions after synthesis. On the
Processing menu, point to Start, and choose Start Analysis & Synthesis.
Right-click on a region in the LogicLock Regions dialog box, and choose
Set to Estimated Size. Then continue with step 6 to modify the size and
origin of each region as appropriate.

Taking Advantage of the Early Timing Estimator

The methodology for creating a good floorplan takes advantage of the
Early Timing Estimator to enable quick compilations of the design while
creating assignments. The Early Timing Estimator feature provides a
timing estimate for a design as much as 45 times faster than running a full
compilation, yet estimates are, on average, within 11% of final design
timing. You can use the Chip Planner to view the “placement estimate”
created by this feature, identify critical paths by locating from the timing
analyzer reports, and, if necessary, add or modify floorplan constraints.
You can then rerun the Early Timing Estimator to quickly assess the
impact of any floorplan location assignments or logic changes, enabling
rapid iterations on design variants to help you find the best solution.

2–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Exporting and
Importing
Partitions for
Bottom-Up
Design Flows

The bottom-up flow refers to the design methodology in which a project
is first divided into smaller subdesigns that are implemented as separate
projects, potentially by different designers. The compilation results of
these lower-level projects are then exported and given to the designer (or
the project lead) who is responsible for importing them into the top-level
project to obtain a fully functional design.

In a bottom-up design flow, the top-level project lead can do much of the
design planning, and then pass constraints on to the designers of
lower-level blocks. The bottom-up design partition scripts generated by
the Quartus II software can make it easier to plan a bottom-up design,
and limit the difficulties that can arise when integrating separate designs.
Refer to “Generating Bottom-Up Design Partition Scripts for Project
Management” on page 2–40 for details.

Refer to “Bottom-Up Incremental Compilation” on page 2–13 in the
Quick Start Guide section for an overview of the entire flow. For examples
of team-based scenarios, refer to “Bottom-Up Incremental Design Flows”
on page 2–67.

This section describes the export and import features provided to support
bottom-up compilation flows. The section covers the following topics:

■ “Quartus II Exported Partition File (.qxp)”
■ “Exporting a Lower-Level Partition to be Used in a Top-Level

Project” on page 2–33
■ “Exporting a Lower-Level Block within a Project” on page 2–35
■ “Importing a Lower-Level Partition Into the Top-Level Project” on

page 2–36
■ “Importing Assignments and Advanced Import Settings” on

page 2–37
■ “Generating Bottom-Up Design Partition Scripts for Project

Management” on page 2–40

Quartus II Exported Partition File (.qxp)

The bottom-up incremental compilation flow uses a file called the
Quartus II Exported Partition file (or QXP) to represent lower-level
design partitions. The QXP is a binary file that contains compilation
results describing the exported design partition and includes a post-fit or
post-synthesis netlist, LogicLock regions, and a set of assignments. Note
that the QXP file does not contain the original source design files from the
lower-level design.

The following sections describe how to generate a QXP file for a
lower-level design partition, and how to import the QXP into the
top-level project.

Altera Corporation 2–33
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Exporting a Lower-Level Partition to be Used in a Top-Level
Project

Each lower-level subdesign is compiled as a separate Quartus II project.
In each project, use the following guidelines to improve the exporting and
importing process:

■ If you have a bottom-up design partition script from the top level,
source the Tcl script to create the project and all the assignments
from the top-level design. Doing so may create many of the
assignments described below. Ensure that the LogicLock region uses
only the resources allocated by the top-level project lead.

■ Ensure that you know which clocks should be allocated to global
routing resources so that there are no resource conflicts in the
top-level design.
● Set the Global Signal assignment to On for the high fan-out

signals that should be routed on global routing lines.
● To avoid other signals being placed on global routing lines, on

the Assignments menu, click Settings and turn off Auto Global
Clock and Auto Global Register Controls under More Settings
on the Fitter page of the Settings dialog box.

● Alternatively, you can set the Global Signal assignment to Off
for signals that should not be placed on global routing lines.
Placement for LABs depends on whether the inputs to the logic
cells within the LAB use a global clock. You may encounter
problems if signals do not use global lines in the lower-level
design but use global routing in the top level.

■ Use the Virtual Pin assignment to indicate pins of a subdesign that
do not drive pins in the top-level design. This is critical when a
subdesign has more output ports than the number of pins available
in the target device. Using virtual pins also helps optimize
cross-partition paths for a complete design by enabling you to
provide more information about the subdesign ports, such as
location and timing assignments.

■ Because subdesigns are compiled independently without any
information about each other, you should provide more information
about the timing paths that may be affected by other partitions in the
top-level design. You can apply location assignments for each pin to
indicate where the port connection will be located after it is
incorporated in the top-level design. You can also apply timing
assignments to the I/O ports of the subdesign to perform timing
budgeting as described in “Timing Budgeting” on page 2–53.

2–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

When your subdesign partition has been compiled using these
guidelines, and is ready to be incorporated into the top-level design,
export a subdesign as a partition using the following steps:

1. In the subdesign project, on the Project menu, click Export Design
Partition. The Export Design Partition dialog box appears
(Figure 2–9).

Figure 2–9. Export Design Partition Dialog Box

2. In the Export file box, type the name of the Quartus II Exported
Partition file (.qxp). By default, the directory path and file name are
the same as the current project.

3. You can also select the Partition hierarchy to export. By default, the
Top partition (the entire project) is exported, but you can choose to
export the compilation result of any partition hierarchy in the
project, as described in “Exporting a Lower-Level Block within a
Project” on page 2–35. Choose the partition hierarchy from the
drop-down box.

4. Under Netlist to export, select either Post-fit netlist or
Post-synthesis netlist. The default is Post-fit netlist. For post-fit
netlists, turn on or off the Export routing option as required.

5. Click OK. The Quartus II software creates the Quartus II Exported
Partition file in the specified directory.

Alternatively, you can set up your project so that the export process is
performed every time you compile the design:

Altera Corporation 2–35
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, under Compilation Process Settings,
select the Incremental Compilation page.

3. Turn on Automatically export design partition after compilation.

4. If you want to view or change the default export settings, click the
Export Design Partition Settings button to open the Export Design
Partition Settings dialog box (Figure 2–9).

5. In the Export Design Partition Settings dialog box, change the
settings, if required, as in steps 2-4 in the preceding export
procedure. Click OK.

6. Click OK to close the Settings dialog box. During the next full
compilation, the software will create the Quartus II Exported
Partition file in the specified directory.

Exporting a Lower-Level Block within a Project

Step 3 in “Exporting a Lower-Level Partition to be Used in a Top-Level
Project” enables you to create a Quartus II Exported Partition file for a
lower-level block within a Quartus II project. When you do this, the
command exports the entire hierarchy under the specified partition into
the QXP file.

You can use this feature to add test logic around a lower-level block that
will be exported as a design partition for a top-level design. You can also
instantiate additional design components in a lower-level project so it
matches the top-level design environment. For example, you can include
a top-level PLL in your lower-level project so that you can optimize the
design with information about the frequency multipliers, phase shifts,
compensation delays, and any other PLL parameters. The software then
captures timing and resource requirements more accurately while
ensuring that the timing analysis in the lower-level project is complete
and accurate. You can export the lower-level partition, without exporting
any auxiliary components to the top-level design.

In addition, you can use this feature in a top-down design flow to create
QXP files for specific design partitions that are complete. You can then
import the QXP file back into the project and use the Imported netlist
type. In this usage, the QXP file acts as an archive for the partition,
including the netlist and placement and routing information in one file. If
you need to change the source code for the partition, you must change the
netlist type back to Source File to use the source instead of the imported
information.

2–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Importing a Lower-Level Partition Into the Top-Level Project

The import process involves importing the design netlist from the
Quartus II Exported Partition file and adding the netlist to the database
for the top-level project. Importing also filters the assignments from the
subdesign and creates the appropriate assignments in the top-level
project.

To import a subdesign partition into a top-level design:

1. In the top-level project, on the Project menu, click Import Design
Partition. Alternatively, right-click on the partition that you want to
import in the Design Partitions window and click Import Design
Partition. The Import Design Partition dialog box appears.

2. In the Partition(s) box, browse to the desired partition. To choose a
partition, highlight the partition name in the Select Partition(s)
dialog box and use the appropriate buttons to select or deselect the
desired partitions.

1 Note that you can select multiple partitions if your top-level
design has multiple instances of the subdesign partition
and you want to use the same imported netlist.

3. Under Import file, type the name of the Quartus II Exported
Partition file or browse for the file that you want to import into the
selected partition. Note that this file is required only during
importation, and is not used during subsequent compilations unless
you reimport the partition.

1 If you have already imported the Quartus II Exported
Partition file for this partition at least once, you can use the
same location as the previous import instead of specifying
the file name again. To do so, turn on Reimport using the
latest import files at previous locations. This option is
especially useful when you want to import the new
Quartus II Exported Partition files for several partitions
that you have already imported at least once. You can select
all the partitions to be imported in the Partition(s) box and
then use the Reimport using latest import files at previous
locations option to import all partitions using their
previous locations, without specifying individual file
names.

Altera Corporation 2–37
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

4. To view the contents of the selected Quartus II Exported Partition
file, click Load Properties. The properties displayed include the
Netlist Type, Entity name, Device, and statistics about the partition
size and ports.

5. Click Advanced Import Settings and make selections, as
appropriate, to control how assignments and regions are integrated
from a subdesign into a top-level design partition. During
importation, some regions may be resized or slightly moved. Click
OK to apply the settings.

For more information about the advanced settings, refer to
“Importing Assignments and Advanced Import Settings” on
page 2–37.

6. In the Import Design Partition dialog box, click OK to start
importation. The specified Quartus II Exported Partition file is
imported into the database for the current top-level project.

Importing Assignments and Advanced Import Settings

When you import a subdesign partition into a top-level design, the
software sets certain assignments by default and also imports relevant
assignments from the subdesign into the top-level design.

Design Partition Properties after Importing

When you import a subdesign partition, the import process sets the
partition’s Netlist Type to Imported.

If you compile the design and make changes to the place-and-route
results, use the Post-Fit (Import-based) Netlist Type on the subsequent
compilation. To discard an imported netlist and recompile from source
code, simply compile the partition with netlist type set to Source File and
be sure to include the relevant source code with the top-level project.

The import process sets the partition’s Fitter Preservation Level to the
setting with the highest degree of preservation supported by the
imported netlist. For example, if a post-fit netlist is imported with
placement information, the level is set to Placement, but you can change
it to the Netlist Only value.

Refer to “Setting the Netlist Type for Design Partitions” on page 2–22 for
details about the Netlist Type and Fitter Preservation Level setting.

2–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Importing Design Partition Assignments Within the Subdesign

Design partition assignments defined within the subdesign project are
not imported into the top-level project. All logic in the subdesign is
imported as one partition in the QXP file.

Synopsys Design Constraint (SDC) Files for the Quartus II TimeQuest
Timing Analyzer

Timing assignments made for the Quartus II TimeQuest Timing
Analyzer in an SDC file are currently not imported into the top-level
project. You should manually ensure that the top-level project includes
all of the timing requirements for the entire project.

If you want to copy lower-level SDC files to the top-level project, consider
prefixing lower-level constraints with a variable for the design hierarchy.
Then, when you copy the file to the top-level design, you can set the
variable to provide the hierarchy path to the lower-level partition in the
top-level design.

Importing LogicLock Assignments

LogicLock regions are set to a fixed size when imported. If you instantiate
multiple instances of a subdesign in the top-level design, the imported
LogicLock regions are set to a Floating location. Otherwise, they are set to
a Fixed location. You can change the location of LogicLock regions after
they are imported, or change them to a Floating location to allow the
software to place each region but keep the relative locations of nodes
within the region wherever possible. If you want to preserve changes
made to a partition after compilation, use the Netlist Type Post-Fit
(Import-Based).

The LogicLock Member State assignment is set to Locked to signify that
it is a preserved region.

LogicLock back-annotation and node location data is not imported
because the Quartus II Exported Partition file contains all the relevant
placement information. Altera strongly recommends that you do not add
to or delete members from an imported LogicLock region.

Importing Other Instance Assignments

All instance assignments are imported, with the exception of design
partition assignments, SDC constraints, and LogicLock assignments, as
described previously.

Altera Corporation 2–39
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Importing Global Assignments

Global assignments are not imported. The project lead should make
global assignments in the top-level design. Global assignments include
clock settings for the Quartus II Classic Timing Analyzer.

Advanced Import Settings

The Advanced Import Settings dialog box allows you to specify the
options that control how assignments and regions are integrated and how
to resolve assignment conflicts when importing a subdesign partition into
a top-level design. The following subsections describe each of these
options.

Allow Creation of New Assignments
Allows the import command to add new assignments from the imported
project to the top-level project.

When this option is turned off, it imports updates to existing
assignments, but no new assignments are allowed.

Promote Assignments to all Instances of the Imported Entity
Converts and promotes entity-level assignments from the subdesign into
instance-level assignments in the top-level design.

Assignment Conflict Resolution: LogicLock Regions
Choose one of the following options to determine how to handle
conflicting LogicLock assignments (that is, subdesign assignments that
do not match the top-level assignments):

■ Always replace regions in the current project (default)—Deletes
existing regions and replaces them with the new subdesign region.
Any changes made to the LogicLock region after the assignments
were imported are also deleted.

■ Always update regions in the current projects—Overwrites existing
region assignments to reflect any new subdesign assignments with
the exception of the LogicLock Origin, in case the project lead has
made floorplan location assignments in the top-level design.

■ Skip conflicting regions—Ignores and does not import subdesign
assignments that conflict with any assignments that exist in the
top-level design.

Assignment Conflict Resolution: Other Assignments
Choose one of the following options to determine how to handle conflicts
with other types of assignments (that is, the subdesign assignments do
not match the top-level assignments):

2–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

■ Always replace assignments in the current project (default)—
Overwrites or updates existing instance assignments with the new
subdesign assignments.

■ Skip conflicting assignments—Ignores and does not import
subdesign assignments that conflict with any assignments that exist
in the top-level design.

Generating Bottom-Up Design Partition Scripts for Project
Management

The bottom-up design partition scripts automate the process of
transferring top-level project information to lower-level modules. The
software provides a project manager interface for managing resource and
timing budgets in the top-level design. This makes it easier for designers
of lower-level modules to implement the instructions from the project
lead, and avoid conflicts between projects when importing and
incorporating the projects into the top-level design. This helps reduce the
need to further optimize the designs after integration, and improves
overall designer productivity and team collaboration.

1 Generating bottom-up design partition scripts is optional in any
bottom-up design methodology.

For example design scenarios using these scripts, refer to “Bottom-Up
Incremental Design Flows” on page 2–67. In a typical bottom-up design
flow, the project lead must perform some or all of the following tasks to
ensure successful integration of the subprojects:

■ Manually determine which assignments should be propagated from
the top level to the bottom levels. This requires detailed knowledge
of which Quartus II assignments are needed to set up low-level
projects.

■ Manually communicate the top-level assignments to the low-level
projects. This requires detailed knowledge of Tcl or other scripting
languages to efficiently communicate project constraints.

■ Manually determine appropriate timing and location assignments
that will help overcome the limitations of bottom-up design. This
requires examination of the logic in the lower levels to determine
appropriate timing constraints.

■ Perform final timing closure and resource conflict avoidance at the
top level. Because the low-level projects have no information about
each other, meeting constraints at the lower levels does not
guarantee they will be met when integrated at the top-level. It then
becomes the project lead’s responsibility to resolve the issues, even
though information about the low-level implementation may not be
available.

Altera Corporation 2–41
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Using the Quartus II software to generate bottom-up design partition
scripts from the top level of the design makes these tasks much easier and
eliminates the chance of error when communicating between the project
lead and lower-level designers. Partition scripts pass on assignments
made in the top-level design, and create some new assignments that
guide the placement and help the lower-level designers see how their
design connects to other partitions. If necessary, you can exclude specific
design partitions.

Generate design partition scripts after a successful compilation of the
top-level design. On the Project menu, click Generate Bottom-Up Design
Partition Scripts. The design can have empty partitions as placeholders
for lower-level blocks, and you can perform an Early Timing Estimation
instead of a full compilation to reduce compilation times.

The following subsections describe the information that can be included
in the bottom-up design partition Tcl scripts. Use the options in the
Generate Bottom-Up Design Partition Scripts dialog box to choose
which types of assignments you want to pass down and create in the
lower-level partition projects. Each time you rerun the script generation
process, the Quartus II software recreates the files and replaces older
versions.

For information about current limitations in the bottom-up partition
scripts, refer to “Bottom-Up Design Partition Script Limitations” on
page 2–84.

Project Creation

You can use the Create lower-level project if one does not exist option
for the partition scripts to create lower-level projects if they are required.
The Quartus II Project File for each lower-level project has the same name
as the entity name of its corresponding design partition.

With this project creation feature, the scripts work by themselves to create
a new project, or can be sourced to make assignments in an existing
project.

Excluded Partitions

Use the Excluded partition(s) option at the bottom of the dialog box to
exclude specific partitions from the Tcl script generation process. Use the
browse button, then highlight the partition name in the Select
Partition(s) dialog box and use the appropriate buttons to select or
deselect the desired partitions.

2–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Assignments from the Top-Level Design

By default, any assignments made at the top level (not including default
assignments or project information assignments) are passed down to the
appropriate lower-level projects in the scripts. The software uses the
assignment variables and determines the logical partition(s) to which the
assignment pertains (this includes global assignments, instance
assignments, and entity-level assignments). The software then changes
the assignments so that they are syntactically valid in a project with its
target partition’s logic as the top-level entity.

The names of the design files that apply to the specific partition are added
to each lower-level project. Note that the script uses the file name(s)
specified in the top-level project. If the top-level project used a
placeholder wrapper file with a different name than the design file in the
lower-level project, you should be sure to add the appropriate file to the
lower-level project.

The scripts process wildcard assignments correctly, provided there is
only one wildcard. Assignments with more than one wildcard are
ignored and warning messages are issued.

Use the following options to specify which types of assignments to pass
down to the lower-level projects:

■ Timing assignments—When this option is turned on, all Classic
Timing Analyzer global timing assignments for the lower-level
projects are included in the script, including tCO, tSU, and fMAX
constraints. This option may also include timing constraints on
internal partition connections.

■ Design partition assignments—When this option is turned on,
script assignments related to design partitions in the lower-level
projects are included, as well as assignments associated with
LogicLock regions.

■ Pin location assignments—When this option is turned on, all pin
location assignments for lower-level project ports that connect to
pins in the top-level design are included in the script, controlling the
overuse of I/Os at the top-level during the integration phase and
preserving placement.

Altera Corporation 2–43
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Virtual Pin Assignments

When Create virtual pins at low-level ports connected to other design
units is turned on, the Quartus II software searches partition netlists and
identifies all ports that have cross-partition dependencies. For each
lower-level project pin associated with an internal port in another
partition or in the top-level project, the script generates a virtual pin
assignment, ensuring more accurate placement, because virtual pins are
not directly connected to I/O ports in the top-level project. These pins are
removed from a lower-level netlist when it is imported into the top-level
design.

Virtual Pin Timing and Location Assignments
One of the main issues in bottom-up design methodologies is that each
individual design block includes no information about how it is
connected to other design blocks. If you turn on the option to write virtual
pin assignments, you can also turn on options to constrain these virtual
pins to achieve better timing performance after the lower-level partitions
are integrated at the top level.

When Place created virtual pins at location of top-level source/sink is
turned on, the script includes location constraints for each virtual pin
created. Virtual output pins are assigned to the location of the
connection’s destination in the top-level project, and virtual input pins
are assigned to the location of the connection’s source in the top-level
project. Note that if the top-level design uses Empty partitions, the final
location of the connection is not known but the pin is still assigned to the
LogicLock region that contains its source or destination.

As a result, these virtual pins are no longer placed inside the LogicLock
region of the lower-level project, but at their location in the top-level
design, eliminating resource consumption in the lower-level project and
providing more information about lower-level projects and their port
dependencies. These location constraints are not imported into the
top-level project.

When Add maximum delay to created virtual input pins, Add
maximum delay from created virtual output pins, or both, are turned on,
the script includes timing constraints for each virtual pin created. The
value you enter in the dialog box is the maximum delay allowed to or
from all paths between virtual pins to help meet the timing requirements
for the complete design. The software uses the INPUT_MAX_DELAY
assignment or OUTPUT_MAX_DELAY assignment to apply the constraint.

2–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

This option allows the project lead to specify a general timing budget for
all lower-level internal pin connections. The lower-level designer can
override these constraints by applying individual node-level
assignments on any specific pin as needed.

LogicLock Region Assignments

When Copy LogicLock region assignments from top-level is turned on,
the script includes assignments identifying the LogicLock assignment for
the partition.

The script can also pass assignments to create the LogicLock regions for
all other partitions. When Include all LogicLock regions in lower-level
projects is turned on, the script for each partition includes all LogicLock
region assignments for the top-level project and each lower-level
partition, revealing the floorplan for the complete design in each
partition. Regions that do not belong to other partitions contain virtual
pins representing the source and destination ports for cross-partition
connections. This allows each designer to more easily view the
connectivity between their partition and other partitions in the top-level
design, and helps ensure that resource conflicts at the top level are
minimized.

When Remove existing LogicLock regions from lower-level projects is
turned on, the script includes commands to remove LogicLock regions
defined in the lower-level project prior to running the script. This ensures
that LogicLock regions not part of the top-level project do not become
part of the complete design, and avoids any location conflicts by ensuring
lower-level designs use the LogicLock regions specified at the top level.

Global Signal Promotion Assignments

To help prevent conflicts in global signal usage when importing projects
into the top-level design, you can choose to write assignments that
control how signals are promoted to global routing resources in the
lower-level partitions. These options can help resource balancing of
global routing resources.

When Promote top-level global signals in lower-level projects is turned
on, the Quartus II software searches partition netlists and identifies
global resources, including clock signals. For the relevant partitions, the
script then includes a global signal promotion assignment, providing
information to the lower-level projects about global resource allocation.

When Disable automatic global promotion in lower-level projects is
turned on, the script includes assignments that turn off all automatic
global promotion settings in the lower-level projects. These settings

Altera Corporation 2–45
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

include the Auto Global Memory Control Signals logic option, output
enable logic options, and clock and register control promotions. If you
select the Disable automatic global promotion in lower-level projects
option in conjunction with the Promote top-level global signals in
lower-level projects option, you can ensure that only signals promoted
to global resources in the top-level are promoted in the lower-level
projects.

Makefile Generation

Makefiles allow you to use make commands to ensure that a bottom-up
project is up-to-date if you have a make utility installed on your
computer. The Generate makefiles to maintain lower-level and
top-level projects option creates a makefile for each design partition in
the top-level design, as well as a master makefile that can run the
lower-level project makefiles. The Quartus II software places the master
makefiles in the top-level directory, and the partition makefiles in their
corresponding lower-level project directories.

You must specify the dependencies in the makefiles to indicate which
source file should be associated with which partition. The makefiles use
the directory locations generated using the Create lower-level project if
one does not exist option. If you created your lower-level projects
without using this option, you must modify the variables at the top of the
makefile to specify the directory location for each lower-level project.

To run the makefiles, use a command such as
make -f master_makefile.mak from the script output directory. The
master makefile first runs each lower-level makefile, which sources its Tcl
script and then generates a Quartus II Exported Partition file to export the
project as a design partition. Next, run the top-level makefile that
specifies these newly generated Quartus II Exported Partition files as the
import files for their respective partitions in the top-level project. The
top-level makefile then imports the lower-level results and performs a
full compilation, producing a final design.

To exclude a certain partition from being compiled, edit the
EXCLUDE_FLAGS section of master_makefile.mak according to the
instructions in the file, and specify the appropriate options. You can also
exclude some partitions from being built, exported, or imported using
make commands. To exclude a partition, run the makefile using a
command such as the one for the GNU make utility shown in the
following example:

gnumake –f master_makefile.mak exclude_<partition directory>=1 r

2–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

This command instructs that the partition whose output files are in
<partition directory> are not built. Multiple directories can be excluded by
adding multiple exclude_<partition directory> commands.
Command-line options override any options in the makefile.

Another feature of makefiles is the ability to have the master makefile
invoke the low-level makefiles in parallel on systems with multiple
processors. This option can help designers working with multiple CPUs
greatly improve their compilation time. For the GNU make utility, add
the -j<N> flag to the make command. The value <N> is the number of
processors that can be used to run the build.

1 The makefile does not include a make clean option, so the design
may recompile when make is run again and a QXP file already
exists.

Guidelines for
Creating Good
Design
Partitions and
LogicLock
Regions

This section provides guidelines for creating design partitions and
floorplan location assignments that will help you achieve good quality
results, as well as criteria and methodologies to check the quality of your
assignments.

When planning your design, keep in mind the size and scope of each
partition, and the likelihood that different parts of your design might
change as your design develops. Consider placing logic that changes
frequently into its own partition, so that you have to recompile only that
partition if the rest of the design stays the same. Similarly, consider
placing fixed logic, such as IP cores or logic reused from another project,
into its own partition so that you can compile once and lock down the
placement immediately with a post-fit netlist.

Creating partitions prevents the compiler from performing logic
optimizations across partition boundaries (Figure 2–10), allowing the
software to synthesize and place each partition separately.

Figure 2–10. Effects of Partition Boundaries During Optimization

Presence of Cross-Boundary
Optimizations

Hierarchy A

Hierarchy A Hierarchy B

Compile without
Partition Boundaries

Compile with
Partition Boundaries

Hierarchy B

Hierarchy A Hierarchy B

Cannot Obtain Results of an
Individual Hierarchy for
Incremental Compilation

Hierarchies Remain Independent
from One Another During Logic
Optimizations

Possible to Incrementally
Recompile Each Hierarchy

Altera Corporation 2–47
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

For example, consider a design with a 36-bit function defined in partition
A, but with only 18 bits connected in partition B. In a flat design, you
would expect the logic for the other 18 bits to be removed during
synthesis. With incremental compilation, the Quartus II compiler does
not remove the (unused) logic from partition A because partition B is
allowed to change independently from partition A. That is, you could
later connect all 36 bits in partition B. In this case, you should remove the
unconnected ports and replace them with ground signals inside partition
A. You can create a new wrapper file to do this.

Another example is the case in which a clock is inverted at partition
boundary, but the inversion should be done in the destination LAB for
best results. With incremental compilation, the Quartus II compiler uses
logic to invert the signal, then routes the signal on global clock resource
to its destinations within the partition. The signal acts as a gated clock
with high skew. You must set up partitions to ensure that optimization
does not rely on information from other partitions, so you should
perform clock inversions in the destination partitions.

Because cross-boundary optimizations cannot occur when using
partitions, the quality of results and performance of the design may
decrease as the number of partitions increases. Although more partitions
allows for greater reduction in compilation time, you should limit the
number of partitions to prevent degradation of the quality of results. This
effect is more pronounced in a bottom-up methodology than a top-down
methodology.

In a top-down compilation where partitions are not locked down with
post-fitting results, the Fitter can perform placement optimizations on the
design as a whole to optimize the placement of cross-partition paths.
(However, the Fitter cannot perform logic optimizations such as physical
synthesis across the partition boundary.) In a bottom-up flow, partitions
are compiled separately. Typically, the fitting results are exported, so
there is no placement optimization across the partitions boundaries.

Creating Good Design Partitions

Altera recommends that you observe the following important
hierarchical design considerations when creating partitions:

■ Register all inputs and outputs of each partition. This helps avoid
any delay penalty on signals that cross partition boundaries. At the
very least, either the inputs or the outputs should be registered. The
Statistics reports described in the “Partition Statistics Reports”
section list the ports registered for each partition.

2–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

1 While this can be difficult in practice, adherence to this
principle results in less timing degradation and area
increase when using incremental flows. Registering lessens
the need for the cross-partition optimizations that are
prevented by partitioning. By registering the ports, you can
keep critical paths within a single partition, thus keeping
the lengths of inter-partition register-to-register paths to a
minimum.

■ Minimize the number of paths that cross partition boundaries. If
there are critical paths crossing between partitions, rework the
partitions to avoid these inter-partition paths. Capturing as many of
the timing-critical connections as possible inside a partition allows
you to effectively apply optimizations to that partition to improve
timing, while leaving the rest of the design unchanged. The Statistics
reports described in “Partition Statistics Reports” on page 2–50 list
the number of input and output ports for each partition.

■ Ensure that the size of each partition is not too small (as a rough
guideline, partitions should be greater than 2,000 logic elements
(LEs) or adaptive logic modules (ALMs)). The Statistics reports
described in the “Partition Statistics Reports” section list the logic
utilization of each partition.

■ Minimize the number of unconnected ports at partition boundaries.
When a port is left unconnected, optimizations that remove logic
driving that port could improve results. However, these
optimizations are not allowed in an incremental design, because they
would lead to cross-partition dependence. Altera recommends that
you either connect such ports to an appropriate node or remove them
from the design. If you know the port should not be used, consider
defining a wrapper module with a port interface that reflects this
fact. The Statistics reports described in the “Partition Statistics
Reports” section list the number of unconnected input and output
ports for each partition.

Altera Corporation 2–49
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

■ Do not use tri-state signals or bidirectional ports on hierarchical
boundaries, unless the port is connected directly to a top-level I/O
pin on the device. If you use boundary tri-states in a lower-level
block, synthesis pushes the tri-states through the hierarchy to the top
level to take advantage of the tri-state drivers on the output pins of
the device.
In an incremental compilation flow, internal tri-states are supported
only when all the destination logic is contained in the same partition,
in which case Analysis and Synthesis implements the internal
tri-state signals using multiplexing logic. For a bidirectional port that
feeds a bidirectional pin at the top level, all the logic that forms the
bidirectional I/O cell must reside in the same partition.

■ Note that logic is not synthesized or optimized across partition
boundaries, which means any constant value (for example, a signal
set to GND) is not propagated across partitions. If a port is supposed
to be connected to VCC or GND, replace the port with VCC or GND in
the module's design. This allows optimizations to take place that
could not be performed if VCC or GND is connected through a port.

■ Do not use the same signal to drive multiple ports on a single
partition. If the same driving signal feeds multiple ports of a
partition, those ports are logically equivalent. However, because
inter-partition optimizations cannot be performed, the compilation
of that partition cannot take advantage of this fact, which usually
results in sub-optimal performance. For example, if a single clock is
used to drive the read and write clocks of a RAM block and the RAM
block is compiled separately in a bottom-up design flow, the RAM
block is implemented as though there are two unique clocks. If you
know the port connectivity will not change (that is, the ports will
always be driven by the same signal), redefine the port interface so
there is only a single port that can then internally drive other logic in
the partition. If required, you can create a wrapper module around
the partition that has fewer ports.

■ Do not directly connect two ports of a partition. If two ports on a
module are directly connected, consider redefining the module to
remove those ports. If an output port drives an input port on the
same module, the connection can be made internally without going
through any I/O ports. If an input port drives an output port
directly, the connection can likely be implemented without the ports
by connecting the signals in a higher-level design partition.

■ You may have to perform some manual resource balancing across
partitions if device resources are overused in the individual
partitions. Refer to “Resource Balancing” on page 2–51 for details.

■ You may have to perform some timing budgeting if paths that cross
partition boundaries require further optimization. Refer to “Timing
Budgeting” on page 2–53 for details.

2–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

You can use the Incremental Compilation Advisor to check that your
design follows many of these guidelines. Refer to “Incremental
Compilation Advisor” on page 2–60 for more details.

Partition Statistics Reports

You can view statistics about design partitions in the Partition Merge
Partition Statistics compilation report and the Statistics tab in the Design
Partitions Properties dialog box.

The Partition Statistics page under the Partition Merge folder of the
Compilation Report lists statistics about each partition. The statistics for
each partition (each row in the table) include the number of logic cells it
contains, as well as the number of input and output pins it contains and
how many are registered or unconnected. This report is useful when
optimizing your design partitions in a top-down compilation flow, or
when you are compiling the top-level design in a bottom-up compilation
flow, ensuring that the partitions meet the guidelines presented in
“Creating Good Design Partitions” on page 2–47. Figure 2–11 shows the
report window.

Figure 2–11. Partition Merge Partition Statistics Report

You can also view statistics about the resource and port connections for a
particular partition on the Statistics tab of the Design Partition
Properties dialog box. On the Assignments menu, click Design
Partitions Window. Right-click on a partition and click Properties to
open the dialog box. Click Show All Partitions to view all the partitions
in the same report (Figure 2–12).

Altera Corporation 2–51
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Figure 2–12. Statistics Tab in the Design Partitions Properties Dialog Box

Resource Balancing

When using incremental compilation, the software synthesizes each
partition separately, with no data about the resources used in other
partitions. This means that device resources could be overused in the
individual partitions during synthesis, and thus the design may not fit in
the target device when the partitions are merged.

In a bottom-up design flow in which designers optimize their lower-level
designs and export them to a top-level design, the software also places
and routes each partition separately. In some cases, partitions can use
conflicting resources when combined at the top level.

To avoid these effects, you may have to perform manual resource
balancing across partitions.

2–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

RAM and DSP Blocks

In the standard synthesis flow, when DSP blocks or RAM blocks are
overused, the Quartus II Compiler can perform resource balancing and
convert some of the logic into regular logic cells (for example, LEs or
ALMs). Without data about resources used in other partitions, it is
possible for the logic in each separate partition to maximize the use of a
particular device resource, such that the design does not fit after all the
partitions are merged. In this case, you may be able to manually balance
the resources by using the Quartus II synthesis options to control
inference of megafunctions that use the DSP or RAM blocks. You can also
use the MegaWizard® Plug-In Manager to customize your RAM or DSP
megafunctions to use regular logic instead of the dedicated hardware
blocks.

f For more information about resource balancing when using Quartus II
synthesis, refer to the Megafunction Inference Control section in the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook. For more tips about resource balancing and reducing resource
utilization, refer to the appropriate Resource Utilization Optimization
Techniques section in the Area and Timing Optimization chapter in
volume 2 of the Quartus II Handbook.

Altera recommends using a LogicLock region for each partition to
minimize the chance that the logic in more than one partition uses the
same logic resource. However, there are situations in which partition
placement may still cause conflicts at the top level. For example, you can
design a partition one way in a lower-level design (such as using an
M-RAM memory block) and then instantiate it in two different ways in
the top level (such as one using an M-RAM block and another using an
M4K block). In this case, you can use a post-fit netlist only with no
placement information to allow the software to refit the logic.

Global Routing Signals

Global routing signals can cause conflicts when multiple projects are
imported into a top-level design. The Quartus II software automatically
promotes high fan-out signals to use global routing resources available in
the device. Lower-level partitions can use the same global routing
resources, thus causing conflicts at the top level.

In addition, LAB placement depends on whether the inputs to the
LCELLs within the LAB are using a global clock signal. Therefore,
problems can occur if a design does not use a global signal in the
lower-level design, but does use a global signal in the top-level design.

Altera Corporation 2–53
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

To avoid these problems, the project lead can first determine which
partitions will use global routing signals. Each designer of a lower-level
partition can then assign the appropriate type of global signals manually,
and prevent other signals from using global routing resources. If you
have all partitions available, you can compile the entire design at the top
level with floorplan assignments to allow the use of regional clocks that
span only a part of the chip. The Fitter automatically promotes some
signals to global routing, and you can use this information when
optimizing the lower-level partitions in separate Quartus II projects.

Use the Global Signal assignment set to a value of On or Off in the
Assignment Editor to place a signal on a global routing line, or to prevent
the signal from using a global routing line. You can also assign certain
types of global clock resources in some device families, such as regional
clocks that cover only part of the device. You can view the resource
coverage of such clocks in the Chip Planner, and then align LogicLock
regions that constrain partition placement with available global clock
routing resources. For example, if the LogicLock region for a particular
partition is limited to one device quadrant, that partition’s clock can use
a regional clock routing type that covers only one device quadrant.

If you want to disable the automatic global promotion performed in the
Fitter, turn off the Auto Global Clock and Auto Global Register Control
Signals options. On the Assignments menu, click Settings. On the Fitter
Settings page, click More Settings and change the settings to Off.

Alternatively, to avoid problems when importing, direct the Fitter to
discard the placement and routing of the imported netlist by setting the
Fitter preservation level property of the partition to Netlist Only. With
this option, the Fitter re-assigns all the global signals for this particular
partition when compiling the top-level design.

If you are performing a bottom-up flow using the design partition scripts,
the software can automatically write the commands to pass global
constraints and turn off the automatic options. Refer to “Generating
Bottom-Up Design Partition Scripts for Project Management” on
page 2–40 for details.

Timing Budgeting

If you optimize lower-level partitions independently and import them to
the top level, any unregistered paths that cross between partitions are not
optimized as an entire path. One way to reduce this effect is to ensure
input and output ports of the partitions are registered whenever possible.

2–54 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

To ensure that the Compiler correctly optimizes the input and output
logic in each partition, you may be required to perform some manual
timing budgeting. For each unregistered timing path that crosses
between partitions, make timing assignments on the corresponding I/O
path in each partition to constrain both ends of the path to the budgeted
timing delay. Timing budgets may be required for these I/O ports
because when the Compiler optimizes each partition, it has no
information about the placement of the logic that connects to that port. If
the logic in one partition is placed far away from logic in another
partition, the routing delay between the logic could lead to problems
meeting the timing requirements. Assigning a timing budget for each
part of the connection ensures that the Compiler optimizes the paths
appropriately.

When performing manual timing budgeting, you can also use Virtual Pin
assignments to represent I/O ports of a partition that feed another
partition in the full design. By assigning location and timing constraints
to the Virtual Pins that represent the connections in the full design, you
can further improve the quality of the timing budget.

If you are performing a bottom-up flow using the design partition scripts,
the software can write virtual pin assignments and I/O timing budget
constraints automatically. Refer to “Generating Bottom-Up Design
Partition Scripts for Project Management” on page 2–40 for details.

Methodology to Check Partition Quality during Partition Planning

There is an inherent tradeoff between compilation time and quality of
results when you vary the number of partitions in a project. You can
ensure that you limit this effect by following an iterative methodology
during the partitioning process. In any incremental compilation flow in
which you can compile the source code for each partition during the
partition planning phase, Altera recommends the following iterative
flow:

1. Start with a complete design that is not partitioned and has no
location or LogicLock assignments.

2. To perform a placement and timing analysis estimate, on the
Processing menu, point to Start and click Start Early Timing
Estimate.

Altera Corporation 2–55
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

1 You must perform Analysis and Synthesis before
performing an Early Timing Estimate. If incremental
compilation is already turned on, you must also perform
Partition Merge.

To run a full compilation instead of the Early Timing Estimate, on the
Processing menu, click Start Compilation.

3. Record the quality of results from the Compilation Report (fM A X,
area, and so forth).

4. Create design partitions as described in “Creating Design
Partitions” on page 2–19 using the guidelines in “Creating Good
Design Partitions” on page 2–47.

5. Perform another Early Timing Estimate or full compilation.

6. Record the quality of results from the Compilation Report. If the
quality of results is significantly worse than that obtained in the
previous compilation in Step 3, repeat Step 4 through this step
(Step 6) to change your partition assignments and use a different
partitioning scheme.

7. Even if the quality of results is acceptable, you can repeat Step 4
through Step 6 by further dividing a large partition into several
smaller partitions. Doing so improves compilation time in future
incremental compilations. You can repeat this step until you achieve
a good tradeoff point (that is, all critical paths are localized within
partitions, the quality of results is not negatively affected, and the
size of each partition is reasonable).

The Importance of Floorplan Location Assignments in
Incremental Compilation

Floorplan location planning can be very important for a design that uses
full incremental compilation, for the following two reasons:

■ To avoid resource conflicts between partitions
■ To ensure a good quality of results when recompiling partitions and

other partition placement is unchanged

Location assignments for each partition ensures that there are no conflicts
for locations between different partitions. If there are no LogicLock
region assignments, or if LogicLock regions are set to auto-size or
floating, it is unclear which resources on the device are allocated for the
logic associated with the region. Without clearly defining this resource
budget, bottom-up design can produce many resource conflicts when

2–56 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

importing results, because each bottom-up partition has no information
about its resource budget and may therefore claim resources required by
another partition.

In addition, a design floorplan helps to avoid the situation that arises
when the Fitter is directed to place or replace a portion of the design in an
area of the device where most resources have already been claimed. In
this case, the placement of the post-fit netlists of other modules forces the
Fitter to place the new portion of the design in the empty parts of the
device. There are two immediate disadvantages to this situation. First, the
Fitter must work harder because of the higher number of physical
constraints, and therefore compilation time probably increases. Second,
the quality of results often decreases, sometimes dramatically, because
the placement of the target module is now scattered throughout the
device.

Figures 2–13 and 2–14 illustrate the problems associated with refitting
designs that do not have floorplan location assignments. Figure 2–13
shows the initial placement of a four-partition design (P1–P4) without
floorplan location assignments. The second part of the figure shows the
situation if a change occurs to P3. After removing the logic for the
changed partition, the Fitter must replace and reroute the new logic for
P3 using the white space shown in the figure.

Figure 2–13. Representation of Device Floorplan without Location
Assignments

Performing this placement is very difficult. The Fitter may not be able to
find any legal placement for the logic in partition P3, even if it was able to
do so in the initial compilation. If the Fitter does find a legal placement,
the results are probably sub-optimal.

P1

P3

P3

P4P1

P2

P2

P1

Device Floorplan
With 4 Partitions

P3

P1

P4P1

P2

P2

P1

Device Floorplan
After Removing Changed Partition P3

Altera Corporation 2–57
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Figure 2–14 shows the initial placement of a four-partition design with
floorplan location assignments made by the user, and the situation after
partition P3 is removed in this case.

Figure 2–14. Representation of Device Floorplan with Location Assignments

This placement presents a much more reasonable task to the Fitter and
yields better results than the previous case that does not have floorplan
location assignments. Due to this effect, you should ensure that you have
a LogicLock floorplan assignment for any timing-critical blocks that will
be recompiled as you make changes to the design. You can use the
Reserved property to ensure that there are no placement conflicts in
bottom-up flows. Logic that is not timing-critical can float throughout the
device in a top-down compilation flow, so a floorplan assignment might
not be required in this case.

Creating Good Floorplan Location Assignments

This section presents recommendations for creating a design floorplan
using LogicLock regions.

In most cases, each LogicLock region should contain logic from only one
partition. This organization helps prevent resource conflicts in a bottom-
up design and can lead to better performance preservation when locking
down parts of a project in a top-down design. One exception to this rule
is the case where you want to have two lower-level partitions compiled
together in the same LogicLock region because of tight interaction, but
you want to separate the placement of the parent logic for each partition.
In this case, you can place more than one partition in one LogicLock
region, but for best results you must ensure that you recompile all
partitions every time the logic in one partition changes. In addition, if
your partition consists of a wrapper around more than one lower-level

P2 P3

P1 P4

Device Floorplan
With 4 Partitions

Device Floorplan
After Removing Changed Partition P3

P2

P1 P4

2–58 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

module, you can place those modules in different areas of the device by
using different LogicLock regions even if they are defined in the same
partition.

If your design contains hierarchical partitions (that is, parent-child
relationships between partitions), you can create hierarchical LogicLock
regions to ensure that the logic in the child partition is physically placed
inside the LogicLock region for the parent partition. This can be useful
when the parent partition does not contain registers at the boundary with
the lower-level child partition and has a lot of signal connectivity. To
create a hierarchical relationship between regions in the LogicLock
Regions window, drag and drop the child region to the parent region.

Ensure that all LogicLock regions in the design have a fixed size and have
their origin locked to a specific location on the chip. If you use auto-sized,
floating-location regions to create an initial floorplan, be sure to set the
size and origin to use the fitter results before you recompile. Do not use
the Soft LogicLock region property. Refer to “The Importance of
Floorplan Location Assignments in Incremental Compilation” on
page 2–55 for more information.

If resource utilization is low, you can enlarge the regions chosen by the
Fitter with the auto-size setting. Doing so usually improves the final
results because it gives the Fitter more freedom to place additional logic
added to the partition during future incremental compilations.

Ideally, almost the entire device should be covered by LogicLock regions
if all partitions are assigned to a region. Give more area to regions that are
densely populated, because overly congested regions can lead to poor
results. You may move the region origins from auto-floating region
placement to satisfy this requirement, but Altera recommends preserving
the Fitter-determined relative placement of the regions. Also, regions that
are too large for their logic can result in wasted resources and also lead to
poor results. You should define LogicLock regions that are neither too
small nor too large.

Regions should not overlap in the device floorplan, especially in
bottom-up flows. If two partitions are allocated an overlapping portion of
the chip, each may independently claim some common resources in this
region. This will lead to resource conflicts when importing bottom-up
results into a final top-level design.

If two LogicLock regions have several connections between them, place
them near each other to improve timing performance. By placing
connected regions near each other, the Fitter has more opportunity to

Altera Corporation 2–59
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

optimize inter-region paths when both partitions are recompiled.
Reducing the criticality of inter-region paths also allows the Fitter more
flexibility when placing the other logic in each region.

You can use the Incremental Compilation Advisor to check that your
design follows many of these guidelines. Refer to “Incremental
Compilation Advisor” on page 2–60 for more details.

f For more information about making and editing LogicLock regions, refer
to the Analyzing and Optimizing the Design Floorplan chapter in volume 2
of the Quartus II Handbook.

Excluding Certain Device Elements (such as RAM or DSP Blocks) with
Resource Exceptions

If your design contains memory or digital signal processing (DSP)
elements, you may want to exclude these elements from the LogicLock
region. You can use LogicLock resource exceptions to prevent elements
of certain types from being assigned to a region. Note that the filter does
not prevent them from being placed inside the region boundaries unless
the region’s Reserved property is turned on. Defining a resource
exception instructs the Fitter that certain blocks are not required to be
inside a region.

Resource exceptions are useful in cases where it is difficult to place
rectangular regions for design blocks that contain memory and DSP
elements, because of their placement in columns throughout the device
floorplan. Excluding these elements can help to resolve no-fit errors that
are caused by regions spanning too many resources, especially for
designs that are memory-intensive, DSP-intensive, or both. If desired,
you can also create separate regions for the memory or DSP blocks,
excluding logic cell resources, which can be shaped to accommodate the
columns in the device to control the placement of those design elements.

To view any resource exceptions, right-click in the LogicLock Regions
window and click Properties. In the LogicLock Region Properties dialog
box, highlight the design element (module/entity) in the Members box
and click Edit. To set up a resource exception, click the browse button
under Excluded element types, then turn on the design element types to
be excluded from the region. You can choose to exclude combinational
logic or registers from logic cells, or any of the sizes of TriMatrix™
memory blocks, or DSP blocks.

2–60 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Incremental Compilation Advisor

You can use the Incremental Compilation Advisor to check that your
design follows many of the recommendations presented in this chapter
for creating design partitions and floorplan location assignments. On the
Tools menu, point to Advisors, and click Incremental Compilation
Advisor.

As shown in Figure 2–15, recommendations are split into General
Recommendations that apply to all compilation flows and Bottom-Up
Design Recommendations that apply to bottom-up design
methodologies. Each recommendation provides an explanation,
describes the effect of the recommendation, and provides the action
required to make the suggested change. In some cases, there is a link to
the appropriate Quartus II settings page where you can make a suggested
change to assignments or settings.

Figure 2–15. Incremental Compilation Advisor

To check whether the design follows the recommendations, go to the
Timing Independent Recommendations page or the Timing
Dependent Recommendations page, and click Check
Recommendations. For large designs, these operations can take a few
minutes. After you perform a check operation, symbols appear next to
each recommendation to indicate whether the design or project setting
follows the recommendations, or if some or all of the design or project
settings do not follow the recommendations. Refer to the Legend on the
How to use the Incremental Compilation Advisor page in the advisor
for more information.

For some items in the Advisor, if your design does not follow the
recommendation, the Check Recommendations operation lists any parts
of the design that could be improved. For example, if not all of the
partition I/O ports follow the Register All Ports recommendation, the
advisor displays a list of unregistered ports with the partition name and
the source and destination nodes for the port.

Altera Corporation 2–61
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

When the advisor provides a list of nodes, you can right-click on a node
and click Locate to cross-probe to other Quartus II features such as the
RTL Viewer, Chip Planner, or the design source code in the text editor.

1 The first time you open the RTL or Technology Map Viewer, a
preprocessor stage runs. This preprocessor resets the
Incremental Compilation Advisor, so you must rerun the Check
Recommendations process. Alternatively, you can open the
appropriate netlist viewer before you use the Incremental
Compilation Advisor if you want to locate nodes in the viewer.

Criteria for Successful Partition and Floorplan Schemes

The end results of design partitioning and floorplan creation differ from
design to design. However, it is important to evaluate your results to
ensure that your scheme is successful. Compare the results before
creating your floorplan location assignments to the results after doing so,
and consider using another scheme if any of the following guidelines are
not met:

■ No degradation in fMAX should be observed after the design is
partitioned and floorplan location assignments are created. In many
cases, a slight increase in fMAX is possible.

■ The area increase should be no more than 5% after the design is
partitioned and floorplan location assignments are created.

■ The time spent in the routing stage should not significantly increase.

The amount of compilation time spent in the routing stage is reported in
the Messages window with an Info message indicating the elapsed time
for Fitter routing operations. If you notice a dramatic increase in routing
time, the floorplan location assignments may be creating substantial
routing congestion. In this case, decrease the number of LogicLock
regions. Doing so typically reduces the compilation time in subsequent
incremental compilations, and may also improve design performance. To
help you modify your LogicLock regions, you can identify areas of
congested routing in your design using the Chip Planner. On the Tools
menu, click Chip Planner. To view the routing congestion, click the
Layers icon located next to the Task menu. Under Background Color
Map, select the Routing Utilization map.

2–62 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Recommended
Design Flows
and Compilation
Application
Examples

This section provides design flows for solving common timing closure
and team-based design issues using incremental compilation. Each flow
describes the situation in which it should be used, and gives a
step-by-step description of the commands required to implement the
flow. These examples are divided into the following two sections:

■ “Top-Down Incremental Design Flows”
■ “Bottom-Up Incremental Design Flows”

Top-Down Incremental Design Flows

There are four top-down incremental design flow examples that reduce
compilation time while making incremental changes to the design. The
following design flow examples also allow you to achieve timing closure
more quickly by optimizing or preserving the results for one partition in
a larger design:

■ “Design Flow 1—Changing a Source File for One of Multiple
Partitions in a Top-Down Compilation Flow”

■ “Design Flow 2—Optimizing the Placement for One of Multiple
Partitions in a Top-Down Compilation Flow” on page 2–63

■ “Design Flow 3—Preserving One Critical Partition in a Multiple-
Partition Design in a Top-Down Compilation Flow” on page 2–64

■ “Design Flow 4—Placing All but One Critical Partition in a
Multiple-Partition Design in a Top-Down Compilation Flow” on
page 2–65

All examples assume you have set up the project to use the full
incremental compilation flow, using the steps described in “Quick Start
Guide – Summary of Steps for an Incremental Compilation Flow” on
page 2–11.

Design Flow 1—Changing a Source File for One of Multiple Partitions in a
Top-Down Compilation Flow

Use this flow to update the source file in one partition without having to
recompile the other parts of the design. You can reduce the compilation
time by keeping the post-fit netlists for the unchanged partitions, while
also preserving the performance for these blocks to reduce additional
timing closure efforts.

Example background: You have just performed a lengthy, complete
compilation of a design that consists of multiple partitions. An error is
found in the HDL source file for one partition and it is being fixed.
Because the design is currently meeting timing requirements and the fix
is not expected to affect timing performance, it makes sense to compile
only the affected partition and preserve the rest of the design.

Altera Corporation 2–63
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Perform the following steps to update the single source file:

1. Apply and save the fix to the HDL source file.

2. On the Assignments menu, click Design Partitions Window.

3. For the partitions that should be preserved, change the Netlist Type
to Post-Fit. You can set the Fitter Preservation Level to either
Placement or Placement and Routing. For the partition that
contains the fix, you can change the netlist type to Source File.
Making the Source File setting is optional because the Quartus II
software recompiles partitions if changes are detected in a
source file.

4. Click Start Compilation to incrementally compile the fixed HDL
code. This compilation should take much less time than the initial
full compilation.

5. Run simulation again to ensure that the bug is fixed, and use the
Timing Analyzer report to ensure that timing results have not
degraded.

Design Flow 2—Optimizing the Placement for One of Multiple Partitions
in a Top-Down Compilation Flow

Use this flow when you want to optimize the results of one partition
when the other partitions in the design already meet their requirements.

Example background: You have just performed a lengthy full
compilation of a design that consists of multiple partitions. The Timing
Analyzer reports that the clock timing requirement is not met. After some
analysis, you believe that timing closure can be achieved if placement can
be improved for one particular partition. You have at least three
optimization techniques in mind: raising the Placement Effort Multiplier,
enabling Physical Synthesis, and running the Design Space Explorer.
Because these techniques all involve significant compilation time, it
makes sense to apply them (or just one of them) to only the partition in
question.

Perform the following steps to raise the Placement Effort Multiplier or
enable Physical Synthesis:

1. On the Assignments menu, click Design Partitions Window.

2. For the partition in question, set the Netlist Type to Post-Synthesis.
This causes the partition to be placed and routed with the new Fitter
settings (but not resynthesized) during the next compilation.

2–64 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

3. For the remaining partitions (including the top-level entity), set the
Netlist Type to Post-Fit. Set the Fitter Preservation Level to
Placement to allow for the most flexibility during routing. To
reduce compilation time further, use the Placement and Routing
setting. These partitions are preserved during the next compilation.

4. Apply the desired optimization settings.

5. Click Start Compilation to incrementally compile the design with
the new settings. During this compilation, the Partition Merge stage
automatically merges the post-synthesis netlist of the critical
partition with the post-fit netlists of the remaining partitions. This
“merged” netlist is fed to the Fitter. The Fitter then refits only one
partition. Since the effort is reduced as compared to the initial full
compilation, the compilation time is also reduced.

To use Design Space Explorer, perform the following steps:

1. Repeat steps 1–3 of the previous set of steps.

2. Save the project and run Design Space Explorer.

Design Flow 3—Preserving One Critical Partition in a Multiple-Partition
Design in a Top-Down Compilation Flow

Use this flow to optimize one partition by itself, and then lock the
placement to preserve its results while you complete the rest of your
design. For example, you can incorporate some IP that comes with
instructions to perform optimization before you incorporate the rest of
your custom logic.

Example background: Prior to any compilation, you have some insight
into which partition will be the most critical (in terms of timing) after
placement and routing. To help achieve timing closure, you decide to use
the following compilation flow.

The critical partition is placed and routed by itself, with all optimizations
turned on (manually or through Design Space Explorer). After timing
closure is achieved for this partition, its content and placement are
preserved and the remaining partitions are fit with normal or reduced
optimization levels so that the compilation time can be reduced.

1 This flow generally works only if the critical path is contained
inside the partition in question. This is one reason why both the
inputs and outputs of each partition should be registered.

To implement this design flow, perform the following steps:

Altera Corporation 2–65
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

1. Partition the design and create floorplan location assignments.

2. For the partition expected to be critical, on the Assignments menu,
click Design Partitions Window and set Netlist Type to Source
File.

3. For the remaining partitions (other than any direct or indirect
parents of the critical one), set the Netlist Type to Empty.

4. Click Start Compilation to compile with the desired optimizations
turned on, or use Design Space Explorer.

5. Check Timing Analyzer reports to ensure that timing requirements
are met. If so, proceed to step 6. Otherwise, repeat steps 4 and 5 until
the requirements are met.

6. In the Design Partitions Window, set the Netlist Type to Post-Fit
for the critical partition. Set the Fitter Preservation Level to
Placement and Routing to preserve the results.

7. Change the Netlist Type from Empty to Source File for the
remaining partitions.

8. Turn off the optimizations set in step 4, and compile the design.
Turning off the optimizations at this point does not affect the fitted
partition, because its Netlist Type is set to Post-Fit.

9. Check Timing Analyzer reports to ensure that timing requirements
are met. If not, make design or option changes and repeat step 8 and
step 9 until the requirements are met.

1 This flow is similar to a bottom-up design flow in which a
module is implemented separately and is merged into the
rest of the design afterwards. Refer to “Empty Partitions”
on page 2–26 for more information about potential issues.
Ensure that if there are any partitions representing a design
file that is missing from the project, you create a placeholder
wrapper file that defines the port interface.

Design Flow 4—Placing All but One Critical Partition in a
Multiple-Partition Design in a Top-Down Compilation Flow

Use this flow if you want to compile your design without one
timing-critical partition or a partition that requires a long compilation
time, and then preserve the rest of your design when you add the last
design block.

2–66 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example background: Prior to any compilation, you have some insight
into which partition will be the most critical (in terms of timing) after
placement and routing. To help achieve timing closure, you decide to use
the following compilation flow.

Only the non-critical partitions are placed and routed initially, using
floorplan location assignments. These non-critical partitions are then
preserved when the critical partition is introduced into the Fitter, with
various optimizations turned on (manually or through Design Space
Explorer).

To implement this design flow, perform the following steps:

1. Perform partitioning and floorplan creation.

2. For the partition expected to be critical, on the Assignments menu,
click Design Partitions Window and set the Netlist Type to Empty.

3. For the remaining partitions, set the Netlist Type to Source File.

4. Click Start Compilation to compile the non-critical partitions.

5. Check the Timing Analyzer report to ensure that the timing
requirements are met. If so, proceed to step 6. Otherwise, make
design or option changes and repeat steps 4 and 5 until the
requirements are met.

6. In the Design Partitions Window, set the Netlist Type to Post-Fit
for the processed partitions. Set the Fitter Preservation Level to
Placement to allow for the most flexibility during routing.

7. Change the Netlist Type from Empty to Source File for the
partition expected to be critical.

8. Click Start Compilation to compile the design with optimizations
turned on, or use Design Space Explorer.

9. Check the Timing Analyzer report to ensure that the timing
requirements are met. If not, make design or option changes and
repeat steps 8 and 9 until the requirements are met.

Altera Corporation 2–67
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

1 This flow is similar to a bottom-up design flow, in which a
module is implemented separately and merged into the rest of
the design afterwards. Refer to “Empty Partitions” on page 2–26
for more information about potential issues. If there are any
partitions representing a design file that is missing from the
project, ensure that you create a placeholder wrapper file that
defines the port interface.

Bottom-Up Incremental Design Flows

This section contains the following three bottom-up design flow
examples to illustrate team-based design methodologies and IP reuse:

■ “Design Flow 5—Implementing a Team-Based Bottom-Up Design
Flow” on page 2–67

■ “Design Flow 6—Performing Design Iteration in a Bottom-Up
Design Flow” on page 2–71

■ “Design Flow 7—Creating Hard-Wired Macros for IP Reuse” on
page 2–73

Design Flow 5—Implementing a Team-Based Bottom-Up Design Flow

This example describes how to use incremental compilation in a
bottom-up design flow.

Example background: A project consists of several lower-level
subdesigns that are implemented separately by different designers. The
top-level project instantiates each of these subdesigns exactly once. The
subdesign designers want to optimize their designs independently and
pass on the results to the project lead.

As the project lead in this scenario, perform the following steps to prepare
the design for a successful bottom-up design methodology:

1. Create a new Quartus II project that will ultimately contain the full
implementation of the entire design.

2. To prepare for the bottom-up methodology, create a “skeleton” of
the design that defines the hierarchy for the subdesigns that will be
implemented by separate designers. The top-level design
implements the top-level entity in the design and instantiates
wrapper files that represent each subdesign by defining only the
port interfaces but not the implementation.

2–68 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

3. Make project-wide settings. Select the device, make global
assignments for clocks and device I/O ports, and make any global
signal constraints to specify which signals can use global routing
resources.

4. Ensure that Full incremental compilation is turned on.

5. Make design partition assignments for each subdesign and set the
Netlist Type for each design partition that will be imported to
Empty in the Design Partitions window.

6. Create LogicLock regions for each of the lower-level partitions to
create a design floorplan. This floorplan should consider the
connectivity between partitions and estimates of the size of each
partition based on any initial implementation numbers and
knowledge of the design specifications.

7. On the Project menu, click Generate Bottom-Up Design Partition
Scripts, or launch the script generator from Tcl or the command
prompt.

8. Make any changes to the default script options as desired. Altera
recommends that you pass all the default constraints, including
LogicLock region, for all partitions and virtual pin location
assignments. Altera further recommends that you add a maximum
delay timing constraint for the virtual I/O connections in each
partition to help timing closure during integration at the top level. If
lower-level projects have not already been created by the other
designers, use the partition script to set up the projects so that you
can easily take advantage of makefiles.

9. Provide each lower-level designer with the Tcl file to create their
project with the appropriate constraints. If you are using makefiles,
provide the makefile for each partition.

As the designer of a lower-level subdesign in this example, perform the
appropriate set of steps to successfully export your design, whether your
design team is using makefiles, or exporting and importing the design
manually.

Altera Corporation 2–69
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

If you are using makefiles, perform the following steps:

1. Use the make command and the makefile provided by the project
lead to create a Quartus II project with all design constraints, and
compile the project.

2. The information about which source file should be associated with
which partition is not available to the software automatically, so
you must specify this information in the makefile. You must specify
the dependencies before the software will rebuild the project after
the initial call to the makefile.

3. When you have achieved the desired compilation results and the
design is ready to be imported into the top-level design, the project
lead can use the master_makefile command to export this
lower-level partition and create a Quartus II Exported Partition file,
and then import it into the top-level design.

If you are not using makefiles, perform the following steps:

1. Create a new Quartus II project for the subdesign.

2. Make LogicLock region assignments and global assignments
(including clock settings) as specified by the project lead.

3. Make Virtual Pin assignments for ports which represent
connections to core logic instead of external device pins in the top-
level module.

4. Make floorplan location assignments to the Virtual Pins so that they
are placed in their corresponding regions as determined by the
top-level module. This provides the Fitter with more information
about the timing constraints between modules. Alternatively, you
can apply timing I/O constraints to the paths that connect to virtual
pins.

5. Ensure that Full incremental compilation is turned on and proceed
to compile and optimize the design as needed.

6. When you have achieved the desired compilation results, on the
Project menu, click Export Design Partition. The Export Design
Partition dialog box appears.

2–70 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

7. Under Netlist to export, select the netlist type Post-fit netlist to
preserve the placement and performance of the subdesign, and turn
on Export routing to include the routing information if required.
You can export Post-synthesis netlist instead if placement or
performance preservation is not required.

8. Provide the Quartus II Exported Partition file to the project lead.

Finally, as the project lead in this example, perform the appropriate set of
steps to import the files sent in by the designers of each lower-level
subdesign partition.

If you are using makefiles, perform the following steps:

1. Use the master_makefile command to export each lower-level
partition and create Quartus II Exported Partition files, and then
import them into the top-level design.

2. The software does not have all the information about which source
files should be associated with which partition, so you must specify
this information in the makefile. The software cannot rebuild the
project if source files change unless you specify the dependencies.

If you are not using makefiles, perform the following steps:

1. After you obtain the Quartus II Exported Partition file for each
subdesign from the other designers on the team, on the Project
menu, click Import Design Partition and specify the partition in the
top-level project that is represented by the subdesign Quartus II
Exported Partition file.

2. Repeat the import process described in step 1 for each partition in
the design. After you have imported each partition once, select all
the design partitions and use the Reimport using latest import files
at previous locations option to import all of the files from their
previous locations at one time.

Resolving Assignment Conflicts During Import
When importing the subdesigns, the project lead may become aware of
some assignment conflicts. This can occur, for example, if the subdesign
designers changed their LogicLock regions to account for additional logic
or placement constraints, or if the designers applied I/O port timing
constraints that differ from constraints added to the top-level project by
the project lead. To address these conflicts, the project lead may want to
take one or both of the following actions:

■ Allow new assignments to be imported

Altera Corporation 2–71
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

■ Allow existing assignments to be replaced or updated

When LogicLock region assignment conflicts occur, the project lead may
take one of the following actions:

■ Allow the imported region to replace the existing region
■ Allow the imported region to update the existing region
■ Skip assignment import for regions with conflicts

The project lead can address all of these situations using the Advanced
Import Settings as described in “Importing Assignments and Advanced
Import Settings” on page 2–37.

If the placement of different subdesigns conflict, the project lead can also
set the partition’s Fitter Preservation Level to Netlist Only, which allows
the software to re-perform placement and routing with the imported
netlist.

Importing a Partition to be Instantiated Multiple Times
In this variation of the scenario, one of the subdesigns is instantiated more
than once in the top-level design. The designer of the subdesign may
want to compile and optimize the entity once under a lower-level project,
and then import the results as multiple partitions in the top-level project.

In this case, placement conflict resolution as described in “Resolving
Assignment Conflicts During Import” is mandatory because the top-level
partitions share the same imported post-fit netlist. If you import multiple
instances of a subdesign in the top-level design, the imported LogicLock
regions are automatically set to Floating status.

If you choose to resolve conflicts manually, you can use the import
options and manual LogicLock assignments to specify the placement of
each instance in the top-level design.

Design Flow 6—Performing Design Iteration in a Bottom-Up Design Flow

Use this flow if you want to re-optimize lower-level partitions in a
bottom-up compilation by incorporating additional constraints from the
integrated top-level design.

Example background: A project consists of several lower-level
subdesigns that have been exported from separate Quartus II projects
and imported into the top-level design in a bottom-up compilation flow.
In this example, integration at the top level has failed because the timing
requirements are not met. The timing requirements are met in each
individual lower-level project, but critical inter-partition paths in the top
level are causing timing requirements to fail.

2–72 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

After trying various optimizations at the top level, the project lead
determines that they cannot meet the timing requirements given the
current lower-level partition placements that were imported. The project
lead decides to pass additional constraints to the lower-level projects to
improve the placement.

To implement this design flow, perform the following steps:

1. In the top-level design, on the Project menu, click Generate
Bottom-Up Design Partition Scripts, or launch the script generator
from Tcl or the command line.

2. Because lower-level projects have already been created for each
partition, turn off Create lower-level project if one does not exist.

3. Make any additional changes to the default script options as
desired. Altera recommends that you pass all the default
constraints, including LogicLock regions, for all partitions and
virtual pin location assignments. Altera also recommends that you
add a maximum delay timing constraint for the virtual I/O
connections in each partition.

4. The Quartus II software generates Tcl scripts for all partitions, but in
this scenario, you would focus on the partitions that make up the
cross-partition critical paths. The following assignments are
important in the script:

● Virtual pin assignments for module pins not connected to device
I/O ports in the top-level design.

● Location constraints for the virtual pins that reflect the initial
top-level placement of the pin’s source or destination. These
help make the lower-level placement “aware” of its
surroundings in the top-level, leading to a greater chance of
timing closure during integration at the top-level.

● INPUT_MAX_DELAY and OUTPUT_MAX_DELAY timing
constraints on the paths to and from the I/O pins of the
partition. These constrain the pins to optimize the timing paths
to and from the pins.

5. The low-level designers source the file provided by the project lead.

● To source the Tcl script from the Quartus II GUI, on the Tools
menu, click Utility Windows and open the Tcl console.
Navigate to the script’s directory, and type the following
command:

source <filename> r

Altera Corporation 2–73
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

● To source the Tcl script at the system command prompt, type the
following command:

quartus_cdb -t <filename>.tcl r

6. The lower-level designers recompile their designs with the new
assignments.

7. The lower-level designers re-export their results.

8. The top-level designer re-imports the results.

9. You can now analyze the design to determine if the timing
requirements have been achieved. Since the lower-level partitions
were compiled with more information about connectivity at the top
level, it is more likely that the inter-partition paths have improved
placement which helps to meet the timing requirements.

Design Flow 7—Creating Hard-Wired Macros for IP Reuse

Use this design flow to create a hard-wired macro or IP block that can be
instantiated in a top-level design. This flow provides the ability to export
a design block with placement (and optionally routing) information and
to import any number of copies of this pre-placed macro into another
design.

Example background: An IP provider wants to produce and sell an IP
core for a component to be used in higher-level systems. The IP provider
wants to optimize the placement of their block for maximum
performance in a specific Altera device and then pass on the placement
information to their end customer. To preserve their IP, they also prefer
to send a compiled netlist instead of providing the HDL source code to
their customer.

The customer first specifies what Altera device they are using for this
project and provides the design specifications.

As the IP provider in this example, perform the following steps to export
a preplaced IP core (or hard macro):

1. Create an HDL black box wrapper file that defines the port interface
for the IP core and provide the file to the customer to instantiate as
an empty partition in their top-level design.

2. Create a Quartus II project for the IP core.

3. Create a LogicLock region for the design hierarchy to be exported.

2–74 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

1 Creating a floorplan using LogicLock regions is recommended
although not required for the generation and use of QXP files.
Using a LogicLock region for the IP core allows the customer to
create an empty placeholder region to reserve space for the IP in
their design floorplan. This ensures there are no conflicts with
the top-level design logic, and that the IP core will not affect the
timing performance of other logic in the top-level design.
LogicLock regions can be effective to reduce resource utilization
conflicts and to enable performance preservation. In addition,
without LogicLock regions, placement can be preserved only in
an absolute manner. With LogicLock regions, you can preserve
placement absolutely or relative to the origin of the associated
regions. This is important when a QXP file is imported for
multiple partition hierarchies in the same project, because in this
case the location of at least one instance in the top-level project
does not match the location used by the IP provider.

4. If required, add any logic (such as PLLs or other logic that will be
defined in the customer’s top-level design) around the design
hierarchy to be exported. If you do so, create a design partition for
the design hierarchy that is to be exported as an IP core.

For more information, refer to “Exporting a Lower-Level Block
within a Project” on page 2–35.

5. Optimize the design and close timing to meet the design
specifications.

6. Export the appropriate level of hierarchy into a single QXP file.
Following a successful compilation of the project, you can generate
a QXP file from the GUI, the command-line, or with Tcl commands:

● If you are using the Quartus II GUI, use the Export Design
Partition command.

● If you are using command-line executables, run quartus_cdb
with the --incremental_compilation_export option.

● If you are using Tcl commands, run the following command:
execute_flow -incremental_compilation_export.

7. Provide the QXP file to the customer. Note that you do not have to
send any of your design source code to the customer; the design
netlist as well as placement and routing information is contained
within this single file.

As the customer in this example, incorporate the IP core in your design
by performing the following steps:

Altera Corporation 2–75
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

1. Create a Quartus II project for the top-level design and instantiate a
copy or multiple copies of the IP core. Add the black box wrapper
file from the IP provider to your project to specify the entity name
and the port interface.

2. On the Processing menu, point to Start and click Perform Analysis
& Elaboration to identify the design hierarchy.

3. Create a design partition for each instance of the IP core (refer to
“Creating Design Partitions” on page 2–100) with the Netlist Type
set to Empty (refer to “Setting the Netlist Type for Design
Partitions” on page 2–22).

4. You can now continue work on your part of the design and accept
the IP core from the IP provider whenever it is ready.

5. Import the QXP file from the IP provider for the appropriate
partition hierarchy. You can import a QXP file from the GUI, the
command-line, or with Tcl commands.

● If you are using the Quartus II GUI, use the Import Design
Partition command.

● From the command-line, run quartus_cdb with the
--incremental_compilation_import option.

● With Tcl commands, run the following command:
execute_flow -incremental_compilation_import.

6. You can set the imported LogicLock regions to floating or move
them to a new location, with the relative locations of the region
contents preserved. Routing information is preserved whenever
possible.

1 The Fitter ignores relative placement assignments if the
LogicLock region’s location in the top-level design is not
compatible with the locations exported in the QXP file.

7. You can control whether to preserve the imported netlist only,
placement, or placement and routing (if the placement or placement
and routing information was exported in the QXP file) with the
Fitter Preservation Level.

By default, the software preserves the absolute placement and
routing of all nodes in the imported netlist if you choose to preserve
placement and routing. However, if you use the same QXP files for
multiple partitions in the same project, the software preserves the
relative placement for each of the imported modules (relative to the
origin of the LogicLock region).

2–76 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

1 If the IP provider did not define a LogicLock region in the
exported partition, the software preserves absolute placement
locations and this leads to placement conflicts if the partition is
imported for more than one instance.

Incremental
Compilation
Restrictions

This section documents the restrictions and limitations that you may
encounter when using incremental compilation, including interactions
with other Quartus II features. Some restrictions apply to both top-down
and bottom-up design flows, while some additional restrictions apply
only to bottom-up design flows.

The following restrictions and limitations are covered:

■ “Using Incremental Compilation with Quartus II Archive Files” on
page 2–77

■ “OpenCore Plus MegaCore Functions in Bottom-Up Flows” on
page 2–78

■ “SignalProbe Pins and Engineering Change Management with the
Chip Planner” on page 2–78

■ “SignalTap II Embedded Logic Analyzer in Bottom-Up Compilation
Flows” on page 2–80

■ “HardCopy Compilation Flows” on page 2–82
■ “Restrictions on Megafunction Partitions” on page 2–84
■ “Routing Preservation in Bottom-Up Compilation Flows” on

page 2–84
■ “Bottom-Up Design Partition Script Limitations” on page 2–84
■ “Register Packing and Partition Boundaries” on page 2–87
■ “I/O Register Packing” on page 2–87

Using Incremental Synthesis Only Instead of Full Incremental
Compilation

You can turn on incremental compilation for only the synthesis stage of
compilation to perform incremental synthesis, with no incremental
place-and-route. This mode is not recommended for new projects
because it is not compatible with certain Quartus II design flows, such as
formal verification and incremental SignalTap II verification.

To use incremental synthesis only, you can follow the steps for full
incremental compilation, but turn on the Incremental synthesis only
(Can reduce compilation time for a design with partition assignments)
option on the Incremental Compilation page under Compilation
Process Settings in the Settings dialog box.

Altera Corporation 2–77
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

In this mode, the Fitter uses a flattened netlist without partition
boundaries, so the design is always replaced and rerouted. The difference
between this flow and the one shown in Figure 2–2 on page 2–7 is that the
partition merge stage does not accept post-fit netlists produced by the
Fitter, and the Fitter does not compile partitions separately. The following
differences exist in the impact of incremental synthesis only as compared
to full incremental compilation:

■ Compilation time reduction is limited to Quartus II integrated
synthesis.

■ You cannot preserve placement and routing, therefore the feature
does not preserve partition timing performance.

■ A partition is automatically resynthesized whenever you make a
change to the source code or any synthesis assignments (changes to
synthesis or fitting assignments do not trigger an automatic
recompilation with Full Incremental Compilation).

Preserving Exact Timing Performance

Timing performance might change slightly in the top-level design when
all partitions are incorporated due to differences between the separate
partitions and the full design. For example, there may be parasitic effects
or crosstalk that was not present in the initial compilation with only part
of the design. Additional fan-out on routing lines can also degrade timing
performance. To ensure that the design will meet performance when all
partitions are present, only approximately 2% margin is required. This
applies to both bottom-up and top-down methodologies. The Fitter
automatically works to achieve more than 2% margin when compiling
any design.

Using Incremental Compilation with Quartus II Archive Files

The post-synthesis and post-fitting netlist information for each design
partition is stored in the project database. When you archive a project, the
database information is not included in the archive unless you include the
database files in the Quartus II Archive file (.qar). In addition, when you
import a design partition into a top-level design, the lower-level design
netlist is stored in the project database for the top-level design (the
top-level project does not use the original source files or the Quartus II
Exported Partition file). If you archive the top-level project, the imported
design information is not included unless the database files are included
in the Quartus II Archive file.

Altera recommends that you turn on Include database from compilation
and simulation in the Archive Project dialog box if any form of
incremental compilation is used so that compilation results are
preserved.

2–78 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Formal Verification Support

You cannot use design partitions if you are creating a netlist for a formal
verification tool.

OpenCore Plus MegaCore Functions in Bottom-Up Flows

You can use OpenCore Plus MegaCore® functions in top-down
incremental compilation flows beginning with the Quartus II software
version 7.1. You cannot export partitions containing OpenCore Plus
MegaCore functions, so you cannot use OpenCore Plus functions in a
bottom-up design flow. Include any OpenCore IP functions in your
top-level Quartus II project.

Importing Encrypted IP Cores in Bottom-Up Flows

Proper license information is required to compile encrypted IP cores. The
license assignment is imported in to the top-level project when a design
is imported as a QXP file. However, the license assignment contains an
absolute path to the licensed IP source files. Therefore, the QXP file
usually works correctly only if imported into a top-level project on the
same computer as the lower-level project.

To avoid this problem, you can include this partition in the top-level
project instead of importing it, because IP cores generally do not require
additional changes by a designer in the project team. You can set the
partition that contains the core to Post-Fit after the first compilation to
reduce future compilation times, because the partition will not be
changing in any subsequent compilation. You can also set the partition to
Empty to exclude the IP core from the database until you are ready to
compile the entire design.

If you do want to import an encrypted IP core, copy the encrypted IP
source files to the top-level project's computer in exactly the same path
structure. For example, if the IP encrypted source file was
d:/work/my_encrypted_file.vhd, the top-level designer that imports the
QXP file must create the same folder and place the file in this location.

SignalProbe Pins and Engineering Change Management with the
Chip Planner

When you create SignalProbe pins or use the Resource Property Editor to
make changes due to engineering change orders (ECOs) after performing
a full compilation, recompiling the entire design is not necessary. These
changes are made directly to the netlist without performing a new
placement and routing. You can preserve these changes using a post-fit

Altera Corporation 2–79
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

netlist with placement and routing. When a partition is recompiled,
SignalProbe pins and ECO changes in unaffected partitions are
preserved.

f For more information about using the SignalProbe feature to debug your
design, refer to the Design Debugging Using the SignalTap II Embedded
Logic Analyzer chapter in volume 3 of the Quartus II Handbook. For more
information about using the Chip Planner and the Resource Property
Editor to make ECOs, refer to the Engineering Change Management with
the Chip Planner chapter in volume 2 of the Quartus II Handbook.

To preserve SignalProbe pins or ECO changes, the partitions must be set
to a Netlist Type of Post-fit with the Fitter Preservation Level set to
Placement and routing. If any partitions with SignalProbe pins or ECO
changes are set to post-fit without routing or to netlist only, the software
issues a warning and internally uses the post-fit netlist with placement
and routing. If the partitions are set to use the source code or a
post-synthesis netlist, the software issues a warning and the post-fit
SignalProbe pins or ECO changes are not included in the new
compilation. However, partitions can become linked due to the
SignalProbe pins or ECO changes, as described below, in which case all
linked partitions inherit the netlist type from the linked partition with the
highest level of preservation.

Linked Partitions Due to SignalProbe Pins or ECO Changes

If ECO changes affect more than one partition or the connection between
any partitions, the partitions become linked. All of the higher-level
“parent” partitions up to their nearest common parent are also linked. In
this case, the connection between the partitions is actually defined
outside of the two partitions immediately affected, so all the partitions
must be compiled together. All linked partitions use the same netlist type,
and they inherit the netlist type from the linked partition with the highest
level of preservation.

When a SignalProbe pin is created, it affects the partition that contains the
node being probed. In addition, any pipeline registers are created in the
same partition as the node being probed. The SignalProbe output pin is
assigned to the top-level partition. Therefore, there is a new connection
formed between the top-level partition and the lower-level partition that
is being probed. Because of this connection, the lower-level partition
being probed and all of the higher-level “parent” partitions up to the top
level become linked. All linked partitions use the same netlist type, and
they inherit the netlist type from the linked partition with the highest
level of preservation.

2–80 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

When partitions are linked, they can change which netlists are preserved
when you recompile the design, as follows:

■ If all the linked partitions are set to use the source code or a
post-synthesis netlist, the partitions are refit as normal. In this case,
the SignalProbe pins or ECO changes are not included in the new
netlists, so you must reapply the changes in the Change Manager.

■ If any of the linked partitions is set to the Post-Fit netlist type, and
there are no source code changes, the software issues a warning and
internally uses the post-fit netlist with placement and routing for all
linked partitions. By preserving the appropriate post-fit netlists, the
software can preserve the SignalProbe pins or ECO changes.

■ If any of the linked partitions is set to the Post-Fit (Strict) netlist type,
the software issues a warning and internally uses the post-fit netlist
with placement and routing for all linked partitions, regardless of
any source code changes. By preserving the appropriate post-fit
netlists, the software can preserve the SignalProbe pins or ECO
changes. Note that in this case, source code changes in any of the
linked partitions are not included in the new netlist.

■ If any of the linked partitions is recompiled due to a change in source
code, the software issues a warning and recompiles the other linked
partition(s) as well. When this occurs, the SignalProbe pins or ECO
changes are not included in the new netlist, so you must reapply the
changes in the Change Manager.

Exported Partitions

In a bottom-up incremental compilation, the exported netlist includes all
currently saved SignalProbe pins and ECO changes. This might require
flattening and combining lower-level partitions in the child project to
avoid partition boundary violations at the top level. After importing this
netlist, changes made in the lower-level partition do not appear in the
Change Manager at the top level.

If you make any ECO changes that affect the interface to the lower-level
partition, the software issues a warning message during the export
process that this netlist will not work in the top-level design without
modifying the top-level HDL code to reflect the lower-level change.

SignalTap II Embedded Logic Analyzer in Bottom-Up
Compilation Flows

You can use the SignalTap® II Embedded Logic Analyzer in any project
that you can compile and program into an Altera device. You cannot
export a lower-level project that uses a SignalTap II File (.stp) for the
SignalTap II Logic Analyzer in a bottom-up incremental compilation
flow. You must disable the SignalTap II feature and recompile the design

Altera Corporation 2–81
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

before you export the design as a partition. You can instantiate the
SignalTap II Megafunction directly in your lower-level design (instead of
using an .stp file) and export the design to the top level in a bottom-up
flow.

You can tap any nodes in a Quartus II project, including nodes imported
from other projects. Use the appropriate filter in the Node Finder to find
your node names. Use SignalTap II: post-fitting if the Netlist Type is
Post-Fit to incrementally tap node names in the post-fit netlist database.
Use SignalTap II: pre-synthesis if the Netlist Type is Source File to make
connections to the source file (pre-synthesis) node names when you
synthesize the partition from the source code.

f For details about using the SignalTap II logic analyzer in an incremental
design flow, refer to the Design Debugging Using the SignalTap II Embedded
Logic Analyzer chapter in volume 3 of the Quartus II Handbook.

Logic Analyzer Interface in Bottom-Up Compilation Flows

You can use the Logic Analyzer Interface in any project that you can
compile and program into an Altera device. You cannot export a
lower-level project that uses the Logic Analyzer Interface in a bottom-up
incremental compilation flow. You must disable the Logic Analyzer
Interface feature and recompile the design before you export the design
as a partition.

f For more information about the Logic Analyzer Interface, refer to the
In-System Debugging Using External Logic Analyzers chapter in volume 3
of the Quartus II Handbook.

Migrating Projects with Design Partitions to Different Devices

Partition assignments are still valid if you migrate to a different device
density or family. LogicLock region size is valid if you migrate to a device
in the same family, but the origin location is not valid. Specific floorplan
assignments are not valid for different devices or families because the
location coordinates change between devices.

Post-synthesis netlists are valid if you migrate to a different-sized device
in the same family. Post-fit netlists are not valid if you migrate to a
different device density or family.

2–82 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

HardCopy Compilation Flows

HardCopy APEX and HardCopy Stratix Devices

Incremental compilation with the Quartus II software is not supported
for HardCopy APEX or HardCopy Stratix design flows.

HardCopy II Migration Flows

Top-down incremental compilation is supported for the base family in
HardCopy II migration flows for both the Stratix II first and HardCopy II
first flows. Design partitions are migrated to the companion device.
LogicLock regions are suggested for design partitions but are not
migrated to the companion device, due to the different device
architecture. However, you can not make changes to the design after
migration because the design would not match the compilation results for
the base family.

The Netlist only preservation level is not supported for Post-fit netlists for
Stratix II or HardCopy II device compilations when there is a migration
device set (that is, for HardCopy II device compilations with a Stratix II
migration device, or Stratix II device compilations with a HardCopy II
migration device).

Bottom-up incremental compilation is not supported in HardCopy II or
Stratix II device compilations when there is a migration device setting.
The Revision Compare feature requires that the HardCopy II and FPGA
netlists are the same. Therefore, all operations performed on one revision
must also occur on the other revision. This is accomplished by logging all
operations and replaying them on the other revision. Unfortunately,
using the bottom-up flow and importing partitions does not support this
requirement. You can often use a top-down flow with Empty partitions
to implement behavior similar to bottom-up flows.

HardCopy II Stand-Alone Compilations

You can use both top-down and bottom-up incremental compilation for
stand-alone HardCopy II compilations.

Routing preservation is not supported for HardCopy II devices.
Therefore, the Placement and Routing preservation level is not available,
and routing cannot be exported in the bottom-up flow.

Altera Corporation 2–83
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Assignments Made in HDL Source Code in Bottom-Up Flows

Assignments made with I/O primitives or the altera_attribute
HDL synthesis attribute in lower-level partitions are not currently
honored at the top level in a bottom-up flow. The assignments are
processed at the top level, but cannot always be applied to the netlist
database after import. Fitter-related assignments (such as I/O
termination setting) can be applied correctly if you use a post-synthesis
QXP file.

Compilation Time with Physical Synthesis Optimizations

If Physical Synthesis is turned on, the optimizations run whenever there
is any partition placement that is not fixed with a post-fit netlist. For
example, when using the SignalTap II logic analyzer, there is an
automatic partition created for the SignalTap II instance which does not
have its placement preserved. Physical synthesis cannot make any
changes to partitions that are set to post-fit; however, it does still analyze
the netlist as whole. Therefore, the compilation time is not reduced as
much if physical synthesis optimizations are turned on.

You can set partitions to Empty to reduce compilation time if you want to
use physical synthesis for other partitions. You can go back to the Post-fit
netlist type directly from Empty, so the previous fitting results can be
reused when you want to include all partitions in the netlist. This method
works best if you assign each Empty partition to a LogicLock region with
the Reserved property, so that no other logic is placed in that region of the
device floorplan when the design is recompiled.

You can also turn off physical synthesis if you are recompiling a partition
which does not require physical synthesis optimizations. For example,
when using the SignalTap II Logic Analyzer on a design that has all
partitions using post-fit netlists, you can turn off physical synthesis to
reduce compilation time. You can also compile critical partitions that
require Physical Synthesis first, and close timing for those partitions. If
those partitions do not require any logic changes, you can set the critical
partitions to post-fit and then subsequent compilations can have physical
synthesis turned off. Be sure to turn the option on again if you make
design changes to timing-critical partitions and want to recompile the
new logic with physical synthesis optimizations.

2–84 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Restrictions on Megafunction Partitions

The Quartus II software does not support partitions for megafunction
instantiations. If you use the MegaWizard Plug-In Manager to customize
a megafunction variation, the MegaWizard-generated wrapper file
instantiates the megafunction. You can create a partition for the
MegaWizard-generated megafunction custom variation wrapper file.

The Quartus II software does not support the creation of a partition for
inferred megafunctions (that is, where the software infers a megafunction
to implement logic in your design). If you have a module or entity for the
logic that is inferred, you can create a partition for that hierarchy level in
the design.

The Quartus II software does not support creation of a partition for any
Quartus II internal hierarchy that is dynamically generated during
compilation to implement the contents of a megafunction.

Routing Preservation in Bottom-Up Compilation Flows

There are some cases in which routing information cannot be preserved
exactly, especially in bottom-up compilation, because of legality in the
device architecture. For example, when multiple partitions are imported,
there may be routing conflicts because you cannot pre-assign routing for
each lower-level block. In addition, if an imported LogicLock region is
moved in the top-level design, the relative placement of the nodes is
preserved but the routing may not be preserved.

Bottom-Up Design Partition Script Limitations

The Quartus II software has some limitations related to bottom-up design
partition scripts.

Synopsys Design Constraint (SDC) Files for the TimeQuest Timing
Analyzer

As described in “Importing Assignments and Advanced Import Settings”
on page 2–37, timing assignments made for the TimeQuest Timing
Analyzer in an SDC file are currently not imported into the top-level
project. You should manually ensure that the top-level project includes
all of the timing requirements for the entire project.

If you want to copy lower-level SDC files to the top-level project, consider
prefixing lower-level constraints with a variable that describes the
constraint’s location in the design hierarchy. Then, when you copy the file
to the top-level design, you can set the variable to provide the hierarchy
path to the lower-level partition in the top-level design.

Altera Corporation 2–85
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Wildcard Support in Bottom-Up Design Partition Scripts

When applying constraints with wildcards, wildcards are not analyzed
across hierarchical boundaries. For example, an assignment could be
made to these nodes: Top|A:inst|B:inst|*, where A and B are
lower-level partitions, and hierarchy B is a child of A, that is B is
instantiated in hierarchy A. This assignment is applied to modules A, B
and all children instances of B. However, the assignment
Top|A:inst|B:inst* is applied to hierarchy A, but is not applied to the B
instances because the single level of hierarchy represented by B:inst* is
not expanded into multiple levels of hierarchy. To avoid this issue, ensure
that you apply the wildcard to the hierarchical boundary if it should
represent multiple levels of hierarchy.

When using the wildcard to represent a level of hierarchy, only single
wildcards are supported. This means assignments such as
Top|A:inst|*|B:inst|* are not supported. The Quartus II software
issues a warning in these cases.

Derived Clocks and PLLs in Bottom-Up Design Partition Scripts

If a clock in the top level is not directly connected to a pin of a lower-level
partition, then the lower-level partition does not receive assignments and
constraints from the top-level pin in the design partition scripts.

This issue is of particular importance for clock pins that require timing
constraints and clock group settings. Problems can occur if your design
uses logic or inversion to derive a new clock from a clock input pin. Make
appropriate timing assignments in your lower-level Quartus II project to
ensure that clocks are not unconstrained.

In addition, if you use a PLL in your top-level design and connect it to
lower-level partitions, the lower-level partitions do not have information
about the multiplication or phase shift factors in the PLL. Make
appropriate timing assignments in your lower-level Quartus II project to
ensure that clocks are not unconstrained or constrained with the incorrect
frequency. Alternately, you can manually duplicate the top-level derived
clock logic or PLL in the lower-level design file to ensure that you have
the correct multiplication or phase shift factors, compensation delays and
other PLL parameters for complete accurate timing analysis. Create a
design partition for the rest of the lower-level design logic that will be
exported to the top level. When the lower-level design is complete, export
just the partition that contains the relevant logic with the “Exporting a
Lower-Level Block within a Project” on page 2–35 feature.

2–86 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Virtual Pin Timing Assignments in Bottom-Up Design Partition Scripts

The design partition scripts use INPUT_MAX_DELAY and
OUTPUT_MAX_DELAY assignments to specify the inter-partition delays
associated with input and output pins which would not otherwise be
visible to the project. These assignments require that the software specify
the clock domain for the assignment, and the software sets this clock
domain to ‘*’.

This clock domain assignment means that there may be some paths
constrained and reported by the timing analysis engine that are not
required.

To restrict which clock domains are included in these assignments, edit
the generated scripts or change the assignments in your lower-level
Quartus II project. In addition, because there is no known clock
associated with the delay assignments, the software assumes the
worst-case skew, which makes the paths seem more timing critical than
they are in the top-level design. To make the paths appear less
timing-critical, lower the delay values from the scripts. If required, you
can also enter negative numbers for input and output delay values.

Top-Level Ports that Feed Multiple Lower-Level Pins in Bottom-Up
Design Partition Scripts

When a single top-level I/O port drives multiple pins on a lower-level
module, it unnecessarily restricts the quality of the synthesis and
placement at the lower-level. This occurs because in the lower-level
design, the software must maintain the hierarchical boundary and cannot
use any information about pins being logically equivalent at the top level.
In addition, because I/O constraints are passed from the top-level pin to
each of the children, it is possible to have more pins in the lower level
than at the top level, and these pins use the top-level I/O constraints and
placement options that might make them impossible to place at the
lower-level. The software avoids this situation whenever possible, but it
is best to avoid this design practice to avoid these potential problems.
Restructure your design so that the single I/O port feeds the design
partition boundary, and then the connection is split into multiple signals
within the lower-level partition.

Altera Corporation 2–87
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Register Packing and Partition Boundaries

The Quartus II software automatically performs register packing during
compilation. However, when incremental compilation is enabled, logic in
different partitions cannot be packed together because partition
boundaries prevent cross-boundary optimization. (Refer to “Guidelines
for Creating Good Design Partitions and LogicLock Regions” on
page 2–46 for more information.) This restriction applies to all types of
register packing, including I/O cells, DSP blocks, sequential logic, and
unrelated logic.

I/O Register Packing

Cross-partition register packing of I/O registers is allowed in certain
cases where your input and output pins exist in the top hierarchy level
(and the Top partition), but the corresponding I/O registers exist in other
partitions.

The following specific circumstances are required for cross-partition
register packing of input pins:

■ The input pin feeds exactly one register
■ The path between the input pin and the register includes only input

ports of partitions that have one fan-out each

The following specific circumstances are required for cross-partition
register packing of output registers:

■ The register feeds exactly one output pin
■ The output pin is fed by only one signal
■ The path between the register and the output pin includes only

output ports of partitions that have one fan-out each

Output pins with an output enable signal cannot be packed into the
device I/O cell if the output enable logic is part of a different partition
from the output register. To allow register packing for output pins with
an output enable signal, structure your HDL code or design partition
assignments so that the register and the tri-state logic are defined in the
same partition.

Bidirectional pins are handled in the same way as output pins with an
output enable. If the registers that need to be packed are in the same
partition as the tri-state logic, then register packing can be performed.

2–88 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The restrictions on tri-state logic are due to the fact that the I/O atom
(device primitive) is created as part of the partition that contains the
tri-state logic. If an I/O register and its tri-state logic are contained in the
same partition, the register can always be packed with the tri-state logic
into the I/O atom. The same cross-partition register packing restrictions
also apply to I/O atoms for input and output pins. The I/O atom must
feed the I/O pin directly with exactly one signal and the path between the
I/O atom and the I/O pin must include only ports of partitions that have
one fan-out each.

Examples of I/O Register Packing Across Partition Boundaries

The following examples provide detailed explanations for various I/O
and partition configurations. The examples use BDF schematics to
illustrate the design logic.

Example 1—Output Register in Partition Feeding Output Pin
In this example, a subdesign contains a single register, as shown in
Figure 2–16. As shown in Figure 2–17, the top-level design instantiates
the subdesign with a single fan-out directly feeding an output pin, and
designates the subdesign as a separate design partition.

Figure 2–16. Subdesign with One Register, Designated as a Separate Partition

Figure 2–17. Top-level Design Instantiating the Subdesign in Figure 2–16 as an Output Register

The Quartus II software performs cross-partition register packing if there
is a Fast Output Register assignment on pin out. This type of
cross-partition output register packing is permitted because the port
interface of the subdesign partition does not need to be changed and the
partition port feeds an output pin directly.

Altera Corporation 2–89
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Example 2—Output Register in Partition Feeding Multiple Output
Pins
In this example, a subdesign designated as a separate partition contains a
register as in Figure 2–16. The top-level design instantiates the subdesign
as an output register with more than one fan-out signal, as shown in
Figure 2–18.

Figure 2–18. Top-level Design Instantiating the Subdesign in Figure 2–16 with Two Output Pins

In this case, the software does not perform output register packing. If
there is a Fast Output Register assignment on pin out, the software issues
a warning that the Fitter can't pack the node to an I/O pin because the
node and the I/O cell are connected across a design partition boundary.

This kind of cross-partition register packing is not permitted because it
would require modification to the interface of the subdesign partition. In
order to perform incremental compilation, the interface of design
partitions must be preserved.

To allow the software to pack the register in the subdesign from
Figure 2–16 with the output pin out in Figure 2–18, make one of the
following changes:

■ Remove the design partition assignment to the subdesign. This
allows the Fitter to perform all cross-hierarchy optimizations.
However, it prevents you from using incremental compilation for
this block of hierarchy. A good design partition should have a
well-defined interface so that the Fitter does not have to perform
cross-boundary optimizations.

■ Restructure your HDL code to place the register in the same partition
as the output pin. The simplest option is to move the register from
the subdesign partition into the partition containing the output pin.
This guarantees that the Fitter can optimize the two nodes without
violating any partition boundaries.

■ Restructure your HDL code so the register feeds only one output pin.
Turn off the Analysis and Synthesis setting Remove Duplicate
Registers. Duplicate the register in your subdesign HDL as in

2–90 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 2–19 so that each register feeds only one pin, then connect the
extra output pin to the new port in the top-level design as shown in
Figure 2–20. This converts the cross-partition register packing into
the simplest case where the register has a single fan-out.

Figure 2–19. Modified Subdesign from Figure 2–16 with Two Output Registers and Two Output Ports

Figure 2–20. Modified Top-Level Design from Figure 2–18 Connecting Two Output Ports to Output Pins

Example 3—Output Register, Output Enable Register and Tri-State
Logic in Partition Feeding Output Pin
In this example, a subdesign designated as a separate partition contains
an output register, an output enable register, and the tri-state logic to
drive the output pin, as shown in Figure 2–21. The top-level design
instantiates the subdesign with a single fan-out directly feeding an output
pin, as shown in Figure 2–22.

Altera Corporation 2–91
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Figure 2–21. Subdesign with Output Register, Output Enable Register and Tri-State Logic, Designated as a
Separate Partition

Figure 2–22. Top-level Design Instantiating the Subdesign in Figure 2–21

The Quartus II software performs cross-partition register packing if there
is a Fast Output Register assignment, Fast Output Enable Register
assignment, or both, on pin out. This kind of cross-partition output
register packing is permitted because the port interface of the subdesign
partition does not need to be changed, no logic needs to be optimized
across the partition boundary, and the partition port feeds an output pin
directly.

Example 4—Output Register, Output Enable Register, or Both, in
Partition Feeding Tri-State Output Pin
In this example, a subdesign designated as a separate partition contains
two registers, as shown in Figure 2–23. The top-level design instantiates
the subdesign with the registers driving the output and the output enable
signal for an output pin, as shown in Figure 2–24.

2–92 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 2–23. Subdesign with Two Registers, Designated as a Separate Partition

Figure 2–24. Top-level Design Instantiating the Subdesign in Figure 2–25 to Drive Output Enable Logic

In this case, the software cannot perform register packing. If there is a Fast
Output Register or Fast Output Enable Register assignment on pin out,
the software issues a warning that the Fitter cannot pack the node to an
I/O pin because the node and the I/O cell are connected across a design
partition boundary.

The same restrictions apply in the case that the top-level design includes
either the output register or the output enable register as well as the
tri-state logic. The software cannot pack the register that is part of the
subdesign partition into the I/O register.

This type of register packing is not permitted because it would require
moving logic across a design partition boundary to place into a single I/O
device atom. To perform register packing, either the registers must be
moved out of the subdesign partition or the tri-state logic must be moved
into the subdesign partition. In order to guarantee correctness of the
design with subsequent incremental compilations, the contents of design
partitions must be preserved.

Altera Corporation 2–93
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

To allow the software to pack the output register, output enable register,
or both, in the subdesign from Figure 2–23 with the output pin out in
Figure 2–24, make one of the following changes:

■ Remove the design partition assignment to the subdesign. This
allows the Fitter to perform all cross-hierarchy optimizations.
However, it prevents you from using incremental compilation for
this block of hierarchy. A good design partition should have a
well-defined interface so that the Fitter does not need to perform
cross-boundary optimizations.

■ Restructure your HDL code to place the register in the same partition
as the output pin. The simplest option is to move the register from
the subdesign partition into the top-level partition containing the
output pin. This guarantees that the Fitter can optimize the two
nodes without violating any partition boundaries.

■ Restructure your HDL code so the register and the tri-state logic are
contained in the same partition. Move the tri-state logic from the
top-level block into the subdesign with both registers as shown in
Figure 2–21. Then connect the subdesign to an output pin in the
top-level design, as shown in Figure 2–22.

Example 5—Bidirectional Logic in Partition Feeding Bidirectional Pin
The behavior for bidirectional pins is similar to that of an output pin with
an output enable. To allow register packing, the registers must be
included in the same partition as the tri-state logic that drives the
bidirectional pin.

In this example, a subdesign designated as a separate partition contains
three registers and the tri-state logic for a bidirectional pin, as shown in
Figure 2–25. The top-level design instantiates the subdesign with ports
feeding bidirectional and output pins, as shown in Figure 2–26.

2–94 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 2–25. Subdesign with Three Registers and Tri-State Logic, Designated as a Separate Partition

Figure 2–26. Top-level Design Instantiating the Subdesign in Figure 2–28

The Quartus II software performs cross-partition register packing if there
is a Fast Output Register, Fast Output Enable Register, or Fast Input
Register assignment on pin bidir. This type of cross-partition output
register packing is permitted because the port interface of the subdesign
partition does not need to be changed and the partition port feeds a
bidirectional pin directly.

Registers cannot be packed in designs that have the registers and tri-state
logic in different partitions. The situations described in “Example 4—
Output Register, Output Enable Register, or Both, in Partition Feeding
Tri-State Output Pin” on page 2–91 apply similarly to bidirectional pins if
you replace the output pin out with a bidirectional pin in the top-level
design.

Altera Corporation 2–95
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Example 6—Input Register in Partition Fed by Input Pin
In this example, a subdesign contains a single register, as shown in
Figure 2–27. The top-level design instantiates the subdesign with a single
fanin directly fed by an input pin, as shown in Figure 2–28, and
designates the subdesign to be a separate design partition.

Figure 2–27. Subdesign with One Register, Designated as a Separate Partition

Figure 2–28. Top-level Design Instantiating the Subdesign in Figure 2–27 as an Input Register

The Quartus II software performs cross-partition register packing if there
is a Fast Input Register assignment on pin in. This type of cross-partition
output register packing is permitted because the port interface of the
subdesign partition does not have to be changed and the partition port is
fed by an input pin directly.

Example 7—Input Register in Partition Fed by Input with Multiple
Fan-Out

In this example, a subdesign designated as a separate partition contains a
register as in Figure 2–27. The top-level design instantiates the subdesign
as an input register but the input pin also feeds another destination, as
shown in Figure 2–29.

2–96 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 2–29. Top-level Design Instantiating the Subdesign in Figure 2–27 as an Input Register for a Pin with
Two Destinations

In this case, the software does not perform input register packing. If there
is a Fast Input Register assignment on pin in, the software issues a
warning that the Fitter cannot pack the node to an I/O pin because the
node and the I/O cell are connected across a design partition boundary.

This type of cross-partition register packing is not permitted because it
would require modification to the interface of the subdesign partition. In
order to perform incremental compilation, the interface of design
partitions must be preserved.

To allow the software to pack the register in the subdesign from
Figure 2–27 with the input pin in in Figure 2–29, make one of the
following changes:

■ Remove the design partition assignment to the subdesign. This
allows the Fitter to perform all cross-hierarchy optimizations.
However, it also prevents you from using incremental compilation
for this block of hierarchy. A good design partition should have a
well-defined interface so that the Fitter does not have to perform
cross-boundary optimizations.

■ Restructure your HDL code to place the register in the same partition
as the input pin. The simplest option is to move the register from the
subdesign partition into the partition containing the input pin. This
guarantees that the Fitter can optimize the two nodes without
violating any partition boundaries.

Example 8—Inverted Input Register in Partition Fed by Input Pin
In this example, a subdesign designated as a separate partition contains
an inverted register as in Figure 2–30. The top-level design instantiates
the subdesign as an input register, as shown in Figure 2–31.

Altera Corporation 2–97
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Figure 2–30. Subdesign with an Inverted Register, Designated as a Separate Partition

Figure 2–31. Top-level Design Instantiating the Subdesign in Figure 2–30 as an Input Register

The Quartus II software performs cross-partition register packing if there
is a Fast Input Register assignment on pin in. This kind of cross-partition
input register packing is permitted because the software can implement
the logic for the inversion with the input register inside the partition, and
then the partition port is fed by an input pin directly.

Example 9—Input Register in Partition Fed by Inverted Input Pin, or
Output Register in Partition Feeding Inverted Output Pin

In this example, a subdesign designated as a separate partition contains a
register as in Figure 2–32. The top-level design in Figure 2–33 instantiates
the subdesign as an input register with the input pin inverted. The
top-level design in Figure 2–34 instantiates the subdesign as an output
register with the signal inverted before feeding an output pin.

Figure 2–32. Subdesign with One Register, Designated as a Separate Partition

2–98 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 2–33. Top-level Design Instantiating the Subdesign in Figure 2–32 as an Input Register with an
Inverted Input Pin

Figure 2–34. Top-level Design Instantiating the Subdesign in Figure 2–33 as an Output Register Feeding an
Inverted Output Pin

In these cases, the software does not perform register packing. If there is
a Fast Input Register assignment on pin in in Figure 2–33 or a Fast
Output Register assignment on pin out in Figure 2–34, the software
issues a warning that the Fitter cannot pack the node to an I/O pin
because the node and the I/O cell are connected across a design partition
boundary.

This type of register packing is not permitted because it would require
moving logic across a design partition boundary to place into a single I/O
device atom. To perform register packing, either the register must be
moved out of the subdesign partition or the inverter must be moved into
the subdesign partition to be implemented in the register. In order to
guarantee correctness of the design with subsequent incremental
compilations, the contents of design partitions must be preserved.

Altera Corporation 2–99
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

To allow the software to pack the register in the subdesign from
Figure 2–32 with the input pin in in Figure 2–33 or the output pin out in
Figure 2–34, make one of the following changes:

■ Remove the design partition assignment from the subdesign. This
allows the Fitter to perform all cross-hierarchy optimizations.
However, it prevents you from using incremental compilation for
this block of hierarchy. A good design partition should have a
well-defined interface so that the Fitter does not have to perform
cross-boundary optimizations.

■ Restructure your HDL code to place the register in the same partition
as the pin. The simplest option is to move the register from the
subdesign partition into the top-level partition containing the pin.
This ensures that the Fitter can optimize the two nodes without
violating any partition boundaries.

■ Restructure your HDL code so the register and the inverter are
contained in the same partition. Move the inverter from the top-level
block into the subdesign as shown in Figure 2–30 for an input pin.
Then connect the subdesign to a pin in the top-level design, as shown
in Figure 2–31 for an input pin.

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r

The Quartus II Scripting Reference Manual includes the same information
in PDF form.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Generate Incremental Compilation Tcl Script Command

To create a template Tcl script for full incremental compilation, use the
Generate Incremental Compilation Tcl Script feature. Right-click in the
Design Partitions Window and click Generate Incremental
Compilation Tcl Script.

2–100 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

If you have made any partition assignments in the user interface, this
script contains the Tcl equivalents of the assignments. The Tcl
assignments are described in the following sections.

Preparing a Design for Incremental Compilation

To set or modify the current mode of incremental compilation, use the
following command:

set_global_assignment -name INCREMENTAL_COMPILATION \
<value>

The incremental compilation <value> setting must be one of the following
values:

■ FULL_INCREMENTAL_COMPILATION—Full incremental
compilation (this is the default)

■ INCREMENTAL_SYNTHESIS—Incremental synthesis only
■ OFF—No incremental compilation is performed

Creating Design Partitions

To create a partition, use the following command:

set_instance_assignment -name PARTITION_HIERARCHY \
<file name> -to <destination> -section_id <partition name>

The <destination> should be the entity’s short hierarchy path. A short
hierarchy path is the full hierarchy path without the top-level name
(including quotation marks), for example:

"ram:ram_unit|altsyncram:altsyncram_component"

For the top-level partition, you can use the pipe (|) symbol to represent
the top-level entity.

f For more information about hierarchical naming conventions, refer to
Node-Naming Conventions in Quartus II Integrated Synthesis in the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook.

The <partition name> is the user-designated partition name, which must
be unique and less than 1024 characters. The name can consist only of
alphanumeric characters, and the pipe (|), colon (:), and underscore
(_) characters. Altera recommends enclosing the name in double
quotation marks (" ").

Altera Corporation 2–101
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

The <file name> is the name used for internally generated netlists files
during incremental compilation. Netlists are named automatically by the
Quartus II software based on the instance name if you create the partition
in the user interface. If you are using Tcl to create your partitions, you
must assign a custom file name that is unique across all partitions. For the
top-level partition, the specified file name is ignored, and you can use any
dummy value. To ensure the names are safe and platform independent,
file names must be unique regardless of case. For example, if a partition
uses the file name my_file, no other partition can use the file name
MY_FILE. For simplicity, Altera recommends that you base each file
name on the corresponding instance name for the partition.

The software stores all netlists in the \db compilation database directory.

Setting Properties of Design Partitions

After a partition is created, set its Netlist Type with the following
command:

set_global_assignment -name PARTITION_NETLIST_TYPE <value> -section_id \
<partition name>

The netlist type <value> setting is one of the following values:

■ SOURCE—Source File
■ POST_SYNTH—Post-Synthesis
■ POST_FIT—Post-Fit
■ STRICT_POST_FIT—Post-Fit (Strict)
■ IMPORTED—Imported
■ IMPORT_BASED_POST_FIT—Post-Fit (Import-based)
■ EMPTY—Empty

Set the Fitter Preservation Level for a post-fit or imported netlist using the
following command:

set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL <value> \
-section_id <partition name>

The Fitter Preservation Level <value> setting is one of the following
values:

■ NETLIST_ONLY—Netlist only
■ PLACEMENT—Placement
■ PLACEMENT_AND_ROUTING—Placement and routing
■ PLACEMENT_AND_ROUTING_AND_TILE— Placement and routing,

as well as the power tile setting of high-speed or low-power

2–102 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

For details about these partition properties, refer to “Setting Properties of
Design Partitions”.

Creating Good Floorplan Location Assignments—Excluding or
Filtering Certain Device Elements (Such as RAM or DSP Blocks)

Resource filtering uses the optional Tcl argument
-exclude_resources in the set_logiclock_contents function of
the LogicLock Tcl package. If left unspecified, no resource filter is created.

The argument takes a list of resources-to-be-excluded as input. The list is
a colon-delimited string of the following keywords:

For example, the following command assigns everything under
alu:alu_unit to the ALU region, excluding all the DSP and M512 blocks:

set_logiclock_contents -region ALU -to alu:alu_unit -exceptions \
"DSP:SMALL_MEM"

In the QSF, resource filtering uses an extra LogicLock membership
assignment called LL_MEMBER_RESOURCE_EXCLUDE. For example, the
following line in the QSF is used to specify a resource filter for the
alu:alu_unit entity assigned to the ALU region. The value of the
assignment takes the same format as the resource listing string taken by
the previous Tcl command.

set_instance_assignment -name LL_MEMBER_RESOURCE_EXCLUDE "DSP:SMALL_MEM" \
-to "alu:alu_unit" -section_id ALU

Table 2–4. Resources-to-be-Excluded Keywords

Keyword Resource

REGISTER Any registers in the logic cells

COMBINATIONAL Any combinational elements in the logic cells

SMALL_MEM The small TriMatrix memory blocks (M512 or MLAB)

MEDIUM_MEM The medium TriMatrix memory blocks (M4K or M9K)

LARGE_MEM The large TriMatrix memory blocks (M-RAM or M144K)

DSP Any DSP blocks

VIRTUAL_PIN Any virtual pins

Altera Corporation 2–103
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Generating Bottom-Up Design Partition Scripts

To generate scripts, type the following Tcl command at a Tcl prompt:

generate_bottom_up_scripts <options> r

The command is part of the database_manager package, which must
be loaded using the following command before the command can be
used:

load_package database_manager

You must open a project before you can generate scripts.

The Tcl options are the same as those available in the GUI. The exact
format of each option is specified in Table 2–5.

The following example shows how to use the Tcl command:

load_package database_manager
set project test_proj

Table 2–5. Options for Generating Bottom-Up Partition Scripts with Tcl Commands

Option Default

-include_makefiles <on|off> On

-include_project_creation <on|off> On

-include_virtual_pins <on|off> On

-include_virtual_pin_timing <on|off> On

-include_virtual_pin_locations <on|off> On

-include_logiclock_regions <on|off> On

-include_all_logiclock_regions <on|off> On

-include_global_signal_promotion <on|off> Off

-include_pin_locations <on|off> On

-include_timing_assignments <on|off> On

-include_design_partitions <on|off> On

-remove_existing_regions <on|off> On

-disable_auto_global_promotion <on|off> Off

-bottom_up_scripts_output_directory <output directory> Current project directory

-virtual_pin_delay <delay in ns> (1)

Note to Table 2–5:
(1) No default.

2–104 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

project_open $project
generate_bottom_up_scripts -bottom_up_scripts_output_directory test \

-include_virtual_pin_timing on -virtual_pin_delay 1.2
project_close

Command Line Support

To generate scripts at the command prompt, type the following
command:

quartus_cdb <project name> --generate_bottom_up_scripts=on <options> r
Once again, the options map to the same as those in the GUI. To add an
option, append “--<option_name>=<val>” to the command line call.

The command prompt options are the same as those available in the GUI.
They are listed in Table 2–6.

Table 2–6. Options for Generating Bottom-Up Partition Scripts

Option Default

--include_makefiles_with_bottom_up_scripts=<on|off> On

--include_project_creation_in_bottom_up_scripts=<on|off> On

--include_virtual_pins_in_bottom_up_scripts=<on|off> On

--include_virtual_pin_timing_in_bottom_up_scripts=<on|off> On

--bottom_up_scripts_virtual_pin_delay=<delay in ns> (1)

--include_virtual_pin_locations_in_bottom_up_scripts=<on|off> On

--include_logiclock_regions_in_bottom_up_scripts=<on|off> On

--include_all_logiclock_regions_in_bottom_up_scripts=<on|off> On

--include_global_signal_promotion_in_bottom_up_scripts=<on|off> Off

--include_pin_locations_in_bottom_up_scripts=<on|off> On

--include_timing_assignments_in_bottom_up_scripts=<on|off> On

--include_design_partitions_in_bottom_up_scripts=<on|off> On

--remove_existing_regions_in_bottom_up_scripts=<on|off> On

--disable_auto_global_promotion_in_bottom_up_scripts=<on|off> Off

--bottom_up_scripts_output_directory=<output directory> Current project
directory

Note to Table 2–6:
(1) No default. You must provide this option if you are including virtual pin timing.

Altera Corporation 2–105
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Exporting a Partition to be Used in a Top-Level Project

Use the quartus_cdb executable to export a file for a bottom-up
incremental compilation flow with the following command:

quartus_cdb --INCREMENTAL_COMPILATION_EXPORT=<file> \
[--incremental_compilation_export_netlist_type=<POST_SYNTH|POST_FIT>] \
[--incremental_compilation_export_partition_name=<partition name>] \
[--incremental_compilation_export_routing=<on|off>]

The <file> argument is the file path to the exported file. The
<partition name> is the name of the partition, not its hierarchical path. If
you do not specify the options, the executable uses any settings in the QSF
file, or otherwise uses the default values. The default partition is the
top-level partition in the project, the default netlist type is post-fit, and the
default for routing is on (for all device families that support exported
routing).

The command reads the assignment
INCREMENTAL_COMPILATION_EXPORT_NETLIST_TYPE to determine
which netlist type to export; the default is post-fit.

You can also use the flow INCREMENTAL_COMPILATION_EXPORT in the
execute_flow Tcl command contained in the flow Tcl package.

Use the following commands to export a QXP file for a given partition,
choose the netlist type, and specify whether to export routing.

load_package flow
set_global_assignment –name INCREMENTAL_COMPILATION_EXPORT_FILE <filename>
set_global_assignment –name INCREMENTAL_COMPILATION_EXPORT_NETLIST_TYPE \
<POST_FIT|POST_SYNTH>
set_global_assignment -name \
INCREMENTAL_COMPILATION_EXPORT_PARTITION_NAME <partition name>
set_global_assignment -name INCREMENTAL_COMPILATION_EXPORT_ROUTING \
<on|off>
execute_flow –INCREMENTAL_COMPILATION_EXPORT

The default partition is the top-level partition in the project, the default
netlist type is post-fit, and the default for routing is on (for all device
families that support exported routing).

To turn on the option to always perform exportation following
compilation, use the following Tcl command:

set_global_assignment -name AUTO_EXPORT_INCREMENTAL_COMPILATION ON

2–106 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Importing a Lower-Level Partition into the Top-Level Project

Use the quartus_cdb executable to import a lower-level partition with
the following command:

quartus_cdb -- INCREMENTAL_COMPILATION_IMPORT r
You can also use the flow called INCREMENTAL_COMPILATION_IMPORT
in the execute_flow Tcl command contained in the flow Tcl package.

The following example script shows how to import a partition using a Tcl
script:

load_package flow
commands to set the import-related assignments for each partition
execute_flow --INCREMENTAL_COMPILATION_IMPORT

Specify the location for the imported file with the
PARTITION_IMPORT_FILE assignment. Note that the file specified by
this assignment is read only during importation. For example, the project
is completely independent from any files from the lower-level projects
after importing. In the command-line and Tcl flow, any partition that has
this assignment set to a non-empty value will be imported.

The following assignments specify how the partition should be imported:

PARTITION_IMPORT_PROMOTE_ASSIGNMENTS = on | off
PARTITION_IMPORT_NEW_ASSIGNMENTS = on | off
PARTITION_IMPORT_EXISTING_ASSIGNMENTS = \
replace_conflicting | skip_conflicting
PARTITION_IMPORT_EXISTING_LOGICLOCK_REGIONS = \
replace_conflicting | update_conflicting | skip_conflicting

Makefiles

For an example of how to use incremental compilation with a
makefile as part of the bottom-up design flow, refer to the read_me.txt
file that accompanies the incr_comp example located in the
/qdesigns/incr_comp_makefile subdirectory. When using a bottom-up
incremental compilation flow, the Generate Bottom-Up Design Partition
Scripts feature can write makefiles that automatically export lower-level
design partitions and import them into the top-level project whenever
design files change.

Altera Corporation 2–107
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Recommended Design Flows and Compilation Application
Examples

This section provides scripting examples that cover some of the topics
discussed in the main section of the chapter.

The script shown in Example 2–1 opens a project called AB_project,
sets up two partitions, entities A and B, for the first time, and performs an
initial complete compilation.

Example 2–1. AB_project
set project AB_project

package require ::quartus::flow
project_open $project

Ensure that incremental compilation is turned on
set_global_assignment -name INCREMENTAL_COMPILATION \
FULL_INCREMENTAL_COMPILATION

Set up the partitions
set_instance_assignment -name PARTITION_HIERARCHY \
db/A_inst -to A –section_id "Partition_A"

set_instance_assignment -name PARTITION_HIERARCHY \
db/B_inst -to B –section_id "Partition_B"

Set the netlist types to post-fit for subsequent
compilations (all partitions are compiled during the
initial compilation since there are no post-fit
netlists)
set_global_assignment –name PARTITION_NETLIST_TYPE \
POST_FIT –section_id "Partition_A"

set_global_assignment –name PARTITION_NETLIST_TYPE \
POST_FIT –section_id "Partition_B"

Run initial compilation:
export_assignments
execute_flow -full_compile

project_close

Design Flow 1—Changing a Source File for One of Multiple Partitions in a
Top-Down Compilation Flow

Example background: You have run the initial compilation shown in the
example script under “Recommended Design Flows and Compilation
Application Examples” on page 2–62. You have modified the HDL source
file for partition A, and would like to recompile it.

2–108 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Run the standard flow compilation command in your Tcl script:

execute_flow –full_compile

Or, run the following command at a system command prompt:

quartus_sh --flow compile AB_projectr
Assuming the source files for partition B do not depend on A, only A is
recompiled. The placement of B and its timing performance is preserved,
which also saves significant compilation time.

Design Flow 2—Optimizing the Placement for One of Multiple Partitions
in a Top-Down Compilation Flow

Example background: You have run the initial compilation shown in the
example script under “Recommended Design Flows and Compilation
Application Examples” on page 2–62. You would like to apply Fitter
optimizations, such as physical synthesis, only to partition A. No changes
have been made to the HDL files.

To ensure the previous compilation result for partition B is preserved,
and to ensure that Fitter optimizations are applied to the post-synthesis
netlist of partition A, set the netlist type of B to Post-Fit (which was
already done in the initial compilation, but is repeated here for safety),
and the netlist type of A to Post-Synthesis, as shown in the following
script:

Altera Corporation 2–109
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

set project AB_project

package require ::quartus::flow
project_open $project

Turn on Physical Synthesis Optimization
set_global_assignment -name \
PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON

For A, set the netlist type to post-synthesis
set_global_assignment –name PARTITION_NETLIST_TYPE POST_SYNTH \
–section_id "Partition_A"

For B, set the netlist type to post-fit
set_global_assignment –name PARTITION_NETLIST_TYPE POST_FIT \
–section_id "Partition_B"

Run incremental compilation:
export_assignments
execute_flow -full_compile

project_close

Conclusion With the Quartus II incremental compilation feature described in this
chapter, you can preserve the results and the performance of unchanged
logic in your design as you make changes elsewhere. The various
applications of incremental compilation enable you to improve your
productivity while designing for high-density FPGAs, using either
top-down or bottom-up design methodologies.

Referenced
Documents

This chapter references the following documents:

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of
the Quartus II Handbook

■ Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook

■ Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook

■ Design Debugging Using the SignalTap II Embedded Logic Analyzer
chapter in volume 3 of the Quartus II Handbook

■ Engineering Change Management with the Chip Planner chapter in
volume 2 of the Quartus II Handbook

■ Introduction to Quartus II Manual
■ In-System Debugging Using External Logic Analyzers chapter in

volume 3 of the Quartus II Handbook
■ Quartus II Classic Timing Analyzer chapter in volume 3 of the

Quartus II Handbook

http://www/literature/manual/intro_to_quartus2.pdf
http://www/literature/hb/qts/qts_qii52005.pdf
http://www/literature/hb/qts/qts_qii52006.pdf
http://www/literature/hb/qts/qts_qii53009.pdf
http://www/literature/hb/qts/qts_qii53004.pdf
http://www/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf

2–110 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook

■ Quartus II Settings File Reference Manual
■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Switching to the TimeQuest Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Synthesis section in volume 1 of the Quartus II Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www/literature/manual/mnl_qsf_reference.pdf
http://www/literature/hb/qts/qts_qii5v1_03.pdf
http://www/literature/hb/qts/qts_qii51008.pdf
http://www/literature/hb/qts/qts_qii52003.pdf
http://www/literature/hb/qts/qts_qii53018.pdf
http://www/literature/hb/qts/qts_qii53019.pdf

Altera Corporation 2–111
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Document
Revision History

Table 2–7 shows the revision history for this chapter.

Table 2–7. Document Revision History (Part 1 of 2)

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

● Updated “Introduction” on page 2–1.
● Updated “Choosing a Quartus II Compilation Flow” on

page 2–3.
● Changed title and updated “Preparing a Design for

Incremental Compilation” section to “Quick Start Guide –
Summary of Steps for an Incremental Compilation Flow” on
page 2–11.

● Updated “Design Partition Assignments Compared to
Physical Placement Assignments” on page 2–18.

● Updated “Creating Design Partitions” on page 2–19.
● Updated “Creating a Design Floorplan With LogicLock

Location Assignments” on page 2–29.
● Updated “Exporting and Importing Partitions for Bottom-Up

Design Flows” on page 2–32.
● Updated “Guidelines for Creating Good Design Partitions and

LogicLock Regions” on page 2–46.
● Updated “Incremental Compilation Restrictions” on

page 2–76.

Updated for Quartus II
software version 7.2.

May 2007
v7.1.0

● Updated “Choosing a Quartus II Compilation Flow” on
page 2–3.Updated “Preparing a Design for Incremental
Compilation” on page 2–10.

● Updated Tables 2–1 and 2–3.
● Updated design in “Recommended Design Flows and

Compilation Application Examples” on page 2–61.
● Added new examples to “Design Flow 7—Creating Hard-

Wired Macros for IP Reuse” on page 2–72.
● Moved and simplified “Using Incremental Synthesis Only

Instead of Full Incremental Compilation” on page 2–76.
● Updated “HardCopy Compilation Flows” on page 2–81.
● Updated “Support for the TimeQuest Timing Analyzer and

SDC Constraints” on page 2–81.
● Updated “Setting Properties of Design Partitions” on

page 2–98.
● Added “Referenced Documents” on page 2–106.

Removed several
dialog box figures.
Added support for
Arria GX devices.
Added Fitter
Preservation Level
Post-Fit Placement,
Routing, and Tiles.

March 2007
v7.0.0

No changes to chapter. —

2–112 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

November 2006
v6.1.0

Chapter 2 was formerly Chapter 1 in version 6.0.0.
Reorganized chapter to group recommendations and guidelines
together.
Updated for the Quartus II software version 6.1:
● Added support for Stratix III devices.
● Added information on the Incremental Compilation Advisor.
● The full incremental compilation option is now turned on by

default.
● Added new feature for Exporting a Lower-Level Block within

a Project.
● Changed the location of the Automatically export design

partition after compilation option.
● Added support for HardCopy Compilation Flows.
● Added that routing can be exported in bottom-up flows.
● Added I/O port guidelines in Creating Good Design Partitions.
● Updated limitations: SignalProbe Pins and Engineering

Change Management with the Chip Planner.

Added support for
Stratix III devices.
Added information
about new features and
updates in the
Quartus II software
version 6.1.

May 2006
v6.0.0

Name changed to Quartus II Incremental Compilation for
Hierarchical and Team-Based Design.
Updated for the Quartus II software version 6.0.
● Added new device support information.
● Added top-down and bottom-up design flow information.
● Added incremental compilation design compiling information.
● Added recommendations for creating good floorplan location

assignments.
● Added register packing and partition boundary information.
● Added engineering management with the Chip Editor.
● Added information on how to check and save to reapply

SignalProbe.
● Added user scenarios.

—

December 2005
v5.1.1

Minor typographic update. —

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

August 2005
v5.0.1

Added documentation on cross-partition register packing. —

May 2005
v5.0.0

Initial release. —

Table 2–7. Document Revision History (Part 2 of 2)

Date and
Document Version Changes Made Summary of Changes

Altera Corporation 3–1
October 2007

3. Quartus II Design Flow for
MAX+PLUS II Users

Introduction The feature-rich Quartus® II software helps you shorten your design
cycles and reduce time-to-market. With support for FLEX®, ACEX®, and
MAX® device families, as well as all of Altera®’s newest devices, the
Quartus II software is the most widely accepted Altera design software
tool today.

This chapter describes how to convert MAX+PLUS® II designs to
Quartus II projects, as well as the similarities and differences between the
MAX+PLUS II and Quartus II design flows. This discussion includes
supported device families, graphical user interface (GUI) comparisons,
and the advantages of the Quartus II software.

There are many features in the Quartus II software to help MAX+PLUS II
users easily transition to the Quartus II software design environment.
These include a customizable Look & Feel feature, which changes the
GUI to display menus, toolbars, and utility windows as they appear in the
MAX+PLUS II software without sacrificing Quartus II software
functionality.

Chapter
Overview

This chapter covers the following topics:

■ “Typical Design Flow” on page 3–2
■ “Device Support” on page 3–3
■ “Quartus II GUI Overview” on page 3–4
■ “Setting Up MAX+PLUS II Look and Feel in Quartus II” on page 3–6
■ “Compiler Tool” on page 3–9
■ “MAX+PLUS II Design Conversion” on page 3–12
■ “Quartus II Design Flow” on page 3–15
■ “Quick Menu Reference” on page 3–35

QII51002-7.2.0

3–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Typical Design
Flow

Figure 3–1 shows a typical design flow with the Quartus II software.

Figure 3–1. Quartus II Software Design Flow

Analysis & Elaboration

Integrated Analysis & Synthesis

Fitter

Configuration/
Programming
Files (.sof/.pof)

Functional
Netlist

Constraints
& Settings

Constraints
& Settings

Functional
Simulation

Timing
and Area

Requirements
Satisfied?

Yes

No

Post Place-and-Route
Simulation Files
(.vo/.vho, .sdo)

Gate-Level
Timing

Simulation

Program/Configure Device

Design Files

Altera Corporation 3–3
October 2007

Device Support

Device Support The Quartus II software supports most of the devices supported in the
MAX+PLUS II software, but it does not support any obsolete devices or
packages. The devices supported by these two software packages are
shown in Table 3–1.

Table 3–1. Device Support Comparison

Device Supported Quartus II MAX+PLUS II

Arria GX™ v —

Stratix® Series v —

Cyclone® Series v —

Hardcopy® Series v —

MAX® II v —

Classic™ — v
MAX 3000A v v
MAX 7000S/AE/B v v
MAX 7000E — v
MAX 9000 — v
ACEX® 1K v v
FLEX® 6000 v v
FLEX 8000 — v
FLEX 10K v (1) v
FLEX 10KA v v
FLEX 10KE v (2) v
Mercury™ v —

 APEX™ II v —

APEX™ 20K v —

Notes to Table 3–1:
(1) PGA packages (represented as package type G in the ordering code) are not

supported in the Quartus II software.
(2) Some packages are not supported.

3–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Quartus II GUI
Overview

The Quartus II software provides the following utility windows to assist
in the development of your designs:

■ Project Navigator
■ Node Finder
■ Tcl Console
■ Messages
■ Status
■ Change Manager

Project Navigator

The Hierarchy tab of the Project Navigator window is similar to the
MAX+PLUS II Hierarchy Display and provides additional information
such as logic cell, register, and memory bit resource utilization. The Files
and Design Units tabs of the Project Navigator window provide a list of
project files and design units.

Node Finder

The Node Finder window provides the equivalent functionality of the
MAX+PLUS II Search Node Database dialog box and allows you to find
and use any node name stored in the project database.

Tcl Console

The Tcl Console window allows access to the Quartus II Tcl shell from
within the GUI. You can use the Tcl Console window to enter Tcl
commands and source Tcl scripts to make assignments, perform
customized timing analysis, view information about devices, or fully
automate and customize the way you run all components of the
Quartus II software. There is no equivalent functionality in the
MAX+PLUS II software.

f For more information on using Tcl with the Quartus II software, refer to
the Tcl Scripting chapter in volume 2 of the Quartus II Handbook.

Messages

The Messages window is similar to the Message Processor window in the
MAX+PLUS II software, providing detailed information, warnings, and
error messages.You also can use it to locate a node from a message to
various windows in the Quartus II software.

Altera Corporation 3–5
October 2007

Quartus II GUI Overview

Status

The Status window displays information similar to the MAX+PLUS II
Compiler window. Progress and elapsed time are shown for each stage of
the compilation.

Change Manager

The Change Manager provides detailed tracking information on all
design changes made with the Chip Planner.

f For more information about the Engineering Change Manager and the
Chip Editor, refer to the Engineering Change Management with the Chip
Planner chapter in volume 2 of the Quartus II Handbook.

Figure 3–2 shows a typical Quartus II software display.

Figure 3–2. Quartus II Look and Feel

3–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Setting Up
MAX+PLUS II
Look and Feel in
Quartus II

You can choose the MAX+PLUS II look and feel by selecting
MAX+PLUS II in the Look & Feel box of the General tab of the
Customize dialog box on the Tools menu.

1 Any changes to the look and feel do not become effective until
you restart the Quartus II software.

By default, when you select the MAX+PLUS II look and feel, the
MAX+PLUS II quick menu (Figure 3–21 on page 3–35) appears on the
left side of the menu bar. You can turn the Quartus II and MAX+PLUS II
quick menus on or off. You also can change the preferred positions of the
two quick menus. To change these options, perform the following steps:

1. On the Tools menu, click Customize. The Customize dialog box is
shown.

2. Click the General tab.

3. Under Quick menus, select your preferred options.

Altera Corporation 3–7
October 2007

MAX+PLUS II Look and Feel

MAX+PLUS II
Look and Feel

The MAX+PLUS II look and feel in the Quartus II software closely
resembles the MAX+PLUS II software. Figures 3–3 and 3–4 compare the
MAX+PLUS II software appearance with the Quartus II MAX+PLUS II
look and feel.

Figure 3–3. MAX+PLUS II Software GUI

3–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 3–4. Quartus II Software with MAX+PLUS II Look and Feel

The standard MAX+PLUS II toolbar is also available in the Quartus II
software with the MAX+PLUS II look and feel in the Quartus II software
(Figure 3–5).

Figure 3–5. Standard MAX+PLUS II Toolbar

Altera Corporation 3–9
October 2007

Compiler Tool

Compiler Tool The Quartus II Compiler Tool provides an intuitive MAX+PLUS II style
interface. You can edit the settings and view result files for the following
modules:

■ Analysis and Synthesis
■ Partition Merge
■ Fitter
■ Assembler
■ Timing Analyzer
■ EDA Netlist Writer
■ Design Assistant

Each of these modules is described later in this section.

To start a compilation using the Compiler Tool, click Compiler Tool from
either the MAX+PLUS II menu or the Tools menu and click Start in the
Compiler Tool. The Compiler Tool, shown in Figure 3–6, displays all
modules, including optional modules such as Partition Merge,
Assembler, EDA Netlist Writer, and the Design Assistant.

f For information about using the Quartus II software modules at the
command line, refer to the Command-Line Scripting chapter in volume 2
of the Quartus II Handbook.

Figure 3–6. Running a Full Compilation with the Compiler Tool

3–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Analysis and Synthesis

The Quartus II Analysis and Synthesis module analyzes your design,
builds the design database, optimizes the design for the targeted
architecture, and maps the technology to the design logic.

In MAX+PLUS II software, these functions are performed by the
Compiler Netlist Extractor, Database Builder, and Logic Synthesizer.
There is no module in the Quartus II software similar to the
MAX+PLUS II Partitioner module.

Partition Merge

The optional Quartus II Partition Merge module merges the partitions to
create a flattened netlist for further stages of the Quartus II compilation
flow. The Partition Merge module is not similar to the MAX+PLUS II
Partitioner. This tool is available only if you turn on incremental
compilation. You can turn on incremental compilation by performing the
following steps:

1. On the Assignment menu, click Settings. The Settings dialog box
appears.

2. In the Category list, click the + icon to expand Compilation Process
Settings, and select Incremental Compilation. The Full
Incremental Compilation page appears.

3. Under Incremental compilation, turn on Incremental Compilation.

Fitter

The Quartus II Fitter module uses the PowerFitTM fitter to fit your design
into the available resources of the targeted device. The Fitter places and
routes the design. The Fitter module is similar to the Fitter stage of the
MAX+PLUS II software.

Altera Corporation 3–11
October 2007

Compiler Tool

Assembler

The optional Quartus II Assembler module creates a device
programming image of your design so that you can configure your
device. You can select from the following types of programming images:

■ Programmer Object File (.pof)
■ SRAM Output File (.sof)
■ Hexadecimal (Intel-Format) Output File (.hexout)
■ Tabular Text File (.ttf)
■ Raw Binary File (.rbf)
■ Jam™ STAPL Byte Code 2.0 File (.jbc)
■ JEDEC STAPL Format File (.jam)

You can turn off the Assembler module during compilation by turning off
Run assembler in the Compilation Process Settings page in the Settings
dialog box. You also can turn off the Assembler by right-clicking in the
Compiler Tool window. The Assembler module is similar to the
Assembler stage of the MAX+PLUS II software.

Timing Analyzer

The Quartus II Timing Analyzer allows you to analyze more complex
clocking schemes than is possible with the MAX+PLUS II Timing
Analyzer. The Quartus II Timing Analyzer analyzes all clock domains in
your design, including paths that cross clock domains, and also reports
both fMAX and slack. Slack is the margin by which the timing requirement
is met or is not met. For more information on the Timing Analyzer, refer
to “Timing Analysis” on page 3–27.

EDA Netlist Writer

The optional Quartus II EDA Netlist Writer module generates a netlist for
simulation with an EDA simulation tool. The EDA Netlist Writer module
is comparable to the VHDL and Verilog Netlist Writer in the
MAX+PLUS II software.

Design Assistant

The optional Quartus II Design Assistant module checks the reliability of
your design based on a set of design rules. The Design Assistant analyzes
and generates messages for a design targeting any Altera device and is
especially useful for checking the reliability of a design to be converted to
HardCopy series devices. The Design Assistant is similar to the Design
Doctor in the MAX+PLUS II software.

3–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

In the Quartus II software, you can reduce subsequent compilation time
significantly by turning Use Smart compilation on before compiling your
design. The Smart Compilation feature skips any compilation stages
which are not required and which may use more disk space. This
Quartus II smart compilation option is similar to the MAX+PLUS II
Smart Recompile command. To turn the Use Smart compilation option
on, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select Compilation Process Settings. The
Compilation Process Settings page appears.

3. Turn on Use Smart compilation.

MAX+PLUS II
Design
Conversion

With the Quartus II software, you can open MAX+PLUS II designs and
convert MAX+PLUS II assignments and files.

The Quartus II software is project based. All the files for your design
(HDL input, simulation vectors, assignments, and other relevant files) are
associated with a project file. For more information about creating a new
project, refer to “Creating a New Project” on page 3–16.

Converting an Existing MAX+PLUS II Design

You can easily convert an existing MAX+PLUS II design for use with the
Quartus II software with the Convert MAX+PLUS II Project command
in the Quartus II software or the Open Project command. You can find
these commands on the File menu

If you use the Convert MAX+PLUS II Project command, browse to the
MAX+PLUS II Assignments and Configuration File (.acf) or top-level
design file (Figure 3–7) and click Open. The Convert MAX+PLUS II
Project command generates a Quartus II Project File (.qpf) and a
Quartus II Settings File (.qsf). The Quartus II software stores project and
design assignments in the Quartus II Settings File, which is equivalent to
the Assignments and Configuration File in the MAX+PLUS II software.

You also can open and convert a MAX+PLUS II design with the Open
Project command. In the Open Project dialog box, browse to the
Assignments and Configuration File or the top-level design file. Click
Open to display the Convert MAX+PLUS II Project dialog box.

Altera Corporation 3–13
October 2007

MAX+PLUS II Design Conversion

1 The Quartus II software can import all MAX+PLUS II-generated
files, but it cannot save files in the MAX+PLUS II format. You
cannot open a Quartus II project in the MAX+PLUS II software,
nor can you convert a Quartus II project to a MAX+PLUS II
project.

Figure 3–7. Convert MAX+PLUS II Project Dialog Box

The conversion process performs the following actions:

■ Converts the MAX+PLUS II Assignments and Configuration File
into a Quartus II Settings File (equivalent to importing all
MAX+PLUS II assignments)

■ Creates a Quartus II Project File

■ Displays all errors and warnings in the Quartus II message window

1 The Quartus II software can read MAX+PLUS II generated
Graphic Design Files (.gdf) and Simulation Channel Files (.scf)
without converting them. These files are not modified during a
MAX+PLUS II design conversion.

Converting MAX+PLUS II Graphic Design Files

The Quartus II Block Editor (similar to the MAX+PLUS II Graphic Editor)
saves files as Block Design Files (.bdf). You can convert your
MAX+PLUS II Graphic Design File into a Quartus II Block Design File
using one of the following methods:

1. Open the Graphic Design File and on the File menu, click Save As.
The Save As dialog box is shown.

2. In the Save as type list, select Block Diagram/Schematic File
(*.bdf).

3–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

3. Run the quartus_g2b.exe command line executable located in the
\<Quartus II installation>\bin directory. For example, to convert the
chiptrip.gdf file to a Block Design File, type the following command
at a command prompt:

quartus_g2b.exe chip_trip.gdf r

Importing MAX+PLUS II Assignments

You can import MAX+PLUS II assignments into an existing Quartus II
project. Open the project, and on the Assignments menu, click Import
Assignments. Browse to the Assignments and Configuration File
(Figure 3–8). You can also import Quartus II Settings Files and Entity
Setting Files (.esf).

Figure 3–8. Import Assignments Dialog Box

The Quartus II software accepts most MAX+PLUS II assignments.
However, some assignments can be imported incorrectly from the
MAX+ PLUS II software into the Quartus II software due to differences in
node naming conventions and the advanced Quartus II integrated
synthesis algorithms.

The differing node naming conventions in the Quartus II and
MAX+PLUS II software can cause improper mapping when importing
your design from MAX+PLUS II software into the Quartus II software.
Improper node names can interfere with the design logic if you are
unaware of these node name differences and do not take appropriate

Altera Corporation 3–15
October 2007

Quartus II Design Flow

steps to prevent improper node name mapping. Table 3–2 compares the
differences between the naming conventions used by the Quartus II and
MAX+PLUS II software.

When you import MAX+PLUS II assignments containing node names
that use numbers, such as signal0 or signal1, the Quartus II software
imports the original assignment and also creates an additional copy of the
assignment. The additional assignment has square brackets inserted
around the number, resulting in signal[0] or signal[1]. The square
bracket format is legal for signals that are part of a bus, but creates illegal
signal names for signals that are not part of a bus in the Quartus II
software. If your MAX+PLUS II design contains node names that end in
a number and are not part of a bus, you can edit the Quartus II Settings
File to remove the square brackets from the node names after importing
them.

1 You can remove obsolete assignments in the Remove
Assignments dialog box. Open this dialog box on the
Assignments menu by clicking Remove Assignments.

The Quartus II software may not recognize valid MAX+PLUS II node
names, or may split MAX+PLUS II nodes into two different nodes. As a
result, any assignments made to synthesized nodes are not recognized
during compilation.

f For more information about Quartus II node naming conventions, refer
to the Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook.

Quartus II
Design Flow

The following sections include information to help you get started using
the Quartus II software. They describe the similarities and differences
between the Quartus II software and the MAX+PLUS II software. The
following sections highlight improvements and benefits in the Quartus II
software.

f For an overview of the Quartus II software features and design flow,
refer to the Introduction to Quartus II manual.

Table 3–2. Quartus II and MAX+PLUS II Node and Pin Naming Conventions

Feature Quartus II Format MAX+PLUS II Format

Node name auto_max:auto|q0 |auto_max:auto|q0

Pin name d[0], d[1], d[2] d0, d1, d2

3–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Creating a New Project

The Quartus II software provides a wizard to help you create new
projects. On the File menu, click New Project Wizard to start the New
Project Wizard. The New Project Wizard generates the Quartus II Project
File and Quartus II Settings File for your project.

Design Entry

The Quartus II software supports the following design entry methods:

■ Altera HDL (AHDL) Text Design File (.tdf)
■ Block Diagram File
■ EDIF Netlist File (.edf)
■ Verilog Quartus Mapping Netlist File (.vqm)
■ VHDL (.vhd)
■ Verilog HDL (.v)

The Quartus II software has an advanced integrated synthesis engine that
fully supports the Verilog HDL and VHDL languages and provides
options to control the synthesis process.

f For more information, refer to the Quartus II Integrated Synthesis chapter
in volume 1 of the Quartus II Handbook.

To create a new design file, perform the following steps:

1. On the File menu, click New. The New dialog box appears.

2. Click the Device Design Files tab.

3. Select a design entry type.

4. Click OK (see Figure 3–9).

Altera Corporation 3–17
October 2007

Quartus II Design Flow

Figure 3–9. New Dialog Box

1 You can create other files from the Software Files tab and Other
Files tab of the New dialog box on the File menu. For example,
the Vector Waveform File (.vwf) is located in the Other Files tab.

To analyze a netlist file created by an EDA tool, perform the following
steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Design Entry & Synthesis. The Design
Entry & Synthesis page appears.

3. In the Tool name list, select the synthesis tool used to generate the
netlist (Figure 3–10).

3–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 3–10. Settings Dialog Box Specifying Design Entry Tool

The Quartus II Block Editor has many advantages over the MAX+PLUS II
Graphic Editor. The Block Editor offers an unlimited sheet size, multiple
region selections, an enhanced Symbol Editor, and conduits.

The Symbol Editor allows you to change the positions of the ports in a
symbol (refer to the three images in Figure 3–11). You can reduce wire
congestion around a symbol by changing the positions of the ports.

Altera Corporation 3–19
October 2007

Quartus II Design Flow

Figure 3–11. Various Port Position for a Symbol

To make changes to a symbol in a Block Design File, right-click a symbol
in the Block Editor and select Properties to display the Symbol
Properties dialog box. This dialog box allows you to change the instance
name, add parameters, and specify the line and text color.

You can use conduits to connect blocks (including pins) in the Block
Editor. Conduits contain signals for the connected objects
(see Figure 3–12). You can determine the connections between various
blocks in the Conduit Properties dialog box by right-clicking a conduit
and clicking Properties.

3–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 3–12. Blocks and Pins Connected with Conduits

Making Assignments

The Quartus II software stores all project and design assignments in a
Quartus II Settings File, which is a collection of assignments stored as Tcl
commands and organized by the compilation stage and assignment type.
The Quartus II Settings File stores all assignments, regardless of how they
are made, from the Floorplan Editor, the Pin Planner, the Assignment
Editor, with Tcl, or any other method.

Altera Corporation 3–21
October 2007

Quartus II Design Flow

Assignment Editor

The Assignment Editor is an intuitive spreadsheet interface designed to
allow you to make, change, and manage a large number of assignments
easily. With the Assignment Editor, you can list all available pin numbers
and design pin names for efficiently creating pin assignments. You also
can filter all assignments based on assignment categories and node names
for viewing and creating assignments.

The Assignment Editor is composed of the Category Bar, Node Filter Bar,
Information Bar, Edit Bar, and spreadsheet.

To make an assignment, follow these steps:

1. On the Assignments menu, click Assignment Editor. The
Assignment Editor window appears.

2. Select an assignment category in the Category bar.

3. Select a node name using the Node Finder or type a node name filter
into the Node Filter bar. (This step is optional; it excludes all
assignments unrelated to the node name.)

4. Type the required values into the spreadsheet.

5. On the File menu, click Save.

If you are unsure about the purpose of a cell in the spreadsheet, select the
cell and read the description displayed in the Information bar.

You can use the Edit bar to change the contents of multiple selected cells
simultaneously. Select cells in the spreadsheet and type the value in the
Edit box.

Other advantages of the Assignment Editor include clipboard support in
the spreadsheet and automatic font coloring to identify the status of
assignments.

f For more information, refer to the Assignment Editor chapter in volume 1
of the Quartus II Handbook.

3–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Timing Assignments

You can use the timing wizard to help you set your timing requirements.
On the Assignments menu, click Timing Wizard to create global clock
and timing settings. The settings include fMAX, setup times, hold times,
clock to output delay times, and individual absolute or derived clocks.

You also can set timing settings manually by performing the following
steps:

1. On the Assignments menu, click Settings. The Setting dialog box is
shown.

2. In the Category list, select Timing Requirements & Options. The
Timing Requirements & Options page is shown.

3. Set your timing settings.

You can make more complex timing assignments with the Quartus II
software than allowed by the MAX+PLUS II software, including
multicycle and point-to-point assignments using wildcards and time
groups.

1 A time group is a collection of design nodes grouped together
and represented as a single unit for the purpose of making
timing assignments to the collection.

Multicycle timing assignments allow you to identify register-to-register
paths in the design where you expect a delayed latch edge. This
assignment enables accurate timing analysis of your design.

Point-to-point timing assignments allow you to specify the required
delay between two pins, two registers, or a pin and a register. This
assignment helps you optimize and verify your design timing
requirements.

Wildcard characters “?” and “ * “ allow you to apply an assignment to a
large number of nodes with just a few assignments. For example,
Figure 3–13 shows a 4 ns tSU requirement assignment to all paths from
any node to the “d” bus in the Assignment Editor.

Altera Corporation 3–23
October 2007

Quartus II Design Flow

Figure 3–13. Single tSU Timing Assignment Applied to All Nodes of a Bus

f For more information, refer to the Classic Timing Analyzer or the
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Synthesis

The Quartus II advanced integrated synthesis software fully supports the
hardware description languages, Verilog HDL, VHDL, and AHDL,
schematic entry, and also provides options to control the synthesis
process. With this synthesis support, the Quartus II software provides a
complete, easy-to-use, stand-alone solution for today's designs.

You can specify synthesis options in the Analysis & Synthesis Settings
page of the Settings dialog box. Similar to MAX+PLUS II synthesis
options, you select one of these optimization techniques: Speed, Area, or
Balanced.

To achieve higher design performance, you can turn on synthesis netlist
optimizations that are available when targeting certain devices. You can
unmap a netlist created by an EDA tool and remap the components in the
netlist back to Altera primitives by turning on Perform WYSIWYG
primitive resynthesis. Additionally, you can move registers across
combinational logic to balance timing without changing design
functionality by turning on Perform gate-level register retiming. Both of
these options are accessible from the Synthesis Netlist Optimizations
page under Analysis & Synthesis Settings in the Settings dialog box on
the Assignments menu.

f For more information, refer to the Quartus II Integrated Synthesis chapter
in volume 1 of the Quartus II Handbook.

3–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Functional Simulation

Similar to the MAX+PLUS II Simulator, the Quartus II Simulator Tool
performs both functional and timing simulations.

To open the Simulator Tool, on MAX+PLUS II menu, click Simulator or
on the Tools menu, click Simulator Tool. Before you perform a functional
simulation, an internal functional simulation netlist is required. Click
Generate Functional Simulation Netlist in the Simulator Tool window
(Figure 3–14), or on the Processing menu, click Generate Functional
Simulation Netlist.

1 Generating a functional simulation netlist creates a separate
database that improves the performance of the simulation
significantly.

Figure 3–14. Simulator Tool Dialog Box

You can view and modify the simulator options on the Simulator page of
the Settings dialog box or in the Simulator Tool window. You can set the
simulation period and turn Check outputs on or off. You can choose to
display the simulation outputs in the simulation report or in the Vector
Waveform File. To display the simulation results in the simulation input
vector waveform file, which is the MAX+PLUS II behavior, turn on
Overwrite simulation input file with simulation results.

Altera Corporation 3–25
October 2007

Quartus II Design Flow

When using either the MAX+PLUS II or Quartus II software, you may
have to compile additional behavioral models to perform a simulation
with an EDA simulation tool. In the Quartus II software, behavioral
models for library of parameterized modules (LPM) functions and
Altera-specific megafunctions are available in the altera_mf and
220model library files, respectively. The 220model and altera_mf files
can be found in the \<Quartus II Installation>\eda\sim_lib directory.

The Quartus II schematic design files (Block Design File, or .bdf) are not
compatible with EDA simulation tools. To perform a register transfer
level (RTL) functional simulation of a Block Design File using an EDA
tool, convert your schematic designs to a VHDL or Verilog HDL design
file. Open the schematic design file and on the File menu, click
Create/Update > Create HDL Design File for Current File to create an
HDL design file that corresponds to your Block Design File.

You can export a Vector Waveform File or Simulator Channel File as a
Verilog HDL or VHDL test bench file for simulation with an EDA tool.
Open your Vector Waveform File or Simulator Channel File and on the
File menu, click Export. See Figure 3–15. Select Verilog or VHDL Test
Bench File (*.vt) from the Save as type list. Turn on Add self-checking
code to file to add additional self-checking code to the test bench.

Figure 3–15. Export Dialog Box

3–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Place and Route

The Quartus II PowerFit is an incremental fitter that performs
place-and-route to fit your design into the targeted device. You can
control the Fitter behavior with options in the Fitter Settings page of the
Settings dialog box on the Assignments menu.

High-density device families supported in the Quartus II software, such
as the Stratix series, sometimes require significant fitter effort to achieve
an optimal fit. The Quartus II software offers several options to reduce
the time required to fit a design. You can control the effort the Quartus II
Fitter expends to achieve your timing requirements with these options:

■ Optimize timing performs timing-based placement using the timing
requirements you specify for the design. You can use this option by
itself or with one or more of the options below.

■ Optimize hold timing optimizes the hold times within a device to
meet timing requirements and assignments you specify. You can
select this option only if the Optimize timing option is also chosen.

■ Optimize fast-corner timing instructs the Fitter, when optimizing
your design, to consider fast-corner delays, in addition to
slow-corner delays, from the fast-corner timing model (fastest
manufactured device, operating in low-temperature and
high-voltage conditions). You can select this option only if the
Optimize timing option is also chosen.

If minimizing compilation time is more important than achieving specific
timing results, you can turn these options off.

Another way to decrease the processing time and effort the Fitter expends
to fit your design is to select either Standard Fit or Fast Fit in the Fitter
Effort box of the Fitter Settings page in the Settings dialog box on the
Assignments menu. The option you select affects the Fitter behavior and
your design as described below.

■ Select Standard Fit for the Fitter to use the highest effort and
preserve the performance from previous compilations.

■ Select Fast Fit for up to 50% faster compilation times, although this
may reduce design performance.

You can also select Auto Fit to decrease compilation time by directing the
Fitter to reduce Fitter effort after meeting your timing requirements. The
Auto Fit option is available for select devices.

f For more information, refer to the Area and Timing Optimization chapter
in volume 2 of the Quartus II Handbook.

Altera Corporation 3–27
October 2007

Quartus II Design Flow

To further reduce compilation times, turn on Limit to one fitting attempt
in the Fitter Settings page in the Settings dialog box on the Assignments
menu.

If your design is very close to meeting your timing requirements, you can
control the seed number used in the fitting algorithm by changing the
value in the Seed box of the Fitter Settings page of the Settings dialog
box on the Assignments menu. The default seed value is 1. You can
specify any non-negative integer value. Changing the value of the seed
only repositions the starting location of the Fitter, but does not affect
compilation time or the Fitter effort level. However, if your design is
difficult to fit optimally or takes a long time to fit, sometimes you can
improve results or processing time by changing the seed value.

Timing Analysis

Version 6.1 and later of the Quartus II software supports two native
timing analysis tools: TimeQuest Timing Analyzer and the Classic
Timing Analyzer. Both timing analysis tools provide more complex
clocking schemes than is possible with the MAX_PLUS II Timing
Analyzer. The TimeQuest analyzer uses the industry-standard Synopsys
Design Constraint (SDC) methodology for constraining designs and
reporting results. In general, the TimeQuest Timing Analyzer provides
more control in constraining a design as compared to the Classic Timing
Analyzer. However, the Classic Timing Analyzer incorporates a basic
graphical user interface and the timing analysis flow is similar to the flow
in the MAX_PLUS II software. As such, the section that follows provides
a more detailed look at timing analysis using the Classic Timing
Analyzer.

f For more information on choosing between the TimeQuest Timing
Analyzer or the Classic Timing Analyzer, refer to the Timing Analysis
Section in the Introduction to Quartus II manual.

Launch the Classic Timing Analyzer tool on the MAX+PLUS II menu by
clicking Classic Timing Analyzer or by selecting Classic Timing
Analyzer Tool on the Processing menu. See Figure 3–16. To start the
analysis, click Start in the Timing Analyzer Tool or on the Processing
menu, by pointing to Start, and clicking Start Timing Analyzer.

3–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 3–16. Registered Performance Tab of the Timing Analyzer Tool

The Quartus II Classic Timing Analyzer analyzes all clock domains in
your design, including paths that cross clock domains. You can ignore
paths that cross clock domains by using the following options in the
Timing Requirements & Options page in the Settings dialog box on the
Assignments menu:

■ Create a Cut Timing Path assignment
■ Turn on Cut paths between unrelated clock domains

To view the results from the Classic Timing Analyzer Tool, click the
Report button located at the bottom of the Classic Timing Analyzer
dialog box, or to get specific information, click on any of the following
tabs at the top of the Classic Timing Analyzer window:

■ Registered Performance
■ tPD

■ tSU

■ tCO

■ tH
■ Custom Delays

Altera Corporation 3–29
October 2007

Quartus II Design Flow

The Quartus II Classic Timing Analyzer reports both fMAX and slack.
Slack is the margin by which the timing requirement was met or not met.
A positive slack value, displayed in black, indicates the margin by which
a requirement was met. A negative slack value, displayed in red,
indicates the margin by which a requirement was not met.

To analyze a particular path in more detail, select a path in the Classic
Timing Analyzer Tool and click List Paths. This displays a detailed
description of the path in the System tab of the Messages window
(Figure 3–17).

Figure 3–17. Messages Window Displaying Detailed Timing Information

f For more information, refer to the Classic Timing Analyzer or the
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Timing Closure Floorplan

The Quartus II Timing Closure Floorplan is similar to the MAX+PLUS II
Floorplan Editor but has many improvements to help you more
effectively view and debug your design. With its ability to display logic
cell usage, routing congestion, critical paths, and LogicLockTM regions,
the Timing Closure Floorplan also makes the task of improving your
design performance much easier.

3–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

To view the Timing Closure Floorplan, on the MAX+PLUS II menu, click
Floorplan Editor or Timing Closure Floorplan.

The Timing Closure Floorplan Editor provides Interior Cell views
equivalent to the MAX+PLUS II logic array block (LAB) views. In
addition to these views, available from the View menu, you also can
select from the Interior MegaLABs (where applicable), Interior LABs, and
Field views.

1 The Pin Planner is equivalent to the MAX+PLUS II Device view.
The Pin Planner can be launched from the Timing Closure
Floorplan Editor by selecting Package (Top or Bottom) from the
View menu or on the Assignments menu by clicking Pin
Planner.

The Interior LABs view hides cell details for logic cells, Adaptive Logic
Modules (ALM), and macrocells, and shows LAB information
(see Figure 3–18). You can display the number of cells used in each LAB
on the View menu by clicking Show Usage Numbers.

Figure 3–18. Interior LAB View of the Timing Closure Floorplan

The Field view is a color-coded, high-level view of your device resources
that hides both cell and LAB details. In the Field view, you can see critical
paths and routing congestion in your design.

The View Critical Paths feature shows a percentage of all critical paths in
your floorplan. You can enable this feature on the View menu by clicking
Show Critical Paths. You can control the number of critical paths shown
by modifying the settings in the Critical Paths Settings dialog box on the
View menu.

The View Congestion feature displays routing congestion by coloring
and shading logic resources. Darker shading shows greater resource
utilization. This feature assists in identifying locations where there is a
lack of routing resources.

Altera Corporation 3–31
October 2007

Quartus II Design Flow

1 To show lower level details in any view, right-click on a resource
and click Show Details.

f For more information, refer to the Timing Closure Floorplan chapter in
volume 2 of the Quartus II Handbook.

Timing Simulation

Timing simulation is an important part of the verification process. The
Quartus II software supports native timing simulation and exports
simulation netlists to third-party software for design verification.

Quartus II Simulator Tool

The Quartus II Simulator tool is an easy-to-use integrated solution that
uses the compiler database to simulate the logical and timing
performance of your design (Figure 3–19). When performing timing
simulation, the simulator uses place-and-route timing information.

Figure 3–19. Quartus II Simulator Tool

You can use Vector Table Output Files (.tbl), Vector Waveform Files,
Vector Files (.vec), or an existing Simulator Channel File as the vector
stimuli for your simulation.

3–32 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

The simulation options available are similar to the options available in the
MAX+PLUS II Simulator. You can control the length of the simulation
and the type of checks performed by the Simulator. When the
MAX+PLUS II look and feel is selected, the Overwrite simulation input
file with simulation results option is on by default. If you turn it off, the
simulation results are written to the report file. To view the report file,
click Report in the Simulator Tool window.

EDA Timing Simulation

The Quartus II software also supports timing simulation with other EDA
simulation software. Performing timing simulation with other EDA
simulation software requires a Quartus II generated timing netlist file in
the form of a Verilog Output File (.vo) or VHDL Output File (.vho), a
Standard Delay Format Output File (.sdo), and a device-specific atom file
(or files), shown in Table 3–3.

Specify your EDA simulation tool by performing the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page
appears.

3. In the Tool name list, select your EDA Tool.

You can generate a timing netlist for the selected EDA simulator tool by
running a full compile or on the Processing menu, by pointing to Start
and clicking Start EDA Netlist Writer. The generated netlist and SDF file
are placed into the \<project directory>\simulation\<EDA simulator tool>
directory. The device-specific atom files are located in the
\<Quartus II Install>\eda\sim_lib directory.

Table 3–3. Altera Timing Simulation Library Files

Verilog VHDL

<device_family>_atoms.v <device_family>_atoms_87.vhd

<device_family>_atoms.vhd

<device_family>_components.vhd

Altera Corporation 3–33
October 2007

Quartus II Design Flow

Power Estimation

To develop an appropriate power budget and to design the power
supplies, voltage regulators, heat sink, and cooling system, you need an
accurate estimate of the power that your design consumes. You can
estimate power by using the PowerPlay Early Power Estimation
spreadsheet available on the Altera website at www.altera.com, or with
the PowerPlay Power Analyzer in the Quartus II software.

You can perform early power estimation with the PowerPlay Early Power
Estimation spreadsheet by entering device resource and performance
information. The Quartus II PowerPlay Analyzer tool performs
vector-based power analysis by reading either a Signal Activity File (.saf),
generated from a Quartus II simulation, or a Value Change Dump File
(VCD) generated from a third-party simulation.

f For more information about how to use the PowerPlay Power Analyzer
tool, refer to the PowerPlay Power Analysis chapter in volume 3 of the
Quartus II Handbook.

Programming

The Quartus II Programmer has the same functionality as the
MAX+PLUS II Programmer, including programming, verifying,
examining, and blank checking operations. Additionally, the Quartus II
Programmer now supports the erase capability for CPLDs. To improve
usability, the Quartus II Programmer displays all programming-related
information in one window (Figure 3–20).

Click Add File or Add Device in the Programmer window to add a file
or device, respectively.

3–34 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 3–20. Programmer Window

1 Figure 3–20 shows that the Programmer Window now supports
Erase capability.

You can save the programmer settings as a Chain Description File (.cdf).
The CDF is an ASCII text file that stores device name, device order, and
programming file name information.

Conclusion The Quartus II software is the most comprehensive design environment
available for programmable logic designs. Features such as the
MAX+PLUS II look and feel help you make the transition from Altera’s
MAX+PLUS II design software and become more productive with the
Quartus II software. The Quartus II software has all the capabilities and
features of the MAX+PLUS II software and many more to speed up your
design cycle.

Altera Corporation 3–35
October 2007

Quick Menu Reference

Quick Menu
Reference

The commands displayed in the MAX+PLUS II Quick Menu and the
Quartus II Quick Menu vary based on whichever window is active
(Figures 3–21). In the following figure, the Graphic Editor window is
active.

Figure 3–21. MAX+PLUS II Quick Menus in MAX+PLUS II and Quartus II
Software

MAX+PLUS II Quick Menu MAX+PLUS II Quick Menu in Quartus II Software

3–36 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Quartus II
Command
Reference for
MAX+PLUS II
Users

Table 3–4 lists the commands in the MAX+PLUS II software and gives
their equivalent commands in the Quartus II software.

NA means either Not Applicable or Not Available. If a command is not
listed, then the command is the same in both tools.

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 1 of 10)

MAX+PLUS II Software Quartus II Software

MAX+PLUS II Menu

Hierarchy Display View menu, Utility Windows, Project Navigator

Graphic Editor Block Editor

Symbol Editor Block Symbol Editor

Text Editor Text Editor

Waveform Editor Waveform Editor

Floorplan Editor Assignments menu, Timing Closure Floorplan

Compiler Tools menu, Compiler Tool

Simulator Tools menu, Simulator Tool

Timing Analyzer Tools menu, Timing Analyzer Tool

Programmer Tools menu, Programmer

Message Processor View menu, Utility Windows, Messages

File Menu

File menu, Project, Name (Ctrl+J) File menu, Open Project (Ctrl+J)

File menu, Project, Set Project to Current
File (Ctrl+Shift+J)

Project menu, Set as Top-Level Entity (Ctrl+Shift+J)
or
File menu, New Project Wizard

File menu, Project, Save & Check (Ctrl+K) Processing menu, Start, Start Analysis & Synthesis
(Ctrl+K)
or
Processing menu, Start, Start Analysis &
Elaboration

File menu, Project, Save & Compile (Ctrl+L) Processing menu, Start Compilation (Ctrl+L)

Altera Corporation 3–37
October 2007

Quartus II Command Reference for MAX+PLUS II Users

File menu, Project, Save & Simulate
(Ctrl+Shift+L)

Processing menu, Start Simulation (Ctrl+I)

File menu, Project, Compile & Simulate
(Ctrl+Shift+K)

Processing menu, Start Compilation & Simulation
(Ctrl+Shift+K)

File menu, Project, Archive Project menu, Archive Project

File menu, Project, <Recent Projects> File menu, <Recent Projects>

File menu, Delete File NA

File menu, Retrieve NA

File menu, Info (Ctrl+I) File menu, File Properties

File menu, Create Default Symbol File menu, Create/Update, Create Symbol Files for
Current File

File menu, Edit Symbol (Block Editor) Edit menu, Edit Selected Symbol

File menu, Create Default Include File File menu, Create/Update, Create AHDL Include Files for
Current File

File menu, Hierarchy Project Top (Ctrl+T) Project menu, Hierarchy, Project Top (Ctrl+T)

File menu, Hierarchy, Up (Ctrl+U) Project menu, Hierarchy, Up (Ctrl+U)

File menu, Hierarchy, Down (Ctrl+D) Project menu, Hierarchy, Down (Ctrl+D)

File menu, Hierarchy, Top NA

File menu, Hierarchy, Project Top (Ctrl+T) Project menu, Hierarchy, Project Top (Ctrl+T)

File menu, MegaWizard Plug-In Manager Tools menu, MegaWizard Plug-In Manager

(Graphic Editor) File menu, Size NA

(Waveform Editor) File menu, End Time (Waveform Editor) Edit menu, End Time

(Waveform Editor) File menu, Compare (Waveform Editor) View menu, Compare to
Waveforms in File

(Waveform Editor) File menu, Import Vector File File menu, Open (Ctrl+O)

(Waveform Editor) File menu, Create Table File File menu, Save As

(Hierarchy Display) File menu, Select Hierarchy NA

(Hierarchy Display) File menu, Open Editor (Project Navigator) Double-click

(Hierarchy Display) File menu, Close Editor NA

(Hierarchy Display) File menu, Change File Type (Project Navigator) Select file in Files tab and select
Properties on right click menu

(Hierarchy Display) File menu, Print Selected
Files

NA

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 2 of 10)

MAX+PLUS II Software Quartus II Software

3–38 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

(Programmer) File menu, Select Programming
File

File menu, Open

(Programmer) File menu, Save Programming
Data As

File menu, Save

(Programmer) File menu, Inputs/Outputs NA

(Programmer) File menu, Convert SRAM Object
Files

File menu, Convert Programming Files

(Programmer) File menu, Archive JTAG
Programming Files

NA

(Programmer) File menu, Create Jam or SVF File File menu, Create/Update, Create JAM, SVF, or ISC File

(Message Processor) Select Messages NA

(Message Processor) Save Messages As (Messages) Save Messages on right click menu

(Timing Analyzer) Save Analysis As Processing menu, Compilation Report - Save Current
Report on right click menu in Timing Analyzer sections

(Simulator) Create Table File (Waveform Editor) File menu, Save As

(Simulator) Execute Command File NA

(Simulator) Inputs/Outputs NA

Edit Menu

(Waveform Editor) Edit menu, Overwrite (Waveform Editor) Edit menu, Value

(Waveform Editor) Edit menu, Insert (Waveform Editor) Edit menu, Insert Waveform Interval

(Waveform Editor) Edit menu, Align to Grid
(Ctrl+Y)

NA

(Waveform Editor) Edit menu, Repeat (Waveform Editor) Edit menu, Repeat Paste

(Waveform Editor) Edit menu, Grow or Shrink Edit menu, Grow or Shrink (Ctrl+Alt+G)

(Text Editor) Edit menu, Insert Page Break (Text Editor) Edit menu, Insert Page Break

(Text Editor) Edit menu, Increase Indent
(F2)

(Text Editor) Edit menu, Increase Indent

(Text Editor) Edit menu, Decrease Indent
(F3)

(Text Editor) Edit menu, Decrease Indent

(Graphic Editor) Edit menu, Toggle
Connection Dot (Double-Click)

(Block Editor) Edit menu, Toggle Connection Dot

(Graphic Editor) Edit menu, Flip Horizontal (Block Editor) Edit menu, Flip Horizontal

(Graphic Editor) Edit menu, Flip Vertical (Block Editor) Edit menu, Flip Vertical

(Graphic Editor) Edit menu, Rotate (Block Editor) Edit menu, Rotate by Degrees

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 3 of 10)

MAX+PLUS II Software Quartus II Software

Altera Corporation 3–39
October 2007

Quartus II Command Reference for MAX+PLUS II Users

View Menu

 View menu, Fit in Window (Ctrl+W) View menu, Fit in Window (Ctrl+W)

 View menu, Zoom In (Ctrl+Space) View menu, Zoom In (Ctrl+Space)

 View menu, Zoom Out (Ctrl+Shift+Space) View menu, Zoom Out (Ctrl+Shift+Space)

View menu, Normal Size (Ctrl+1) NA

View menu, Maximum Size (Ctrl+2) NA

(Hierarchy Display) View menu, Auto Fit in
Window

NA

(Waveform Editor) View menu, Time Range View menu, Zoom

Assign menu, Device Assignments menu, Device
or
Assignments menu, Settings (Ctrl+Shift+E)

Assign menu, Pin/Location/Chip Assignments menu, Assignment Editor - Locations
category

Assign menu, Timing Requirements Assignments menu, Assignment Editor - Timing
category

Assign menu, Clique Assignments menu, Assignment Editor - Cliques
category

Assign menu, Logic Options Assignments menu, Assignment Editor - Logic
Options category

Assign menu, Probe NA

Assign menu, Connected Pins Assignments menu, Assignment Editor - Simulation
category

Assign menu, Local Routing Assignments menu, Assignment Editor - Local
Routing category

Assign menu, Global Project Device Options Assignments menu, Device - Device and Pin Options

Assign menu, Global Project Parameters Assignments menu, Settings - Analysis and
Synthesis - Default Parameters

Assign menu, Global Project Timing
Requirements

Assignments menu, Timing Settings

Assign menu, Global Project Logic Synthesis Assignments menu, Settings - Analysis and
Synthesis

Assign menu, Ignore Project Assignments Assignments menu, Assignment Editor - disable

Assign menu, Clear Project Assignments Assignments menu, Remove Assignments

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 4 of 10)

MAX+PLUS II Software Quartus II Software

3–40 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Assign menu, Back-Annotate Project Assignments menu, Back-Annotate Assignments

Assign menu, Convert Obsolete Assignment
Format

NA

Utilities Menu

 Utilities menu, Find Text (Ctrl+F) Edit menu, Find (Ctrl+F)

Utilities menu, Find Node in Design File
(Ctrl+B)

Project menu, Locate, Locate in Design File

Utilities menu, Find Node in Floorplan Project menu, Locate, Locate in Timing Closure
Floorplan

Utilities menu, Find Clique in Floorplan NA

Utilities menu, Find Node Source (Ctrl+Shift+S) NA

Utilities menu, Find Node Destination
(Ctrl+Shift+D)

NA

Utilities menu, Find Next (Ctrl+N) Edit menu, Find Next (F3)

Utilities menu, Find Previous (Ctrl+Shift+N) NA

Utilities menu, Find Last Edit NA

Utilities menu, Search and Replace (Ctrl+R) Edit menu, Replace (Ctrl+H)

Utilities menu, Timing Analysis Source
(Ctrl+Alt+S)

NA

Utilities menu, Timing Analysis Destination
(Ctrl+Alt+D)

NA

Utilities menu, Timing Analysis Cutoff
(Ctrl+Alt+C)

NA

Utilities menu, Analyze Timing NA

Utilities menu, Clear All Timing Analysis Tags NA

(Text Editor) Utilities menu, Go To (Ctrl+G) Edit menu, Go To (Ctrl+G)

(Text Editor) Utilities menu, Find Matching
Delimiter (Ctrl+M)

(Text Editor) Edit, Find Matching Delimiter (Ctrl+M)

(Waveform Editor) Utilities menu, Find Next
Transition (Right Arrow)

(Waveform Editor) View menu, Next Transition (Right
Arrow)

(Waveform Editor) Utilities menu, Find Previous
Transition (Left Arrow)

(Waveform Editor) View menu, Next Transition (Left
Arrow)

Options Menu

Options menu, User Libraries Assignments menu, Settings (Ctrl+Shift+E)
Tools, Options, Global User LIbraries

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 5 of 10)

MAX+PLUS II Software Quartus II Software

Altera Corporation 3–41
October 2007

Quartus II Command Reference for MAX+PLUS II Users

Options menu, Color Palette Tools menu, Options

Options menu, License Setup Tools menu, License Setup

Options menu, Preferences Tools menu, Options

(Hierarchy Display) Options menu, Orientation NA

(Hierarchy Display) Options menu, Compact
Display

NA

(Hierarchy Display) Options menu, Show All
Hierarchy Branches

(Project Navigator) Expand All on right click menu

(Hierarchy Display) Options menu, Hide All
Hierarchy Branches

NA

(Editors) Options menu, Font Tools menu, Options

(Editors) Options menu, Text Size Tools menu, Options

(Graphic Editor) Options menu, Line Style Edit menu, Line

(Graphic Editor) Options menu,
Rubberbanding

Tools menu, Options

(Graphic Editor) Options menu, Show Parameters View menu, Show Parameter Assignments

(Graphic Editor) Options menu, Show Probes NA

(Graphic Editor) Options menu, Show
Pins/Locations/Chips

View menu, Show Pin and Location Assignments

(Graphic Editor) Options menu, Show Clique,
Timing & Local Routing Assignments

NA

(Graphic Editor) Options menu, Show Logic
Options

NA

(Graphic Editor) Options menu, Show All
(Ctrl+Shift+M)

NA

(Graphic Editor) Options menu, Show Guidelines
(Ctrl+Shift+G)

Tools menu, Options - Block/Symbol Editor page

(Graphic Editor) Options menu, Guideline
Spacing

Tools menu, Options - Block/Symbol Editor page

(Symbol Editors) Options menu, Snap to Grid Tools menu, Options - Block/Symbol Editor page

(Text Editor) Options menu, Tab Stops Tools menu, Options - Text Editor page

(Text Editor) Options menu, Auto-Indent Tools menu, Options - Text Editor page

(Text Editor) Options menu, Syntax Coloring NA

(Waveform Editor) Options menu, Snap to Grid View menu, Snap to Grid

(Waveform Editor) Options menu, Show Grid
(Ctrl+Shift+G)

Tools menu, Options - Waveform Editor page

(Waveform Editor) Options menu, Grid Size Edit menu, Grid Size - Waveform Editor page

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 6 of 10)

MAX+PLUS II Software Quartus II Software

3–42 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

(Floorplan Editor) Options menu, Routing
Statistics

NA

(Floorplan Editor) Options menu, Show
Node Fan-In

View menu, Routing, Show Fan-In

(Floorplan Editor) Options menu, Show
Node Fan-Out

View menu, Routing, Show Fan-Out

(Floorplan Editor) Options menu, Show Path View menu, Routing, Show Paths between Nodes

(Floorplan Editor) Options menu, Show Moved
Nodes in Gray

NA

(Simulator) Options menu, Breakpoint Processing menu, Simulation Debug, Breakpoints

(Simulator) Options menu, Hardware Setup NA

(Timing Analyzer) Options menu, Time
Restrictions

Assignments menu, Timing Settings

(Timing Analyzer) Options menu,
Auto-Recalculate

NA

(Timing Analyzer) Options menu, Cell Width NA

(Timing Analyzer) Options menu, Cut Off I/O Pin
Feedback

Assignments menu, Timing Settings

(Timing Analyzer) Options menu, Cut Off Clear &
Reset Paths

Assignments menu, Timing Settings

(Timing Analyzer) Options menu, Cut Off Read
During Write Paths

Assignments menu, Timing Settings

(Timing Analyzer) Options menu, List Only
Longest Path

NA

(Programmer) Options menu, Sound NA

(Programmer) Options menu, Programming
Options

Tools menu, Options - Programmer page

(Programmer) Options menu, Select Device (Programmer) Edit menu, Change Device

(Programmer) Options menu, Hardware Setup (Programmer) Edit menu, Hardware Setup

Symbol (Graphic Editor)

Symbol menu, Enter Symbol (Double-Click) (Block Editor) Edit menu, Insert Symbol (Double-
Click)

Symbol menu, Update Symbol Edit menu, Update Symbol or Block

Symbol menu, Edit Ports/Parameters Edit menu, Properties

Element (Symbol Editor)

Element menu, Enter Pinstub Double-click on edge of symbol

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 7 of 10)

MAX+PLUS II Software Quartus II Software

Altera Corporation 3–43
October 2007

Quartus II Command Reference for MAX+PLUS II Users

Element menu, Enter Parameters NA

Templates (Text Editor)

Templates (Text Editor) Edit menu, Insert Template

Node (Waveform Editor)

Node menu, Insert Node (Double-Click) Edit menu, Insert Node or Bus (Double-Click)

Node menu, Enter Nodes from SNF Edit menu, Insert Node - click on Node Finder…

Node menu, Edit Node Double-click on the Node

Node menu, Enter Group Edit menu, Group

Node menu, Ungroup Edit menu, Ungroup

Node menu, Sort Names Edit menu, Sort

Node menu, Enter Separator NA

Layout (Floorplan Editor)

Layout menu, Full Screen View menu, Full Screen (Ctrl+Alt+Space)

Layout menu, Report File Equation Viewer View menu, Equations

Layout menu, Device View (Double-Click) View menu, Package Top

or
View menu, Package Bottom

Layout menu, LAB View (Double-Click) View menu, Interior Labs

Layout menu, Current Assignments
Floorplan

View menu, Assignments, Show User Assignments

Layout menu, Last Compilation Floorplan View menu, Assignments, Show Fitter
Assignments

Processing (Compiler)

Processing menu, Design Doctor Processing menu, Start, Start Design Assistant

Processing menu, Design Doctor Settings Assignments menu, Settings - Design Assistant

Processing menu, Functional SNF Extractor Processing menu, Generate Functional Simulation
Netlist

Processing menu, Timing SNF Extractor Processing menu, Start Analysis & Synthesis

Processing menu, Optimize Timing SNF NA

Processing menu, Linked SNF Extractor NA

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 8 of 10)

MAX+PLUS II Software Quartus II Software

3–44 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Processing menu, Fitter Settings Assignments menu, Settings - Fitter Settings

Processing menu, Report File Settings Assignments menu, Settings

Processing menu, Generate AHDL TDO File NA

Processing menu, Smart Recompile Assignments menu, Settings - Compilation Process

Processing menu, Total Recompile Assignments menu, Settings - Compilation Process

Processing menu, Preserve All Node Name
Synonyms

Assignments menu, Settings - Compilation Process

Interfaces (Compiler) Assignments menu, EDA Tool Settings

Initialize (Simulator)

Initialize menu, Initialize Nodes/Groups NA

Initialize menu, Initialize Memory NA

Initialize menu, Save Initialization As NA

Initialize menu, Restore Initialization NA

Initialize menu, Reset to Initial SNF Values NA

Node (Timing Analyzer)

Node menu, Timing Analysis Source (Ctrl+Alt+S) NA

Node menu, Timing Analysis Destination
(Ctrl+Alt+D)

NA

Node menu, Timing Analysis Cutoff (Ctrl+Alt+C) NA

Analysis (Timing Analyzer)

Analysis menu, Delay Matrix (Timing Analyzer Tool) Delay tab

Analysis menu, Setup/Hold Matrix NA

Analysis menu, Registered Performance (Timing Analyzer Tool) Registered Performance tab

JTAG (Programmer)

JTAG menu, Multi-Device JTAG Chain (Programmer) Mode: JTAG

JTAG menu, Multi-Device JTAG Chain Setup (Programmer) Window

JTAG menu, Save JCF File menu, Save

JTAG menu, Restore JCF File menu, Open

JTAG menu, Initiate Configuration from
Configuration Device

Tools menu, Options - Programmer page

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 9 of 10)

MAX+PLUS II Software Quartus II Software

Altera Corporation 3–45
October 2007

Referenced Documents

Referenced
Documents

This chapter references the following documents:

■ Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook

■ Command Line Scripting chapter in volume 2 of the Quartus II
Handbook

■ Engineering Change Management with the Chip Planner chapter in
volume 3 of the Quartus II Handbook

■ Introduction to Quartus II manual
■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II

Handbook
■ Quartus II Classic Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II

Handbook
■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook
■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of

the Quartus II Handbook

FLEX (Programmer)

FLEX menu, Multi-Device FLEX Chain (Programmer) Mode: Passive Serial

FLEX menu, Multi-Device FLEX Chain Setup (Programmer) Window

FLEX menu, Save FCF File menu, Save

FLEX menu, Restore FCF File menu, Open

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 10 of 10)

MAX+PLUS II Software Quartus II Software

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf

3–46 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Document
Revision History

Table 3–5 show the revision history of this chapter.

Table 3–5. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents”. Updated for the
Quartus II 7.2 software
release.

May 2007
v7.1.0

● Added support for Arria GX in Table 3–1.
● Added “Referenced Documents” section.

Minor updates to
support Altera’s newest
device, Arria GX.

March 2007
v7.0.0

Consolidated the device support table (Table 1-3) to show
support for Stratix series and Cyclone series devices.

—

November 2006
v6.1.0

Added document revision history to chapter.
—

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0.
—

December 2005
v5.1.1

Minor typographic and formatting updates.
—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1.
—

May 2005
v5.0.0

Chapter 2 was formerly Chapter 1 in version 4.2. —

Dec. 2004
v2.1.0

Updated for Quartus II software version 4.2.
● Chapter 1 was formerly Chapter 2.
● General formatting, editing updates, and figure updates.
● FLEX® 600 device support added.
● Assignment Editor, Timing Assignments, and Synthesis

updated.
● APEX II support for balanced optimization technique

removed, MAX II support added.
● Minor updates to Place and Route.
● Tcl commands no longer supported for the Quartus II

Simulator Tool.
● Excel-based power calculator replaced by PowerPlay Early

Power Estimation spreadsheet.
● Added support for erase capability for CPLDs.

—

June 2004
v2.0

● Updates to tables, figures.
● New functionality for Quartus II software 4.1.

—

Feb. 2004
v1.0

Initial release. —

Altera Corporation 4–1
October 2007 Preliminary

4. Quartus II Support for
HardCopy Series Devices

Introduction This chapter includes Quartus® II Support for HardCopy® II and
HardCopy Stratix® devices. This chapter is divided into the following
sections:

■ “HardCopy II Device Support” on page 4–1
■ “HardCopy Stratix Device Support” on page 4–34

HardCopy II
Device Support

Altera® HardCopy II devices feature 1.2-V, 90 nm process technology,
and provide a structured ASIC alternative to increasingly expensive
multi-million gate ASIC designs. The HardCopy II design methodology
offers a fast time-to-market schedule, providing ASIC designers with a
solution to long ASIC development cycles. Using the Quartus II software,
you can leverage a Stratix II FPGA as a prototype and seamlessly migrate
your design to a HardCopy II device for production.

This document discusses the following topics:

■ “HardCopy II Development Flow” on page 4–3
■ “HardCopy II Device Resource Guide” on page 4–8
■ “HardCopy II Recommended Settings in the Quartus II Software” on

page 4–12
■ “HardCopy II Utilities Menu” on page 4–25

f For more information about HardCopy II, HardCopy Stratix, and
HardCopy APEX™ devices, refer to the respective device data sheets in
the HardCopy Series Handbook.

HardCopy II Design Benefits

Designing with HardCopy II structured ASICs offers substantial benefits
over other structured ASIC offerings:

■ Prototyping using a Stratix II FPGA for functional verification and
system development reduces total project development time

■ Seamless migration from a Stratix II FPGA prototype to a
HardCopy II device reduces time to market and risk

■ Unified design methodology for Stratix II FPGA design and
HardCopy II design reduces the need for ASIC development
software

QII51004-7.2.0

4–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

■ Low up-front development cost of HardCopy II devices reduces the
financial risk to your project

Quartus II Features for HardCopy II Planning

With the Quartus II software you can design a HardCopy II device using
a Stratix II device as a prototype. The Quartus II software contains the
following expanded features for HardCopy II device planning:

■ HardCopy II Companion Device Assignment—Identifies
compatible HardCopy II devices for migration with the Stratix II
device currently selected.

1 This feature constrains the pins of your Stratix II FPGA
prototype making it compatible with your HardCopy II
device. It also constrains the correct resources available for
the HardCopy II device making sure that your Stratix II
FPGA design does not become incompatible. In addition,
you are still required to compile the design targeting the
HardCopy II device to ensure that the design fits, routes,
and meets timing.

■ HardCopy II Utilities—The HardCopy II Utilities functions create
or overwrites HardCopy II companion revisions, change revisions to
use, and compare revisions for equivalency.

■ HardCopy II Advisor—The HardCopy II Advisor helps you follow
the necessary steps to successfully submit a HardCopy II design to
Altera’s HardCopy Design Center.

1 The HardCopy II Advisor is similar to the Resource
Optimization Advisor and Timing Optimization Advisor.
The HardCopy II Advisor provides guidelines you can
follow during development, reporting the tasks completed
as well as the tasks that remain to be completed during
development.

■ HardCopy II Floorplan—The Quartus II software can show a
preliminary floorplan view of your HardCopy II design’s Fitter
placement results.

■ HardCopy II Design Archiving—The Quartus II software archives
the HardCopy II design project’s files needed to handoff the design
to the HardCopy Design Center.

1 This feature is similar to the Quartus II software HardCopy
Files Wizard used for HardCopy Stratix and HardCopy
APEX families.

Altera Corporation 4–3
October 2007 Preliminary

HardCopy II Development Flow

■ HardCopy II Device Preliminary Timing—The Quartus II software
performs a timing analysis of HardCopy II devices based on
preliminary timing models and Fitter placements. Final timing
results for HardCopy II devices are provided by the HardCopy
Design Center.

■ HardCopy II Handoff Report-—The Quartus II software generates
a handoff report containing information about the HardCopy II
design used by the HardCopy Design Center in the design review
process.

■ Formal Verification—Cadence Encounter Conformal software can
now perform formal verification between the source RTL design files
and post-compile gate level netlist from a HardCopy II design.

HardCopy II
Development
Flow

In the Quartus II software, you have two methods for designing your
Stratix II FPGA and HardCopy II companion device together in one
Quartus II project.

■ Design the HardCopy II device first, and create the Stratix II FPGA
companion device second and build your prototype for in-system
verification

■ Design the Stratix II FPGA first and create a HardCopy II companion
device second

Both of these flows are illustrated at a high level in Figure 4–1. The added
features in the HardCopy II Utilities menu assist you in completing your
HardCopy II design for submission to Altera’s HardCopy Design Center
for back-end implementation.

4–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 4–1. HardCopy II Flow in Quartus II Software

Notes for Figure 4–1:
(1) Refer to Figure 4–2 on page 4–5 for an expanded description of this process.
(2) Refer to Figure 4–3 on page 4–7 for an expanded description of this process.

Designing the Stratix II FPGA First

The HardCopy II development flow beginning with the Stratix II FPGA
prototype is very similar to a traditional Stratix II FPGA design flow, but
requires a few additional tasks be performed to migrate the design to the
HardCopy II companion device. To design your HardCopy II device
using the Stratix II FPGA as a prototype, complete the following tasks:

■ Specify a HardCopy II device for migration
■ Compile the Stratix II FPGA design
■ Create and compile the HardCopy II companion revision
■ Compare the HardCopy II companion revision compilation to the

Stratix II device compilation

Select Stratix II Device
& HardCopy II

Companion Device

Design Stratix II First

Complete Stratix II
Device First Flow (1)

Select HardCopy II
Device & Stratix II
Companion Device

Design Stratix II Second

Complete HardCopy II
Device First Flow (2)

In-System Verification
of Stratix II

FPGA Design

Compare Stratix II
& HardCopy II

Design Revisions

Generate HardCopy II
Archive

Prepare Design HDL

Handoff Design Archive for
Back-End Migration

Design
Stratix II

First?

Yes No

Altera Corporation 4–5
October 2007 Preliminary

HardCopy II Development Flow

Figure 4–2 provides an overview highlighting the development process
for designing with a Stratix II FPGA first and creating a HardCopy II
companion device second.

Figure 4–2. Designing Stratix II Device First Flow

Review HardCopy II Advisor

Select HardCopy II Companion Device

Apply Design Constraints

Compile Stratix II Design

Compile HardCopy II Companion Revision

Create or Overwrite HardCopy II
Companion Revision

Fix Violations
Any

Violations?

Any
Violations?

Stratix II Prototype Device Development Phase

HardCopy II Companion Device Development Phase

Design Submission & Back-End Implementation Phase

Yes

Yes

No

No

Generate Handoff Report

Prepare Stratix II Design

Archive Project for Handoff

In-System Verification

Fits in
HardCopy II Device?

Compare Stratix II & HardCopy II Revisions

Select a Larger
HardCopy II Companion

Device?

4–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Prototype your HardCopy II design by selecting and then compiling a
Stratix II device in the Quartus II software.

After you compile the Stratix II design successfully, you can view the
HardCopy II Device Resource Guide in the Quartus II software Fitter
report to evaluate which HardCopy II devices meet your design’s
resource requirements. When you are satisfied with the compilation
results and the choice of Stratix II and HardCopy II devices, on the
Assignments menu, click Settings. In the Category list, select Device. In
the Device page, select a HardCopy II companion device.

After you select your HardCopy II companion device, do the following:

■ Review the HardCopy II Advisor for required and recommended
tasks to perform

■ Enable Design Assistant to run during compilation
■ Add timing and location assignments
■ Compile your Stratix II design
■ Create your HardCopy II companion revision
■ Compile your design for the HardCopy II companion device
■ Use the HardCopy II Utilities to compare the HardCopy II

companion device compilation with the Stratix II FPGA revision
■ Generate a HardCopy II Handoff Report using the HardCopy II

Utilities
■ Generate a HardCopy II Handoff Archive using the HardCopy II

Utilities
■ Arrange for submission of your HardCopy II handoff archive to

Altera’s HardCopy Design Center for back-end implementation

f For more information about the overall design flow using the Quartus II
software, refer to the Introduction to Quartus II manual on the Altera
website at www.altera.com.

Designing the HardCopy II Device First

The HardCopy II family presents a new option in designing unavailable
in previous HardCopy families. You can design your HardCopy II device
first and create your Stratix II FPGA prototype second in the Quartus II
software. This allows you to see your potential maximum performance in
the HardCopy II device immediately during development, and you can
create a slower performing FPGA prototype of the design for in-system
verification. This design process is similar to the traditional HardCopy II
design flow where you build the FPGA first, but instead, you merely
change the starting device family. The remaining tasks to complete your
design for both Stratix II and HardCopy II devices roughly follow the

Altera Corporation 4–7
October 2007 Preliminary

HardCopy II Development Flow

same process (Figure 4–3). The HardCopy II Advisor adjusts its list of
tasks based on which device family you start with, Stratix II or
HardCopy II, to help you complete the process seamlessly.

Figure 4–3. Designing HardCopy II Device First Flow

4–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

HardCopy II
Device Resource
Guide

The HardCopy II Device Resource Guide compares the resources
required to successfully compile a design with the resources available in
the various HardCopy II devices. The report rates each HardCopy II
device and each device resource for how well it fits the design. The
Quartus II software generates the HardCopy II Device Resource Guide
for all designs successfully compiled for Stratix II devices. This guide is
found in the Fitter folder of the Compilation Report. Figure 4–4 shows an
example of the HardCopy II Device Resource Guide. Refer to Table 4–1
for an explanation of the color codes in Figure 4–4.

Figure 4–4. HardCopy II Device Resource Guide

Use this report to determine which HardCopy II device is a potential
candidate for migration of your Stratix II design. The HardCopy II device
package must be compatible with the Stratix II device package. A logic

Altera Corporation 4–9
October 2007 Preliminary

HardCopy II Device Resource Guide

resource usage greater than 100% or a ratio greater than 1/1 in any
category indicates that the design does not fit in that particular
HardCopy II device.

The HardCopy II architecture consists of an array of fine-grained HCells,
which are used to build logic equivalent to Stratix II adaptive logic
modules (ALMs) and digital signal processing (DSP) blocks. The DSP
blocks in HardCopy II devices match the functionality of the Stratix II
DSP blocks, though timing of these blocks is different than the FPGA DSP
blocks because they are constructed of HCell Macros. The M4K and
M-RAM memory blocks in HardCopy II devices are equivalent to the
Stratix II memory blocks. Preliminary timing reports of the HardCopy II
device are available in the Quartus II software. Final timing results of the
HardCopy II device are provided by the HardCopy Design Center after
back-end migration is complete.

Table 4–1. HardCopy II Device Resource Guide Color Legend

Color Package Resource (1) Device Resources

Green
(High)

The design can migrate to the Hardcopy II
package and the design has been fitted with
target device migration enabled in the
HardCopy II Companion Device dialog box.

The resource quantity is within the range of the
HardCopy II device and the design can likely
migrate if all other resources also fit.

You are still required to compile the HardCopy II
revision to make sure the design is able to route
and migrate all other resources.

Orange
(Medium)

The design can migrate to the Hardcopy II
package. However, the design has not been
fitted with target device migration enabled in the
HardCopy II Companion Device dialog box.

The resource quantity is within the range of the
HardCopy II device. However, the resource is at
risk of exceeding the range for the HardCopy II
package.

If your target HardCopy II device falls in this
category, compile your design targeting the
HardCopy II device as soon as possible to check
if the design fits and is able to route and migrate
all other resources. You may need to migrate to
a larger device.

Red
(None)

The design cannot migrate to the Hardcopy II
package.

The resource quantity exceeds the range of the
HardCopy II device. The design cannot migrate
to this HardCopy II device.

Note to Table 4–1:
(1) The package resource is constrained by the Stratix II FPGA for which the design was compiled. Only vertical

migration devices within the same package are able to migrate to HardCopy II devices.

4–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

f For more information about the HardCopy II device resources, refer to
the Introduction to HardCopy II Devices and the Description, Architecture
and Features chapters in the HardCopy II Device Family Data Sheet in the
HardCopy Series Handbook.

The report example in Figure 4–4 shows the resource comparisons for a
design compiled for a Stratix II EP2S130F1020 device. Based on the
report, the HC230F1020 device in the 1,020-pin FineLine BGA® package
is an appropriate HardCopy II device to migrate to. If the HC230F1020
device is not specified as a migration target during the compilation, its
package and migration compatibility is rated orange, or Medium. The
migration compatibilities of the other HardCopy II devices are rated red,
or None, because the package types are incompatible with the Stratix II
device. The 1,020-pin FBGA HC240 device is rated red because it is only
compatible with the Stratix II EP2S180F1020 device.

Figure 4–5 shows the report after the (unchanged) design was recompiled
with the HardCopy II HC230F1020 device specified as a migration target.
Now the HC230F1020 device package and migration compatibility is
rated green, or High.

Figure 4–5. HardCopy II Device Resource Guide with Target Migration Enabled

HardCopy II
Companion
Device Selection

In the Quartus II software, you can select a HardCopy II companion
device to help structure your design for migration from a Stratix II device
to a HardCopy II device. To make your HardCopy II companion device
selection, on the Assignments menu, click Settings. In the Settings dialog
box in the Category list, select Device (Figure 4–6) and select your
companion device from the Available devices list.

Selecting a HardCopy II Companion device to go with your Stratix II
prototype constrains the memory blocks, DSP blocks, and pin
assignments, so that your Stratix II and HardCopy II devices are
migration-compatible. Pin assignments are constrained in the Stratix II
design revision so that the HardCopy II device selected is

Altera Corporation 4–11
October 2007 Preliminary

HardCopy II Companion Device Selection

pin-compatible. The Quartus II software also constrains the Stratix II
design revision so it does not use M512 memory blocks or exceed the
number of M-RAM blocks in the HardCopy II companion device.

Figure 4–6. Quartus II Settings Dialog Box

You can also specify your HardCopy II companion device using the
following tool command language (Tcl) command:

set_global_assignment -name\
DEVICE_TECHNOLOGY_MIGRATION_LIST <HardCopy II Device Part Number>

For example, to select the HC230F1020 device as your HardCopy II
companion device for the EP2S130F1020C4 Stratix II FPGA, the Tcl
command is:

set_global_assignment -name\
DEVICE_TECHNOLOGY_MIGRATION_LIST HC230F1020C

4–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

HardCopy II
Recommended
Settings in the
Quartus II
Software

The HardCopy II development flow involves additional planning and
preparation in the Quartus II software compared to a standard FPGA
design. This is because you are developing your design to be
implemented in two devices: a prototype of your design in a Stratix II
prototype FPGA, and a companion revision in a HardCopy II device for
production. You need additional settings and constraints to make the
Stratix II design compatible with the HardCopy II device and, in some
cases, you must remove certain settings in the design. This section
explains the additional settings and constraints necessary for your design
to be successful in both Stratix II FPGA and HardCopy II structured ASIC
devices.

Limit DSP and RAM to HardCopy II Device Resources

On the Assignments menu, click Settings to view the Settings dialog box.
In the Category list, select Device. In the Family list, select Stratix II.
Under Companion device, Limit DSP & RAM to HardCopy II device
resources is turned on by default (Figure 4–7). This maintains
compatibility between the Stratix II and HardCopy II devices by ensuring
your design does not use resources in the Stratix II device that are not
available in the selected HardCopy II device.

1 If you require additional memory blocks or DSP blocks for
debugging purposes using SignalTap® II, you can temporarily
turn this setting off to compile and verify your design in your
test environment. However, your final Stratix II and
HardCopy II designs submitted to Altera for back-end
migration must be compiled with this setting turned on.

Figure 4–7. Limit DSP & RAM to HardCopy II Device Resources Check Box

Enable Design Assistant to Run During Compile

You must use the Quartus II Design Assistant to check all HardCopy
series designs for design rule violations before submitting the designs to
the Altera HardCopy Design Center. Additionally, you must fix all
critical and high-level errors.

1 Altera recommends turning on the Design Assistant to run
automatically during each compile, so that during development,
you can see the violations you must fix.

Altera Corporation 4–13
October 2007 Preliminary

HardCopy II Recommended Settings in the Quartus II Software

f For more information about the Design Assistant and the rules it uses,
refer to the Design Guidelines for HardCopy Series Devices chapter of the
HardCopy Series Handbook.

To enable the Design Assistant to run during compilation, on the
Assignment menu, click Settings. In the Category list, select Design
Assistant and turn on Run Design Assistant during compilation
(Figure 4–8) or by entering the following Tcl command in the Tcl Console:

set_global_assignment -name ENABLE_DRC_SETTINGS ON

Figure 4–8. Enabling Design Assistant

Timing Settings

Beginning in Quartus II Software version 7.1, TimeQuest is the
recommended timing analysis tool for all designs. Classic Timing
Analyzer is no longer supported and the HardCopy Design Center will
not accept any designs which use Classic Timing Analyzer for timing
closure.

If you are still using the Classic Timing Analyzer, Altera strongly
recommends that you switch to TimeQuest.

4–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

1 For more information on how to switch to TimeQuest, refer to
the Switching to the TimeQuest Timing Analyzer chapter of the
Quartus II Handbook, volume 3, on the Altera website at
www.altera.com.

When you specify the TimeQuest analyzer as the timing analysis tool, the
TimeQuest analyzer guides the Fitter and analyzes timing results after
compilation.

TimeQuest

The TimeQuest Timing Analyzer is a powerful ASIC-style timing
analysis tool that validates timing in your design by using an
industry-standard constraint, analysis, and reporting methodology. You
can use the TimeQuest Timing Analyzer’s GUI or command-line
interface to constrain, analyze, and report results for all timing paths in
your design.

Before running the TimeQuest Timing Analyzer, you must specify initial
timing constraints that describe the clock characteristics, timing
exceptions, and signal transition arrival and required times. You can
specify timing constraints in the Synopsys Design Constraints (SDC) file
format using the GUI or command-line interface. The Quartus II Fitter
optimizes the placement of logic to meet your constraints.

During timing analysis, the TimeQuest Timing Analyzer analyzes the
timing paths in the design, calculates the propagation delay along each
path, checks for timing constraint violations, and reports timing results as
slack in the Report pane and in the Console pane. If the TimeQuest
Timing Analyzer reports any timing violations, you can customize the
reporting to view precise timing information about specific paths, and
then constrain those paths to correct the violations. When your design is
free of timing violations, you can be confident that the logic will operate
as intended in the target device.

The TimeQuest Timing Analyzer is a complete static timing analysis tool
that you can use as a sign-off tool for Altera FPGAs and structured ASICs.

Setting Up the TimeQuest Timing Analyzer

If you want use TimeQuest for timing analysis, from the Assignments tab
in the Quartus II software, click on Timing Analysis Settings, and in the
pop-up window, click the Use TimeQuest Timing Analyzer during
compilation tab.

Altera Corporation 4–15
October 2007 Preliminary

HardCopy II Recommended Settings in the Quartus II Software

Use the following Tcl command to use TimeQuest as your timing analysis
engine:

set_global_assignment -name \
USE_TIMEQUEST_TIMING_ANALYZER ON

You can launch the TimeQuest analyzer in one of the following modes:

■ Directly from the Quartus II software
■ Stand-alone mode
■ Command-line mode

In order to perform a thorough Static Timing Analysis, you would need
to specify all the timing requirements. The most important timing
requirements are clocks and generated clocks, input and output delays,
false paths and multi-cycle paths, minimum and maximum delays.

In TimeQuest, clock latency, and recovery and removal analysis are
enabled by default.

f For more information about TimeQuest, refer to the Quartus II TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook on the
Altera website at www.altera.com.

Constraints for Clock Effect Characteristics

The create_clock, create_generated_clock commands create
ideal clocks and do not account for board effects. In order to account for
clock effect characteristics, you can use the following commands:

■ set_clock_latency
■ set_clock_uncertainty

1 For more information about how to use these commands, refer
to the Quartus II TimeQuest Timing Analyzer chapter in volume 3
of the Quartus II Handbook.

Beginning in Quartus II version 7.1, you can use the new command
derive_clock_uncertainty to automatically derive the clock
uncertainties. This command is useful when you are not sure what the
clock uncertainties might be. The calculated clock uncertainty values are
based on I/O buffer, static phase errors (SPE) and jitter in the PLL's, clock
networks, and core noises.

4–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The derive_clock_uncertainty command applies inter-clock,
intra-clock, and I/O interface uncertainties. This command automatically
calculates and applies setup and hold clock uncertainties for each
clock-to-clock transfer found in your design.

In order to get I/O interface uncertainty, you must create a virtual clock,
then assign delays to the input/output ports by using the
set_input_delay and set_output_delay commands for that
virtual clock.

1 These uncertainties are applied in addition to those you
specified using the set_clock_uncertainty command.
However, if a clock uncertainty assignment for a source and
destination pair was already defined, the new one will be
ignored. In this case, you can use either the -overwrite
command to overwrite the previous clock uncertainty
command or manually remove them by using the
remove_clock_uncertainty command.

The syntax for the derive_clock_uncertainty is as follows:

derive_clock_uncertainty [-h | -help] [-long_help]
[-dtw] [-overwrite]

where the arguments are listed in Table 4–2:

When the dtw option is used, a PLLJ_PLLSPE_INFO.txt file is generated.
This file lists the name of the PLLs, as well as their jitter and SPE values
in the design. This text file can be used by HCII_DTW_CU_Calculator.
When this option is used, clock uncertainties are not calculated.

f For more information on the derive_clock_uncertainty command,
refer to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of
the Quartus II Handbook.

Table 4–2. Arguments for derive_clock_uncertainty

Option Description

-h | -help Short help

-long_help Long help with examples and possible return values

-dtw Creates PLLJ_PLLSPE_INFO.txt file

-overwrite Overwrites previously performed clock uncertainty assignments

Altera Corporation 4–17
October 2007 Preliminary

HardCopy II Recommended Settings in the Quartus II Software

Altera strongly recommends that you use the
derive_clock_uncertainty command in the HardCopy II revision.
The HardCopy Design Center will not be accepting designs that do not
have clock uncertainty constraint by either using the
derive_clock_uncertainty command or the HardCopy II Clock
Uncertainty Calculator, and then using the set_clock_uncertainty
command.

f For more information on how to use the HardCopy II Clock Uncertainty
Calculator, refer to the HardCopy II Clock Uncertainty User Guide available
on the Altera website at www.altera.com.

Quartus II Software Features Supported for HardCopy II Designs

The Quartus II software supports optimization features for HardCopy II
prototype development, including:

■ Physical Synthesis Optimization
■ LogicLock Regions
■ PowerPlay Power Analyzer
■ Incremental Compilation (Synthesis and Fitter)
■ Maximum Fan-Out Assignments

Physical Synthesis Optimization

To enable Physical Synthesis Optimizations for the Stratix II FPGA
revision of the design, on the Assignments menu, click Settings. In the
Settings dialog box, in the Category list, select Fitter Settings. These
optimizations are migrated into the HardCopy II companion revision for
placement and timing closure. When designing with a HardCopy II
device first, physical synthesis optimizations can be enabled for the
HardCopy II device, and these post-fit optimizations are migrated to the
Stratix II FPGA revision.

LogicLock™ Regions

The use of LogicLock Regions in the Stratix II FPGA is supported for
designs migrating to HardCopy II. However, LogicLock Regions are not
passed into the HardCopy II Companion Revision. You can use
LogicLock in the HardCopy II design but you must create new
LogicLock Regions in the HardCopy II companion revision. In addition,
LogicLock Regions in HardCopy II devices can not have their properties
set to Auto Size. However, Floating LogicLock regions are supported.
HardCopy II LogicLock Regions must be manually sized and placed in
the floorplan. When LogicLock Regions are created in a HardCopy II
device, they start with width and height dimensions set to (1,1), and the
origin coordinates for placement are at X1_Y1 in the lower left corner of

4–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

the floorplan. You must adjust the size and location of the LogicLock
Regions you created in the HardCopy II device before compiling the
design.

f For information about using LogicLock Regions, refer to the Quartus II
Analyzing and Optimizing Design Floorplan chapter in volume 2 of the
Quartus II Handbook.

PowerPlay Power Analyzer

You can perform power estimation and analysis of your HardCopy II and
Stratix II devices using the PowerPlay Early Power Estimator. Use the
PowerPlay Power Analyzer for more accurate estimation of your device’s
power consumption. The PowerPlay Early Power Estimator is available
in the Quartus II software version 5.1 and later. The PowerPlay Power
Analyzer supports HardCopy II devices in version 6.0 and later of the
Quartus II software.

f For more information about using the PowerPlay Power Analyzer, refer
to the Quartus II PowerPlay Power Analysis chapter in volume 3 of the
Quartus II Handbook on the Altera website at www.altera.com.

Incremental Compilation

The use of the Quartus II Incremental Compilation in the Stratix II FPGA
is supported when migrating a design to a HardCopy II device.
Incremental compilation is supported in the Stratix II First design flow or
HardCopy II First design flow.

To take advantage of Quartus II Incremental Compilation, organize your
design into logical and physical partitions for synthesis and fitting (or
place-and-route). Incremental compilation preserves the compilation
results and performance of unchanged partitions in your design. This
feature dramatically reduces your design iteration time by focusing new
compilations only on changed design partitions. New compilation results
are then merged with the previous compilation results from unchanged
design partitions. You can also target optimization techniques, such as
physical synthesis, to specific partitions while leaving other partitions
untouched.

In addition, be aware of the following guidelines:

● User partitions and synthesis results are migrated to a
companion device.

● LogicLock regions are suggested for user partitions, but are not
migrated automatically.

Altera Corporation 4–19
October 2007 Preliminary

HardCopy II Recommended Settings in the Quartus II Software

● The first compilation after migration to a companion device
requires a full compilation (all partitions are compiled), but
subsequent compilations can be incremental if changes to the
source RTL are not required. For example, PLL phase changes
can be implemented incrementally if the blocks are partitioned.

● The entire design must be migrated between Stratix II and
HardCopy II companion devices. The Quartus II software does
not support migration of partitions between companion
devices.

● Bottom-up Quartus II Incremental Compilation is not supported
for HardCopy II devices.

● Physical Synthesis can be run on individual partitions within
the originating device only. The resulting optimizations are
preserved in the migration to the companion device.

f For information about using Quartus II Incremental Compilation, refer
to the Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook.

Maximum Fanout Assignments

This feature is supported beginning in Quartus II 6.1. In order to meet
timing, it may be necessary to limit the number of fanouts of a net in your
design. You can limit the maximum fanout of a given net by using this
feature.

For example, you can use the following Tcl command to enable the
maximum fanout setting:

set_instance_assignment -name MAX_FANOUT <number>
- to\ <net name>

For example, if you want to limit the maximum fanout of net called
"m3122_combout_1" to 25, the Tcl command is as follows:

set_instance_assignment -name MAX_FANOUT 25 -to\
m3122_combout_1

4–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Performing
ECOs with
Quartus II
Engineering
Change
Management
with the Chip
Planner

As designs grow larger and larger in density, the need to analyze the
design for performance, routing congestion, logic placement, and
executing Engineering Change Orders (ECOs) becomes critical. In
addition to design analysis, you can use various bottom-up and
top-down flows to implement and manage the design. This becomes
difficult to manage since ECOs are often implemented as last minute
changes to your design.

With the Altera Chip Planner tool, you can shorten the design cycle time
significantly. When changes are made to your design as ECOs, you do not
have to perform a full compilation in the Quartus II software. Instead,
you would make changes directly to the post place-and-route netlist,
generate a new programming file, test the revised design by performing
a gate-level simulation and timing analysis, and proceed to verify the fix
on the system (if you are using a Stratix II FPGA as a prototype). Once the
fix has been verified on the Stratix II FPGA, switch to the HardCopy II
revision, apply the same ECOs, run the timing analyzer and assembler,
perform a revision compare and then run the HardCopy II Netlist Writer
for design submission.

There are three scenarios from a migration point of view:

■ There are changes which can map one-to-one (that is, the same
change can be implemented on each architecture—Stratix II FPGA
and HardCopy II).

■ There are changes that must be implemented differently on the two
architectures to achieve the same result.

■ There are some changes that cannot be implemented on both
architectures.

The following sections outline the methods for migrating each of these
types of changes.

Migrating One-to-One Changes

One-to-one changes are implemented using identical commands in both
architectures. In general, such changes include those that affect only I/O
cells or PLL cells. Some examples of one-to-one changes are changes such
as creating, deleting or moving pins, changing pin or PLL properties, or
changing pin connectivity (provided the source and destination of the
connectivity changes are I/Os or PLLs). These can be implemented
identically on both architectures.

If such changes are exported to Tcl, a direct reapplication of the generated
Tcl script (with a minor text edit) on the companion revision should
implement the appropriate changes as follows:

Altera Corporation 4–21
October 2007 Preliminary

Performing ECOs with Quartus II Engineering Change Management with the Chip Planner

■ Export the changes from the Change Manager to Tcl.
■ Open the generated Tcl script, change the line "project_open

<project> -revision <revision>" to refer to the appropriate companion
revision.

■ Apply the Tcl script to the companion revision.

A partial list of examples of this type are as follows:

■ I/O creation, deletion, and moves
■ I/O property changes (for example, I/O standards, delay chain

settings, etc.)
■ PLL property changes
■ Connectivity changes between non-LCELL_COMB atoms (for

example, PLL to I/O, DSP to I/O, etc.)

Migrating Changes that Must be Implemented Differently

Some changes must be implemented differently on the two architectures.
Changes affecting the logic of the design may fall into this category.
Examples are LUTMASK changes, LC_COMB/HSADDER creation and
deletion, and connectivity changes not covered in the previous section.

Another example of this would be to have different PLL settings for the
Stratix II and the HardCopy II revisions.

f For more information about how to use different PLL settings for the
Stratix II and HardCopy II Devices, refer to AN432: Using Different PLL
Settings Between Stratix II and HardCopy II Devices.

Table 4–3 summarizes suggested implementation for various changes.

Table 4–3. Implementation Suggestions for Various Changes (Part 1 of 2)

Change Type Suggested Implementation

LUTMASK changes Because a single Stratix II atom may require
multiple HardCopy II atoms to implement, it may be
necessary to change multiple HardCopy II atoms to
implement the change, including adding or
modifying connectivity

Make/Delete LC_COMB If you are using a Stratix II LC_COMB in extended
mode (7-LUT) or using a SHARE chain, you must
create multiple atoms to implement the same logic
functions in HardCopy II. Additionally, the
placement of the LC_COMB cell has no meaning in
the companion revision as the underlying
resources are different.

4–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Changes that Cannot be Migrated

A small set of changes cannot be implemented in the other architecture
because they do not make sense in the other architecture. The best
example of this occurs when moving logic in a design; because the logic
fabric is different between the two architectures, locations in Stratix II
make no sense in HardCopy II and vice versa.

Overall
Migration Flow

This section outlines the migration flow and the suggested procedure for
implementing changes in both revisions to ensure a successful Revision
Compare such that the design can be submitted to the HardCopy Design
Center.

Preparing the Revisions

The general procedure for migrating changes between devices is the
same, whether going from Stratix II to HardCopy II or vice versa. The
major steps are as follows:

1. Compile the design on the initial device.
2. Migrate the design from the initial device to the target device in the

companion revision.
3. Compile the companion revision.
4. Perform a Revision Compare operation. The two revisions should

pass the Revision Compare.

If testing identifies problems requiring ECO changes, equivalent changes
can be applied to both Stratix II and HardCopy II revisions, as described
in the next section.

Make/Delete LC_FF The basic creation and deletion is the same on both
architectures. However, as with LC_COMB
creation and deletion, the location of an LC_FF in a
HardCopy II revision has no meaning in the
Stratix II revision and vice versa.

Editing Logic Connectivity Because a Stratix II LCELL_COMB atom may have
to be broken up into several HardCopy II
LCELL_COMB atoms, the source or destination
ports for connectivity changes may need to be
analyzed to properly implement the change in the
companion revision.

Table 4–3. Implementation Suggestions for Various Changes (Part 2 of 2)

Change Type Suggested Implementation

Altera Corporation 4–23
October 2007 Preliminary

Overall Migration Flow

Applying ECO Changes

The general flow for applying equivalent changes in companion revisions
is as follows:

1. Make changes in one revision using the Chip Planner tools (Chip
Planner, Resource Property Editor, and Change Manager), then
verify and export these changes. The procedure for doing this is as
follows:
a. Make changes using the Chip Planner tool.

b. Perform a netlist check using the Check and Save All Netlist
Changes command.

c. Verify correctness using timing analysis, simulation, and
prototyping (Stratix II only). If more changes are required,
repeat steps a-b.

d. Export change records from the Change Manager to Tcl scripts,
or .csv or .txt file formats.

This exported file is used to assist in making the equivalent
changes in the companion revision.

2. Open the companion revision in the Quartus II software.

3. Using the exported file, manually reapply the changes using the
Chip Planner tool.

As stated previously, some changes can be reapplied directly to the
companion revision (either manually or by applying the Tcl
commands), while others require some modifications.

4. Perform a Revision Compare operation. The revisions should now
match once again.

5. Verify the correctness of all changes (you may need to run timing
analysis).

6. Run the HardCopy II Assembler and the HardCopy II Netlist Writer
for design submission along with handoff files.

The Tcl command for running the HardCopy II Assembler is as follows:

execute_module -tool asm -args "--
read_settings_files=\ off --write_settings_files=off"

4–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The Tcl command for the HardCopy II Netlist Writer is as follows:

execute_module -tool cdb \
-args "--generate_hardcopyii_files"\

f For more information about using Chip Planner, refer to the Quartus II
Engineering Change Management with Chip Planner chapter in volume 3 of
the Quartus II Handbook at www.altera.com.

Formal
Verification of
Stratix II and
HardCopy II
Revisions

Third-party formal verification software is available for your
HardCopy II design. Cadence Encounter Conformal verification software
is used for Stratix II and HardCopy II families, as well as several other
Altera product families.

To use the Conformal software with the Quartus II software project for
your Stratix II and HardCopy II design revisions, you must enable the
EDA Netlist Writer. It is necessary to turn on the EDA Netlist Writer so
it can generate the necessary netlists and command files needed to run the
Conformal software. To automatically run the EDA Netlist Writer during
the compile of your Stratix II and HardCopy II design revisions, perform
the following steps:

1. On the Assignment menu, click EDA Tool Settings. The Settings
dialog box displays.

2. In the EDA Tool Settings list, select Formal Verification, and in the
Tool name list, select Conformal LEC.

3. Compile your Stratix II and Hardcopy II design revisions, with both
the EDA Tool Settings and the Conformal LEC turned on so the
EDA Netlist Writer automatically runs.

The Quartus II EDA Netlist Writer produces one netlist for Stratix II
when it is run on that revision, and generates a second netlist when it runs
on the HardCopy II revision. You can compare your Stratix II
post-compile netlist to your RTL source code using the scripts generated
by the EDA Netlist Writer. Similarly, you can compare your HardCopy II
post-compile netlist to your RTL source code with scripts provided by
the EDA Netlist Writer.

f For more information about using the Cadence Encounter Conformal
verification software, refer to the Cadence Encounter Conformal Support
chapter in volume 3 of the Quartus II Handbook.

Altera Corporation 4–25
October 2007 Preliminary

HardCopy II Utilities Menu

HardCopy II
Utilities Menu

The HardCopy II Utilities menu in the Quartus II software is shown
Figure 4–9. To access this menu, on the Project menu, click HardCopy II
Utilities. This menu contains the main functions you use to develop your
HardCopy II design and Stratix II FPGA prototype companion revision.
From the HardCopy II Utilities menu, you can:

■ Create or update HardCopy II companion revisions
■ Set which HardCopy II companion revision is the current revision
■ Generate a HardCopy II Handoff Report for design reviews
■ Archive HardCopy II Handoff Files for submission to the HardCopy

Design Center
■ Compare the companion revisions for functional equivalence
■ Track your design progress using the HardCopy II Advisor

Figure 4–9. HardCopy II Utilities Menu

4–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Each of the features within HardCopy II Utilities is summarized in
Table 4–4. The process for using each of these features is explained in the
following sections.

Companion Revisions

HardCopy II designs follow a different development flow in the
Quartus II software compared with previous HardCopy families. You
can create multiple revisions of your Stratix II prototype design, but you
can also create separate revisions of your design for a HardCopy II
device. The Quartus II software creates specific HardCopy II design

Table 4–4. HardCopy II Utilities Menu Options

Menu Description Applicable Design
Revision Restrictions

Create/Overwrite
HardCopy II
Companion Revision

Create a new companion
revision or update an existing
companion revision for your
Stratix II and HardCopy II
design.

Stratix II prototype
design and HardCopy II
Companion Revision

● Must disable Auto Device
selection

● Must set a Stratix II device
and a HardCopy II
companion device

Set Current
HardCopy II
Companion Revision

Specify which companion
revision to associate with
current design revision.

Stratix II prototype
design and HardCopy II
Companion Revision

Companion Revision must
already exist

Compare
HardCopy II
Companion
Revisions

Compares the Stratix II design
revision with the HardCopy II
companion design revision
and generates a report.

Stratix II prototype
design and HardCopy II
Companion Revision

Compilation of both revisions
must be complete

Generate
HardCopy II Handoff
Report

Generate a report containing
important design information
files and messages generated
by the Quartus II compile

Stratix II prototype
design and HardCopy II
Companion Revision

● Compilation of both
revisions must be complete

● Compare HardCopy II
Companion Revisions
must have been executed

Archive HardCopy II
Handoff Files

Generate a Quartus II Archive
File specifically for submitting
the design to the HardCopy
Design Center. Similar to the
HardCopy Files Wizard for
HardCopy Stratix and APEX.

HardCopy II
Companion Revision

● Compilation of both
revisions must be
completed

● Compare HardCopy II
Companion Revisions
must have been executed

● Generate HardCopy
Handoff Report must have
been executed

HardCopy II Advisor Open an Advisor, similar to the
Resource Optimization
Advisor, helping you through
the steps of creating a
HardCopy II project.

Stratix II prototype
design and HardCopy II
Companion Revision

None

Altera Corporation 4–27
October 2007 Preliminary

HardCopy II Utilities Menu

revisions of the project in conjunction to the regular project revisions.
These parallel design revisions for HardCopy II devices are called
companion revisions.

1 Although you can create multiple project revisions, Altera
recommends that you maintain only one Stratix II FPGA
revision once you have created the HardCopy II companion
revision.

When you have successfully compiled your Stratix II prototype FPGA,
you can create a HardCopy II companion revision of your design and
proceed with compiling the HardCopy II companion revision. To create
a companion revision, on the Project menu, point to HardCopy II Utilities
and click Create/Overwrite HardCopy II Companion Revision. Use the
dialog box to create a new companion revision or overwrite an existing
companion revision (Figure 4–10).

Figure 4–10. Create or Overwrite HardCopy II Companion Revision

You can associate only one Stratix II revision to one HardCopy II
companion revision. If you created more than one revision or more than
one companion revision, set the current companion for the revision you
are working on. On the Project menu, point to HardCopy II Utilities and
click Set Current HardCopy II Companion Revision (Figure 4–11).

Figure 4–11. Set Current HardCopy II Companion Revision

4–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Compiling the HardCopy II Companion Revision

The Quartus II software allows you to compile your HardCopy II design
with preliminary timing information. The timing constraints for the
HardCopy II companion revision can be the same as the Stratix II design
used to create the revision. The Quartus II software contains preliminary
timing models for HardCopy II devices and you can gauge how much
performance improvement you can achieve in the HardCopy II device
compared to the Stratix II FPGA. Altera verifies that the HardCopy II
Companion Device timing requirements are met in the HardCopy Design
Center.

After you create your HardCopy II companion revision from your
compiled Stratix II design, select the companion revision in the Quartus II
software design revision drop-down box (Figure 4–12) or from the
Revisions list. Compile the HardCopy II companion revision. After the
Quartus II software compiles your design, you can perform a comparison
check of the HardCopy II companion revision to the Stratix II prototype
revision.

Figure 4–12. Changing Current Revision

Comparing HardCopy II and Stratix II Companion Revisions

Altera uses the companion revisions in a single Quartus II project to
maintain the seamless migration of your design from a Stratix II FPGA to
a HardCopy II structured ASIC. This methodology allows you to design
with one set of Register Transfer Level (RTL) code to be used in both
Stratix II FPGA and HardCopy II structured ASIC, guaranteeing
functional equivalency.

When making changes to companion revisions, use the Compare
HardCopy II Companion Revisions feature to ensure that your Stratix II
design matches your HardCopy II design functionality and compilation
settings. To compare companion revisions, on the Project menu, point to
HardCopy II Utilities and click Compare HardCopy II Companion
Revisions.

1 You must perform this comparison after both Stratix II and
HardCopy II designs are compiled in order to hand off the
design to Altera’s HardCopy Design Center.

Altera Corporation 4–29
October 2007 Preliminary

HardCopy II Utilities Menu

The Comparison Revision Summary is found in the Compilation Report
and identifies where assignments were changed between revisions or if
there is a change in the logic resource count due to different compilation
settings.

Generate a HardCopy II Handoff Report

In order to submit a design to the HardCopy Design Center, you must
generate a HardCopy II Handoff Report providing important
information about the design that you want the HardCopy Design Center
to review. To generate the HardCopy II Handoff Report, you must:

■ Successfully compile both Stratix II and HardCopy II revisions of
your design

■ Successfully run the Compare HardCopy II Companion Revisions
utility

Once you generate the HardCopy II Handoff Report, you can archive the
design using the Archive HardCopy II Handoff Files utility described in
“Archive HardCopy II Handoff Files” on page 4–29.

Archive HardCopy II Handoff Files

The last step in the HardCopy II design methodology is to archive the
HardCopy II project for submission to the HardCopy Design Center for
back-end migration. The HardCopy II archive utility creates a different
Quartus II Archive File than the standard Quartus II project archive
utility generates. This archive contains only the necessary data from the
Quartus II project needed to implement the design in the HardCopy
Design Center.

In order to use the Archive HardCopy II Handoff Files utility, you must
complete the following:

■ Compile both the Stratix II and HardCopy II revisions of your design
■ Run the Compare HardCopy II Revisions utility
■ Generate the HardCopy II Handoff Report

To select this option, on the Project menu, point to HardCopy II Utilities
and click Archive HardCopy II Handoff File utility.

4–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

HardCopy II Advisor

The HardCopy II Advisor provides the list of tasks you should follow to
develop your Stratix II prototype and your HardCopy II design. To run
the HardCopy II Advisor, on the Project menu, point to HardCopy II
Utilities and click HardCopy II Advisor. The following list highlights the
checkpoints that the HardCopy II Advisor reviews. This list includes the
major check points in the design process; it does not show every step in
the process for completing your Stratix II and HardCopy II designs:

1. Select a Stratix II device.

2. Select a HardCopy II device.

3. Turn on the Design Assistant.

4. Set up timing constraints.

5. Check for incompatible assignments.

6. Compile and check the Stratix II design.

7. Create or overwrite the companion revision.

8. Compile and check the HardCopy II companion results.

9. Compare companion revisions.

10. Generate a Handoff Report.

11. Archive Handoff Files and send to Altera.

The HardCopy II Advisor shows the necessary steps that pertain to your
current selected device. The Advisor shows a slightly different view for a
design with Stratix II selected as compared to a design with HardCopy II
selected.

In the Quartus II software, you can start designing with the HardCopy II
device selected first, and build a Stratix II companion revision second.
When you use this approach, the HardCopy II Advisor task list adjusts
automatically to guide you from HardCopy II development through
Stratix II FPGA prototyping, then completes the comparison archiving
and handoff to Altera.

When your design uses the Stratix II FPGA as your starting point, Altera
recommends following the Advisor guidelines for your Stratix II FPGA
until you complete the prototype revision.

Altera Corporation 4–31
October 2007 Preliminary

HardCopy II Utilities Menu

When the Stratix II FPGA design is complete, create and switch to your
HardCopy II companion revision and follow the Advisor steps shown in
that revision until you are finished with the HardCopy II revision and are
ready to submit the design to Altera for back-end migration.

Each category in the HardCopy II Advisor list has an explanation of the
recommended settings and constraints, as well as quick links to the
features in the Quartus II software that are needed for each section. The
HardCopy II Advisor displays:

■ A green check box when you have successfully completed one of the
steps

■ A yellow caution sign for steps that must be completed before
submitting your design to Altera for HardCopy development

■ An information callout for items you must verify

1 Selecting an item within the HardCopy II flow menu provides a
description of the task and recommended action. The view in
the HardCopy II Advisor differs depending on the device you
select.

Figure 4–13 shows the HardCopy II Advisor with the Stratix II device
selected.

Figure 4–13. HardCopy II Advisor with Stratix II Selected

4–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 4–14 shows the HardCopy II Advisor with the HardCopy II device
selected.

Figure 4–14. HardCopy II Advisor with HardCopy II Device Selected

HardCopy II Floorplan View

The Quartus II software displays the preliminary timing closure
floorplan and placement of your HardCopy II companion revision. This
floorplan shows the preliminary placement and connectivity of all I/O
pins, PLLs, memory blocks, HCell macros, and DSP HCell macros.
Congestion mapping of routing connections can be viewed using the
Layers Setting dialog box (in the View menu) settings. This is useful in
analyzing densely packed areas of your floorplan that could be reducing
the peak performance of your design. The HardCopy Design Center
verifies final HCell macro timing and placement to guarantee timing
closure is achieved.

Altera Corporation 4–33
October 2007 Preliminary

HardCopy II Utilities Menu

Figure 4–15 shows an example of the HC230F1020 device floorplan.

Figure 4–15. HC230F1020 Device Floorplan

In this small example design, the logic is placed near the bottom edge.
You can see the placement of a DSP block constructed of HCell Macros,
various logic HCell Macros, and an M4K memory block. A labeled
close-up view of this region is shown in Figure 4–16.

Figure 4–16. Close-Up View of Floorplan

4–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The HardCopy Design Center performs final placement and timing
closure on your HardCopy II design based on the timing constraints
provided in the Stratix II design.

f For more information about the HardCopy Design Center’s process,
refer to the Back-End Design Flow for HardCopy Series Devices chapter in
volume 1 of the HardCopy Series Device Handbook.

HardCopy Stratix
Device Support

Altera HardCopy devices provide a comprehensive alternative to ASICs.
HardCopy structured ASICs offer a complete solution from prototype to
high-volume production, and maintain the powerful features and
high-performance architecture of their equivalent FPGAs with the
programmability removed. You can use the Quartus II design software to
design HardCopy devices in a manner similar to the traditional ASIC
design flow and you can prototype with Altera’s high density Stratix,
APEX 20KC, and APEX 20KE FPGAs before seamlessly migrating to the
corresponding HardCopy device for high-volume production.

HardCopy structured ASICs provide the following key benefits:

■ Improves performance, on the average, by 40% over the
corresponding -6 speed grade FPGA device

■ Lowers power consumption, on the average, by 40% over the
corresponding FPGA

■ Preserves the FPGA architecture and features and minimizes risk
■ Guarantees first-silicon success through a proven, seamless

migration process from the FPGA to the equivalent HardCopy
device

■ Offers a quick turnaround of the FPGA design to a structured ASIC
device—samples are available in about eight weeks

Altera’s Quartus II software has built-in support for HardCopy Stratix
devices. The HardCopy design flow in Quartus II software offers the
following advantages:

■ Unified design flow from prototype to production
■ Performance estimation of the HardCopy Stratix device allows you

to design systems for maximum throughput
■ Easy-to-use and inexpensive design tools from a single vendor
■ An integrated design methodology that enables system-on-a-chip

designs

Altera Corporation 4–35
October 2007 Preliminary

Features

This section discusses the following areas:

■ How to design HardCopy Stratix and HardCopy APEX structured
ASICs using the Quartus II software

■ An explanation of what the HARDCOPY_FPGA_PROTOTYPE
devices are and how to target designs to these devices

■ Performance and power estimation of HardCopy Stratix devices
■ How to generate the HardCopy design database for submitting

HardCopy Stratix and HardCopy APEX designs to the HardCopy
Design Center

Features Beginning with version 4.2, the Quartus II software contains several
powerful features that facilitate design of HardCopy Stratix and
HardCopy APEX devices:

■ HARDCOPY_FPGA_PROTOTYPE Devices
These are virtual Stratix FPGA devices with features identical to
HardCopy Stratix devices. You must use these FPGA devices to
prototype your designs and verify the functionality in silicon.

■ HardCopy Timing Optimization Wizard
Using this feature, you can target your design to HardCopy Stratix
devices, providing an estimate of the design’s performance in a
HardCopy Stratix device.

■ HardCopy Stratix Floorplans and Timing Models
The Quartus II software supports post-migration HardCopy Stratix
device floorplans and timing models and facilitates design
optimization for design performance.

■ Placement Constraints
Location and LogicLock constraints are supported at the HardCopy
Stratix floorplan level to improve overall performance.

■ Improved Timing Estimation
Beginning with version 4.2, the Quartus II software determines
routing and associated buffer insertion for HardCopy Stratix
designs, and provides the Timing Analyzer with more accurate
information about the delays than was possible in previous versions
of the Quartus II software. The Quartus II Archive File automatically
receives buffer insertion information, which greatly enhances the
timing closure process in the back-end migration of your HardCopy
Stratix device.

4–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

■ Design Assistant
This feature checks your design for compliance with all HardCopy
device design rules and establishes a seamless migration path in the
quickest time.

■ HardCopy Files Wizard
This wizard allows you to deliver to Altera the design database and
all the deliverables required for migration. This feature is used for
HardCopy Stratix and HardCopy APEX devices.

f The HardCopy Stratix and HardCopy APEX PowerPlay Early Power
Estimator is available on the Altera website at www.altera.com.

HARDCOPY_FPGA
_PROTOTYPE,
HardCopy Stratix
and Stratix
Devices

You must use the HARDCOPY_FPGA_PROTOTYPE virtual devices
available in the Quartus II software to target your designs to the actual
resources and package options available in the equivalent post-migration
HardCopy Stratix device. The programming file generated for the
HARDCOPY_FPGA_PROTOTYPE can be used in the corresponding
Stratix FPGA device.

The purpose of the HARDCOPY_FPGA_PROTOTYPE is to guarantee
seamless migration to HardCopy by making sure that your design only
uses resources in the FPGA that can be used in the HardCopy device after
migration. You can use the equivalent Stratix FPGAs to verify the
design’s functionality in-system, then generate the design database
necessary to migrate to a HardCopy device. This process ensures the
seamless migration of the design from a prototyping device to a
production device in high volume. It also minimizes risk, assures samples
in about eight weeks, and guarantees first-silicon success.

1 HARDCOPY_FPGA_PROTOTYPE devices are only available
for HardCopy Stratix devices and are not available for the
HardCopy II or HardCopy APEX device families.

Table 4–5 compares HARDCOPY_FPGA_PROTOTYPE devices, Stratix
devices, and HardCopy Stratix devices.

Table 4–5. Qualitative Comparison of HARDCOPY_FPGA_PROTOTYPE to Stratix and HardCopy Stratix
Devices (Part 1 of 2)

Stratix Device HARDCOPY_FPGA_PROTOTYPE Device HardCopy Stratix Device

FPGA Virtual FPGA Structured ASIC

FPGA Architecture identical to Stratix FPGA Architecture identical to Stratix FPGA

Altera Corporation 4–37
October 2007 Preliminary

HARDCOPY_FPGA_PROTOTYPE, HardCopy Stratix and Stratix Devices

Table 4–6 lists the resources available in each of the HardCopy Stratix
devices.

For a given device, the number of available M-RAM blocks in
HardCopy Stratix devices is identical with the corresponding
HARDCOPY_FPGA_PROTOTYPE devices, but may be different from
the corresponding Stratix devices. Maintaining the identical resources
between HARDCOPY_FPGA_PROTOTYPE and HardCopy Stratix
devices facilitates seamless migration from the FPGA to the structured
ASIC device.

f For more information about HardCopy Stratix devices, refer to the
HardCopy Stratix Device Family Data Sheet section in volume 1 of the
HardCopy Series Handbook.

The three devices, Stratix FPGA, HARDCOPY_FPGA_PROTOTYPE, and
HardCopy device, are distinct devices in the Quartus II software. The
HARDCOPY_FPGA_PROTOTYPE programming files are used in the
Stratix FPGA for your design. The three devices are tied together with the
same netlist, thus a single SRAM Object File (.sof) can be used to achieve
the various goals at each stage. The same SRAM Object File is generated

FPGA Resources identical to HardCopy Stratix device M-RAM resources different than
Stratix FPGA in some devices

Ordered through
Altera part number

Cannot be ordered, use the Altera Stratix FPGA
part number

Ordered by Altera part number

Table 4–5. Qualitative Comparison of HARDCOPY_FPGA_PROTOTYPE to Stratix and HardCopy Stratix
Devices (Part 2 of 2)

Stratix Device HARDCOPY_FPGA_PROTOTYPE Device HardCopy Stratix Device

Table 4–6. HardCopy Stratix Device Physical Resources

Device LEs ASIC Equivalent
Gates (K) (1)

M512
Blocks

M4K
Blocks

M-RAM
Blocks

DSP
Blocks PLLs Maximum

User I/O Pins

HC1S25F672 25,660 250 224 138 2 10 6 473

HC1S30F780 32,470 325 295 171 2 (2) 12 6 597

HC1S40F780 41,250 410 384 183 2 (2) 14 6 615

HC1S60F1020 57,120 570 574 292 6 18 12 773

HC1S80F1020 79,040 800 767 364 6 (2) 22 12 773

Notes to Table 4–6:
(1) Combinational and registered logic do not include DSP blocks, on-chip RAM, or PLLs.
(2) The M-RAM resources for these HardCopy devices differ from the corresponding Stratix FPGA.

4–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

in the HARDCOPY_FPGA_PROTOTYPE design, and is used to program
the Stratix FPGA device, the same way that it is used to generate the
HardCopy Stratix device, guaranteeing a seamless migration.

f For more information about the SRAM Object File and programming
Stratix FPGA devices, refer to the Programming and Configuration chapter
of the Introduction to Quartus II Manual.

HardCopy
Design Flow

Figure 4–17 shows a HardCopy design flow diagram. The design steps
are explained in detail in the following sections of this chapter. The
HardCopy Stratix design flow utilizes the HardCopy Timing
Optimization Wizard to automate the migration process into a one-step
process. The remainder of this section explains the tasks performed by
this automated process.

For a detailed description of the HardCopy Timing Optimization Wizard
and HardCopy Files Wizard, refer to “HardCopy Timing Optimization
Wizard” on page 4–42 and “Generating the HardCopy Design Database”
on page 4–53.

Altera Corporation 4–39
October 2007 Preliminary

HardCopy Design Flow

Figure 4–17. HardCopy Stratix and HardCopy APEX Design Flow Diagram

Notes for Figure 4–17:
(1) Migrate-Only Process: The displayed flow is completed manually.
(2) Two-Step Process: Migration and Compilation are done automatically (shaded area).
(3) One-Step Process: Full HardCopy Compilation. The entire process is completed automatically (shaded area).

The Design Flow Steps of the One-Step Process

The following sections describe each step of the full HardCopy
compilation (the One Step Process), as shown in Figure 4–17.

Compile the Design for an FPGA

This step compiles the design for a HARDCOPY_FPGA_PROTOTYPE
device and gives you the resource utilization and performance of the
FPGA.

Stratix APEX

Select Stratix
HARDCOPY_FPGA_PROTOTYPE

Device

Select APEX FPGA
Device Supported by

HardCopy APEX

Select FPGA Family

Mirgrate the
Compiled Project
Migrate Only (1)

Close the Quartus II
FPGA Project

Open the Quartus II
HardCopy Project

Migrate the
Compiled Project

Migrate the
Compiled Project

Two Step Process (2)

One Step Process (3)

CompileCompile Compile

Placement
Info for

HardCopy

Run HardCopy Files
Wizard (Quartus II

Archive File for
delivery to Altera)

Compile to HardCopy
Stratix Device (Actual
HardCopy Floorplan)

Compile to HardCopy
Stratix Device (Actual
HardCopy Floorplan)

Close the Quartus II
FPGA Project

Close the Quartus II
FPGA Project

Open the Quartus II
HardCopy Project

Open the Quartus II
HardCopy Project

Compile to HardCopy
Stratix Device (Actual
HardCopy Floorplan)

Start Quartus HardCopy Flow

4–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Migrate the Compiled Project

This step generates the Quartus II Project File (.qpf) and the other files
required for HardCopy implementation. The Quartus II software also
assigns the appropriate HardCopy Stratix device for the design
migration.

Close the Quartus FPGA Project

Because you must compile the project for a HardCopy Stratix device, you
must close the existing project which you have targeted your design to a
HARDCOPY_FPGA_PROTOTYPE device.

Open the Quartus HardCopy Project

Open the Quartus II project that you created in the “Migrate the
Compiled Project” step. The selected device is one of the devices from the
HardCopy Stratix family that was assigned during that step.

Compile for HardCopy Stratix Device

Compile the design for a HardCopy Stratix device. After successful
compilation, the Timing Analysis section of the compilation report shows
the performance of the design implemented in the HardCopy device.

How to Design
HardCopy Stratix
Devices

This section describes the process for designing for a HardCopy Stratix
device using the HARDCOPY_FPGA_PROTOTYPE as your initial
selected device. In order to use the HardCopy Timing Optimization
Wizard, you must first design with the
HARDCOPY_FPGA_PROTOTYPE in order for the design to migrate to a
HardCopy Stratix device.

To target a design to a HardCopy Stratix device in the Quartus II
software, follow these steps:

1. If you have not yet done so, create a new project or open an existing
project.

2. On the Assignments menu, click Settings. In the Category list, select
Device.

3. On the Device page, in the Family list, select Stratix. Select the
desired HARDCOPY_FPGA_PROTOTYPE device in the Available
Devices list (Figure 4–18).

Altera Corporation 4–41
October 2007 Preliminary

How to Design HardCopy Stratix Devices

Figure 4–18. Selecting a HARDCOPY_FPGA_PROTOTYPE Device

By choosing the HARDCOPY_FPGA_PROTOTYPE device, all the
design information, available resources, package option, and pin
assignments are constrained to guarantee a seamless migration of
your project to the HardCopy Stratix device. The netlist resulting
from the HARDCOPY_FPGA_PROTOTYPE device compilation
contains information about the electrical connectivity, resources
used, I/O placements, and the unused resources in the FPGA device.

4. On the Assignments menu, click Settings. In the Category list, select
HardCopy Settings and specify the input transition timing to be
modeled for both clock and data input pins. These transition times
are used in static timing analysis during back-end timing closure of
the HardCopy device.

5. Add constraints to your HARDCOPY_FPGA_PROTOTYPE device,
and on the Processing menu, click Start Compilation to compile the
design.

4–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

HardCopy Timing Optimization Wizard

After you have successfully compiled your design in the
HARDCOPY_FPGA_PROTOTYPE, you must migrate the design to the
HardCopy Stratix device to get a performance estimation of the
HardCopy Stratix device. This migration is required before submitting
the design to Altera for the HardCopy Stratix device implementation. To
perform the required migration, on the Project menu, point to HardCopy
Utilities and click HardCopy Timing Optimization Wizard.

At this point, you are presented with the following three choices to target
the designs to HardCopy Stratix devices (Figure 4–19):

■ Migration Only: You can select this option after compiling the
HARDCOPY_FPGA_PROTOTYPE project to migrate the project to a
HardCopy Stratix project.

You can now perform the following tasks manually to target the
design to a HardCopy Stratix device. Refer to“Performance
Estimation” on page 4–45 for additional information about how to
perform these tasks.
● Close the existing project
● Open the migrated HardCopy Stratix project
● Compile the HardCopy Stratix project for a HardCopy Stratix

device

■ Migration and Compilation: You can select this option after
compiling the project. This option results in the following actions:
● Migrating the project to a HardCopy Stratix project
● Opening the migrated HardCopy Stratix project and compiling

the project for a HardCopy Stratix device

■ Full HardCopy Compilation: Selecting this option results in the
following actions:
● Compiling the existing HARDCOPY_FPGA_PROTOTYPE

project
● Migrating the project to a HardCopy Stratix project
● Opening the migrated HardCopy Stratix project and compiling

it for a HardCopy Stratix device

Altera Corporation 4–43
October 2007 Preliminary

How to Design HardCopy Stratix Devices

Figure 4–19. HardCopy Timing Optimization Wizard Options

The main benefit of the HardCopy Timing Wizard’s three options is
flexibility of the conversion process automation. The first time you
migrate your HARDCOPY_FPGA_PROTOTYPE project to a HardCopy
Stratix device, you may want to use Migration Only, and then work on
the HardCopy Stratix project in the Quartus II software. As your
prototype FPGA project and HardCopy Stratix project constraints
stabilize and you have fewer changes, the Full HardCopy Compilation is
ideal for one-click compiling of your HARDCOPY_FPGA_PROTOTYPE
and HardCopy Stratix projects.

4–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

After selecting the wizard you want to run, the “HardCopy Timing
Optimization Wizard: Summary” page shows you details about the
settings you made in the Wizard, as shown in Figure 4–20.

Figure 4–20. HardCopy Timing Optimization Wizard Summary Page

When either of the second two options in Figure 4–19 are selected
(Migration and Compilation or Full HardCopy Compilation), designs
are targeted to HardCopy Stratix devices and optimized using the
HardCopy Stratix placement and timing analysis to estimate
performance. For details on the performance optimization and estimation
steps, refer to “Performance Estimation” on page 4–45. If the performance
requirement is not met, you can modify your RTL source, optimize the
FPGA design, and estimate timing until you reach timing closure.

Tcl Support for HardCopy Migration

To complement the GUI features for HardCopy migration, the Quartus II
software provides the following command-line executables (which
provide the tool command language (Tcl) shell to run the --flow Tcl
command) to migrate the HARDCOPY_FPGA_PROTOTYPE project to
HardCopy Stratix devices:

quartus_sh --flow migrate_to_hardcopy <project_name> [-c <revision>] r

This command migrates the project compiled for the
HARDCOPY_FPGA_PROTOTYPE device to a HardCopy Stratix device.

quartus_sh --flow hardcopy_full_compile <project_name> [-c <revision>] r

Altera Corporation 4–45
October 2007 Preliminary

Design Optimization and Performance Estimation

This command performs the following tasks:

■ Compiles the exsisting project for a
HARDCOPY_FPGA_PROTOTYPE device.

■ Migrates the project to a HardCopy Stratix project.
■ Opens the migrated HardCopy Stratix project and compiles it for a

HardCopy Stratix device.

Design
Optimization
and
Performance
Estimation

The HardCopy Timing Optimization Wizard creates the HardCopy
Stratix project in the Quartus II software, where you can perform design
optimization and performance estimation of your HardCopy Stratix
device.

Design Optimization

Beginning with version 4.2, the Quartus II software supports HardCopy
Stratix design optimization by providing floorplans for placement
optimization and HardCopy Stratix timing models. These features allows
you to refine placement of logic array blocks (LAB) and optimize the
HardCopy design further than the FPGA performance. Customized
routing and buffer insertion done in the Quartus II software are then used
to estimate the design’s performance in the migrated device. The
HardCopy device floorplan, routing, and timing estimates in the
Quartus II software reflect the actual placement of the design in the
HardCopy Stratix device, and can be used to see the available resources,
and the location of the resources in the actual device.

Performance Estimation

Figure 4–21 illustrates the design flow for estimating performance and
optimizing your design. You can target your designs to
HARDCOPY_FPGA_PROTOTYPE devices, migrate the design to the
HardCopy Stratix device, and get placement optimization and timing
estimation of your HardCopy Stratix device.

In the event that the required performance is not met, you can:

■ Work to improve LAB placement in the HardCopy Stratix project.

or

■ Go back to the HARDCOPY_FPGA_PROTOTYPE project and
optimize that design, modify your RTL source code, repeat the
migration to the HardCopy Stratix device, and perform the
optimization and timing estimation steps.

4–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

1 On average, HardCopy Stratix devices are 40% faster than the
equivalent -6 speed grade Stratix FPGA device. These
performance numbers are highly design dependent, and you
must obtain final performance numbers from Altera.

Figure 4–21. Obtaining a HardCopy Performance Estimation

To perform Timing Analysis for a HardCopy Stratix device, follow these
steps:

1. Open an existing project compiled for a
HARDCOPY_FPGA_PROTOYPE device.

2. On the Project menu, point to HardCopy Utilities and click
HardCopy Timing Optimization Wizard.

3. Select a destination directory for the migrated project and complete
the HardCopy Timing Optimization Wizard process.

On completion of the HardCopy Timing Optimization Wizard, the
destination directory created contains the Quartus II project file, and
all files required for HardCopy Stratix implementation. At this stage,
the design is copied from the HARDCOPY_FPGA_PROTOTYPE
project directory to a new directory to perform the timing analysis.
This two-project directory structure enables you to move back and
forth between the HARDCOPY_FPGA_PROTOTYPE design
database and the HardCopy Stratix design database. The Quartus II
software creates the <project name>_hardcopy_optimization
directory.

You do not have to select the HardCopy Stratix device while
performing performance estimation. When you run the HardCopy
Timing Optimization Wizard, the Quartus II software selects the
HardCopy Stratix device corresponding to the specified
HARDCOPY_FPGA_PROTOTYPE FPGA. Thus, the information
necessary for the HardCopy Stratix device is available from the
earlier HARDCOPY_FPGA_PROTOTYPE device selection.

No

YesTiming
Met?

Proven Netlist & New
Timing & Placement

Constraint

Proven Netlist,
Pin Assignments, & Timing

Constraints

Stratix FPGA HardCopy Placement
& Timing Analysis

HardCopy Stratix

Altera Corporation 4–47
October 2007 Preliminary

Design Optimization and Performance Estimation

All constraints related to the design are also transferred to the new
project directory. You can modify these constraints, if necessary, in
your optimized design environment to achieve the necessary timing
closure. However, if the design is optimized at the
HARDCOPY_FPGA_PROTOTYPE device level by modifying the
RTL code or the device constraints, you must migrate the project
with the HardCopy Timing Optimization Wizard.

c If an existing project directory is selected when the HardCopy
Timing Optimization Wizard is run, the existing information is
overwritten with the new compile results.

The project directory is the directory that you chose for the migrated
project. A snapshot of the files inside the
<project name>_hardcopy_optimization directory is shown in
Table 4–7.

Table 4–7. Directory Structure Generated by the HardCopy Timing
Optimization Wizard

<project name>_hardcopy_optimization\
<project name>.qsf
<project name>.qpf
<project name>.sof
<project name>.macr
<project name>.gclk
db\
hardcopy_fpga_prototype\

fpga_<project name>_violations.datasheet
fpga_<project name>_target.datasheet
fpga_<project name>_rba_pt_hcpy_v.tcl
fpga_<project name>_pt_hcpy_v.tcl
fpga_<project name>_hcpy_v.sdo
fpga_<project name>_hcpy.vo
fpga_<project name>_cpld.datasheet
fpga_<project name>_cksum.datasheet
fpga_<project name>.tan.rpt
fpga_<project name>.map.rpt
fpga_<project name>.map.atm
fpga_<project name>.fit.rpt
fpga_<project name>.db_info
fpga_<project name>.cmp.xml
fpga_<project name>.cmp.rcf
fpga_<project name>.cmp.atm
fpga_<project name>.asm.rpt
fpga_<project name>.qarlog
fpga_<project name>.qar
fpga_<project name>.qsf
fpga_<project name>.pin
fpga_<project name>.qpf

db_export\
<project name>.map.atm
<project name>.map.hdbx
<project name>.db_info

4–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

4. Open the migrated Quartus II project created in Step 3.

5. Perform a full compilation.

After successful compilation, the Timing Analysis section of the
Compilation Report shows the performance of the design.

1 Performance estimation is not supported for HardCopy APEX
devices in the Quartus II software. Your design can be
optimized by modifying the RTL code or the FPGA design and
the constraints. You should contact Altera to discuss any desired
performance improvements with HardCopy APEX devices.

Buffer Insertion

Beginning with version 4.2, the Quartus II software provides improved
HardCopy Stratix device timing closure and estimation, to more
accurately reflect the results expected after back-end migration. The
Quartus II software performs the necessary buffer insertion in your
HardCopy Stratix device during the Fitter process, and stores the location
of these buffers and necessary routing information in the Quartus II
Archive File. This buffer insertion improves the estimation of the
Quartus II Timing Analyzer for the HardCopy Stratix device.

Placement Constraints

Beginning with version 4.2, the Quartus II software supports placement
constraints and LogicLock regions for HardCopy Stratix devices.
Figure 4–22 shows an iterative process to modify the placement
constraints until the best placement for the HardCopy Stratix device is
achieved.

Altera Corporation 4–49
October 2007 Preliminary

Location Constraints

Figure 4–22. Placement Constraints Flow for HardCopy Stratix Devices

Location
Constraints

This section provides information about HardCopy Stratix logic location
constraints.

LAB Assignments

Logic placement in HardCopy Stratix is limited to LAB placement and
optimization of the interconnecting signals between them. In a Stratix
FPGA, individual logic elements (LE) are placed by the Quartus II Fitter
into LABs. The HardCopy Stratix migration process requires that LAB
contents cannot change after the Timing Optimization Wizard task is
done. Therefore, you can only make LAB-level placement optimization
and location assignments after migrating the
HARDCOPY_FPGA_PROTOTYPE project to the HardCopy Stratix
device.

Migrate to HardCopy Stratix
Device Using the HardCopy
Timing Optimization Wizard

Add/Update
Placement Constraints

Add/Update
LogicLock Constraints

Compile for HardCopy
Stratix Device

Yes

No

Compile the Design for
HARDCOPY_FPGA_PROTOTYPE

Generate HardCopy Files

Performance
Met?

4–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The Quartus II software supports these LAB location constraints for
HardCopy Stratix devices. The entire contents of a LAB is moved to an
empty LAB when using LAB location assignments. If you want to move
the logic contents of LAB A to LAB B, the entire contents of LAB A are
moved to an empty LAB B. For example, the logic contents of
LAB_X33_Y65 can be moved to an empty LAB at LAB_X43_Y56 but
individual logic cell LC_X33_Y65_N1 can not be moved by itself in the
HardCopy Stratix Timing Closure Floorplan.

LogicLock Assignments

The LogicLock feature of the Quartus II software provides a block-based
design approach. Using this technique you can partition your design and
create each block of logic independently, optimize placement and area,
and integrate all blocks into the top level design.

f To learn more about this methodology, refer to the Quartus II Analyzing
and Optimizing Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

LogicLock constraints are supported when you migrate the project from
a HARDCOPY_FPGA_PROTOTYPE project to a HardCopy Stratix
project. If the LogicLock region was specified as “Size=Fixed” and
“Location=Locked” in the HARDCOPY_FPGA_PROTOTYPE project, it
is converted to have “Size=Auto” and “Location=Floating” as shown in
the following LogicLock examples. This modification is necessary
because the floorplan of a HardCopy Stratix device is different from that
of the Stratix device, and the assigned coordinates in the
HARDCOPY_FPGA_PROTOTYPE do not match the HardCopy Stratix
floorplan. If this modification did not occur, LogicLock assignments
would lead to incorrect placement in the Quartus II Fitter. Making the
regions auto-size and floating, maintains your LogicLock assignments,
allowing you to easily adjust the LogicLock regions as required and lock
their locations again after HardCopy Stratix placement.

Example 4–1 and Example 4–2 show two examples of LogicLock
assignments.

Example 4–1. LogicLock Region Definition in the HARDCOPY_FPGA_PROTOTYPE Quartus II Settings File
set_global_assignment -name LL_HEIGHT 15 -entity risc8 -section_id test
set_global_assignment -name LL_WIDTH 15 -entity risc8 -section_id test
set_global_assignment -name LL_STATE LOCKED -entity risc8 -section_id test
set_global_assignment -name LL_AUTO_SIZE OFF -entity risc8 -section_id test

Altera Corporation 4–51
October 2007 Preliminary

Checking Designs for HardCopy Design Guidelines

Example 4–2. LogicLock Region Definition in the Migrated HardCopy Stratix Quartus II Settings File
set_global_assignment -name LL_HEIGHT 15 -entity risc8 -section_id test
set_global_assignment -name LL_WIDTH 15 -entity risc8 -section_id test
set_global_assignment -name LL_STATE FLOATING -entity risc8 -section_id
test
set_global_assignment -name LL_AUTO_SIZE ON -entity risc8 -section_id test

Checking
Designs for
HardCopy
Design
Guidelines

When you develop a design with HardCopy migration in mind, you must
follow Altera-recommended design practices that ensure a
straightforward migration process or the design will not be able to be
implemented in a HardCopy device. Prior to starting migration of the
design to a HardCopy device, you must review the design and identify
and address all the design issues. Any design issues that have not been
addressed can jeopardize silicon success.

Altera-Recommended HDL Coding Guidelines

Designing for Altera PLD, FPGA, and HardCopy structured ASIC
devices requires certain specific design guidelines and hardware
description language (HDL) coding style recommendations be followed.

f For more information about design recommendations and HDL coding
styles, refer to the Design Guidelines section in volume 1 of the Quartus II
Handbook.

Design Assistant

The Quartus II software includes the Design Assistant feature to check
your design against the HardCopy design guidelines. Some of the design
rule checks performed by the Design Assistant include the following
rules:

■ Design should not contain combinational loops
■ Design should not contain delay chains
■ Design should not contain latches

To use the Design Assistant, you must run Analysis and Synthesis on the
design in the Quartus II software. Altera recommends that you run the
Design Assistant to check for compliance with the HardCopy design
guidelines early in the design process and after every compilation.

4–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Design Assistant Settings

You must select the design rules in the Design Assistant page prior to
running the design. On the Assignments menu, click Settings. In the
Settings dialog box, in the Category list, select Design Assistant and turn
on Run Design Assistant during compilation. Altera recommends
enabling this feature to run the Design Assistant automatically during
compilation of your design.

Running Design Assistant

To run Design Assistant independently of other Quartus II features, on
the Processing menu, point to Start and click Start Design Assistant.

The Design Assistant automatically runs in the background of the
Quartus II software when the HardCopy Timing Optimization Wizard is
launched, and does not display the Design Assistant results immediately
to the display. The design is checked before the Quartus II software
migrates the design and creates a new project directory for performing
timing analysis.

Also, the Design Assistant runs automatically whenever you generate the
HardCopy design database with the HardCopy Files Wizard. The Design
Assistant report generated is used by the Altera HardCopy Design Center
to review your design.

Reports and Summary

The results of running the Design Assistant on your design are available
in the Design Assistant Results section of the Compilation Report. The
Design Assistant also generates the summary report in the
<project name>\hardcopy subdirectory of the project directory. This
report file is titled <project name>_violations.datasheet. Reports include
the settings, run summary, results summary, and details of the results
and messages. The Design Assistant report indicates the rule name,
severity of the violation, and the circuit path where any violation
occurred.

f To learn about the design rules and standard design practices to comply
with HardCopy design rules, refer to the Quartus II Help and the
HardCopy Series Design Guidelines chapter in volume 1 of the HardCopy
Series Handbook.

Altera Corporation 4–53
October 2007 Preliminary

Generating the HardCopy Design Database

Generating the
HardCopy
Design
Database

You can use the HardCopy Files Wizard to generate the complete set of
deliverables required for migrating the design to a HardCopy device in a
single click. The HardCopy Files Wizard asks questions related to the
design and archives your design, settings, results, and database files for
delivery to Altera. Your responses to the design details are stored in
<project name>_hardcopy_optimization\<project name>.hps.txt.

You can generate the archive of the HardCopy design database only after
compiling the design to a HardCopy Stratix device. The Quartus II
Archive File is generated at the same directory level as the targeted
project, either before or after optimization.

1 The Design Assistant automatically runs when the HardCopy
Files Wizard is started.

4–54 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Table 4–8 shows the archive directory structure and files collected by the
HardCopy Files Wizard.

After creating the migration database with the HardCopy
Timing Optimization Wizard, you must compile the design
before generating the project archive. You will receive an error
if you create the archive before compiling the design.

Table 4–8. HardCopy Stratix Design Files Collected by the HardCopy Files
Wizard

<project name>_hardcopy_optimization\
<project name>.flow.rpt
<project name>.qpf
<project name>.asm.rpt
<project name>.blf
<project name>.fit.rpt
<project name>.gclk
<project name>.hps.txt
<project name>.macr
<project name>.pin
<project name>.qsf
<project name>.sof
<project name>.tan.rpt

hardcopy\
<project name>.apc
<project name>_cksum.datasheet
<project name>_cpld.datasheet
<project name>_hcpy.vo
<project name>_hcpy_v.sdo
<project name>_pt_hcpy_v.tcl
<project name>_rba_pt_hcpy_v.tcl
<project name>_target.datasheet
<project name>_violations.datasheet

hardcopy_fpga_prototype\
fpga_<project name>.asm.rpt
fpga_<project name>.cmp.rcf
fpga_<project name>.cmp.xml
fpga_<project name>.db_info
fpga_<project name>.fit.rpt
fpga_<project name>.map.atm
fpga_<project name>.map.rpt
fpga_<project name>.pin
fpga_<project name>.qsf
fpga_<project name>.tan.rpt
fpga_<project name>_cksum.datasheet
fpga_<project name>_cpld.datasheet
fpga_<project name>_hcpy.vo
fpga_<project name>_hcpy_v.sdo
fpga_<project name>_pt_hcpy_v.tcl
fpga_<project name>_rba_pt_hcpy_v.tcl
fpga_<project name>_target.datasheet
fpga_<project name>_violations.datasheet

db_export\
<project name>.db_info
<project name>.map.atm
<project name>.map.hdbx

Altera Corporation 4–55
October 2007 Preliminary

Static Timing Analysis

Static Timing
Analysis

In addition to performing timing analysis, the Quartus II software also
provides all of the requisite netlists and Tcl scripts to perform static
timing analysis (STA) using the Synopsys STA tool, PrimeTime. The
following files, necessary for timing analysis with the PrimeTime tool, are
generated by the HardCopy Files Wizard:

■ <project name>_hcpy.vo—Verilog HDL output format
■ <project name>_hpcy_v.sdo—Standard Delay Format Output File
■ <project name>_pt_hcpy_v.tcl—Tcl script

These files are available in the <project name>\hardcopy directory.
PrimeTime libraries for the HardCopy Stratix and Stratix devices are
included with the Quartus II software.

1 Use the HardCopy Stratix libraries for PrimeTime to perform
STA during timing analysis of designs targeted to
HARDCOPY_FPGA_PROTOTYPE device.

f For more information about static timing analysis, refer to the Classic
Timing Analyzer and the Synopsys PrimeTime Support chapters in
volume 3 of the Quartus II Handbook.

Early Power
Estimation

You can use PowerPlay Early Power Estimation to estimate the amount
of power your HardCopy Stratix or HardCopy APEX device will
consume. This tool is available on the Altera website. Using the Early
Power Estimator requires some knowledge of your design resources and
specifications, including:

■ Target device and package
■ Clock networks used in the design
■ Resource usage for LEs, DSP blocks, PLL, and RAM blocks
■ High speed differential interfaces (HSDI), general I/O power

consumption requirements, and pin counts
■ Environmental and thermal conditions

HardCopy Stratix Early Power Estimation

The PowerPlay Early Power Estimator provides an initial estimate of ICC
for any HardCopy Stratix device based on typical conditions. This
calculation saves significant time and effort in gaining a quick
understanding of the power requirements for the device. No stimulus
vectors are necessary for power estimation, which is established by the
clock frequency and toggle rate in each clock domain.

4–56 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

This calculation should only be used as an estimation of power, not as a
specification. The actual ICC should be verified during operation because
this estimate is sensitive to the actual logic in the device and the
environmental operating conditions.

f For more information about simulation-based power estimation, refer to
the Power Estimation and Analysis Section in volume 3 of the Quartus II
Handbook.

1 On average, HardCopy Stratix devices are expected to consume
40% less power than the equivalent FPGA.

HardCopy APEX Early Power Estimation

The PowerPlay Early Power Estimator can be run from the Altera website
in the device support section
(http://www.altera.com/support/devices/dvs-index.html). You cannot
open this feature in the Quartus II software.

With the HardCopy APEX PowerPlay Early Power Estimator, you can
estimate the power consumed by HardCopy APEX devices and design
systems with the appropriate power budget. Refer to the web page for
instructions on using the HardCopy APEX PowerPlay Early Power
Estimator.

1 HardCopy APEX devices are generally expected to consume
about 40% less power than the equivalent APEX 20KE or
APEX 20KC FPGA devices.

Tcl Support for
HardCopy Stratix

The Quartus II software also supports the HardCopy Stratix design flow
at the command prompt using Tcl scripts.

f For details on Quartus II support for Tcl scripting, refer to the
Tcl Scripting chapter in volume 2 of the Quartus II Handbook.

Altera Corporation 4–57
October 2007 Preliminary

Targeting Designs to HardCopy APEX Devices

Targeting
Designs to
HardCopy APEX
Devices

Beginning with version 4.2, the Quartus II software supports targeting
designs to HardCopy APEX device families. After compiling your design
for one of the APEX 20KC or APEX 20KE FPGA devices supported by a
HardCopy APEX device, run the HardCopy Files Wizard to generate the
necessary set of files for HardCopy migration.

The HardCopy APEX device requires a different set of design files for
migration than HardCopy Stratix. Table 4–9 shows the files collected for
HardCopy APEX by the HardCopy Files Wizard.

Refer to “Generating the HardCopy Design Database” on page 4–53 for
information about generating the complete set of deliverables required
for migrating the design to a HardCopy APEX device. After you have
successfully run the HardCopy Files Wizard, you can submit your design
archive to Altera to implement your design in a HardCopy device. You
should contact Altera for more information about this process.

Conclusion The methodology for designing HardCopy Stratix devices using the
Quartus II software is the same as that for designing the Stratix FPGA
equivalent. You can use the familiar Quartus II software tools and design
flow, target designs to HardCopy Stratix devices, optimize designs for
higher performance and lower power consumption than the Stratix
FPGAs, and deliver the design database for migration to a HardCopy
Stratix device. Compatible APEX FPGA designs can migrate to
HardCopy APEX after compilation using the HardCopy Files Wizard to
archive the design files. Submit the files to the HardCopy Design Center
to complete the back-end migration.

Table 4–9. HardCopy APEX Files Collected by the HardCopy Files Wizard

<project name>.tan.rpt
<project name>.asm.rpt
<project name>.fit.rpt
<project name>.hps.txt
<project name>.map.rpt
<project name>.pin
<project name>.sof
<project name>.qsf
<project name>_cksum.datasheet
<project name>_cpld.datasheet
<project name>_hcpy.vo
<project name>_hcpy_v.sdo
<project name>_pt_hcpy_v.tcl
<project name>_rba_pt_hcpy_v.tcl
<project name>_target.datasheet
<project name>_violations.datasheet

4–58 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Referenced
Documents

This chapter references the following documents:

■ AN432: Using Different PLL Settings Between Stratix II and HardCopy II
Devices

■ Back-End Design Flow for HardCopy Series Devices chapter in volume 1 of
the HardCopy Series Device Handbook

■ Cadence Encounter Conformal Support chapter in volume 3 of the
Quartus II Handbook

■ Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook
■ Description, Architecture and Features chapter in the HardCopy II Device

Family Data Sheet in the HardCopy Series Handbook
■ Design Guidelines for HardCopy Series Devices chapter of the HardCopy

Series Handbook
■ Design Guidelines Section in volume 1 of the Quartus II Handbook
■ HardCopy Series Handbook
■ HardCopy Stratix Device Family Data Sheet section in volume 1 of the

HardCopy Series Handbook
■ Introduction to Quartus II Manual
■ Introduction to HardCopy II Devices chapter in the HardCopy II Device

Family Data Sheet in the HardCopy Series Handbook
■ Power Estimation and Analysis section in volume 3 of the Quartus II

Handbook
■ Programming and Configuration chapter of the Introduction to Quartus II

Manual
■ Quartus II Analyzing and Optimizing Design Floorplan chapter in

volume 2 of the Quartus II Handbook
■ Quartus II Handbook
■ Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Quartus II PowerPlay Power Analysis chapter in volume 3 of the

Quartus II Handbook
■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Synopsys PrimeTime Support chapter in volume 3 of the Quartus II

Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/hrd/hc_h5v1.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/an/AN432.pdf
http://www.altera.com/literature/hb/hrd/hc_h51015.pdf
http://www.altera.com/literature/hb/hrd/hc_h51016.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53011.pdf
http://www.altera.com/literature/hb/hrd/hc_h51019.pdf
http://www.altera.com/literature/hb/hrd/hc_h5v1_05.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_02.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53005.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

Altera Corporation 4–59
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 4–10 shows the revision history for this chapter.

Table 4–10. Document Revision History (Part 1 of 2)

Date and Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 4–58. Updated for Quartus II
version 7.2

May 2007
v7.1.0

● Updated Timing Settings.
● Updated TimeQuest.
● Added Setting Up the TimeQuest Timing Analzyer.
● Added Constraints for Clock Effect Characteristics.
● Changed Performing ECOs with Change Manager and

Chip Planner title to Performing ECOs with Quartus II
Engineering Change Management with the Chip
Planner.

● Updated Migrating Changes that must be Implemented
Differently.

● Added Referenced Documents.

Updated for Quartus II
version 7.1

March 2007 v7.0.0 Updated Quartus II software 7.0 revision and date only. No
other changes made to chapter.

—

November 2006
v6.1.0

Minor updates for the Quartus II software version 6.1
● Added Performing ECOs with Change Manager and

Chip Planner and Overall Migration Flow sections.
● Updated Quartus II Software Features Supported for

HardCopy II Designs section.

A medium update to the
chapter, due to changes in
the Quartus II software
version 6.1 release; most
changes were in the
Performing ECOs with
Change Manager and Chip
Planner and Overall
Migration Flow sections.

May 2006 v6.0.0 Minor updates for the Quartus II software version 6.0. —

October 2005 v5.1.0 Updated for the Quartus II software version 5.1. —

May 2005 v5.0.0 ● Chapter 3 was formerly Chapter 2.
● Updated for consistency with the Quartus II Support for

HardCopy II Devices and Quartus II Support for
HardCopy Stratix Devices chapters in the HardCopy
Series Handbook.

—

Jan. 2005 v2.1 ● Added HardCopy II Device Material. —

Dec. 2004 v2.1 ● Chapter 2 was formerly Chapter 3.
● Updates to tables, figures.
● New functionality for Quartus II software 4.2

—

4–60 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus II software 4.1.

—

Feb. 2004 v1.0 Initial release. —

Table 4–10. Document Revision History (Part 2 of 2)

Date and Document
Version Changes Made Summary of Changes

Altera Corporation Section II–i
Preliminary

Section II. Design
Guidelines

Today's programmable logic device (PLD) applications have reached the
complexity and performance requirements of ASICs. In the development
of such complex system designs, good design practices have an
enormous impact on your device's timing performance, logic utilization,
and system reliability. Designs coded optimally will behave in a
predictable and reliable manner, even when re-targeted to different
device families or speed grades. This section presents design and coding
style recommendations for Altera® devices.

This section includes the following chapters:

■ Chapter 5, Design Recommendations for Altera Devices and the
Quartus II Design Assistant

■ Chapter 6, Recommended HDL Coding Styles

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section II–ii Altera Corporation
Preliminary

Design Guidelines Quartus II Handbook, Volume 1

Altera Corporation 5–1
October 2007 Preliminary

5. Design Recommendations
for Altera Devices and the

Quartus II Design Assistant

Introduction Current FPGA applications have reached the complexity and
performance requirements of ASICs. In the development of such complex
system designs, good design practices have an enormous impact on your
device’s timing performance, logic utilization, and system reliability.
Well-coded designs behave in a predictable and reliable manner even
when re-targeted to different families or speed grades. Good design
practices also aid in successful design migration between FPGA and
HardCopy® or ASIC implementations for prototyping and production.

For optimal performance, reliability, and faster time-to-market when
designing with Altera® devices, you should adhere to the following
guidelines:

■ Understand the impact of synchronous design practices
■ Follow recommended design techniques including hierarchical

design partitioning
■ Take advantage of the architectural features in the targeted device

This chapter presents design recommendations in these areas, and
describes the Quartus® II Design Assistant that can help you check your
design for violations of design recommendations.

This chapter contains the following sections:

■ “Synchronous FPGA Design Practices” on page 5–2
■ “Design Guidelines” on page 5–4
■ “Checking Design Violations Using the Design Assistant” on

page 5–15
■ “Targeting Clock and Register-Control Architectural Features” on

page 5–44

f For specific HDL coding examples and recommendations, including
coding guidelines for targeting dedicated device hardware, such as
memory and DSP blocks, refer to the Recommended HDL Coding Styles
chapter in volume 1 of the Quartus II Handbook. For information about
migrating designs to HardCopy devices, refer to the Design Guidelines for
HardCopy Series Devices chapter in the HardCopy Series Handbook. For
guidelines on partitioning a hierarchical design for incremental
compilation, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

QII51006-7.2.0

5–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Synchronous
FPGA Design
Practices

The first step in a good design methodology is to understand the
implications of your design practices and techniques. This section
outlines some of the benefits of optimal synchronous design practices and
the hazards involved in other techniques. Good synchronous design
practices can help you meet your design goals consistently. Problems
with other design techniques can include reliance on propagation delays
in a device, incomplete timing analysis, and possible glitches.

In a synchronous design, a clock signal triggers all events. As long as all
of the registers’ timing requirements are met, a synchronous design
behaves in a predictable and reliable manner for all process, voltage, and
temperature (PVT) conditions. You can easily target synchronous designs
to different device families or speed grades. In addition, synchronous
design practices help ensure successful migration if you plan to migrate
your design to a high-volume solution such as Altera HardCopy devices,
or if you are prototyping an ASIC.

Fundamentals of Synchronous Design

In a synchronous design, everything is related to the clock signal. On
every active edge of the clock (usually the rising edge), the data inputs of
registers are sampled and transferred to outputs. Following an active
clock edge, the outputs of combinational logic feeding the data inputs of
registers change values. This change triggers a period of instability due to
propagation delays through the logic as the signals go through a number
of transitions and finally settle to new values. Changes happening on data
inputs of registers do not affect the values of their outputs until the next
active clock edge.

Because the internal circuitry of registers isolates data outputs from
inputs, instability in the combinational logic does not affect the operation
of the design as long as the following timing requirements are met:

■ Before an active clock edge, the data input has been stable for at least
the setup time of the register

■ After an active clock edge, the data input remains stable for at least
the hold time of the register

When you specify all of your clock frequencies and other timing
requirements, the Quartus II Classic Timing Analyzer issues actual
hardware requirements for the setup times (tSU) and hold times (tH) for
every pin of your design. By meeting these external pin requirements and
following synchronous design techniques, you ensure that you satisfy the
setup and hold times for all registers within the Altera device.

Altera Corporation 5–3
October 2007 Preliminary

Synchronous FPGA Design Practices

1 To meet setup and hold time requirements on all input pins, any
inputs to combinational logic that feeds a register should have a
synchronous relationship with the clock of the register. If signals
are asynchronous, you can register the signals at the input of the
Altera device to help prevent a violation of the required setup
and hold times.

When the setup or hold time of a register is violated, the output can be set
to an intermediate voltage level between the high and low levels, called a
metastable state. In this unstable state, small perturbations like noise in
power rails can cause the register to assume either the high or low voltage
level, resulting in an unpredictable valid state. Various undesirable effects
can occur, including increased propagation delays and incorrect output
states. In some cases, the output can even oscillate between the two valid
states for a relatively long period of time.

f For details about timing requirements and analysis in the Quartus II
software, refer to the Quartus II Classic Timing Analyzer or the Quartus II
TimeQuest Timing Analyzer chapters in volume 3 of the Quartus II
Handbook.

Hazards of Asynchronous Design

In the past, designers have often used asynchronous techniques such as
ripple counters or pulse generators in programmable logic device (PLD)
designs, enabling them to take “short cuts” to save device resources.
Asynchronous design techniques have inherent problems such as relying
on propagation delays in a device, which can result in incomplete timing
constraints and possible glitches and spikes. Because current FPGAs
provide many high-performance logic gates, registers, and memory,
resource and performance trade-offs have changed. Now it is more
important to focus on design practices that help you meet design goals
consistently than to save device resources using problematic
asynchronous techniques.

Some asynchronous design structures rely on the relative propagation
delays of signals to function correctly. In these cases, race conditions can
arise where the order of signal changes can affect the output of the logic.
PLD designs can have varying timing delays, depending on how the
design is placed and routed in the device with each compilation.
Therefore, it is almost impossible to determine the timing delay
associated with a particular block of logic ahead of time. As devices
become faster because of device process improvements, the delays in an
asynchronous design may decrease, resulting in a design that does not
function as expected. Specific examples are provided in “Design

5–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Guidelines” on page 5–4. Relying on a particular delay also makes
asynchronous designs very difficult to migrate to different architectures,
devices, or speed grades.

The timing of asynchronous design structures is often difficult or
impossible to model with timing assignments and constraints. If you do
not have complete or accurate timing constraints, the timing-driven
algorithms used by your synthesis and place-and-route tools may not be
able to perform the best optimizations, and reported results may not be
complete.

Some asynchronous design structures can generate harmful glitches,
which are pulses that are very short compared with clock periods. Most
glitches are generated by combinational logic. When the inputs of
combinational logic change, the outputs exhibit a number of glitches
before they settle to their new values. These glitches can propagate
through the combinational logic, leading to incorrect values on the
outputs in asynchronous designs. In a synchronous design, glitches on
the data inputs of registers are normal events that have no negative
consequences because the data is not processed until the clock edge.

Design
Guidelines

When designing with HDL code, it is important to understand how a
synthesis tool interprets different HDL design techniques and what
results to expect. Your design techniques can affect logic utilization and
timing performance, as well as the design’s reliability. This section
discusses some basic design techniques that ensure optimal synthesis
results for designs targeted to Altera devices while avoiding several
common causes of unreliability and instability. Design your
combinational logic carefully to avoid potential problems and pay
attention to your clocking schemes so you can maintain synchronous
functionality and avoid timing problems.

Combinational Logic Structures

Combinational logic structures consist of logic functions that depend
only on the current state of the inputs. In Altera FPGAs, these functions
are implemented in the look-up tables (LUTs) of the device’s architecture,
using either logic elements (LEs) or adaptive logic modules (ALMs). For
some cases in which combinational logic feeds registers, the register
control signals can also be used to implement part of the logic function to
save LUT resources. By following the recommendations in this section,
you can improve the reliability of your combinational design.

Altera Corporation 5–5
October 2007 Preliminary

Design Guidelines

Combinational Loops

Combinational loops are among the most common causes of instability
and unreliability in digital designs, and should be avoided whenever
possible. In a synchronous design, feedback loops should include
registers. Combinational loops generally violate synchronous design
principles by establishing a direct feedback loop that contains no
registers. For example, a combinational loop occurs when the left-hand
side of an arithmetic expression also appears on the right-hand side in
HDL code. A combinational loop also occurs when you feed back the
output of a register to an asynchronous pin of the same register through
combinational logic, as shown in Figure 5–1.

Figure 5–1. Combinational Loop through Asynchronous Control Pin

1 Use recovery and removal analysis to perform timing analysis
on asynchronous ports such as clear or reset in the
Quartus II software. On the Assignments menu, click Settings.
In the Settings dialog box, under Timing Analysis Settings,
select Classic Timing Analyzer Settings. On the Classic Timing
Analyzer Settings page, click More Settings, and turn on the
Enable Recovery/Removal Analysis option.

Combinational loops are inherently high-risk design structures for the
following reasons:

■ Combinational loop behavior generally depends on the relative
propagation delays through the logic involved in the loop. As
discussed, propagation delays can change, which means the
behavior of the loop is unpredictable.

■ Combinational loops can cause endless computation loops in many
design tools. Most tools break open combinational loops to process
the design. The various tools used in the design flow may open a
given loop in a different manner, processing it in a way that is
inconsistent with the original design intent.

Latches

A latch is a small combinational loop that holds the value of a signal until
a new value is assigned. Latches can also be inferred from HDL code
when you did not intend to use a latch. FPGA architectures are based on

D Q

CLRN

Logic

5–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

registers. In FPGA devices, latches actually use more logic resources and
lead to lower performance than registers. This is different from other
device architectures where latches may add less delay and can be
implemented with less silicon area than registers.

Latches can cause various difficulties in the design. Although latches are
memory elements, they are fundamentally different from registers. When
a latch is in feed-through or transparent mode, there is a direct path
between the data input and the output. Glitches on the data input can
pass through the output. The timing for latches is also inherently
ambiguous. For example, when analyzing a design with a D-latch, the
software cannot determine whether you intended to transfer data to the
output on the leading edge of the clock or on the trailing edge. In many
cases, only the original designer knows the full intent of the design;
therefore, another designer cannot easily modify the design or reuse the
code.

In some cases, your synthesis tool can infer a latch that does not exhibit
problems with glitches. Inferring the Altera lpm_latch function ensures
that the implementation is glitch-free in Altera architectures. Some third-
party synthesis tools list the number of lpm_latch functions that are
inferred. When using Quartus II integrated synthesis, these latches are
reported in the User-Specified and Inferred Latches section of the
Compilation Report. If a latch or combinational loop in your design is not
listed in this report, it means that it was not inferred as a “safe” latch by
the software and is not considered glitch-free.

However, even glitch-free latches may not be analyzed completely during
timing analysis. The Analyze latches as synchronous elements option in
the Quartus II software allows you to treat latches as start and end points
for timing analysis (a typical analysis performed in FPGA design tools).
With this option turned on, latches are analyzed as registers (with an
inverted clock). The Quartus II software does not perform
cycle-borrowing analysis, such as that performed by third-party timing
analysis tools such as Synopsys PrimeTime.

In addition, latches have a limited support in formal verification tools.
Therefore, it is especially important to ensure that you do not use latches
when using formal verification.

Altera recommends avoiding using latches to ensure that you can
completely analyze and verify the timing performance and reliability of
your design.

Altera Corporation 5–7
October 2007 Preliminary

Design Guidelines

Delay Chains

Delay chains occur when two or more consecutive nodes with a single
fan-in and a single fan-out are used to cause delay. Inverters are often
chained together to add delay. Delay chains are sometimes used to
resolve race conditions created by other asynchronous design practices.

As described earlier in this chapter, delays in PLD designs can change
with each place-and-route cycle. Effects such as rise/fall time differences
and on-chip variation mean that delay chains, especially those placed on
clock paths, can cause significant problems in your design. See “Hazards
of Asynchronous Design” on page 5–3 for examples of the kinds of
problems that delay chains can cause. Avoid using delay chains to
prevent these kind of problems.

In some ASIC designs, delays are used for buffering signals as they are
routed around the device. This functionality is not needed in FPGA
devices because the routing structure provides buffers throughout the
device.

Pulse Generators and Multivibrators

Delay chains are sometimes used to generate either one pulse (pulse
generators) or a series of pulses (multivibrators). There are two common
methods for pulse generation, as shown in Figure 5–2. These techniques
are purely asynchronous and should be avoided.

Figure 5–2. Asynchronous Pulse Generators

In “Using an AND Gate” (Figure 5–2), a trigger signal feeds both inputs
of a 2-input AND gate, but the design inverts or adds a delay chain to one
of the inputs. The width of the pulse depends on the relative delays of the
path that feeds the gate directly and the one that goes through the delay.

D Q

Q

Pulse

PulseTrigger

Trigger

Clock

CLRN

Using an AND Gate

Using a Register

5–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

This is the same mechanism responsible for the generation of glitches in
combinational logic following a change of input values. This technique
artificially increases the width of the glitch by using a delay chain.

In “Using a Register” (Figure 5–2), a register’s output drives the same
register’s asynchronous reset signal through a delay chain. The register
resets itself asynchronously after a certain delay.

The width of pulses generated in this way are difficult for synthesis and
place-and-route software to determine, set, or verify. The actual pulse
width can only be determined after placement and routing, when routing
and propagation delays are known. You cannot reliably determine the
width of the pulse when creating HDL code, and it cannot be set by EDA
tools. The pulse may not be wide enough for the application under all
PVT conditions, and the pulse width changes if you change to a different
device. In addition, static timing analysis cannot be used to verify the
pulse width, so verification is very difficult.

Multivibrators use a glitch generator to create pulses, together with a
combinational loop that turns the circuit into an oscillator. This creates
additional problems because of the number of pulses involved. In
addition, when the structures generate multiple pulses, they also create a
new artificial clock in the design that has to be analyzed by the design
tools.

When you must use a pulse generator, use synchronous techniques, as
shown in Figure 5–3.

Figure 5–3. Recommended Pulse-Generation Technique

In this design, the pulse width is always equal to the clock period. This
pulse generator is predictable, can be verified with timing analysis, and is
easily moved to other architectures, devices, or speed grades.

D QTrigger Signal

Clock

Pulse

D Q

Altera Corporation 5–9
October 2007 Preliminary

Design Guidelines

Clocking Schemes

Like combinational logic, clocking schemes have a large effect on your
design’s performance and reliability. Avoid using internally generated
clocks wherever possible because they can cause functional and timing
problems in the design. Clocks generated with combinational logic can
introduce glitches that create functional problems, and the delay inherent
in combinational logic can lead to timing problems. The following
sections provide some specific examples and recommendations for
avoiding these problems.

1 Specify all clock relationships in the Quartus II software to allow
for the best timing-driven optimizations during fitting and to
allow correct timing analysis. Use clock setting assignments on
any derived or internal clocks to specify their relationship to the
base clock.

Altera recommends using global device-wide, low-skew
dedicated routing for all internally-generated clocks, instead of
routing clocks on regular routing lines. See “Clock Network
Resources” on page 5–44 for a detailed explanation.

Avoid data transfers between different clocks wherever
possible. If a data transfer between different clocks is needed,
use FIFO circuitry. You can use the clock uncertainty features in
the Quartus II software to compensate for the variable delays
between clock domains. Consider setting a Clock Setup
Uncertainty and Clock Hold Uncertainty value of 10% to 15% of
the clock delay.

Internally Generated Clocks

If you use the output from combinational logic as a clock signal or as an
asynchronous reset signal, you should expect to see glitches in your
design. In a synchronous design, glitches on data inputs of registers are
normal events that have no consequences. However, a glitch or a spike on
the clock input (or an asynchronous input) to a register can have
significant consequences. Narrow glitches can violate the register’s
minimum pulse width requirements. Setup and hold times may also be
violated if the data input of the register is changing when a glitch reaches
the clock input. Even if the design does not violate timing requirements,
the register output can change value unexpectedly and cause functional
hazards elsewhere in the design.

Because of these problems, always register the output of combinational
logic before you use it as a clock signal. See Figure 5–4.

5–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 5–4. Recommended Clock-Generation Technique

Registering the output of combinational logic ensures that the glitches
generated by the combinational logic are blocked at the data input of the
register.

Divided Clocks

Designs often require clocks created by dividing a master clock. Most
Altera FPGAs provide dedicated phase-locked loop (PLL) circuitry for
clock division. Using dedicated PLL circuitry can help you to avoid many
of the problems that can be introduced by asynchronous clock division
logic.

When you must use logic to divide a master clock, always use
synchronous counters or state machines. In addition, create your design
so that registers always directly generate divided clock signals, as
described in “Internally Generated Clocks” on page 5–9, and route the
clock on global clock resources. To avoid glitches, you should not decode
the outputs of a counter or a state machine to generate clock signals.

Ripple Counters

To simplify verification, Altera recommends avoiding ripple counters in
your design. In the past, FPGA designers implemented ripple counters to
divide clocks by a power of two because the counters are easy to design
and may use fewer gates than their synchronous counterparts. Ripple
counters use cascaded registers, in which the output pin of each register
feeds the clock pin of the register in the next stage. This cascading can
cause problems because the counter creates a ripple clock at each stage.
These ripple clocks have to be handled properly during timing analysis,
which can be difficult and may require you to make complicated timing
assignments in your synthesis and place-and-route tools.

D Q
Internally Generated Clock

Routed on Global Clock Resource

D Q D Q

D Q
Clock

Generation
Logic

Altera Corporation 5–11
October 2007 Preliminary

Design Guidelines

Ripple clock structures are often used to make ripple counters out of the
smallest amount of logic possible. However, in all Altera devices
supported by the Quartus II software, using a ripple clock structure to
reduce the amount of logic used for a counter is unnecessary because the
device allows you to construct a counter using one logic element per
counter bit. Altera recommends that you avoid using ripple counters
under any circumstances.

Multiplexed Clocks

Clock multiplexing can be used to operate the same logic function with
different clock sources. In these designs, multiplexing selects a clock
source, as in Figure 5–5. For example, telecommunications applications
that deal with multiple frequency standards often use multiplexed clocks.

Figure 5–5. Multiplexing Logic and Clock Sources

Adding multiplexing logic to the clock signal can create the problems
addressed in the previous sections, but requirements for multiplexed
clocks vary widely depending on the application. Clock multiplexing is
acceptable when the clock signal uses global clock routing resources, if
the following criteria are met:

■ The clock multiplexing logic does not change after initial
configuration

■ The design uses multiplexing logic to select a clock for testing
purposes

■ Registers are always reset when the clock switches
■ A temporarily incorrect response following clock switching has no

negative consequences

Clock 1

Multiplexed Clock Routed
on Global Clock Resource

Clock 2

Select Signal

D Q

D Q

D Q

5–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

If the design switches clocks in real time with no reset signal, and your
design cannot tolerate a temporarily incorrect response, you must use a
synchronous design so that there are no timing violations on the registers,
no glitches on clock signals, and no race conditions or other logical
problems. By default, the Quartus II software optimizes and analyzes all
possible paths through the multiplexer and between both internal clocks
that may come from the multiplexer. This may lead to more restrictive
analysis than required if the multiplexer is always selecting one particular
clock. If you do not need the more complete analysis, you can assign the
output of the multiplexer as a base clock in the Quartus II software, so
that all register-register paths are analyzed using that clock.

Altera recommends using dedicated hardware to perform clock
multiplexing when it is available, instead of using multiplexing logic. For
example, you can use the Clock Switchover feature or the Clock Control
Block available in certain Altera devices. These dedicated hardware
blocks ensure that you use global low-skew routing lines and avoid any
possible hold time problems on the device due to logic delay on the clock
line.

f Refer to the appropriate device data sheet or handbook for
device-specific information about clocking structures.

Gated Clocks

Gated clocks turn a clock signal on and off using an enable signal that
controls some sort of gating circuitry, as shown in Figure 5–6. When a
clock is turned off, the corresponding clock domain is shut down and
becomes functionally inactive.

Figure 5–6. Gated Clock

You can use gated clocks to reduce power consumption in some device
architectures by effectively shutting down portions of a digital circuit
when they are not in use. When a clock is gated, both the clock network
and the registers driven by it stop toggling, thereby eliminating their
contributions to power consumption. However, gated clocks are not part
of a synchronous scheme and therefore can significantly increase the

Clock

Gated Clock

D Q D Q

Gating Signal

Altera Corporation 5–13
October 2007 Preliminary

Design Guidelines

effort required for design implementation and verification. Gated clocks
contribute to clock skew and make device migration difficult. These
clocks are also sensitive to glitches, which can cause design failure.

Altera recommends that you use dedicated hardware to perform clock
gating rather than using multiplexing logic, if it is available in your target
device. For example, you can use the clock control block in newer Altera
devices to shut down an entire clock network. Dedicated hardware blocks
ensure that you use global routing with low skew and avoid any possible
hold time problems on the device due to logic delay on the clock line.

f Refer to the appropriate device data sheet or handbook for
device-specific information about clocking structures.

From a functional point of view, you can shut down a clock domain in a
purely synchronous manner using a synchronous clock enable signal.
However, when using a synchronous clock enable scheme, the clock
network continues toggling. This practice does not reduce power
consumption as much as gating the clock at the source does. In most
cases, you should use a synchronous scheme such as those described in
“Synchronous Clock Enables”. For improved power reduction when
gating clocks with logic, refer to “Recommended Clock-Gating Methods”
on page 5–14.

Synchronous Clock Enables

To turn off a clock domain in a synchronous manner, use a synchronous
clock enable signal. FPGAs efficiently support clock enable signals
because there is a dedicated clock enable signal available on all device
registers. This scheme does not reduce power consumption as much as
gating the clock at the source because the clock network keeps toggling,
but it will perform the same function as a gated clock by disabling a set of
registers. Insert a multiplexer in front of the data input of every register
to either load new data or copy the output of the register (Figure 5–7).

Figure 5–7. Synchronous Clock Enable

D Q

Enable

Data

5–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Recommended Clock-Gating Methods

Use gated clocks only when your target application requires power
reduction and when gated clocks are able to provide the required
reduction in your device architecture. If you must use clocks gated by
logic, implement these clocks using the robust clock-gating technique
shown in Figure 5–8 and ensure that the gated clock signal uses dedicated
global clock routing.

You can gate a clock signal at the source of the clock network, at each
register, or somewhere in between. Because the clock network contributes
to switching power consumption, gate the clock at the source whenever
possible, so you can shut down the entire clock network instead of gating
it further along the clock network at the registers.

Figure 5–8. Recommended Clock Gating Technique

In the technique shown in Figure 5–8, a register generates the enable
signal to ensure that the signal is free of glitches and spikes. The register
that generates the enable signal is triggered on the inactive edge of the
clock to be gated (use the falling edge when gating a clock that is active
on the rising edge, as shown in Figure 5–8). Using this technique, only
one input of the gate that turns the clock on and off changes at a time. This
prevents any glitches or spikes on the output. Use an AND gate to gate a
clock that is active on the rising edge. For a clock that is active on the
falling edge, use an OR gate to gate the clock and register the enable
command with a positive edge-triggered register.

When using this technique, pay attention to the duty cycle of the clock
and the delay through the logic that generates the enable signal, because
the enable signal must be generated in half the clock cycle. This situation
might cause problems if the logic that generates the enable command is
particularly complex, or if the duty cycle of the clock is severely
unbalanced. However, careful management of the duty cycle and logic
delay may be an acceptable solution when compared with problems
created by other methods of gating clocks.

D Q

Clock

Enable
Gated Clock Routed on
Global Clock Resources

D Q D Q

Gating Signal

Altera Corporation 5–15
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Ensure that you apply a clock setting to the gated clock in the Quartus II
software. As shown in Figure 5–8, apply a clock setting to the output of
the AND gate. Otherwise, the timing analyzer may analyze the circuit
using the clock path through the register as the longest clock path and the
path that skips the register as the shortest clock path, resulting in artificial
clock skew.

Checking Design
Violations Using
the Design
Assistant

To improve the reliability, timing performance, and logic utilization of
your design, practicing good design methodology and understanding
how to avoid design rule violations are important. The Quartus II
software provides a tool that automatically checks for design rule
violations, and tells you where they occur.

The Design Assistant is a design rule checking tool that allows you to
check for design issues early in the design flow. The Design Assistant
checks your design for adherence to Altera-recommended design
guidelines. You can specify which rules you want the Design Assistant to
apply to your design. This is useful if you know that your design violates
particular rules that are not critical, so you want to allow these rule
violations. The Design Assistant generates design violation reports with
clear details about each violation, based on the settings you specified.

The first parts in this section provide an introduction to the Quartus II
design flow with Design Assistant, message severity levels, and an
explanation about how to set up the Design Assistant. The last parts of the
section describe the design rules and the reports generated by the Design
Assistant.

Quartus II Design Flow with the Design Assistant

You can run the Design Assistant after Analysis and Elaboration,
Analysis and Synthesis, fitting, or a full compilation. To run the Design
Assistant, on the Processing menu, point to Start, and click Start Design
Assistant.

To set the Design Assistant to run automatically during compilation, on
the Assignments menu, click Settings. In the Category list, select Design
Assistant. Turn on Run Design Assistant during compilation. This
enables the Design Assistant to perform a post-fitting netlist analysis of
your design. The default is to apply all of the rules to your project. But if
there are some rules that are unimportant to your design, you can turn off
the rules that you do not want the Design Assistant to use. Refer to “The
Design Assistant Settings Page” on page 5–17.

5–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 5–9 shows the Quartus II software design flow with the Design
Assistant.

Figure 5–9. Quartus II Design Flow with the Design Assistant

The Design Assistant analyzes your design netlist at different stages of
the compilation flow and may yield different warnings or errors, even
though the netlists are functionally the same. Your pre-synthesis,
post-synthesis, and post-fitting netlists may be different due to
optimizations performed by the Quartus II software. For example, a
warning message in a pre-synthesis netlist may be removed after the
netlist has been synthesized into a post-synthesis or post-fitting netlist.

When you run the Design Assistant after running a full compilation or
fitting, the Design Assistant performs a post-fitting analysis on the
design. When you start the Design Assistant after performing Analysis
and Synthesis, the Design Assistant performs post-synthesis analysis on
the design. When you start the Design Assistant after performing
Analysis and Elaboration, the Design Assistant performs a pre-synthesis
analysis on the design. You can also perform pre-synthesis analysis with
the Design Assistant using the command-line. You can use -rtl option
with the quartus_drc executable, as shown in the following example:

quartus_drc <project_name> --rtl=on r

Analysis &
Elaboration

Synthesis
(Logic Synthesis &

Technology Mapping

Fitter

Timing Analysis

Design Files

Design Assistant

Pre-Synthesis
Netlist

Post-Synthesis
Netlist

Post-Fitting
Netlist

Rule Violation
Report

Altera Corporation 5–17
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

The Design Assistant generates warning messages when your design
violates design rules, and generates information messages to provide
information regarding the rules. The Design Assistant supports all Altera
devices supported by the Quartus II software.

The Design Assistant Settings Page

To apply design rules in the Design Assistant, on the Assignments menu,
click Settings. In the Settings dialog box, in the Category list, select
Design Assistant. In the Design Assistant page, turn on the rules that
you want the Design Assistant to apply during analysis. By default, all of
the rules except the finite state machine rules are turned on.

In the Timing Closure category, if Nodes with more than specified
number of fan-outs or Top nodes with highest fan-out are turned on,
you can use the High Fan-Out Net Settings dialog box to specify the
number of fan-out a node must have to be reported by the Design
Assistant. To open the High Fan-Out Net Settings dialog box, in the
Design Assistant page, in the Timing Closure category, select Nodes
with more than specified number of fan-outs or Top nodes with highest
fan-out. Click High Fan-Out Net Settings.

In the Clock category, if you turn on Clock signal should be a global
signal, you can use the Global Clock Threshold Settings dialog box to
specify the number of nodes with the highest fan-out which you want the
Design Assistant to report. To open the Global Clock Threshold Settings
dialog box, on the Design Assistant page, in the Clock category, select
Clock signal should be a global signal. Click Global Clock Threshold
Settings.

To specify the maximum number of messages reported by the Design
Assistant, on the Design Assistant page, click Report Settings, and enter
the maximum number of violation messages and detail messages to be
reported.

5–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Message Severity Levels

The Design Assistant classifies messages and rules using the four severity
levels described in Table 5–1. Following Altera guidelines is very
important for designs that are migrated to the HardCopy series of
devices, therefore the table highlights the impact of a rule violation on a
HardCopy migration. Designs that adhere to Altera recommended
design guidelines do not produce any messages with critical, high, or
medium level of severity.

Design Assistant Rules

This section describes the Design Assistant rules and details some of the
reasons that Altera recommends following certain guidelines. Many of
the Design Assistant rules enforce the design guidelines discussed in
previous sections of this chapter.

Every rule is represented by a rule ID and has its own severity level. The
rule ID is normally used in Tcl commands for rule suppression. The letter
in each rule ID corresponds to the group of rules based on the following
scheme.

■ A—Asynchronous design structure rules
■ C—Clock rules
■ R—Reset rules
■ S—Signal race rules
■ T—Timing closure rules
■ D—Asynchronous clock domain rules
■ H—HardCopy rules
■ M—Finite state machine rules

Table 5–1. Design Assistant Message Severity Levels

Severity Level Explanation

Critical A violation of the rule critically affects the reliability of the design. Altera may not
be able to implement the design successfully without closely reviewing the
violations with the designer for HardCopy device conversions.

High A violation of the rule affects the reliability of the design. Altera must review the
violation before implementing the design for HardCopy device conversions.

Medium The rule violation may result in implementation complexity which may have an
impact for HardCopy device conversions.

Information Only The rule provides information regarding the design.

Altera Corporation 5–19
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

For example, the rule “Design Should Not Contain Combinational
Loops” is the first rule in the asynchronous design structure rules;
therefore it is represented by rule ID A101.

1 The finite state machine rules are applicable only to RTL level
verification.

Summary of Rules and IDs

Table 5–2 lists the rules, their rule IDs, and their severity level.

Table 5–2. Summary of Rules and IDs (Part 1 of 2)

Rule ID Rule Name Severity Level

A101 Design Should Not Contain Combinational Loops Critical

A102 Register Output Should Not Drive Its Own Control Signal Directly or through
Combinational Logic

Critical

A103 Design Should Not Contain Delay Chains High

A104 Design Should Not Contain Ripple Clock Structures Medium

A105 Pulses Should Not Be Implemented Asynchronously Critical

A106 Multiple Pulses Should Not Be Generated in the Design Critical

A107 Design Should Not Contain SR Latches High

A108 Design Should Not Contain Latches High

A109 Combinational Logic Should Not Directly Drive Write Enable Signal of Asynchronous
RAM

Medium

A110 Design Should Not Contain Asynchronous Memory Medium

C101 Gated Clocks Should Be Implemented According to Altera Standard Scheme Critical

C102 Logic Cell Should Not Be Used to Generate Inverted Clock High

C103 Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock Ports to
Effectively Save Power: <n>

High

C104 Clock Signal Source Should Drive Only Input Clock Ports Medium

C105 Clock Signal Should Be a Global Signal High

C106 Clock Signal Source Should Not Drive Registers that Are Triggered by Different
Clock Edges

Medium

R101 Combinational Logic Used as a Reset Signal Should Be Synchronized High

R102 External Reset Should Be Synchronized Using Two Cascaded Registers Medium

R103 External Reset Should Be Synchronized Correctly High

R104 Reset Signal Generated in One Clock Domain and Used in Other Asynchronous
Clock Domains Should Be Synchronized Correctly

High

R105 Reset Signal Generated in One Clock Domain and Used in Other Asynchronous
Clock Domains Should Be Synchronized

Medium

5–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Design Should Not Contain Combinational Loops

Severity Level: Critical
Rule ID: A101

A combinational loop is created by establishing a direct feedback loop on
combinational logic that is not synchronized by a register. A
combinational loop also occurs when the output of a register is fed back
to an asynchronous pin of the same register through combinational logic.
Combinational loops are among the most common causes of instability
and reliability in your designs, and should be avoided whenever possible.
Refer to “Combinational Loops” on page 5–5 for examples of the kinds of
problems that combinational loops can cause.

S101 Output Enable and Input of the Same Tri-state Nodes Should Not Be Driven by the
Same Signal Source

High

S102 Synchronous Port and Asynchronous Port of the Same Register Should Not Be
Driven by the Same Signal Source

High

S103 More Than One Asynchronous Signal Source of the Same Register Should Not Be
Driven by the Same Source

High

S104 Clock Port and Any Other Signal Port of the Same Register Should Not Be Driven
by the Same Signal Source

High

T101 Nodes with More Than Specified Number of Fan-outs: <n> Information Only

T102 Top Nodes with Highest Fan-out: <n> Information Only

D101 Data Bits Are Not Synchronized When Transferred between Asynchronous Clock
Domains

High

D102 Multiple Data Bits Transferred Across Asynchronous Clock Domains Are
Synchronized, But Not All Bits May Be Aligned in the Receiving Clock Domain

Medium

D103 Data Bits Are Not Correctly Synchronized When Transferred Between
Asynchronous Clock Domains

High

H101 Only One VREF Pin Should Be Assigned to HardCopy Test Pin in an I/O Bank Medium

H102 A PLL Drives Multiple Clock Network Types Medium

M101 Data Bits Are Not Synchronized When Transferred to the State Machine of
Asynchronous Clock Domains

High

M102 No Reset Signal Defined to Initialize the State Machine Medium

M103 State Machine Should Not Contain Unreachable State Medium

M104 State Machine Should Not Contain a Deadlock State Medium

M105 State Machine Should Not Contain a Dead Transition Medium

Table 5–2. Summary of Rules and IDs (Part 2 of 2)

Rule ID Rule Name Severity Level

Altera Corporation 5–21
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Register Output Should Not Drive Its Own Control Signal Directly or
through Combinational Logic

Severity Level: Critical
Rule ID: A102

A combinational loop occurs when you feed back the output of a register
to an asynchronous pin of the same register (for example, the register’s
preset or asynchronous load signal), or the register drives combinational
logic that drives one of the control signals on the same register.
Combinational loops are among the most common causes of instability
and reliability in your designs, and should be avoided whenever possible.
Refer to “Combinational Loops” on page 5–5 for examples of the kinds of
problems that combinational loops can cause.

Design Should Not Contain Delay Chains

Severity Level: High
Rule ID: A103

Delay chains are created when one or more consecutive nodes with a
single fan-in and a single fan-out are used to cause delay. Delay chains are
sometimes used to create intentional delay to resolve race conditions.
Delay chains may cause significant problems, because they affect the rise
and fall time differences in your design.

This rule applies only for delay chains implemented in logic cells, and is
limited to the clock and reset path of your design. This rule does not apply
to delay chains in the data path. Altera recommends that you do not
instantiate a cell that does not benefit the design, and is used only to delay
the signal. Refer to “Delay Chains” on page 5–7 for examples of the kinds
of problems that delay chains can cause.

Design Should Not Contain Ripple Clock Structures

Severity Level: Medium
Rule ID: A104

Designs should not contain ripple clock structures. These structures use
two or more cascaded registers in which the output of each register feeds
the clock pin of the register in the next stage. Cascading structures cause
large skew in the output signal because each stage of the structure causes
a new clock domain to be defined. The additional clock domains from
each stage of the ripple clock are difficult for static timing analysis tools
to analyze. Refer to “Ripple Counters” on page 5–10 for examples of the
kinds of problems that ripple clock structures can cause.

5–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Pulses Should Not Be Implemented Asynchronously

Severity Level: Critical
Rule ID: A105

There are two common methods for pulse generation:

■ Increasing the width of a glitch using a 2-input AND, NAND, OR, or NOR
gate, where the source for the two gate inputs are the same, but one
of the gate inputs is inverted

■ Using a register where the register output drives the register’s own
asynchronous reset signal through a delay chain (refer to “Delay
Chains” on page 5–7 for more details).

These techniques are purely asynchronous and therefore should be
avoided. Refer to “Pulse Generators and Multivibrators” on page 5–7 for
recommended pulse generation guidelines.

Multiple Pulses Should Not Be Generated in the Design

Severity Level: Critical
Rule ID: A106

A common asynchronous multiple-pulse-generation technique consists
of a combinational logic gate in which the inverted output feeds back to
one of the inputs of the same gate. This feedback path causes a
combinational loop which forces the output to change state, and therefore
oscillate. Sometimes multiple pulse generators or multivibrator circuits
are built out of a series of cascaded inverters in a structure called a “ring
oscillator.” Oscillation creates a new artificial clock in your design that is
difficult for the Quartus II software to determine, set, or verify.

Structures that generate multiple pulses cause more problems than pulse
generators because of the number of pulses involved. In addition,
multi-pulse generators also increase the frequency of the design. See
“Pulse Generators and Multivibrators” on page 5–7 for recommended
pulse generation guidelines.

Altera Corporation 5–23
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Design Should Not Contain SR Latches

Severity Level: High
Rule ID: A107

A latch is a combinational loop that holds the value of a signal until a new
value is assigned. Combinational loops are hazardous to your design and
are the most common causes of instability and reliability. Refer to
“Combinational Loops” on page 5–5 for examples of the kinds of
problems that combinational loops can cause.

Rule A107 triggers only when your design contains SR latches. An SR
latch can cause glitches and ambiguous timing, which complicates the
timing analysis of your design. Refer to “Latches” on page 5–5 for details
about latches, and for more examples of the kinds of problems that latches
can cause.

Design Should Not Contain Latches

Severity Level: High
Rule ID: A108

The Design Assistant generates warnings when it identifies one or more
structures as latches.

Refer to “Latches” on page 5–5 for details about latches, and for examples
of the kinds of problems that latches can cause.

1 The difference between A107 (“Design Should Not Contain SR
Latches”) and A108 is that A107 triggers only when an SR latch
is detected. A108 triggers when there’s an unidentified latch in
your design.

Combinational Logic Should Not Directly Drive Write Enable Signal of
Asynchronous RAM

Severity Level: Medium
Rule ID: A109

Altera FPGA devices contain flexible embedded memory structures that
can be configured into many different modes. One possible mode is
asynchronous RAM. The definition of an asynchronous RAM circuit is
one in which the write-enable signal driving into the RAM causes data to
be written into it without a clock being required.

5–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

You should not use combinational logic to directly drive the write-enable
signal of an asynchronous RAM. Any glitches that exist on the
write-enable signal can cause the asynchronous RAM to be corrupted.
Also, the data and write address ports of the RAM should be stable before
the write pulse is asserted, and must remain stable until the write pulse is
de-asserted. Because of the limitations to using memory structures in this
asynchronous mode, synchronous memories are always preferred. In
addition, synchronous memories provide higher design performance.

As a guideline, a register should be used between the combinational logic
and the asynchronous RAM, or the asynchronous RAM should be
replaced with synchronous memory. Refer to “Hazards of Asynchronous
Design” on page 5–3 for examples of the kinds of problems asynchronous
techniques can cause.

This rule applies only to device families that support asynchronous RAM.

Design Should Not Contain Asynchronous Memory

Severity Level: Medium
Rule ID: A110

You should avoid using asynchronous memory (for example,
asynchronous RAM) in your design, because asynchronous memory can
become corrupted by glitches created in the combinational logic that
drives the write-enable signal of the memory. Asynchronous memory
requires that the data and write address ports of the memory be stable
before the write pulse is asserted, and must remain stable until the write
pulse is de-asserted. In addition, asynchronous memory has lower
performance than synchronous memory.

As a guideline, a register should be used between the combinational logic
and the asynchronous RAM, or the asynchronous RAM should be
replaced with synchronous memory. Immediately registering both input
and output of the RAM improves performance and timing closure. Refer
to “Hazards of Asynchronous Design” on page 5–3 for examples of the
kinds of problems asynchronous techniques can cause.

This rule applies only to device families that support asynchronous RAM.

Altera Corporation 5–25
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Gated Clocks Should Be Implemented According to Altera Standard
Scheme

Severity Level: Critical
Rule ID: C101

Clock gating is sometimes used to turn parts of a circuit on and off to
reduce the total power consumption of a device. Clock gating is
implemented using an enable signal that controls some sort of gating
circuitry. The gated clock signal prevents any of the logic driven by it from
switching so the logic does not consume any power. For example, when
a clock is turned off, the corresponding clock domain is shut down and
becomes functionally inactive. However, the disadvantage of using this
type of circuit is that it can lead to unexpected glitches on the resultant
gated clock signal if certain rules are not followed.

Refer to “Gated Clocks” on page 5–12 for examples of the kinds of
problems gated clocks can cause. Refer to “Recommended Clock-Gating
Methods” on page 5–14 for a recommended clock gating technique.
However, when following the recommended clock gating techniques,
your design must have a minimum number of fan-outs to meet rule C103,
“Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock
Ports to Effectively Save Power: <n>."

Logic Cell Should Not Be Used to Generate Inverted Clock

Severity Level: High
Rule ID: C102

Your design may require both positive and negative edges of a clock to
operate. However, you should not implement an inverter to drive the
clock input of a register in your design with a logic cell. Implementing the
inverter with a logic cell can lead to clock insertion delay and skew, which
is hazardous to your design and can cause problems with the timing
closure of the design.

In addition, using a logic cell to implement an inverter is unnecessary.
You should use the programmable clock inversion featured in the register
to generate the inverted clock signal. Refer to “Clocking Schemes” on
page 5–9 for details about different types of clocking methods.

5–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock Ports
to Effectively Save Power: <n>

Severity Level: Medium
Rule ID: C103

Your design can contain an input clock pin that fans out to more than one
gated clock. However, to effectively reduce power consumption, Altera
recommends that the gated clock feed at least a pre-defined number of
clock ports (n ports). The default value for n is 30. You can set the number
of clock ports (n) by clicking Settings on the Assignments menu. In the
Category list, select Design Assistant. On the Design Assistant page,
expand the Clock category, and turn on Gated clock is not feeding at
least a pre-defined number of clock port to effectively save power: <n>.
Click on the Gated Clock Settings button, and in the Gated Clock
Settings dialog box, set the number of clock ports a gated clock should
feed. Refer to “Clocking Schemes” on page 5–9, and “Recommended
Clock-Gating Methods” on page 5–14 for proper clock-gating techniques.

Clock Signal Source Should Drive Only Input Clock Ports

Severity Level: Medium
Rule ID: C104

Clock signal sources in a design should drive only input clock ports of
registers. Rule C104 triggers when a design contains a clock signal source
of a register that connects to port rather than the clock port of another
register. Note that if the clock signal source and ports are of the same
register, rule S104 “Clock Port and Any Other Signal Port of the Same
Register Should Not Be Driven by the Same Signal Source” is triggered
instead. Such a design is considered asynchronous and should be
avoided. Asynchronous design structures can be hazardous to your
design because some of them rely on the relative propagation delays of
signals to function correctly, which can result in incomplete timing
constraints and possible glitches and spikes. Refer to “Hazards of
Asynchronous Design” on page 5–3 for examples of the kinds of
problems that asynchronous design structures can cause. Also refer to
“Clocking Schemes” on page 5–9 for proper clocking techniques.

This rule does not apply in the following conditions:

■ When the clock signal source drives combinational logic that is used
as a clock signal, and the combinational logic is implemented
according to the Altera standard scheme

■ When the clock signal source drives only a clock multiplexer that
selects one clock source from a number of different clock sources

Altera Corporation 5–27
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

1 This type of multiplexer adds complexity to the timing analysis
of a design. You should avoid using the multiplexer in the
design.

■ Using a clock multiplexer causes the “Gated Clocks Should Be
Implemented According to Altera Standard Scheme” rule (C101) to
be applied; refer to “Multiplexed Clocks” on page 5–11 for
recommended clock multiplexing techniques

Clock Signal Should Be a Global Signal

Severity Level: High
Rule ID: C105

You should ensure that all clock signals in your design use the global
clock networks that exist in the target FPGA. Mapping clock signals to use
non-dedicated clock networks can negatively affect the performance of
your design. A non-global signal can be slower and have larger skew than
a global signal because the clock must be distributed using regular FPGA
routing resources.

To specify the number of minimum fan-outs that you want the Design
Assistant to report, on the Design Assistant page, in the Clock category,
select Clock signal should be a global signal. Click Global Clock
Threshold Settings, and enter the number in the dialog box.

If a design contains more clock signals than are available in the target
device, you should consider reducing the number of clock signals in the
design, such that only dedicated clock resources are used for clock
distribution. However, if the design must use more clock signals than you
can specify as global signals, implement the clock signals with the lowest
fan-out using regular routing resources. Also, implement the fastest clock
signals as global signals. Refer to “Clock Network Resources” on
page 5–44 for detailed information about clock resources.

Clock Signal Source Should Not Drive Registers that Are Triggered by
Different Clock Edges

Severity Level: Medium
Rule ID: C106

This rule triggers an error message if your design contains a clock signal
source that drives the clock inputs of both positive and negative
edge-sensitive registers. This error also triggers if your design contains an
inverted clock signal that drives the clock inputs of either positive or
negative edge-sensitive registers.

5–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

These two scenarios can cause an increase in timing requirement
complexity and difficulties in design optimization. Also, because those
registers are clocked on the different edges, synchronous resetting is
impossible. Refer to “Clocking Schemes” on page 5–9 for some specific
examples and recommended clocking methods.

Combinational Logic Used as a Reset Signal Should Be Synchronized

Severity Level: High
Rule ID: R101

All combinational logic used to drive reset signals in your design should
be synchronized. This means that a register should be placed between the
combinational logic that drives reset signal and the input reset pin.
Unsynchronized combinational logic can cause glitches and spikes that
lead to unintentional reset signals. Synchronizing the combinational logic
that drives the reset signal delays the resulting reset signal by an extra
clock cycle and avoids unintentional reset. You should consider the extra
clock cycle delay when using this method in your design.

Rule R101 does not trigger if the combinational logic used is either a
2-input AND or NOR that feeds active low reset port, or either a 2-input OR
or NAND that feeds active high reset port.

External Reset Should Be Synchronized Using Two Cascaded Registers

Severity Level: Medium
Rule ID: R102

The only way to put your design into a reset state in the absence of a clock
signal is to use an asynchronous reset or external reset. However, the
asynchronous reset can affect the recovery time of a register, cause design
stability problems, and unintentionally reset the state machines in your
design to incorrect states.

As a guideline, you can synchronize an external reset signal by using a
double-buffer circuit, which consists of two cascaded registers triggered
on the same clock edge, and on the same clock domain as the targeted
registers.

This rule does not apply in the following two conditions:

■ When the targeted registers use active-high reset ports, and the
external reset signal drives the PRE ports on the cascaded registers
with the input port of the first cascaded registers is fed to GND. Refer
to Figure 5–11.

Altera Corporation 5–29
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Figure 5–10. Active-Low Reset Ports

■ When the targeted registers use active-low reset ports, and the
external reset signal drives the CLR ports on the cascaded registers
with the input port of the first cascaded registers is fed to VCC. Refer
to Figure 5–10.

Figure 5–11. Active-High Reset Ports

PRE

CLR

D Q

ENA

PRE

CLR

D Q

ENA PRE

CLR

D Q

ENA

PRE

CLR

D Q

ENA

Clock

Reset

inst6 inst5

inst4

inst9

Cascaded Registers

Targeted
Registers

0

PRE

CLR

D Q

ENA

PRE

CLR

D Q

ENA PRE

CLR

D Q

ENA

PRE

CLR

D Q

ENA

Clock

Reset

inst2inst3

inst1

inst

Cascaded Registers

Targeted
Registers

1

5–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

External Reset Should Be Synchronized Correctly

Severity Level: High
Rule ID: R103

The only way to put your design into a reset state in the absence of a clock
signal is to use an asynchronous reset or external reset. However, the
asynchronous reset can affect the recovery time of a register, cause design
stability problems, and unintentionally reset the state machines in your
design to incorrect states.

As a guideline, you can synchronize an external reset signal by using two
cascaded registers. The registers should be triggered on the same clock
edge, and on the same clock domain as the targeted registers.

This rule applies when an asynchronous reset or external reset signal is
synchronized but fails to follow the recommended guidelines as
described in rule R102 (“External Reset Should Be Synchronized Using
Two Cascaded Registers”). This violation happens when the external
reset is synchronized with only one register, or the cascaded
synchronization registers are triggered on different clock edges.

1 R102 triggers when you don’t use two cascaded registers to
synchronize the external reset. R103 triggers when the external
reset is synchronized but fails to follow the recommended
guidelines.

Reset Signal Generated in One Clock Domain and Used in Other
Asynchronous Clock Domains Should Be Synchronized Correctly

Severity Level: High
Rule ID: R104

If your design uses an internally generated reset signal generated in one
clock domain and used in one or more other asynchronous clock domain,
the reset signal should be synchronized. An unsynchronized reset signal
can cause metastability issues. To synchronize reset signals across clock
domains, use the following guidelines:

■ The reset signal should be synchronized with two or more cascading
registers in the receiving asynchronous clock domain.

■ The cascading registers should be triggered on the same clock edge.

Altera Corporation 5–31
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

■ There should be no logic between the output of the transmitting
clock domain and the cascaded registers in the receiving
asynchronous clock domain. The synchronization registers may
sample unintended data due to the glitches caused by the logic.

This rule applies when the internal reset signal is synchronized but fails
to follow the recommended guidelines. This happens when the external
reset is only synchronized with one register, or the cascaded
synchronization registers are triggered on different clock edges, or there
is logic between the output of the transmitting clock domain and the
cascaded registers in the receiving asynchronous clock domain.
Synchronizing the reset signal delays the signal by an extra clock cycle.
You should consider this delay when using the reset signal in a design.

Reset Signal Generated in One Clock Domain and Used in Other
Asynchronous Clock Domains Should Be Synchronized

Severity Level: Medium
Rule ID: R105

If your design uses an internally generated reset signal that is generated
in one clock domain and used in one or more other asynchronous clock
domain, the reset signal should be synchronized. An unsynchronized
reset signal can cause metastability issues. To synchronize reset signals
across clock domains, you should follow guidelines described in Rule
R104 (“Reset Signal Generated in One Clock Domain and Used in Other
Asynchronous Clock Domains Should Be Synchronized Correctly”).

This rule applies when the internally generated reset signal is not being
synchronized.

Output Enable and Input of the Same Tri-state Nodes Should Not Be
Driven by the Same Signal Source

Severity Level: High
Rule ID: S101

This rule applies when your design contains a tri-state node in which the
input and output enable are driven by the same signal source. Signal race
occurs between the input and output enable signals of the tri-state when
they are propagated simultaneously. Race conditions lead to incorrect
design function and unpredictable results. To avoid violation of this rule,
the input and output enable of the tri-state should be driven by separate
signal sources.

5–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Synchronous Port and Asynchronous Port of the Same Register Should
Not Be Driven by the Same Signal Source

Severity Level: High
Rule ID: S102

A purely synchronous design is free of signal race conditions as long as
the clock signal is properly distributed and the timing requirements of the
registers are met. However, race conditions can occur typically when the
synchronous and asynchronous input pins of the register are driven by
the same signal source. Race conditions can cause incorrect design
function and unpredictable results. Rule S102 triggers when the
synchronous and asynchronous pins of a register are driven by the same
signal source. Rule S102 does not trigger if the signal source is from a
negative-edge sensitive register of the same clock, and if the source
register is directly feeding the reset port, provided there is no
combinational logic in-between the signal and the register.

More Than One Asynchronous Signal Source of the Same Register
Should Not Be Driven by the Same Source

Severity Level: High
Rule ID: S103

To avoid race conditions in your design, Altera recommends that you
avoid using the same signal source to drive more than one port on a
register. The following ports are affected: ALOAD, ADATA, Preset, and
Clear.

Clock Port and Any Other Signal Port of the Same Register Should Not Be
Driven by the Same Signal Source

Severity Level: High
Rule ID: S104

Any clock signal source in your design should drive only input clock
ports of registers. Rule S104 triggers only when your design contains
clock signal sources that connect to ports other than the clock ports of the
same register. Rule S104 is a sub rule of C104 “Clock Signal Source Should
Drive Only Input Clock Ports.” Such a design is considered asynchronous
and should be avoided. Refer to “Hazards of Asynchronous Design” for
examples of the kinds of problems that asynchronous design structures
can cause. Refer to “Clocking Schemes” for proper clocking techniques.

Altera Corporation 5–33
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Nodes with More Than Specified Number of Fan-outs: <n>

Severity Level: Information Only
Rule ID: T101

This rule reports nodes that have more than a specified number of
fan-outs, which can create timing challenges for your design.

To specify the number of fan-outs, on the Assignments menu, click
Settings. In the Category list, select Design Assistant. On the Design
Assistant page, expand the Timing closure category by clicking the
icon next to Timing closure. Turn on Nodes with more than specified
number of fan-outs. Click High Fan-Out Net Settings. In the High
Fan-Out Net Settings dialog box, enter the number of fan-outs a node
must have to be reported by the Design Assistant.

Top Nodes with Highest Fan-out: <n>

Severity Level: Information Only
Rule ID: T102

This rule reports the specified number of nodes with the highest fan-out,
which can create timing challenges for your design.

To specify the number of fan-outs, on the Assignments menu, click
Settings. In the Category list, select Design Assistant. On the Design
Assistant page, click the icon next to Timing closure to expand the
folder. Select Nodes with more than specified number of fan-outs. Click
High Fan-out Net Settings. In the High Fan-Out Net Settings dialog box,
enter the number of nodes with the highest fan-out to be reported by the
Design Assistant.

Data Bits Are Not Synchronized When Transferred between
Asynchronous Clock Domains

Severity Level: High
Rule ID: D101

The data bits transferred between asynchronous clock domains in a
design should be synchronized to avoid metastability problems.

If the data bits belong to single-bit data, each data bit should be
synchronized with two cascading registers in the receiving asynchronous
clock domain, in which the cascaded registers are triggered on the same
clock edge. There should be no logic between the output of the
transmitting clock domain and the cascaded registers in the receiving
asynchronous clock domain.

5–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

If the data bits belong to multiple-bit data, a handshake protocol should
be used to guarantee that all bits of the data bus are stable when the
receiving clock domain samples the data. If a handshake protocol is used,
only the data bits that act as REQ (request) and ACK (acknowledge) signals
should be synchronized. The data bits that belong to multiple-bit data do
not need to be synchronized. You can ignore the violation on the data bits
that use a handshake protocol.

Multiple Data Bits Transferred Across Asynchronous Clock Domains Are
Synchronized, But Not All Bits May Be Aligned in the Receiving Clock
Domain

Severity Level: Medium
Rule ID: D102

This rule applies when data bits from a multiple-bit data that are
transferred between asynchronous clock domains are synchronized.
However, not all data bits may be aligned in the receiving clock domain.
Propagation delays may cause skew when the data reaches the receiving
clock domain.

If the data bits belong to multiple-bit data and a handshake protocol is
used, only the data bits that act as REQ, ACK, or both signals for the
transfer should be synchronized with two or more cascading registers in
the receiving asynchronous clock domain.

If all of the data bits belong to single-bit data, the synchronization of the
data bits does not cause problems in the design.

Data Bits Are Not Correctly Synchronized When Transferred Between
Asynchronous Clock Domains

Severity Level: High
Rule ID: D103

The data bits that are transferred between asynchronous clock domains in
a design should be synchronized to avoid metastability problems.

If the data bits belong to single-bit data, each data bit should be
synchronized with two cascading registers in the receiving asynchronous
clock domain. In this case, the cascaded registers are triggered on the
same clock edge, and there should be no logic between the output of the
transmitting clock domain. The cascaded registers in the receiving
asynchronous clock domain.

This rule only applies when the data bits across asynchronous clock
domains are synchronized but fail to follow the guidelines.

Altera Corporation 5–35
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Only One VREF Pin Should Be Assigned to HardCopy Test Pin in an
I/O Bank

Severity Level: Medium
Rule ID: H101

If your design targets a HardCopy APEX™ 20K device, you should not
assign more than one VREF pin to a HardCopy test pin in an I/O bank in
that targeted device. The assignment of more than one VREF pin to a
HardCopy test pin can cause contention of the VREF bus.

You can find the list of the HardCopy test pins that are in each of a
HardCopy APEX 20K device’s I/O banks in the Messages window, the
Design Assistant Messages report, and the Design Assistant HardCopy
Test Pins report. You should use this information to ensure that only one
VREF pin is assigned to a HardCopy test pin.

However, the Fitter may have assigned the VREF pins to the HardCopy
test pins during compilation. To prevent the Fitter from making these
assignments during the next compilation, create and assign the VREF
pins manually instead of allowing the Fitter to do so automatically.

This rule applies only to designs that target HardCopy APEX 20K
devices.

A PLL Drives Multiple Clock Network Types

Severity Level: Medium
Rule ID: H102

A PLL can compensate only one of the clock network types; therefore, the
other non-compensated clock network types have a non-zero delay.
However, the non-zero delay for the non-compensated clock network
types can change between a Stratix device and its corresponding
HardCopy Stratix device, or a Stratix II device and its corresponding
HardCopy II device.

Therefore, if a Stratix FPGA design relies on the relative offset between
the compensated clock network type and the non-compensated clock
network types driven by a PLL, an error can occur in the corresponding
HardCopy Stratix design because the relative offset in the HardCopy
Stratix design may differ from the relative offset in the original Stratix
FPGA design.

This rule reports only nodes in a design where a PLL drives multiple
clock network types.

5–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Data Bits Are Not Synchronized When Transferred to the State Machine of
Asynchronous Clock Domains

Severity Level: High
Rule ID: M101

The data bits that are transferred between asynchronous clock domains in
your design should be synchronized to avoid metastability problems.
Rule M101 is a state machine specific rule that triggers when input signals
of a state machine across asynchronous clock domains are not
synchronized or improperly synchronized. Rule M101 applies to state
machines only, while the “Data Bits Are Not Synchronized When
Transferred between Asynchronous Clock Domains” rule (D101) and the
“Data Bits Are Not Correctly Synchronized When Transferred Between
Asynchronous Clock Domains” rule (D103) apply only for data
synchronization between registers.

No Reset Signal Defined to Initialize the State Machine

Severity Level: Medium
Rule ID: M102

A finite state machine (FSM) should have a reset signal that initializes to
its initial state. A finite state machine without a proper initialization state
is susceptible to functional problems and can introduce extra difficulty in
analysis, verification, and maintenance.

State Machine Should Not Contain Unreachable State

Severity Level: Medium
Rule ID: M103

An unreachable state is a state that can never be reached from the initial
state. Having an unreachable state in your design causes logic
redundancy and affects your design functionality. Rule M103 triggers
when the initial state cannot traverse to a state through any of the
reachable states and transitions.

State Machine Should Not Contain a Deadlock State

Severity Level: Medium
Rule ID: M104

A deadlock state is a state that does not have any transitions to another
state except to loop to itself. When the state machine enters a deadlock
state, it stays in that state until the state machine is reset. Your design may

Altera Corporation 5–37
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

have a single state, or a few states forming a deadlock structure. Having
a deadlock state in your design leads to design functionality problems,
and theoretically may consume more power.

You can change the maximum number of states to be detected as a
deadlock structure by clicking Settings on the Assignments menu, and in
the Settings dialog box, in the Category list, select Design Assistant. In
the Design Assistant page, click Finite State Machine Deadlock
Settings. In the Finite State Machine Deadlock Settings dialog box,
specify the maximum number of states to be reported as a deadlock
structure. The default setting is 2.

State Machine Should Not Contain a Dead Transition

Severity Level: Medium
Rule ID: M105

A dead transition is a redundant transition that never occurs regardless
of the event sequence input to the state machine. A dead transition
indicates logic redundancy in your design, although it may not affect
your design functionality. Rule M105 triggers when the condition
required to trigger a transition is not possible.

Enabling and Disabling Design Assistant Rules

You can selectively enable or disable Design Assistant rules on individual
nodes by making an assignment in the Assignment Editor, or using the
altera_attribute synthesis attribute in Verilog HDL or VHDL, or
using a Tcl command.

f For a list of the types of nodes that allow Design Assistant rule
suppression, refer to Node Types Eligible for Rule Suppression in the
Quartus II Help.

1 Assignments made with Assignment Editor, the Quartus
Settings File (.qsf), and Tcl scripts and commands take
precedence over assignments made with the
altera_attribute synthesis attribute. Assignments made to
nodes, entities, or instances take precedence over global
assignments.

Using the Assignment Editor

You can enable or disable a Design Assistant rule on selected nodes in
your design by using the Assignments Editor. You must first compile
your design if you have not already done so. On the Assignments menu,
click Assignment Editor. In the spreadsheet, for the desired node, entity,

5–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

or instance, double-click the cell in the Assignment Name column and
select Enable Design Assistant Rule or Disable Design Assistant Rule
in the pull-down menu. Then double-click the Value cell and type in the
Rule ID, or click Browse to open the Design Assistant Rules dialog box.
In the Design Assistant Rules dialog box, select the rule you want to
enable or disable for that particular node.

1 You can enable or disable multiple rules by typing more than
one Rule ID in the cell, and separating each Rule ID with a
comma.

Using Verilog HDL

You can use the altera_attributes synthesis attribute in your
Verilog HDL code to enable or disable a Design Assistant rule on the
selected nodes in your design.

To enable the rule on the selected node, the syntax is as shown in the
following example:

<entity class> <object> /* synthesis
altera_attribute="enable_da_rule=<ruleID>" */

You can enable more than one rule on a selected node as shown in the
following example:

<entity class> <object> /* synthesis
altera_attribute="enable_da_rule=\"<ruleID>,<ruleID>,
<ruleID>\""*/

To disable the rule on the selected node, the syntax is as shown in the
following example:

<entity class> <object> /* synthesis
altera_attribute="disable_da_rule=<ruleID>" */

You can disable more than one rule on a selected node as shown in the
following example:

<entity class> <object> /* synthesis
altera_attribute="disable_da_rule=\"<ruleID>,
<ruleID>,<ruleID>\""*/

1 When enabling or disabling multiple rules in Verilog HDL, you
must separate the Rule ID strings with commas and spaces only,
and they must be enclosed with the \" and \" characters.

Altera Corporation 5–39
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Using VHDL

You can use the altera_attributes synthesis attribute in your VHDL
code to enable or disable a Design Assistant rule on the selected nodes in
your design.

To enable the rule on the selected node, use the following syntax:

attribute altera_attribute : string;attribute
altera_attribute of <object>: <entity class> is
"enable_da_rule=<ruleID>"

You can enable more than one rule on a selected node as shown in the
following example:

attribute altera_attribute : string;attribute
altera_attribute of <object>: <entity class> is
"enable_da_rule=""<ruleID>, <ruleID>, <ruleID>"""

To disable the rule on the selected node, use the following syntax:

attribute altera_attribute : string;attribute
altera_attribute of <object>: <entity class> is
"disable_da_rule=<ruleID>"

You can disable more than one rule on a selected node as shown in the
following example:

attribute altera_attribute : string;attribute
altera_attribute of <object>: <entity class> is
"disable_da_rule=""<ruleID>, <ruleID>, <ruleID>"""

1 When enabling or disabling multiple rules in VHDL, you must
separate the Rule ID strings with commas and spaces only, and
they must be enclosed with double quotation mark ("")
characters.

5–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Using TCL Commands

To enable a Design Assistant rule on the selected node in your design
using Tcl in a script or at a command or Tcl prompt, use the following Tcl
command:

set_instance_assignment -name enable_da_rule "<rule ID>" -to <design element> r
To enable more than one rule on a selected node, use the following Tcl
command:

set_instance_assignment -name enable_da_rule "<rule ID>, <rule ID>" -to <design element> r
To disable a Design Assistant rule on a selected node in your design using
Tcl in a script, or at a command or Tcl prompt, use the following Tcl
command:

set_instance_assignment -name disable_da_rule "<rule ID>" -to <design element> r
To disable more than one rule on a selected node, use the following Tcl
command:

set_instance_assignment -name disable_da_rule "<rule ID>,<rule ID>" -to <design element> r

Viewing Design Assistant Results

If your design violates a design rule, the Design Assistant generates
warning messages and information messages about the violated design
rule. The Design Assistant displays these messages in the Messages
window, in the Design Assistant Messages report, and in the Design
Assistant report files. You can find the Design Assistant report files called
<project_name>.drc.rpt in the <project_name> subdirectory of the project
directory.

The Design Assistant generates the following reports based on the
settings specified in the Design Assistant page:

■ Summary Report
■ Settings Report
■ Detailed Results Report
■ Messages Report
■ HardCopy Test Pins Report
■ Rule Suppression Assignments Report
■ Ignored Design Assistant Assignments Report

Altera Corporation 5–41
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Summary Report

The Design Assistant Summary report contains summary of the Design
Assistant process on a particular project. This includes Design Assistant
Status, Revision Name, Top-level Entity, Targeted Family Device, and
total number of design violations of the project. The Design Assistant
Summary report provides the following information:

■ Design Assistant Status—the status, end date, and end time of the
Design Assistant operation

■ Revision Name—the revision name specified in the Revisions
dialog box

■ Top-level Entity Name—the top-level entity of your design
■ Family—the device family name specified in the Device page of the

Settings dialog box
■ Total Critical Violations, Total High Violations, Total Medium

Violations, and Total Information Only Violations—the total
violations of the rules organized by level, some of which might affect
the reliability of the design

1 You must first review the violations closely before converting
your design for HardCopy devices to achieve a successful
conversion.

Settings Report

The Design Assistant Settings report contains a list of enabled Design
Assistant rules and options that you specified in the Design Assistant
Settings page, as shown in Figure 5–12.

5–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 5–12. The Design Assistant Settings Report

Detailed Results Report

The Detailed Results report contains detailed information of every rule
violation including the rule name, the node name, and the fan-out. This
report only appears if you specify settings in the Design Assistant
Settings page. Refer to “The Design Assistant Settings Page” on
page 5–17 for more information about how to specify the settings.

Separate Detailed Results reports are generated for critical, high,
medium, and information only results. Figure 5–13 shows the
Information Only Violations report.

Altera Corporation 5–43
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Figure 5–13. The Design Detailed Results Report, Information Only

Messages Report

The Messages report contains current information, warning, and error
messages generated during the Design Assistant process. You can
right-click a message in the Messages report and click Help to display the
Quartus II software Help with details about the selected message, or click
Locate to trace or cross-probe the selected node and locate the source of
the violation.

HardCopy Test Pins Report

The HardCopy Test Pins report appears only if you turn on Run Design
Assistant during compilation in the Design Assistant page, and if your
design violates the “Only One VREF Pin Should Be Assigned to
HardCopy Test Pin in an I/O Bank” rule (H101). The report lists all the
HardCopy design rule violations, and also list all of the test pins in the
HardCopy device.

5–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Rule Suppression Assignments Report

The Rule Suppression Assignments report contains detailed information
about which Design Assistant rules are enabled or disabled, as explained
in the “Enabling and Disabling Design Assistant Rules” on page 5–37.
The report shows you the following information:

■ Assignment—shows the name of the assignment
■ Value—identifies the rule
■ To—shows the name of the node where the rule is being applied

Ignored Design Assistant Assignments Report

The Ignored Design Assistant Assignments report lists detailed
information about the invalid and conflicting rule assignments reported
by the Design Assistant. Note that this report is generated only if you
specify an invalid rule ID in the rule suppression, or a conflicting rule
assignment. The following information appears in the report:

■ Assignment—shows the name of the assignment
■ Value—identifies the rule
■ To—shows the name of the node where the rule is being applied
■ Comment—shows why the assignment is being ignored

Targeting
Clock and
Register-Control
Architectural
Features

In addition to following general design guidelines, it is important to code
your design with the device architecture in mind. FPGAs provide
device-wide clocks and register control signals that can improve
performance.

Clock Network Resources

Altera FPGAs provide device-wide global clock routing resources and
dedicated inputs. You should use the FPGA’s low-skew, high fan-out,
dedicated routing where available. By assigning a clock input to one of
these dedicated clock pins or using a Quartus II logic option to assign
global routing, you can take advantage of the dedicated routing available
for clock signals.

In ASIC design, balancing the clock delay as it is distributed across the
device can be important. Because Altera FPGAs provides device-wide
global clock routing resources and dedicated inputs, there is no need to
manually balance delays on the clock network.

Altera recommends limiting the number of clocks in your design to the
number of dedicated global clock resources available in your FPGA.
Clocks feeding multiple locations that do not use global routing may
exhibit clock skew across the device that could lead to timing problems.

Altera Corporation 5–45
October 2007 Preliminary

Targeting Clock and Register-Control Architectural Features

In addition, when you use combinational logic to generate an internal
clock, it adds delays on the clock line. In some cases, delay on a clock line
can result in a clock skew greater than the data path length between two
registers. If the clock skew is greater than the data delay, the timing
parameters of the register (such as hold time requirements) are violated
and the design will not function correctly.

Current FPGAs offer increasing numbers of global clocks to address large
designs with many clock domains. Many large FPGA devices provide
dedicated global clock networks, regional clock networks, and dedicated
fast regional clock networks. These clocks are typically organized into a
hierarchical clock structure that allows many clocks in each device region
with low skew and delay. There are typically a number of dedicated clock
pins to drive either the global or regional clock networks and both PLL
outputs and internal clocks can drive various clock networks.

To reduce the clock skew within a given clock domain and ensure that
hold times are met within that clock domain, assign each clock signal to
one of the global high fan-out, low-skew clock networks in the FPGA
device. Quartus II automatically uses global routing for high fan-out
control signals, PLL outputs, and signals feeding the global clock pins on
the device. You can make explicit Global Signal logic option settings by
turning on the signal logic option settings. On the Assignment menu,
click Assignment Editor. Use this option when it is necessary to force the
software to use the global routing for particular signals.

To take full advantage of these routing resources, the sources of clock
signals in a design (input clock pins or internally-generated clocks)
should drive only the clock input ports of registers. In older Altera device
families (such as FLEX® 10K and ACEX® 1K), if a clock signal feeds the
data ports of a register, the signal may not be able to use the dedicated
routing, which can lead to decreased performance and clock skew
problems. In general, allowing clock signals to drive the data ports of
registers is not considered synchronous design, and it can complicate
timing analysis. It is not a recommended practice.

Reset Resources

ASIC designs may use local resets to avoid long routing delays on the
signal. You should take advantage of the device-wide asynchronous reset
pin available on most FPGAs to eliminate these problems. This reset
signal provides low-skew routing across the device.

5–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Register Control Signals

Avoid using an asynchronous load signal if the design target device
architecture does not include registers with dedicated circuitry for
asynchronous loads. Also, avoid using both asynchronous clear and
preset if the architecture provides only one of those control signals. APEX
devices, for example, directly support an asynchronous clear function,
but not a preset or load function. When the target device does not directly
support the signals, the place-and-route software must use combinational
logic to implement the same functionality. In addition, if you use signals
in a priority other than the inherent priority in the device architecture,
combinational logic may be required to implement the desired control
signals. The combinational logic is less efficient and can cause glitches
and other problems; it is best to avoid these implementations.

f For Verilog HDL and VHDL examples of registers with various control
signals, and information about the inherent priority order of register
control signals in Altera device architecture, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Conclusion Following the design practices outlined in this chapter can help you meet
your design goals consistently. Asynchronous design techniques may
result in incomplete timing analysis, may clause glitches on data signals,
and may rely on propagation delays in a device leading to race conditions
and unpredictable results. Taking advantage of the architectural features
in your FPGA device can also improve your quality of results.

Referenced
Documents

This chapter references the following documents:

■ Design Guidelines for HardCopy Series Devices chapter in the HardCopy
Series Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook

■ Quartus II Classic Timing Analysis chapter in volume 3 of the
Quartus II Handbook

■ Quartus II TimeQuest Timing Analysis chapter in volume 3 of the
Quartus II Handbook

■ Quartus II Handbook
■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II

Handbook

http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Altera Corporation 5–47
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 5–3 shows the revision history for this chapter.

Table 5–3. Document Revision History (Part 1 of 2)

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

● Added restrictions to the rule “External Reset
Should Be Synchronized Using Two Cascaded
Registers” on page 5–28

● Added Figure 5–11 and 5–10 on page 5–29
● Some changes regarding the Delay Chain rule

description (page 5–21)
● Added hyperlinks to referenced documents

Updated for Quartus II software version
7.2.

May 2007
v7.1.0

● Changed chapter name to Design
Recommendations for Altera Devices and the
Quartus II Design Assistant

● Removed Hierarchical Design Partitioning
section

● Updated Design Assistant Rules on page 5–19
● Added Finite State Machine Rules on

page 5–36
● Added Enabling and Disabling Design

Assistant Rules on page 5–38
● Added Rule Suppression Assignments Report

on page 5–45
● Added Ignored Design Assistant Assignments

Report on page 5–45
● Updated Table 5–2
● Added Referenced Documents on page 5–47

Updated for Quartus II software version
7.1.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date
only. No other changes made to chapter.

—

November 2006
v6.1.0

Added the following sections (with additional
subsections):
● “Checking Design Violations Using the Design

Assistant”
● “Quartus II Design Flow with the Design

Assistant”
● “The Design Assistant Page”
● “Message Severity Levels”
● “Design Assistant Rules”
● “Viewing Design Assistant Results”

Quartus II software version 6.1 added the
Design Assistant; the bulk of the changes
to this chapter are related to this update.

May 2006
v6.0.0

Minor updates for the Quartus II version 6.0. —

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

5–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

May 2005
v.5.0.0

Chapter 5 was formerly Chapter 4 in version 4.2. —

December 2004
v2.1

Updated for Quartus II software version 4.2:
● Chapter 5 was formerly Chapter 6 in version

4.1.
● General formatting and editing updates.
● Updated hardware requirements for the

Quartus II Timing Analyzer.
● Added timing requirements and analysis

details.
● Updated Design Guidelines.
● Added information about performing timing

analysis on asynchronous ports.
● Added inferred latches information.
● Updated Delay Chains description.
● Updated figures, tables.
● Added Clocking Schemes information.
● Added details to Multiplexed Clocks details.
● Added clock gating details.
● Updated Hierarchical Design Partitioning to

include synthesis and incremental synthesis.
● Added global routing information.

—

June 2004
v.2.0

● Updates to tables, figures, coding examples.
● New functionality for Quartus II software 4.1.

—

February 2004
v1.0

Initial release. —

Table 5–3. Document Revision History (Part 2 of 2)

Date and
Document

Version
Changes Made Summary of Changes

Altera Corporation 6–1
October 2007

6. Recommended HDL
Coding Styles

Introduction HDL coding styles can have a significant effect on the quality of results
that you achieve for programmable logic designs. Synthesis tools
optimize HDL code for both logic utilization and performance. However,
sometimes the best optimizations require human understanding of the
design, and synthesis tools have no information about the purpose or
intent of the design. You are often in the best position to improve your
quality of results.

This chapter addresses HDL coding style recommendations to ensure
optimal synthesis results when targeting Altera® devices, including the
following sections:

■ “Quartus II Language Templates” on page 6–2
■ “Using Altera Megafunctions” on page 6–3
■ “Instantiating Altera Megafunctions in HDL Code” on page 6–4
■ “Inferring Multiplier and DSP Functions from HDL Code” on

page 6–7
■ “Inferring Memory Functions from HDL Code” on page 6–13
■ “Coding Guidelines for Registers and Latches” on page 6–37
■ “General Coding Guidelines” on page 6–48
■ “Designing with Low-Level Primitives” on page 6–73

f For additional guidelines on structuring your design, refer to the Design
Recommendations for Altera Devices chapter in volume 1 of the Quartus II
Handbook.

For style recommendations, options, or HDL attributes specific to your
synthesis tool (including Quartus® II Integrated Synthesis and other EDA
tools), refer to the tool vendor’s documentation or the appropriate
chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

QII51007-7.2.0

6–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Quartus II
Language
Templates

The Quartus II software provides Verilog HDL, VHDL, AHDL, Tcl script,
and megafunction language templates that can help you with your
design.

Many of the Verilog HDL and VHDL examples in this document
correspond with examples in the templates. You can easily insert
examples from this document into your HDL source code using the Insert
Template dialog box in the Quartus II user interface, shown in Figure 6–1.

Figure 6–1. Insert Template Dialog Box

To open the Insert Template dialog box when you have a file open in the
Quartus II Text Editor, on the Edit menu, click Insert Template.
Alternately, you can right-click in the Text Editor window and choose
Insert Template.

Altera Corporation 6–3
October 2007 Preliminary

Using Altera Megafunctions

Using Altera
Megafunctions

Altera provides parameterizable megafunctions that are optimized for
Altera device architectures. Using megafunctions instead of coding your
own logic saves valuable design time. Additionally, the Altera-provided
megafunctions may offer more efficient logic synthesis and device
implementation. You can scale the megafunction’s size and set various
options by setting parameters. Megafunctions include the library of
parameterized modules (LPM) and Altera device-specific megafunctions.

To use megafunctions in your HDL code, you can instantiate them as
described in “Instantiating Altera Megafunctions in HDL Code” on
page 6–4.

Sometimes it is preferable to make your code independent of device
family or vendor, and you do not want to instantiate megafunctions
directly. For some types of logic functions, such as memory and DSP
functions, you can infer a megafunction instead of instantiating it.
Synthesis tools, including Quartus II integrated synthesis, recognize
certain types of HDL code and automatically infer the appropriate
megafunction. The synthesis tool uses the Altera megafunction code
when compiling your design—even when you do not specifically
instantiate the megafunction. Synthesis tools infer megafunctions to take
advantage of logic that is optimized for Altera devices or to target
dedicated architectural blocks.

In cases where you prefer to use generic HDL code instead of
instantiating a megafunction, follow the guidelines and coding examples
in “Inferring Multiplier and DSP Functions from HDL Code” on page 6–7
and “Inferring Memory Functions from HDL Code” on page 6–13 to
ensure your HDL code infers the appropriate Altera megafunction.

1 You must use megafunctions to access some Altera
device-specific architecture features. You can infer or instantiate
megafunctions to target some features such as memory and DSP
blocks. You must instantiate megafunctions to target certain
device and high-speed features such as LVDS drivers, PLLs,
transceivers, and double-data rate input/output (DDIO)
circuitry.

6–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

For some designs, generic HDL code can provide better results than
instantiating a megafunction. Refer to the following general guidelines
and examples that describe when to use standard HDL code and when to
use megafunctions:

■ For simple addition or subtraction functions, use the + or – symbol
instead of an LPM function. Instantiating an LPM function for simple
arithmetic operations can result in a less efficient result because the
function is hard coded and the synthesis algorithms cannot take
advantage of basic logic optimizations.

■ For simple multiplexers and decoders, use array notation (such as
out = data[sel]) instead of an LPM function. Array notation
works very well and has simple syntax. You can use the lpm_mux
function to take advantage of architectural features such as cascade
chains in APEX™ series devices, but use the LPM function only if you
understand the device architecture in detail and want to force a
specific implementation.

■ Avoid division operations where possible. Division is an inherently
slow operation. Many designers use multiplication creatively to
produce division results.

Instantiating
Altera
Megafunctions
in HDL Code

The following sections describe how to use megafunctions by
instantiating them in your HDL code with the following methods:

■ “Instantiating Megafunctions Using the MegaWizard Plug-In
Manager”—You can use the MegaWizard® Plug-In Manager to
parameterize the function and create a wrapper file.

■ “Creating a Netlist File for Other Synthesis Tools”—You can
optionally create a netlist file instead of a wrapper file.

■ “Instantiating Megafunctions Using the Port and Parameter
Definition”—You can instantiate the function directly in your HDL
code.

Instantiating Megafunctions Using the MegaWizard Plug-In
Manager

Use the MegaWizard Plug-In Manager as described in this section to
create megafunctions in the Quartus II GUI that you can instantiate in
your HDL code. The MegaWizard Plug-In Manager provides a graphical
user interface to customize and parameterize megafunctions, and ensures
that you set all megafunction parameters properly. When you finish
setting parameters, you can specify which files you want to be generated.
Depending on which language you choose, the MegaWizard Plug-In

Altera Corporation 6–5
October 2007 Preliminary

Instantiating Altera Megafunctions in HDL Code

Manager instantiates the megafunction with the correct parameters and
generates a megafunction variation file (wrapper file) in Verilog HDL
(.v), VHDL (.vhd), or AHDL (.tdf) along with other supporting files.

The MegaWizard Plug-In Manager provides options to create the
following files:

■ A sample instantiation template for the language of the variation file
(_inst.v|vhd|tdf).

■ Component Declaration File (.cmp) that can be used in VHDL
Design Files

■ ADHL Include File (.inc) that can be used in Text Design Files (.tdf)
■ Quartus II Block Symbol File (.bsf) for schematic designs
■ Verilog HDL module declaration file that can be used when

instantiating the megafunction as a black box in a third-party
synthesis tool (_bb.v).

■ If you enable the option to generate a synthesis area and timing
estimation netlist, the MegaWizard Plug-In Manager generates an
additional synthesis netlist file (_syn.v). Refer to “Creating a Netlist
File for Other Synthesis Tools” on page 6–6 for details.

Refer to Table 6–1 for a list and description of files generated by the
MegaWizard Plug-In Manager.

Table 6–1. MegaWizard Plug-In Manager Generated Files (Part 1 of 2)

File Description

<output file>.v (1) Verilog HDL Variation Wrapper File—Megafunction wrapper file for instantiation in a
Verilog HDL design.

<output file>.vhd (1) VHDL Variation Wrapper File—Megafunction wrapper file for instantiation in a VHDL
design.

<output file>.tdf (1) AHDL Variation Wrapper File—Megafunction wrapper file for instantiation in an
AHDL design.

<output file>.inc ADHL Include File—Used in AHDL designs.

<output file>.cmp Component Declaration File—Used in VHDL designs.

<output file>.bsf Block Symbol File—Used in Quartus II Block Design Files (.bdf).

<output file>_inst.v Verilog HDL Instantiation Template—Sample Verilog HDL instantiation of the module
in the megafunction wrapper file.

<output file>_inst.vhd VHDL Instantiation Template—Sample VHDL instantiation of the entity in the
megafunction wrapper file.

<output file>_inst.tdf Text Design File Instantiation Template—Sample AHDL instantiation of the
subdesign in the megafunction wrapper file.

6–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Creating a Netlist File for Other Synthesis Tools

When you use certain megafunctions with third-party EDA synthesis
tools (that is, tools other than Quartus II integrated synthesis), you can
optionally create a netlist for area and timing estimation instead of a
wrapper file.

The netlist file is a representation of the customized logic used in the
Quartus II software. The file provides the connectivity of architectural
elements in the megafunction but may not represent true functionality.
This information enables certain third-party synthesis tools to better
report area and timing estimates. In addition, synthesis tools can use the
timing information to focus timing-driven optimizations and improve
the quality of results.

f For information about support for area and timing estimation netlists in
your synthesis tool, refer to the tool vendor’s documentation or the
appropriate chapter in the Synthesis section in volume 1 of the Quartus II
Handbook.

To generate the netlist, turn on Generate a synthesis area and timing
estimation netlist on the EDA page of the MegaWizard Plug-In Manager.
The netlist file is called <output file>_syn.v.

<output file>_bb.v Black box Verilog HDL Module Declaration—Hollow-body module declaration that
can be used in Verilog HDL designs to specify port directions when creating black
boxes in third-party synthesis tools.

<output file>_syn.v (2) Synthesis area and timing estimation netlist—Megafunction netlist used by certain
third-party synthesis tools to improve area and timing estimations.

Notes to Table 6–1:
(1) The MegaWizard Plug-In Manager generates either the Verilog HDL, VHDL, or AHDL Variation Wrapper File,

depending on the language you select for the output file on the megafunction-selection page of the wizard.
(2) The MegaWizard Plug-In Manager generates this file only if you turn on the Generate a synthesis area and timing

estimation netlist option on the EDA page of the wizard.

Table 6–1. MegaWizard Plug-In Manager Generated Files (Part 2 of 2)

File Description

Altera Corporation 6–7
October 2007 Preliminary

Inferring Multiplier and DSP Functions from HDL Code

Instantiating Megafunctions Using the Port and Parameter
Definition

You can instantiate the megafunction directly in your Verilog HDL,
VHDL, or AHDL code by calling the megafunction and setting its
parameters as you would any other module, component, or subdesign.

f Refer to the specific megafunction in the Quartus II Help for a list of the
megafunction ports and parameters. Quartus II Help also provides a
sample VHDL component declaration and AHDL function prototype for
each megafunction.

1 Altera strongly recommends that you use the MegaWizard
Plug-In Manager for complex megafunctions such as PLLs,
transceivers, and LVDS drivers. For details on using the
MegaWizard Plug-In Manager, refer to “Instantiating
Megafunctions Using the MegaWizard Plug-In Manager” on
page 6–4.

Inferring
Multiplier and
DSP Functions
from HDL Code

The following sections describe how to infer multiplier and DSP
functions from generic HDL code, and, if applicable, how to target the
dedicated DSP block architecture in Altera devices:

■ “Multipliers—Inferring the lpm_mult Megafunction from HDL
Code” on page 6–7

■ “Multiply-Accumulators and Multiply-Adders—Inferring
altmult_accum and altmult_add Megafunctions from HDL Code” on
page 6–10

f For synthesis tool features and options, refer to your synthesis tool
documentation or the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

Multipliers—Inferring the lpm_mult Megafunction from HDL
Code

To infer multiplier functions, synthesis tools look for multipliers and
convert them to lpm_mult or altmult_add megafunctions, or may
map them directly to device atoms. For devices with DSP blocks, the
software can implement the function in a DSP block instead of logic,

6–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

depending on device utilization. The Quartus II Fitter can also place
input and output registers in DSP blocks (that is, perform register
packing) to improve performance and area utilization.

f For additional information about the DSP block and the supported
functions, refer to the appropriate Altera device family handbook and
Altera’s DSP Solutions Center website at www.altera.com.

The following four code samples show Verilog HDL and VHDL
examples for unsigned and signed multipliers that synthesis tools can
infer as an lpm_mult or altmult_add megafunction. Each example fits
into one DSP block 9-bit element. In addition, when register packing
occurs, no extra logic cells for registers are required.

1 The signed declaration in Verilog HDL is a feature of the
Verilog 2001 Standard.

Example 6–1. Verilog HDL Unsigned Multiplier
module unsigned_mult (out, a, b);

output [15:0] out;
input [7:0] a;
input [7:0] b;
assign out = a * b;

endmodule

Example 6–2. Verilog HDL Signed Multiplier with Input and Output Registers (Pipelining = 2)
module signed_mult (out, clk, a, b);

output [15:0] out;
input clk;
input signed [7:0] a;
input signed [7:0] b;

reg signed [7:0] a_reg;
reg signed [7:0] b_reg;
reg signed [15:0] out;
wire signed [15:0] mult_out;

assign mult_out = a_reg * b_reg;

always @ (posedge clk)
begin

a_reg <= a;
b_reg <= b;
out <= mult_out;

end
endmodule

http://www.altera.com

Altera Corporation 6–9
October 2007 Preliminary

Inferring Multiplier and DSP Functions from HDL Code

Example 6–3. VHDL Unsigned Multiplier with Input and Output Registers (Pipelining = 2)
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

USE ieee.numeric_std.all;

ENTITY unsigned_mult IS
PORT (

a: IN UNSIGNED (7 DOWNTO 0);
b: IN UNSIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)

);
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
SIGNAL a_reg, b_reg: UNSIGNED (7 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

IF (aclr ='1') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
result <= (OTHERS => '0');

ELSIF (clk'event AND clk = '1') THEN
a_reg <= a;
b_reg <= b;
result <= a_reg * b_reg;

END IF;
END PROCESS;

END rtl;

Example 6–4. VHDL Signed Multiplier
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

USE ieee.numeric_std.all;

ENTITY signed_mult IS
PORT (

a: IN SIGNED (7 DOWNTO 0);
b: IN SIGNED (7 DOWNTO 0);
result: OUT SIGNED (15 DOWNTO 0)

);
END signed_mult;

BEGIN
result <= a * b;

END rtl;

6–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Multiply-Accumulators and Multiply-Adders—Inferring
altmult_accum and altmult_add Megafunctions from HDL Code

Synthesis tools detect multiply-accumulators or multiply-adders and
convert them to altmult_accum or altmult_add megafunctions,
respectively, or may map them directly to device atoms. The Quartus II
software then places these functions in DSP blocks during placement and
routing.

1 Synthesis tools infer multiply-accumulator and multiply-adder
functions only if the Altera device family has dedicated DSP
blocks that support these functions.

A multiply-accumulator consists of a multiplier feeding an addition
operator. The addition operator feeds a set of registers that then feeds the
second input to the addition operator. A multiply-adder consists of two
to four multipliers feeding one or two levels of addition, subtraction, or
addition/subtraction operators. Addition is always the second-level
operator, if it is used. In addition to the multiply-accumulator and
multiply-adder, the Quartus II Fitter also places input and output
registers into the DSP blocks to pack registers and improve performance
and area utilization.

The Verilog HDL and VHDL code samples shown in Examples 6–5
through 6–8 infer specific multiply-accumulators and multiply-adders.

Altera Corporation 6–11
October 2007 Preliminary

Inferring Multiplier and DSP Functions from HDL Code

Example 6–5. Verilog HDL Unsigned Multiply-Accumulator with Input, Output and Pipeline Registers
(Latency = 3)
module unsig_altmult_accum (dataout, dataa, datab, clk, aclr, clken);

input [7:0] dataa;
input [7:0] datab;
input clk;
input aclr;
input clken;
output [31:0] dataout;
reg [31:0] dataout;
reg [7:0] dataa_reg;
reg [7:0] datab_reg;
reg [15:0] multa_reg;
wire [15:0] multa;
wire [31:0] adder_out;
assign multa = dataa_reg * datab_reg;
assign adder_out = multa_reg + dataout;
always @ (posedge clk or posedge aclr)
begin

if (aclr)
begin

dataa_reg <= 8'b0;
datab_reg <= 8'b0;
multa_reg <= 16'b0;
dataout <= 32'b0;

end
else if (clken)
begin

dataa_reg <= dataa;
datab_reg <= datab;
multa_reg <= multa;
dataout <= adder_out;

end
end

endmodule

Example 6–6. Verilog HDL Signed Multiply-Adder (Latency = 0)
module sig_altmult_add (dataa, datab, datac, datad, result);

input signed [15:0] dataa;
input signed [15:0] datab;
input signed [15:0] datac;
input signed [15:0] datad;
output [32:0] result;

wire signed [31:0] mult0_result;
wire signed [31:0] mult1_result;

assign mult0_result = dataa * datab;
assign mult1_result = datac * datad;
assign result = (mult0_result + mult1_result);

endmodule

6–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example 6–7. VHDL Unsigned Multiply-Adder with Input, Output and Pipeline Registers (Latency = 3)
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all;

ENTITY unsignedmult_add IS
PORT (

a: IN UNSIGNED (7 DOWNTO 0);
b: IN UNSIGNED (7 DOWNTO 0);
c: IN UNSIGNED (7 DOWNTO 0);
d: IN UNSIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)

);
END unsignedmult_add;

ARCHITECTURE rtl OF unsignedmult_add IS
SIGNAL a_reg, b_reg, c_reg, d_reg: UNSIGNED (7 DOWNTO 0);
SIGNAL pdt_reg, pdt2_reg: UNSIGNED (15 DOWNTO 0);
SIGNAL result_reg: UNSIGNED (15 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

IF (aclr = '1') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
c_reg <= (OTHERS => '0');
d_reg <= (OTHERS => '0');
pdt_reg <= (OTHERS => '0');
pdt2_reg <= (OTHERS => '0');

ELSIF (clk'event AND clk = '1') THEN
a_reg <= a;
b_reg <= b;
c_reg <= c;
d_reg <= d;
pdt_reg <= a_reg * b_reg;
pdt2_reg <= c_reg * d_reg;
result_reg <= pdt_reg + pdt2_reg;

END IF;
END PROCESS;

result <= result_reg;
END rtl;

Altera Corporation 6–13
October 2007 Preliminary

Inferring Memory Functions from HDL Code

Example 6–8. VHDL Signed Multiply-Accumulator with Input, Output and Pipeline Registers (Latency = 3)
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all;

ENTITY sig_altmult_accum IS
PORT (

a: IN SIGNED(7 DOWNTO 0);
b: IN SIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
accum_out: OUT SIGNED (15 DOWNTO 0)

) ;
END sig_altmult_accum;

ARCHITECTURE rtl OF sig_altmult_accum IS
SIGNAL a_reg, b_reg: SIGNED (7 DOWNTO 0);
SIGNAL pdt_reg: SIGNED (15 DOWNTO 0);
SIGNAL adder_out: SIGNED (15 DOWNTO 0);

BEGIN
PROCESS (clk)
BEGIN

IF (clk'event and clk = '1') THEN
a_reg <= (a);
b_reg <= (b);

pdt_reg <= a_reg * b_reg;
adder_out <= adder_out + pdt_reg;

END IF;
END process;
accum_out <= adder_out;

END rtl;

Inferring
Memory
Functions from
HDL Code

The following sections describe how to infer memory functions from
generic HDL code and, if applicable, to target the dedicated memory
architecture in Altera devices:

■ “RAM Functions—Inferring altsyncram and altdpram
Megafunctions from HDL Code” on page 6–14

■ “ROM Functions—Inferring altsyncram and lpm_rom
Megafunctions from HDL Code” on page 6–31

■ “Shift Registers—Inferring the altshift_taps Megafunction from HDL
Code” on page 6–33

f For synthesis tool features and options, refer to your synthesis tool
documentation or the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

Altera's dedicated memory architecture offers a number of advanced
features that can be easily targeted using the MegaWizard Plug-In
Manager as described in “Instantiating Altera Megafunctions in HDL
Code” on page 6–4. The coding recommendations in the following

6–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

sections provide portable examples of generic HDL code that infer the
appropriate megafunction. However, if you want to use some of the
advanced memory features in Altera devices, consider using the
megafunction directly so that you can control the ports and parameters
more easily.

RAM Functions—Inferring altsyncram and altdpram
Megafunctions from HDL Code

To infer RAM functions, synthesis tools detect sets of registers and logic
that can be replaced with the altsyncram or altdpram megafunctions
for device families that have dedicated RAM blocks, or may map them
directly to device memory atoms.

Standard synthesis tools recognize single-port and simple dual-port (one
read port and one write port) RAM blocks. Some tools (such as the
Quartus II software) also recognize true dual port RAM blocks that map
to the memory blocks in certain Altera devices. Tools usually do not infer
small RAM blocks because small RAM blocks typically can be
implemented more efficiently using the registers in regular logic.

1 If you are using Quartus II integrated synthesis, you can direct
the software to infer ROM blocks for all sizes with the Allow
Any RAM Size for Recognition option under More Settings on
the Analysis & Synthesis Settings page of the Settings dialog
box.

1 If your design contains a RAM block that your synthesis tool
does not recognize and infer, the design might require a large
amount of system memory that potentially can cause
compilation problems.

Some synthesis tools provide options to control the implementation of
inferred RAM blocks for Altera devices with TriMatrix™ memory blocks.
For example, Quartus II integrated synthesis provides the ramstyle
synthesis attribute to specify the type of memory block or to specify the
use of regular logic instead of a dedicated memory block. Quartus II
integrated synthesis does not map inferred memory into Stratix III
MLABs unless the HDL code specifies the appropriate ramstyle
attribute, although the Fitter may map some memories to MLABs.

f For details about using the ramstyle attribute, refer to the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook. For
information about synthesis attributes in other synthesis tools, refer to
the appropriate chapter in the Synthesis section in volume 1 of the
Quartus II Handbook.

Altera Corporation 6–15
October 2007 Preliminary

Inferring Memory Functions from HDL Code

When you are using a formal verification flow, Altera recommends that
you create RAM blocks in separate entities or modules that contain only
the RAM logic. In certain formal verification flows, for example, when
using Quartus II integrated synthesis, the entity or module containing the
inferred RAM is put into a black box automatically because formal
verification tools do not support RAM blocks. The Quartus II software
issues a warning message when this occurs. If the entity or module
contains any additional logic outside the RAM block, this logic also must
be treated as a black box for formal verification and therefore cannot be
verified.

This section presents several guidelines for inferring RAM functions that
match the dedicated memory architecture in Altera devices, and then
provides recommended HDL code for different types of memory logic.

Use Synchronous Memory Blocks

Altera recommends using synchronous memory blocks for Altera
designs. The TriMatrix memory blocks in Altera’s newest devices are
synchronous, so RAM designs that are targeted towards architectures
that contain these dedicated memory blocks must be synchronous to be
mapped directly into the device architecture. Asynchronous memory
logic is not inferred as a memory block or placed in the device dedicated
memory blocks; the logic is implemented in regular logic cells.

Synchronous memories are supported in all Altera device families. A
memory block is considered synchronous if it uses one of the following
read behaviors:

■ Memory read occurs in a Verilog always block with a clock signal or
a VHDL clocked process.

■ Memory read occurs outside a clocked block, but there is a
synchronous read address (that is, the address used in the read
statement is registered). This type of logic is not always inferred as a
memory block, depending on the target device architecture.

1 The synchronous memory structures in Altera devices differ
from the structures in other vendors’ devices. Match your
design to the target device architecture to achieve the best
results.

Later subsections provide coding recommendations for various memory
types. All of these examples are synchronous to ensure that they can be
directly mapped into the dedicated memory architecture available in
Altera FPGAs.

6–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

f For additional information about the dedicated memory blocks in your
specific device, refer to the appropriate Altera device family data sheet
on the Altera website at www.altera.com.

Avoid Unsupported Reset Conditions

You cannot clear the RAM contents of Altera memory blocks. If your
HDL code describes a RAM with a reset signal for the RAM contents, the
logic is not inferred as a memory block or mapped to dedicated memory
architecture. As a general rule, avoid putting RAM read or write
operations in an always block or process block with a reset signal.

Example 6–9 shows an example of undesirable code where there is a reset
signal that clears part of the RAM contents. Avoid this coding style
because it is not supported in Altera memories.

Example 6–9. Verilog RAM with Reset Signal that Clears RAM Contents: Not Supported in Device Architecture
module clear_ram
(

input clock,
input reset,
input we,
input [7:0] data_in,
input [4:0] address,
output reg [7:0] data_out

);

reg [7:0] mem [0:31];
integer i;

always @ (posedge clock or posedge reset)
begin

if (reset == 1'b1)
mem[address] <= 0;

else if (we == 1'b1)
mem[address] <= data_in;

data_out <= mem[address];
end

endmodule

http://www.altera.com

Altera Corporation 6–17
October 2007 Preliminary

Inferring Memory Functions from HDL Code

Example 6–10 shows an example of undesirable code where the reset
signal affects the RAM, although the effect may not be intended. Avoid
this coding style because it is not supported in Altera memories.

Example 6–10. Verilog RAM with Reset Signal that Affects RAM: Not Supported in Device Architecture
module bad_reset
(

input clock,
input reset,
input we,
input [7:0] data_in,
input [4:0] address,
output reg [7:0] data_out,
input d,
output reg q

);

reg [7:0] mem [0:31];
integer i;

always @ (posedge clock or posedge reset)
begin

if (reset == 1'b1)
q <= 0;

else
begin

if (we == 1'b1)
mem[address] <= data_in;

data_out <= mem[address];
q <= d;

end
end

endmodule

Check Read-During-Write Behavior

It is important to check the read-during-write behavior of the memory
block described in your HDL design as compared to the behavior in your
target device architecture. HDL source code specifies the memory
behavior when you attempt to read and write from the same memory
address in the same clock cycle. The code specifies that the read returns
either the old data at the address, or the new data being written to the
address. This is referred to as the read-during-write behavior of the
memory block. Altera memory blocks have different read-during-write
behavior depending on the target device family, memory mode and block
type.

Synthesis tools map an HDL design into the target device architecture,
with the goal of maintaining the functionality described in your source
code. In some cases, memory blocks map directly into the device

6–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

architecture; however, in some cases, the device architecture cannot
implement the memory behavior described in your source code, so the
logic is not mapped to the dedicated memory blocks in the device. In still
other cases, the software can implement the memory functionality using
some extra logic in addition to the dedicated RAM block. To implement
the behavior in the target device, synthesis software may add bypass
logic around the memory block, which increases the area utilization of the
design and decreases the performance if the memory block is part of the
design's critical path.

In many synthesis tools, you can specify that the read-during-write
behavior is not important to your design; for example, if you never read
from the same address to which you write in the same clock cycle. For
Quartus II integrated synthesis, add the synthesis attribute
ramstyle="no_rw_check" to allow the software to choose the
read-during-write behavior of a RAM, rather than use the behavior
specified by your HDL code. Using this type of attribute prevents the
synthesis tool from using extra logic to implement the memory block, and
in some cases, can allow memory inference when it would otherwise be
impossible.

f For more information about attribute syntax, the no_rw_check
attribute value, or specific options for your synthesis tool, refer to your
synthesis tool documentation or to the appropriate chapter in the
Synthesis section in volume 1 of the Quartus II Handbook.

The following subsections provide coding recommendations for various
memory types. Each example describes the read-during-write behavior
and addresses the support for the memory type in Altera devices.

Single-Clock Synchronous RAM with Old Data Read-During-Write
Behavior

The code examples in this section show Verilog HDL and VHDL code
that infers simple dual port, single-clock synchronous RAM. Single-port
RAM blocks use a similar coding style.

The read-during-write behavior in these examples is to read the old data
at the memory address. Refer to “Check Read-During-Write Behavior” on
page 6–17 for details. Altera recommends that you use this coding style
as long as your design does not require that a simultaneous read and
write to the same RAM location read the new value that is currently being
written to that RAM location.

If you require that the read-during-write results in new data, refer to
“Single-Clock Synchronous RAM with New Data Read-During-Write
Behavior” on page 6–20.

Altera Corporation 6–19
October 2007 Preliminary

Inferring Memory Functions from HDL Code

The simple dual-port RAM code samples shown in Examples 6–11 and
6–12 map directly into Altera TriMatrix memory.

Single-port versions of memory blocks (that is, using the same read
address and write address signals) can allow better RAM utilization than
dual-port memory blocks, depending on the device family.

Example 6–11. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data Read-During-
Write Behavior
module single_clk_ram(

output reg [7:0] q,
input [7:0] d,
input [6:0] write_address, read_address,
input we, clk

);
reg [7:0] mem [127:0];

always @ (posedge clk) begin
if (we)

mem[write_address] <= d;
q <= mem[read_address]; // q doesn't get d in this clock cycle

end
endmodule

6–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example 6–12. VHDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data Read-During-Write
Behavior
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY single_clock_ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

);
END single_clock_ram;

ARCHITECTURE rtl OF single_clock_ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
q <= ram_block(read_address);
-- VHDL semantics imply that q doesn't get data
-- in this clock cycle

END IF;
END PROCESS;

END rtl;

Single-Clock Synchronous RAM with New Data Read-During-Write
Behavior

These examples describe RAM blocks in which a simultaneous read and
write to the same location reads the new value that is currently being
written to that RAM location.

To implement this behavior in the target device, synthesis software adds
bypass logic around the RAM block. This bypass logic increases the area
utilization of the design and decreases the performance if the RAM block
is part of the design’s critical path. Refer to “Check Read-During-Write
Behavior” on page 6–17 for details. If this behavior is not required for
your design, use the examples from “Single-Clock Synchronous RAM
with Old Data Read-During-Write Behavior” on page 6–18.

The simple dual-port RAM examples shown in Examples 6–13 and 6–14
require bypass the software to create this logic around the RAM block.

Altera Corporation 6–21
October 2007 Preliminary

Inferring Memory Functions from HDL Code

Single-port versions of the Verilog memory block (that is, using the same
read address and write address signals) do not require any logic cells to
create bypass logic in Arria™ GX devices, and Stratix® and Cyclone®
series of devices, because the device memory supports new data read-
during-write behavior when in single-port mode (same clock, same read
and write address).

Example 6–13. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with New Data Read-During-
Write Behavior
module single_clock_wr_ram(

output reg [7:0] q,
input [7:0] d,
input [6:0] write_address, read_address,
input we, clk

);
reg [7:0] mem [127:0];

always @ (posedge clk) begin
if (we)

mem[write_address] = d;
q = mem[read_address]; // q does get d in this clock cycle if we is high

end
endmodule

Note that Example 6–13 is similar to Example 6–11, but Example 6–13
uses a blocking assignment for the write so that the data is assigned
immediately.

An alternative way to create a single-clock RAM is to use an assign
statement to read the address of mem to create the output q, as shown in
following the coding style. By itself, the code describes new data
read-during-write behavior. However, if the RAM output feeds a register
in another hierarchy, then a read-during-write would result in the old
data. Synthesis tools may not infer a RAM block if the tool cannot
determine which behavior is described, such as when the memory feeds
a hard hierarchical partition boundary. For this reason, avoid using this
alternate type of coding style.

reg [7:0] mem [127:0];
reg [6:0] read_address_reg;

always @ (posedge clk) begin
if (we)

mem[write_address] <= d;

read_address_reg <= read_address;
end

assign q = mem[read_address_reg];

6–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example 6–14 uses a concurrent signal assignment to read from the RAM.
By itself, this example describes new data read-during-write behavior.
However, if the RAM output feeds a register in another hierarchy, then a
read-during-write would result in the old data. Synthesis tools may not
infer a RAM block if the tool cannot determine which behavior is
described, such as when the memory feeds a hard hierarchical partition
boundary.

Example 6–14. VHDL Single-Clock Simple Dual-Port Synchronous RAM with New Data Read-During-Write
Behavior
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY single_clock_rw_ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

);
END single_clock_rw_ram;

ARCHITECTURE rtl OF single_clock_rw_ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;

END IF;
END PROCESS;
q <= ram_block(read_address_reg);

END rtl;

This example does not infer a RAM block for APEX, ACEX, or FLEX
devices by default because the read-during-write behavior depends on
surrounding logic. For Quartus II integrated synthesis, if you do not
require the read-through-write capability, add the synthesis attribute
ramstyle="no_rw_check" to allow the software to choose the
read-during-write behavior of a RAM, rather than use the behavior
specified by your HDL code.

Altera Corporation 6–23
October 2007 Preliminary

Inferring Memory Functions from HDL Code

Simple Dual-Port, Dual-Clock Synchronous RAM

In dual clock designs, synthesis tools cannot accurately infer the
read-during-write behavior because it depends on the timing of the two
clocks within the target device. Therefore, the read-during-write
behavior of the synthesized design is undefined and may differ from
your original HDL code. Refer to “Check Read-During-Write Behavior”
on page 6–17 for details.

When Quartus II integrated synthesis infers this type of RAM, it issues a
warning because of the undefined read-during-write behavior. If this
functionality is acceptable in your design, you can avoid the warning by
adding the synthesis attribute ramstyle="no_rw_check" to allow the
software to choose the read-during-write behavior of a RAM.

The code samples shown in Examples 6–15 and 6–16 show Verilog HDL
and VHDL code that infers dual-clock synchronous RAM. The exact
behavior depends on the relationship between the clocks.

Example 6–15. Verilog HDL Simple Dual-Port, Dual-Clock Synchronous RAM
module dual_clock_ram(

output reg [7:0] q,
input [7:0] d,
input [6:0] write_address, read_address,
input we, clk1, clk2

);
reg [6:0] read_address_reg;
reg [7:0] mem [127:0];

always @ (posedge clk1)
begin

if (we)
mem[write_address] <= d;

end

always @ (posedge clk2) begin
q <= mem[read_address_reg];
read_address_reg <= read_address;

end
endmodule

Example 6–16. VHDL Simple Dual-Port, Dual-Clock Synchronous RAM
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY dual_clock_ram IS

PORT (
clock1, clock2: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (3 DOWNTO 0)

6–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

);
END dual_clock_ram;
ARCHITECTURE rtl OF dual_clock_ram IS

TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL ram_block: MEM;
SIGNAL read_address_reg : INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock1)
BEGIN

IF (clock1'event AND clock1 = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;

END IF;
END PROCESS;
PROCESS (clock2)
BEGIN

IF (clock2'event AND clock2 = '1') THEN
q <= ram_block(read_address_reg);
read_address_reg <= read_address;

END IF;
END PROCESS;

END rtl;

True Dual-Port Synchronous RAM

The code examples in this section show Verilog HDL and VHDL code
that infers true dual-port synchronous RAM. Different synthesis tools
may differ in their support for these types of memories. This section
describes the inference rules for Quartus II integrated synthesis. This type
of RAM inference is supported only for Arria GX devices, and the Stratix
and Cyclone series of devices.

Altera TriMatrix memory blocks have two independent address ports,
allowing for operations on two unique addresses simultaneously. A read
operation and a write operation can share the same port if they share the
same address. The Quartus II software infers true dual-port RAMs in
Verilog HDL and VHDL with any combination of independent read or
write operations in the same clock cycle, with at most two unique port
addresses, performing two reads and one write, two writes and one read,
or two writes and two reads in one clock cycle with one or two unique
addresses.

In the TriMatrix RAM block architecture, there is no priority between the
two ports. Therefore if you write to the same location on both ports at the
same time, the result is indeterminate. You must ensure your HDL code
does not imply priority for writes to the memory block. For example, if
both ports are defined in the same process block, the code is synthesized

Altera Corporation 6–25
October 2007 Preliminary

Inferring Memory Functions from HDL Code

and simulated sequentially so there would be a priority between the two
ports. If you code does imply a priority, the logic cannot be implemented
in the device RAM blocks.

You must also consider the read-during-write behavior of the RAM
block, to ensure that it can be mapped directly to the device RAM
architecture. Refer to “Check Read-During-Write Behavior” on page 6–17
for details.

When a read and write operation occur on the same port for the same
address, the read operation may behave as follows:

■ Read new data. This mode matches the behavior of TriMatrix
memory blocks.

■ Read old data. This mode is supported only by Stratix III and
Cyclone III TriMatrix memory blocks. This behavior is not possible
in TriMatrix memory blocks of other families.

When a read and write operation occur on different ports for the same
address (also known as mixed port), the read operation may behave as
follows:

■ Read new data. Quartus II integrated synthesis supports this mode
by creating bypass logic around the TriMatrix memory block.

■ Read old data. This behavior is supported by TriMatrix memory
blocks.

The Verilog HDL single-clock code sample shown in Example 6–17 maps
directly into Altera TriMatrix memory. When a read and write operation
occur on the same port for the same address, the new data being written
to the memory is read. When a read and write operation occur on
different ports for the same address, the old data in the memory is read.
Simultaneous writes to the same location on both ports results in
indeterminate behavior.

A dual-clock version of this design describes the same behavior, but the
memory in the target device will have undefined mixed port read-
during-write behavior because it depends on the relationship between
the clocks.

Example 6–17. Verilog HDL True Dual-Port RAM with Single Clock
module true_dual_port_ram_single_clock
(

input [(DATA_WIDTH-1):0] data_a, data_b,
input [(ADDR_WIDTH-1):0] addr_a, addr_b,
input we_a, we_b, clk,
output reg [(DATA_WIDTH-1):0] q_a, q_b

);

6–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

parameter DATA_WIDTH = 8;
parameter ADDR_WIDTH = 6;

// Declare the RAM variable
reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

always @ (posedge clk)
begin // Port A

if (we_a)
begin

ram[addr_a] <= data_a;
q_a <= data_a;

end
else

q_a <= ram[addr_a];
always @ (posedge clk)
begin // Port b

if (we_b)
begin

ram[addr_b] <= data_b;
q_b <= data_b;

end
else

q_b <= ram[addr_b];
end

endmodule

If you use Verilog read statements shown below instead of the if-else
statements in Example 6–17, the read results in old data when a read and
write operation occur at the same time for the same address on the same
port or mixed ports. This behavior is supported only in the TriMatrix
memories of Stratix III and Cyclone III devices, and is not inferred as
memory for other device families.

always @ (posedge clk)
begin // Port A
 if (we_a)

 ram[addr_a] <= data_a;

 q_a <= ram[addr_a];
end

always @ (posedge clk)
begin // Port B
 if (we_b)

 ram[addr_b] <= data_b;

 q_b <= ram[addr_b];
end

The VHDL single-clock code sample shown in Example 6–18 maps
directly into Altera TriMatrix memory. When a read and write operation
occur on the same port for the same address, the new data being written
to the memory is read. When a read and write operation occur on

Altera Corporation 6–27
October 2007 Preliminary

Inferring Memory Functions from HDL Code

different ports for the same address, the old data in the memory is read.
Simultaneous writes to the same location on both ports results in
indeterminate behavior.

A dual-clock version of this design describes the same behavior, but the
memory in the target device will have undefined mixed port read-
during-write behavior because it depends on the relationship between
the clocks.

Example 6–18. VHDL True Dual-Port RAM with Single Clock
library ieee;
use ieee.std_logic_1164.all;

entity true_dual_port_ram_single_clock is

generic
(

DATA_WIDTH : natural := 8;
ADDR_WIDTH : natural := 6

);

port
(

clk : in std_logic;
addr_a: in natural range 0 to 2**ADDR_WIDTH - 1;
addr_b: in natural range 0 to 2**ADDR_WIDTH - 1;
data_a: in std_logic_vector((DATA_WIDTH-1) downto 0);
data_b: in std_logic_vector((DATA_WIDTH-1) downto 0);
we_a: in std_logic := '1';
we_b: in std_logic := '1';
q_a : out std_logic_vector((DATA_WIDTH -1) downto 0)
q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)

);

end true_dual_port_ram_single_clock;

architecture rtl of true_dual_port_ram_single_clock is

-- Build a 2-D array type for the RAM
subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);
type memory_t is array(raddr'high downto 0) of word_t;

-- Declare the RAM signal.
signal ram : memory_t;

begin

process(clk)
begin
if(rising_edge(clk)) then -- Port A

if(we_a = '1') then
ram(addr_a) <= data_a;

-- Read-during-write on the same port returns NEW data
q_a <= data_a;

else
-- Read-during-write on the mixed port returns OLD data

6–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

q_a <= ram(addr_a);
end if;

end process;

process(clk)
begin
if(rising_edge(clk)) then -- Port B

if(we_b = '1') then
ram(addr_b) <= data_b;

-- Read-during-write on the same port returns NEW data
q_b <= data_b;

else
-- Read-during-write on the mixed port returns OLD data
q_b <= ram(addr_b);

end if;
end if;
end process;

end rtl;

Specifying Initial Memory Contents at Power-Up

Your synthesis tool may offer various ways to specify the initial contents
of an inferred memory.

1 Certain device memory types do not support initialized
memory, such as the M-RAM blocks in Stratix and Stratix II
devices.

1 Note that there are slight power-up and initialization
differences between dedicated RAM blocks and the Stratix III
MLAB memory due to the continuous read of the MLAB. Altera
dedicated RAM block outputs always power-up to zero and are
set to the initial value on the first read. For example, if address 0
is pre-initialized to FF, the RAM block powers up with the
output at 0. A subsequent read after power up from address 0
outputs the pre-initialized value of FF. Therefore, if a RAM is
powered up and an enable (read enable or clock enable) is held
low, then the power-up output of “0” is maintained until the
first valid read cycle. The Stratix III MLAB is implemented using
registers that power-up to 0, but are initialized to their initial
value immediately at power-up or reset. You will therefore see
the initial value regardless of the enable status. Quartus II
integrated synthesis does not map inferred memory to MLABs
unless the HDL code specifies the appropriate ramstyle
attribute.

Altera Corporation 6–29
October 2007 Preliminary

Inferring Memory Functions from HDL Code

Quartus II integrated synthesis supports the ram_init_file synthesis
attribute that allows you to specify a Memory Initialization File (.mif) for
an inferred RAM block.

f For information about the ram_init_file attribute, refer to the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook. For information about synthesis attributes in other synthesis
tools, refer to the tool vendor’s documentation.

In Verilog HDL, you can use an initial block to initialize the contents of
an inferred memory. Quartus II integrated synthesis automatically
converts the initial block into a MIF for the inferred RAM. Example 6–19
shows Verilog HDL code that infers a simple dual-port RAM block and
corresponding MIF file.

Example 6–19. Verilog HDL RAM with Initialized Contents
module ram_with_init(

output reg [7:0] q,
input [7:0] d,
input [4:0] write_address, read_address,
input we, clk

);
reg [7:0] mem [0:31];
integer i;

initial begin
for (i = 0; i < 32; i = i + 1)

mem[i] = i[7:0];
end

always @ (posedge clk) begin
if (we)

mem[write_address] <= d;
q <= mem[read_address];

end
endmodule

Quartus II integrated synthesis and other synthesis tools also support the
$readmemb and $readmemh commands so that RAM and ROM
initialization work identically in synthesis and simulation. Example 6–20
shows an initial block that initializes an inferred RAM block using the
$readmemb command.

Example 6–20. Verilog HDL RAM Initialized with the readmemb Command
reg [7:0] ram[0:15];
initial
begin
 $readmemb("ram.txt", ram);
end

6–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

In VHDL, you can initialize the contents of an inferred memory by
specifying a default value for the corresponding signal. Quartus II
integrated synthesis automatically converts the default value into a MIF
for the inferred RAM. Example 6–21 shows VHDL code that infers a
simple dual-port RAM block and corresponding MIF file.

Example 6–21. VHDL RAM with Initialized Contents
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
use ieee.numeric_std.all;

ENTITY ram_with_init IS
PORT(

clock: IN STD_LOGIC;
data: IN UNSIGNED (7 DOWNTO 0);
write_address: IN integer RANGE 0 to 31;
read_address: IN integer RANGE 0 to 31;
we: IN std_logic;
q: OUT UNSIGNED (7 DOWNTO 0));

END;

ARCHITECTURE rtl OF ram_with_init IS

TYPE MEM IS ARRAY(31 DOWNTO 0) OF unsigned(7 DOWNTO 0);
FUNCTION initialize_ram

return MEM is
variable result : MEM;

BEGIN
FOR i IN 31 DOWNTO 0 LOOP

result(i) := to_unsigned(natural(i), natural'(8));
END LOOP;
RETURN result;

END initialize_ram;

SIGNAL ram_block : MEM := initialize_ram;
BEGIN

PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN
ram_block(write_address) <= data;
END IF;
q <= ram_block(read_address);

END IF;
END PROCESS;

END rtl;

Altera Corporation 6–31
October 2007 Preliminary

Inferring Memory Functions from HDL Code

ROM Functions—Inferring altsyncram and lpm_rom
Megafunctions from HDL Code

To infer ROM functions, synthesis tools detect sets of registers and logic
that can be replaced with the altsyncram or lpm_rom megafunctions,
depending on the target device family, only for device families that have
dedicated memory blocks.

ROMs are inferred when a case statement exists in which a value is set
to a constant for every choice in the case statement. Because small ROMs
typically achieve the best performance when they are implemented using
the registers in regular logic, each ROM function must meet a minimum
size requirement to be inferred and placed into memory.

1 If you are using Quartus II integrated synthesis, you can direct
the software to infer ROM blocks for all sizes with the Allow
Any ROM Size for Recognition option under More Settings on
the Analysis & Synthesis Settings page of the Settings dialog
box.

Some synthesis tools provide options to control the implementation of
inferred ROM blocks for Altera devices with TriMatrix memory blocks.
For example, Quartus II integrated synthesis provides the romstyle
synthesis attribute to specify the type of memory block or to specify the
use of regular logic instead of a dedicated memory block.

f For details about using the romstyle attribute, refer to the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook. For
information about synthesis attributes in other synthesis tools, refer to
the appropriate chapter in the Synthesis section in volume 1 of the
Quartus II Handbook.

When you are using a formal verification flow, Altera recommends that
you create ROM blocks in separate entities or modules that contain only
the ROM logic because you may need to treat the entity and module as a
black box during formal verification.

1 Because formal verification tools do not support ROM
megafunctions, Quartus II integrated synthesis does not infer
ROM megafunctions when a formal verification tool is selected.

The Verilog HDL and VHDL code samples shown in Examples 6–22
and 6–23 infer synchronous ROM blocks. Depending on the device
family’s dedicated RAM architecture, the ROM logic may have to be
synchronous; consult the device family handbook for details.

6–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

For device architectures with synchronous RAM blocks, such as the
Stratix series devices and newer device families, either the address or the
output has to be registered for ROM code to be inferred. When output
registers are used, the registers are implemented using the input registers
of the RAM block, but the functionality of the ROM is not changed. If you
register the address, the power-up state of the inferred ROM can be
different from the HDL design. In this scenario, the synthesis software
issues a warning. The Quartus II Help explains the condition under
which the functionality changes when you are using Quartus II
integrated synthesis.

These ROM code samples map directly to the Altera TriMatrix memory
architecture.

Example 6–22. Verilog HDL Synchronous ROM
module sync_rom (clock, address, data_out);

input clock;
input [7:0] address;
output [5:0] data_out;

reg [5:0] data_out;

always @ (posedge clock)
begin

case (address)
8'b00000000: data_out = 6'b101111;
8'b00000001: data_out = 6'b110110;
...
8'b11111110: data_out = 6'b000001;
8'b11111111: data_out = 6'b101010;

endcase
end

endmodule

Example 6–23. VHDL Synchronous ROM
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY sync_rom IS
PORT (

clock: IN STD_LOGIC;
address: IN STD_LOGIC_VECTOR(7 downto 0);
data_out: OUT STD_LOGIC_VECTOR(5 downto 0)

);
END sync_rom;

ARCHITECTURE rtl OF sync_rom IS
BEGIN
PROCESS (clock)

BEGIN
IF rising_edge (clock) THEN

CASE address IS

Altera Corporation 6–33
October 2007 Preliminary

Inferring Memory Functions from HDL Code

WHEN "00000000" => data_out <= "101111";
WHEN "00000001" => data_out <= "110110";
...
WHEN "11111110" => data_out <= "000001";
WHEN "11111111" => data_out <= "101010";
WHEN OTHERS => data_out <= "101111";

END CASE;
END IF;
END PROCESS;

END rtl;

Shift Registers—Inferring the altshift_taps Megafunction from
HDL Code

To infer shift registers, synthesis tools detect a group of shift registers of
the same length and convert them to an altshift_taps megafunction.
To be detected, all the shift registers must have the following
characteristics:

■ Use the same clock and clock enable
■ Do not have any other secondary signals
■ Have equally spaced taps that are at least three registers apart

When you are using a formal verification flow, Altera recommends that
you create shift register blocks in separate entities or modules containing
only the shift register logic, because you may need to treat the entity or
module as a black box during formal verification.

1 Because formal verification tools do not support shift register
megafunctions, the Quartus II integrated synthesis does not
infer the altshift_taps megafunction when a formal
verification tool is selected. You can select EDA tools for use
with your Quartus II project on the EDA Tool Settings page of
the Settings dialog box.

Synthesis software recognizes shift registers only for device families that
have dedicated RAM blocks and the software uses certain guidelines to
determine the best implementation. The following guidelines are
followed in Quartus II integrated synthesis and also are generally
followed by other EDA tools:

■ For FLEX® 10K and ACEX® 1K devices, the software does not infer
altshift_taps megafunctions because FLEX 10K and ACEX 1K
devices have a relatively small amount of dedicated memory.

■ For APEX™ 20K and APEX II devices, the software infers the
altshift_taps megafunction only if the shift register has more
than a total of 128 bits. Smaller shift registers typically do not benefit
from implementation in dedicated memory.

6–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

■ For Arria GX devices, and the Stratix and Cyclone series devices, the
software determines whether to infer the altshift_taps
megafunction based on the width of the registered bus (W), the
length between each tap (L), and the number of taps (N).
● If the registered bus width is one (W = 1), the software infers

altshift_taps if the number of taps times the length
between each tap is greater than or equal to 64 (N × L ≥ 64).

● If the registered bus width is greater than one (W > 1), the
software infers altshift_taps if the registered bus width
times the number of taps times the length between each tap is
greater than or equal to 32 (W × N × L ≥ 12).

If the length between each tap (L) is not a power of two, the software uses
more logic to decode the read and write counters. This situation occurs
because for different sizes of shift registers, external decode logic that
uses logic elements (LEs) or Adaptive Logic Modules (ALMs) is required
to implement the function. This decode logic eliminates the performance
and utilization advantages of implementing shift registers in memory.

The registers that the software maps to the altshift_taps
megafunction and places in RAM are not available in a Verilog HDL or
VHDL output file for simulation tools because their node names do not
exist after synthesis.

Simple Shift Register

The code sample shown in Example 6–24 and Example 6–25 show a
simple, single-bit wide, 64-bit long shift register. The synthesis software
implements the register (W = 1 and M = 64) in an altshift_taps
megafunction for supported devices. If the length of the register is less
than 64 bits, the software implements the shift register in logic.

Example 6–24. Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register
module shift_1x64 (clk, shift, sr_in, sr_out);
 input clk, shift;

input sr_in;
output sr_out;

reg [63:0] sr;

always @ (posedge clk)
begin

if (shift == 1'b1)
begin

sr[63:1] <= sr[62:0];
sr[0] <= sr_in;

end
end
assign sr_out = sr[63];

endmodule

Altera Corporation 6–35
October 2007 Preliminary

Inferring Memory Functions from HDL Code

Example 6–25. VHDL Single-Bit Wide, 64-Bit Long Shift Register
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY shift_1x64 IS
 PORT (
 clk: IN STD_LOGIC;
 shift: IN STD_LOGIC;
 sr_in: IN STD_LOGIC;
 sr_out: OUT STD_LOGIC
);
 END shift_1x64;

ARCHITECTURE arch OF shift_1x64 IS
 TYPE sr_length IS ARRAY (63 DOWNTO 0) OF STD_LOGIC;
 SIGNAL sr: sr_length;
BEGIN
 PROCESS (clk)
 BEGIN
 IF (clk'EVENT and clk = '1') THEN
 IF (shift = '1') THEN
 sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
 sr(0) <= sr_in;
 END IF;
 END IF;
 END PROCESS;
 sr_out <= sr(63);
END arch;

Shift Register with Evenly Spaced Taps

The code samples shown in Examples 6–26 and 6–27 show a Verilog HDL
and VHDL 8-bit wide, 64-bit long shift register (W > 1 and M = 64) with
evenly spaced taps at 15, 31, and 47. The synthesis software implements
this function in a single altshift_taps megafunction and maps it to
RAM in supported devices.

Example 6–26. Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps
module shift_8x64_taps (clk, shift, sr_in, sr_out, sr_tap_one, sr_tap_two, sr_tap_three);

input clk, shift;
input [7:0] sr_in;
output [7:0] sr_tap_one, sr_tap_two, sr_tap_three, sr_out;

reg [7:0] sr [63:0];
integer n;

 always @ (posedge clk)
begin

if (shift == 1'b1)
begin

for (n = 63; n>0; n = n-1)
begin

sr[n] <= sr[n-1];
end

6–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

sr[0] <= sr_in;
end

end
assign sr_tap_one = sr[15];
assign sr_tap_two = sr[31];
assign sr_tap_three = sr[47];
assign sr_out = sr[63];

endmodule

Example 6–27. VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY shift_8x64_taps IS

PORT (
clk: IN STD_LOGIC;
shift: IN STD_LOGIC;
sr_in: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_one: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_two : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_three: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_out: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

);
END shift_8x64_taps;

ARCHITECTURE arch OF shift_8x64_taps IS
SUBTYPE sr_width IS STD_LOGIC_VECTOR(7 DOWNTO 0);
TYPE sr_length IS ARRAY (63 DOWNTO 0) OF sr_width;
SIGNAL sr: sr_length;

BEGIN
PROCESS (clk)
BEGIN

IF (clk'EVENT and clk = '1') THEN
IF (shift = '1') THEN

sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
sr(0) <= sr_in;

END IF;
END IF;

END PROCESS;
sr_tap_one <= sr(15);
sr_tap_two <= sr(31);
sr_tap_three <= sr(47);
sr_out <= sr(63);

END arch;

Altera Corporation 6–37
October 2007 Preliminary

Coding Guidelines for Registers and Latches

Coding
Guidelines for
Registers and
Latches

This section provides device-specific coding recommendations for Altera
registers and latches. Understanding the architecture of the target Altera
device helps ensure that your code provides the expected results and
achieves the optimal quality of results.

This section provides guidelines in the following areas:

■ “Register Power-Up Values in Altera Devices”
■ “Secondary Register Control Signals Such as Clear and Clock

Enable” on page 6–39
■ “Latches” on page 6–43

Register Power-Up Values in Altera Devices

Registers in the device core always power up to a low (0) logic level on all
Altera devices. However, there are ways to implement logic such that
registers behave as if they were powering up to a high (1) logic level.

If you use a preset signal on a device that does not support presets in the
register architecture, then your synthesis tool may convert the preset
signal to a clear signal, which requires synthesis to perform an
optimization referred to as NOT gate push-back. NOT gate push-back adds
an inverter to the input and the output of the register so that the reset and
power-up conditions will appear to be high but the device operates as
expected. In this case, your synthesis tool may issue a message informing
you about the power-up condition. The register itself powers up low, but
the register output is inverted so the signal that arrives at all destinations
is high.

Due to these effects, if you specify a non-zero reset value, you may cause
your synthesis tool to use the asynchronous clear (aclr) signals available
on the registers to implement the high bits with NOT gate push-back. In
that case, the registers look as though they power up to the specified reset
value. You see this behavior, for example, if your design targets
FLEX 10KE or ACEX devices.

When a load signal is available in the device, your synthesis tools can
implement a reset of 1 or 0 value by using an asynchronous load of 1 or
0. When the synthesis tool uses an asynchronous load signal, it is not
performing NOT gate push-back, so the registers power up to a 0 logic
level.

f For additional details, refer to the appropriate device family handbook
or the appropriate handbook of the Altera website at www.altera.com.

6–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Designers typically use an explicit reset signal for the design, which
forces all registers into their appropriate values after reset but not
necessarily at power-up. You can create your design such that the
asynchronous reset allows the board to operate in a safe condition and
then you can bring up the design with the reset active. This is a good
practice so you do not depend on the power-up conditions of the device.

You can make the your design more stable and avoid potential glitches by
synchronizing external or combinational logic of the device architecture
before you drive the asynchronous control ports of registers.

f For additional information about good synchronous design practices,
refer to the Design Recommendations for Altera Devices chapter in volume 1
of the Quartus II Handbook.

If you want to force a particular power-up condition for your design, use
the synthesis options available in your synthesis tool. With Quartus II
integrated synthesis, you can apply the Power-Up Level logic option.
You can also apply the option with an altera_attribute assignment
in your source code. Using this option forces synthesis to perform NOT
gate push-back because synthesis tools cannot actually change the
power-up states of core registers.

You can apply the Quartus II integrated synthesis Power-Up Level
assignment to a specific register or to a design entity, module or
subdesign. If you do so, every register in that block receives the value.
Registers power up to 0 by default; therefore you can use this assignment
to force all registers to power up to 1 using NOT gate push-back.

1 Be aware that using NOT gate push-back as a global assignment
could slightly degrade the quality of results due to the number
of inverters that are needed. In some situations, issues are
caused by enable or secondary control logic inference. It may
also be more difficult to migrate such a design to an ASIC or a
HardCopy® device. You can simulate the power-up behavior in
a functional simulation if you use initialization.

f The Power-Up Level option and the altera_attribute assignment
are described in the Quartus II Integrated Synthesis chapter in volume 1 of
the Quartus II Handbook.

Altera Corporation 6–39
October 2007 Preliminary

Coding Guidelines for Registers and Latches

Some synthesis tools can also read the default or initial values for
registered signals and implement this behavior in the device. For
example, Quartus II integrated synthesis converts default values for
registered signals into Power-Up Level settings. That way, the
synthesized behavior matches the power-up state of the HDL code
during a functional simulation.

For example, the code samples in Example 6–28 and Example 6–29 both
infer a register for q and set its power-up level to high (while the reset
value is 0).

Example 6–28. Verilog Register with Reset and High Power-Up Value
reg q = 1’b1;

always @ (posedge clk or posedge aclr)
begin
 if (aclr)
 q <= 1'b0;
 else
 q <= d;
end

Example 6–29. VHDL Register with Reset and High Power-Up Level
SIGNAL q : STD_LOGIC := '1'; -- q has a default value of '1'

PROCESS (clk, reset)
BEGIN
 IF (reset = '1') THEN
 q <= '0';
 ELSIF (rising_edge(clk)) THEN
 q <= d;
 END IF;
END PROCESS;

Secondary Register Control Signals Such as Clear and Clock
Enable

FPGA device architectures contain registers, also known as “flipflops”.
The registers in Altera FPGAs provide a number of secondary control
signals (such as clear and enable signals) that you can use to implement
control logic for each register without using extra logic cells. Device
families vary in their support for secondary signals, so consult the device
family data sheet to verify which signals are available in your target
device.

6–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

To make the most efficient use of the signals in the device, your HDL code
should match the device architecture as closely as possible. The control
signals have a certain priority due to the nature of the architecture, so
your HDL code should follow that priority where possible.

Your synthesis tool can emulate any control signals using regular logic,
so getting functionally correct results is always possible. However, if
your design requirements are flexible in terms of which control signals
are used and in what priority, match your design to the target device
architecture to achieve the most efficient results. If the priority of the
signals in your design is not the same as that of the target architecture,
then extra logic may be required to implement the control signals. This
extra logic uses additional device resources, and can cause additional
delays for the control signals.

In addition, there are certain cases where using logic other than the
dedicated control logic in the device architecture can have a larger
impact. For example, the clock enable signal has priority over the
synchronous reset or clear signal in the device architecture. The clock
enable turns off the clock line in the logic array block (LAB), and the clear
signal is synchronous. So in the device architecture, the synchronous
clear takes effect only when a clock edge occurs.

If you code a register with a synchronous clear signal that has priority
over the clock enable signal, the software must emulate the clock enable
functionality using data inputs to the registers. Because the signal does
not use the clock enable port of a register, you cannot apply a Clock
Enable Multicycle constraint. In this case, following the priority of signals
available in the device is clearly the best choice for the priority of these
control signals, and using a different priority causes unexpected results
with an assignment to the clock enable signal.

1 The priority order for secondary control signals in Altera
devices differs from the order for other vendors’ devices. If your
design requirements are flexible regarding priority, verify that
the secondary control signals meet design performance
requirements when migrating designs between FPGA vendors
and try to match your target device architecture to achieve the
best results.

Altera Corporation 6–41
October 2007 Preliminary

Coding Guidelines for Registers and Latches

The signal order is the same for all Altera device families, although as
noted previously, not all device families provide every signal. The
following priority order is observed:

1. Asynchronous Clear, aclr—highest priority
2. Preset, pre
3. Asynchronous Load, aload
4. Enable, ena
5. Synchronous Clear, sclr
6. Synchronous Load, sload
7. Data In, data—lowest priority

The following examples provide Verilog HDL and VHDL code that
creates a register with the aclr, aload, and ena control signals.

1 The Verilog HDL example (Example 6–30) does not have adata
on the sensitivity list, but the VHDL example (Example 6–31)
does. This is a limitation of the Verilog HDL language—there is
no way to describe an asynchronous load signal (in which q
toggles if adata toggles while aload is high). All synthesis
tools should infer an aload signal from this construct despite
this limitation. When they perform such inference, you may see
information or warning messages from the synthesis tool.

Example 6–30. Verilog HDL D-Type Flipflop (Register) with ena, aclr and aload Control Signals
module dff_control(clk, aclr, aload, ena, data, adata, q);

input clk, aclr, aload, ena, data, adata;
output q;

reg q;

always @ (posedge clk or posedge aclr or posedge aload)
begin

if (aclr)
q <= 1'b0;

else if (aload)
q <= adata;

else if (ena)
q <= data;

end
endmodule

6–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example 6–31. VHDL D-Type Flipflop (Register) with ena, aclr and aload Control Signals
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dff_control IS
PORT (

 clk: IN STD_LOGIC;
 aclr: IN STD_LOGIC;
 aload: IN STD_LOGIC;
 adata: IN STD_LOGIC;
 ena: IN STD_LOGIC;

 data: IN STD_LOGIC;
 q: OUT STD_LOGIC

);
END dff_control;

ARCHITECTURE rtl OF dff_control IS
BEGIN

PROCESS (clk, aclr, aload, adata)
BEGIN

 IF (aclr = '1') THEN
 q <= '0';
 ELSIF (aload = '1') THEN
 q <= adata;
 ELSE

IF (clk = '1' AND clk'event) THEN
IF (ena ='1') THEN

 q <= data;
END IF;

END IF;
END IF;

END PROCESS;
END rtl;

The preset signal is not available in many device families, so the preset
signal is not included in the examples.

Creating many registers with different sload and sclr signals can make
packing the registers into LABs difficult for the Quartus II Fitter because
the sclr and sload signals are LAB-wide signals. In addition, using the
LAB-wide sload signal prevents the Fitter from packing registers using
the quick feedback path in the device architecture, which means that
some registers cannot be packed with other logic.

Synthesis tools typically restrict use of sload and sclr signals to cases
in which there are enough registers with common signals to allow good
LAB packing. Using the LUT to implement the signals is always more
flexible if it is available. Because different device families offer different
numbers of control signals, inference of these signals is also device-
specific. For example, Stratix II devices have more flexibility than
Stratix devices with respect to secondary control signals, so synthesis
tools might infer more sload and sclr signals for Stratix II devices.

Altera Corporation 6–43
October 2007 Preliminary

Coding Guidelines for Registers and Latches

If you use these additional control signals, use them in the priority order
that matches the device architecture. To achieve the most efficient results,
ensure the sclr signal has a higher priority than the sload signal in the
same way that aclr has higher priority than aload in the previous
examples. Remember that the register signals are not inferred unless the
design meets the conditions described previously. However, if your HDL
described the desired behavior, the software always implements logic
with the correct functionality.

In Verilog HDL, the following code for sload and sclr could replace
the if (ena) q <= data; statements in the Verilog HDL example
shown in Example 6–30 on page 6–41 (after adding the control signals to
the module declaration).

Example 6–32. Verilog HDL sload and sclr Control Signals
if (ena) begin
 if (sclr)
 q <= 1'b0;
 else if (sload)
 q <= sdata;
 else
 q <= data;
end

In VHDL, the following code for sload and sclr could replace the IF
(ena ='1') THEN q <= data; END IF; statements in the VHDL
example shown in Example 6–31 on page 6–42 (after adding the control
signals to the entity declaration).

Example 6–33. VHDL sload and sclr Control Signals
IF (ena ='1') THEN
 IF (sclr = '1') THEN
 q <= '0';
 ELSIF (sload = '1') THEN
 q <= sdata;
 ELSE
 q <= data;
 END IF;
END IF;

Latches

A latch is a small combinational loop that holds the value of a signal until
a new value is assigned.

1 Altera recommends that you design without the use of latches
whenever possible.

6–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

f For additional information about the issues involved in designing with
latches and all combinational loops, refer to the Design Recommendations
for Altera Devices chapter in volume 1 of the Quartus II Handbook.

Latches can be inferred from HDL code when you did not intend to use a
latch as detailed in “Unintentional Latch Generation”. If you do intend to
infer a latch, it is important to infer it correctly to guarantee correct device
operation as detailed in “Inferring Latches Correctly” on page 6–45.

Unintentional Latch Generation

When you are designing combinational logic, certain coding styles can
create an unintentional latch. For example, when CASE or IF statements
do not cover all possible input conditions, latches may be required to hold
the output if a new output value is not assigned. Check your synthesis
tool messages for references to inferred latches. If your code
unintentionally creates a latch, make code changes to remove the latch.

1 Latches have limited support in formal verification tools.
Therefore, ensure that you do not infer latches unintentionally.
For example, an incomplete CASE statement may create a latch
when you are using formal verification in your design flow.

The full_case attribute can be used in Verilog HDL designs to treat
unspecified cases as don’t care values (X). However, using the
full_case attribute can cause simulation mismatches because this
attribute is a synthesis-only attribute, so simulation tools still treat the
unspecified cases as latches.

f Refer to the appropriate chapter in the Synthesis section in volume 1 of
the Quartus II Handbook for more information about using attributes in
your synthesis tool. The Quartus II Integrated Synthesis chapter provides
an example explaining possible simulation mismatches.

Omitting the final ELSE or WHEN OTHERS clause in an IF or CASE
statement can also generate a latch. Don’t care (X) assignments on the
default conditions are useful in preventing latch generation. For the best
logic optimization, assign the default CASE or final ELSE value to don’t
care (X) instead of a logic value.

The VHDL sample code shown in Example 6–34 prevents unintentional
latches. Without the final ELSE clause, this code creates unintentional
latches to cover the remaining combinations of the sel inputs. When you
are targeting a Stratix device with this code, omitting the final ELSE
condition can cause the synthesis software to use up to six LEs, instead of
the three it uses with the ELSE statement. Additionally, assigning the
final ELSE clause to 1 instead of X can result in slightly more LEs because
the synthesis software cannot perform as much optimization when you
specify a constant value compared to a don’t care value.

Altera Corporation 6–45
October 2007 Preliminary

Coding Guidelines for Registers and Latches

Example 6–34. VHDL Code Preventing Unintentional Latch Creation
LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY nolatch IS
PORT (a,b,c: IN STD_LOGIC;

sel: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
oput: OUT STD_LOGIC);

END nolatch;

ARCHITECTURE rtl OF nolatch IS
BEGIN

PROCESS (a,b,c,sel) BEGIN
IF sel = "00000" THEN

oput <= a;
ELSIF sel = "00001" THEN

oput <= b;
ELSIF sel = "00010" THEN

oput <= c;
ELSE --- Prevents latch inference

oput <= ''X'; --/
END IF;

END PROCESS;
END rtl;

Inferring Latches Correctly

Synthesis tools can infer a latch that does not exhibit the glitch and timing
hazard problems typically associated with combinational loops.

1 Any use of latches generates warnings and is flagged if the
design is migrated to a HardCopy structured ASIC. In addition,
timing analysis does not completely model latch timing in some
cases. Do not use latches unless you are very certain that your
design requires it, and you fully understand the impact of using
the latches.

When using Quartus II integrated synthesis, latches that are inferred by
the software are reported in the User-Specified and Inferred Latches
section of the Compilation Report. This report indicates whether the latch
is considered safe and free of timing hazards.

If a latch or combinational loop in your design is not listed in the
User-Specified and Inferred Latches report, it means that it was not
inferred as a safe latch by the software and is not considered glitch-free.

All combinational loops listed in the Analysis & Synthesis Logic Cells
Representing Combinational Loops table in the Compilation Report are
at risk of timing hazards. These entries indicate possible problems with
your design that you should investigate. However, it is possible to have

6–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

a correct design that includes combinational loops. For example, it is
possible that the combinational loop cannot be sensitized. This can occur
in cases where there is an electrical path in the hardware, but either the
designer knows that the circuit will never encounter data that causes that
path to be activated, or the surrounding logic is set up in a mutually
exclusive manner that prevents that path from ever being sensitized,
independent of the data input.

For macrocell-based devices such as MAX® 7000AE and MAX 3000A, all
data (D-type) latches and set-reset (S-R) latches listed in the Analysis &
Synthesis User-Specified and Inferred Latches table have an
implementation free of timing hazards such as glitches. The
implementation includes a cover term to ensure there is no glitching, and
includes a single macrocell in the feedback loop.

For 4-input LUT-based devices such as Stratix devices, the Cyclone series,
and MAX II devices, all latches in the User-Specified and Inferred
Latches table with a single LUT in the feedback loop are free of timing
hazards when a single input changes. Because of the hardware behavior
of the LUT, the output does not glitch when a single input toggles
between two values that are supposed to produce the same output value.
For example, a D-type input toggling when the enable input is inactive,
or a set input toggling when a reset input with higher priority is active.
This hardware behavior of the LUT means that no cover term is needed
for a loop around a single LUT. The Quartus II software uses a single LUT
in the feedback loop whenever possible. A latch that has data, enable, set,
and reset inputs in addition to the output fed back to the input cannot be
implemented in a single 4-input LUT. If the Quartus II software cannot
implement the latch with a single-LUT loop because there are too many
inputs, then the User-Specified and Inferred Latches table indicates that
the latch is not free of timing hazards.

For 6-input LUT-based devices, the software can implement all latch
inputs with a single adaptive look-up table (ALUT) in the combinational
loop. Therefore, all latches in the User-Specified and Inferred Latches
table are free of timing hazards when a single input changes.

If a latch is listed as a safe latch, other Quartus II optimizations, such as
physical synthesis netlist optimizations in the Fitter, maintain the
hazard-free performance.

To ensure hazard-free behavior, only one control input may change at a
time. Changing two inputs simultaneously, such as deasserting set and
reset at the same time, or changing data and enable at the same time, can
produce incorrect behavior in any latch.

Altera Corporation 6–47
October 2007 Preliminary

Coding Guidelines for Registers and Latches

Quartus II integrated synthesis infers latches from always blocks in
Verilog HDL and process statements in VHDL, but not from
continuous assignments in Verilog HDL or concurrent signal
assignments in VHDL. These rules are the same as for register inference.
The software infers registers or flipflops only from always blocks and
process statements.

The Verilog HDL code sample shown in Example 6–35 infers a S-R latch
correctly in the Quartus II software.

Example 6–35. Verilog HDL Set-Reset Latch
module simple_latch (

input SetTerm,
input ResetTerm,
output reg LatchOut
);

always @ (SetTerm or ResetTerm) begin
if (SetTerm)

LatchOut = 1'b1
else if (ResetTerm)

LatchOut = 1'b0
end

endmodule

The VHDL code sample shown in Example 6–36 infers a D-type latch
correctly in the Quartus II software.

Example 6–36. VHDL Data Type Latch
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY simple_latch IS
 PORT (
 enable, data : IN STD_LOGIC;
 q : OUT STD_LOGIC
);
END simple_latch;

ARCHITECTURE rtl OF simple_latch IS
BEGIN

latch : PROCESS (enable, data)
 BEGIN
 IF (enable = '1') THEN
 q <= data;
 END IF;
 END PROCESS latch;
END rtl;

6–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The following example shows a Verilog HDL continuous assignment that
does not infer a latch in the Quartus II software. The behavior is similar
to a latch, but it may not function correctly as a latch and its timing is not
analyzed as a latch.

assign latch_out = (~en & latch_out) | (en & data);

Quartus II integrated synthesis also creates safe latches when possible for
instantiations of the lpm_latch megafunction. You can use this
megafunction to create a latch with any combination of data, enable, set,
and reset inputs. The same limitations apply for creating safe latches as
for inferring latches from HDL code.

Inferring the Altera lpm_latch function in another synthesis tool
ensures that the implementation is also recognized as a latch in the
Quartus II software. If a third-party synthesis tool implements a latch
using the lpm_latch megafunction, then the Quartus II integrated
synthesis lists the latch in the User-Specified and Inferred Latches table
in the same way as it lists latches created in HDL source code. The coding
style necessary to produce an lpm_latch implementation may depend
on your synthesis tool. Some third-party synthesis tools list the number
of lpm_latch functions that are inferred.

For LUT-based families, the Fitter uses global routing for control signals
including signals that Analysis and Synthesis identifies as latch enables.
In some cases the global insertion delay may decrease the timing
performance. If necessary, you can turn off the Quartus II Global Signal
logic option to manually prevent the use of global signals. Global latch
enables are listed in the Global & Other Fast Signals table in the
Compilation Report.

General Coding
Guidelines

This section helps you understand how synthesis tools map various types
of HDL code into the target Altera device. Following Altera
recommended coding styles, and in some cases designing logic structures
to match the appropriate device architecture, can provide significant
improvements in the design’s quality of results.

This section provides coding guidelines for the following logic structures:

■ “Tri-State Signals”. This section explains how to create tri-state
signals for bidirectional I/O pins.

■ “Adder Trees” on page 6–50. This section explains the different
coding styles that lead to optimal results for devices with 4-input
look-up tables and 6-input adaptive look-up tables.

■ “State Machines” on page 6–52. This section helps ensure the best
results when you use state machines.

Altera Corporation 6–49
October 2007 Preliminary

General Coding Guidelines

■ “Multiplexers” on page 6–60. This section explains how multiplexers
can be synthesized for 4-input LUT devices, addresses common
problems, and provides guidelines to achieve optimal resource
utilization.

■ “Cyclic Redundancy Check Functions” on page 6–69. This section
provides guidelines for getting good results when designing CRC
functions.

■ “Comparators” on page 6–71. This section explains different
comparator implementations and provides suggestions for
controlling the implementation.

■ “Counters” on page 6–73. This section provides guidelines to ensure
your counter design targets the device architecture optimally.

Tri-State Signals

When you are targeting Altera devices, you should use tri-state signals
only when they are attached to top-level bidirectional or output pins.
Avoid lower level bidirectional pins, and avoid using the Z logic value
unless it is driving an output or bidirectional pin.

Synthesis tools implement designs with internal tri-state signals correctly
in Altera devices using multiplexer logic, but Altera does not recommend
this coding practice.

1 In hierarchical block-based or incremental design flows, a
hierarchical boundary cannot contain any bidirectional ports,
unless the lower level bidirectional port is connected directly
through the hierarchy to a top-level output pin without
connecting to any other design logic. If you use boundary
tri-states in a lower level block, synthesis software must push
the tri-states through the hierarchy to the top-level to make use
of the tri-state drivers on output pins of Altera devices. Because
pushing tri-states requires optimizing through hierarchies,
lower level tri-states are restricted with block-based design
methodologies.

The code examples shown in Examples 6–37 and 6–38 show Verilog HDL
and VHDL code that creates tri-state bidirectional signals.

Example 6–37. Verilog HDL Tri-State Signal
module tristate (myinput, myenable, mybidir);

input myinput, myenable;
inout mybidir;
assign mybidir = (myenable ? myinput : 1'bZ);

endmodule

6–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example 6–38. VHDL Tri-State Signal
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY tristate IS
PORT (

mybidir : INOUT STD_LOGIC;
myinput : IN STD_LOGIC;
myenable : IN STD_LOGIC
);

END tristate;

ARCHITECTURE rtl OF tristate IS
BEGIN

mybidir <= 'Z' WHEN (myenable = '0') ELSE myinput;
END rtl;

Adder Trees

Structuring adder trees appropriately to match your targeted Altera
device architecture can result in significant performance and density
improvements. A good example of an application using a large adder tree
is a finite impulse response (FIR) correlator. Using a pipelined binary or
ternary adder tree appropriately can greatly improve the quality of your
results.

This section explains why coding recommendations are different for
Altera 4-input LUT devices and 6-input LUT devices.

Architectures with 4-Input LUTs in Logic Elements

Architectures such as Stratix devices and the Cyclone series, APEX series,
and FLEX series devices contain 4-input LUTs as the standard
combinational structure in the LE.

If your design can tolerate pipelining, the fastest way to add three
numbers A, B, and C in devices that use 4-input lookup tables is to add
A + B, register the output, and then add the registered output to C.
Adding A + B takes one level of logic (one bit is added in one LE), so this
runs at full clock speed. This can be extended to as many numbers as
desired.

Altera Corporation 6–51
October 2007 Preliminary

General Coding Guidelines

In the code sample shown in Example 6–39, five numbers A, B, C, D, and E
are added. Adding five numbers in devices that use 4-input lookup tables
requires four adders and three levels of registers for a total of 64 LEs
(for 16-bit numbers).

Example 6–39. Verilog HDL Pipelined Binary Tree
module binary_adder_tree (A, B, C, D, E, CLK, OUT);

parameter WIDTH = 16;
input [WIDTH-1:0] A, B, C, D, E;
input CLK;
output [WIDTH-1:0] OUT;

wire [WIDTH-1:0] sum1, sum2, sum3, sum4;
reg [WIDTH-1:0] sumreg1, sumreg2, sumreg3, sumreg4;
// Registers

always @ (posedge CLK)
begin

sumreg1 <= sum1;
sumreg2 <= sum2;
sumreg3 <= sum3;
sumreg4 <= sum4;

end

// 2-bit additions
assign sum1 = A + B;
assign sum2 = C + D;
assign sum3 = sumreg1 + sumreg2;
assign sum4 = sumreg3 + E;
assign OUT = sumreg4;

endmodule

Architectures with 6-Input LUTs in Adaptive Logic Modules

Newer high-performance Altera device families use a 6-input LUT in
their basic logic structure, so these devices benefit from a different coding
style from the previous example presented for 4-input LUTs. Specifically,
in these devices, ALMs can simultaneously add three bits. Therefore, the
tree in the previous example must be two levels deep and contain just two
add-by-three inputs instead of four add-by-two inputs.

Although the code in the previous example compiles successfully for
6-input LUT devices, the code is inefficient and does not take advantage
of the 6-input adaptive look-up table (ALUT). By restructuring the tree as
a ternary tree, the design becomes much more efficient, significantly
improving density utilization. Therefore, when you are targeting with
ALUTs and ALMs, large pipelined binary adder trees designed for
4-input LUT architectures should be rewritten to take advantage of the
advanced device architecture.

6–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example 6–40 uses just 32 ALUTs in a Stratix II device—more than a 4:1
advantage over the number of LUTs in the prior example implemented in
a Stratix device.

1 You cannot pack a LAB full when using this type of coding style
because of the number of LAB inputs. However, in a typical
design, the Quartus II Fitter can pack other logic into each LAB
to take advantage of the unused ALMs.

Example 6–40. Verilog HDL Pipelined Ternary Tree
module ternary_adder_tree (A, B, C, D, E, CLK, OUT);

parameter WIDTH = 16;
input [WIDTH-1:0] A, B, C, D, E;
input CLK;
output [WIDTH-1:0] OUT;

wire [WIDTH-1:0] sum1, sum2;
reg [WIDTH-1:0] sumreg1, sumreg2;
// Registers

always @ (posedge CLK)
begin

sumreg1 <= sum1;
sumreg2 <= sum2;

end

// 3-bit additions
assign sum1 = A + B + C;
assign sum2 = sumreg1 + D + E;
assign OUT = sumreg2;

endmodule

These examples show pipelined adders, but partitioning your addition
operations can help you achieve better results in nonpipelined adders as
well. If your design is not pipelined, a ternary tree provides much better
performance than a binary tree. For example, depending on your
synthesis tool, the HDL code sum = (A + B + C) + (D + E) is
more likely to create the optimal implementation of a 3-input adder for
A + B + C followed by a 3-input adder for sum1 + D + E than the
code without the parentheses. If you do not add the parentheses, the
synthesis tool may partition the addition in a way that is not optimal for
the architecture.

State Machines

Synthesis tools can recognize and encode Verilog HDL and VHDL state
machines during synthesis. This section presents guidelines to ensure the
best results when you use state machines. Ensuring that your synthesis
tool recognizes a piece of code as a state machine allows the tool to recode
the state variables to improve the quality of results, and allows the tool to

Altera Corporation 6–53
October 2007 Preliminary

General Coding Guidelines

use the known properties of state machines to optimize other parts of the
design. When synthesis recognizes a state machine it is often able to
improve the design area and performance.

To achieve the best results on average, synthesis tools often use one-hot
encoding for FPGA devices and minimal-bit encoding for CPLD devices,
although the choice of implementation can vary for different state
machines and different devices. Refer to your synthesis tool
documentation for specific ways to control the manner in which state
machines are encoded.

f For information about state machine encoding in Quartus II integrated
synthesis, refer to the State Machine Processing section in the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

To ensure proper recognition and inference of state machines and to
improve the quality of results, Altera recommends that you observe the
following guidelines, which apply to both Verilog HDL and VHDL:

■ Assign default values to outputs derived from the state machine so
that synthesis does not generate unwanted latches.

■ Separate the state machine logic from all arithmetic functions and
data paths, including assigning output values.

■ If your design contains an operation that is used by more than one
state, define the operation outside the state machine and cause the
output logic of the state machine to use this value.

■ Use a simple asynchronous or synchronous reset to ensure a defined
power-up state. If your state machine design contains more elaborate
reset logic, such as both an asynchronous reset and an asynchronous
load, the Quartus II software generates regular logic rather than
inferring a state machine.

If a state machine enters an illegal state due to a problem with the device,
the design likely ceases to function correctly until the next reset of the
state machine. Synthesis tools do not provide for this situation by default.
The same issue applies to any other registers if there is some kind of fault
in the system. A default or when others clause does not affect this
operation, assuming that your design never deliberately enters this state.
Synthesis tools remove any logic generated by a default state if it is not
reachable by normal state machine operation.

Many synthesis tools (including Quartus II integrated synthesis) have an
option to implement a safe state machine. The software inserts extra logic
to detect an illegal state and force the state machine’s transition to the
reset state. It is commonly used when the state machine can enter an

6–54 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

illegal state. The most common cause of this situation is a state machine
that has control inputs that come from another clock domain, such as the
control logic for a dual-clock FIFO.

Of course this option protects only state machines, and all other registers
in the design are not protected this way.

f For additional information about tool-specific options for implementing
state machines, refer to the tool vendor’s documentation or the
appropriate chapter in the Synthesis section in volume 1 of the Quartus II
Handbook.

The following two sections, “Verilog HDL State Machines” and “VHDL
State Machines” on page 6–58, describe additional language-specific
guidelines and coding examples.

Verilog HDL State Machines

To ensure proper recognition and inference of Verilog HDL state
machines, observe the following additional Verilog HDL guidelines.
Some of these guidelines may be specific to Quartus II integrated
synthesis. Refer to your synthesis tool documentation for specific coding
recommendations.

If the state machine is not recognized by the synthesis software (such as
Quartus II integrated synthesis), the state machine is implemented as
regular logic gates and registers and the state machine is not listed as a
state machine in the Analysis & Synthesis section of the Quartus II
Compilation Report. In this case, the software does not perform any of the
optimizations that are specific to state machines.

■ If you are using the SystemVerilog standard, use enumerated types
to describe state machines (as shown in the “SystemVerilog State
Machine Coding Example” on page 6–57).

■ Represent the states in a state machine with the parameter data
types in Verilog-1995 and -2001 and use the parameters to make state
assignments (as shown below in the “Verilog HDL State Machine
Coding Example”). This implementation makes the state machine
easier to read and reduces the risk of errors during coding.

1 Altera recommends against the direct use of integer values
for state variables such as next_state <= 0. However,
using an integer does not prevent inference in the
Quartus II software.

Altera Corporation 6–55
October 2007 Preliminary

General Coding Guidelines

■ No state machine is inferred in the Quartus II software if the state
transition logic uses arithmetic similar to that shown in the following
example:

case (state)
0: begin

if (ena) next_state <= state + 2;
else next_state <= state + 1;

end
1: begin
...

endcase

■ No state machine is inferred in the Quartus II software if the state
variable is an output.

■ No state machine is inferred in the Quartus II software for signed
variables

Verilog HDL State Machine Coding Example
The following module verilog_fsm is an example of a typical Verilog
HDL state machine implementation (Example 6–41).

This state machine has five states. The asynchronous reset sets the
variable state to state_0. The sum of in_1 and in_2 is an output of the
state machine in state_1 and state_2. The difference (in_1 – in_2)
is also used in state_1 and state_2. The temporary variables
tmp_out_0 and tmp_out_1 store the sum and the difference of in_1
and in_2. Using these temporary variables in the various states of the
state machine ensures proper resource sharing between the mutually
exclusive states.

Example 6–41. Verilog-2001 State Machine
module verilog_fsm (clk, reset, in_1, in_2, out);

input clk;
input reset;
input [3:0] in_1;
input [3:0] in_2;output [4:0] out;
parameter state_0 = 3'b000;
parameter state_1 = 3'b001;
parameter state_2 = 3'b010;
parameter state_3 = 3'b011;
parameter state_4 = 3'b100;

reg [4:0] tmp_out_0, tmp_out_1, tmp_out_2;
reg [2:0] state, next_state;

always @ (posedge clk or posedge reset)
begin

if (reset)
state <= state_0;

else

6–56 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

state <= next_state;
end
always @ (state or in_1 or in_2)
begin

tmp_out_0 = in_1 + in_2;
tmp_out_1 = in_1 - in_2;
case (state)

state_0: begin
tmp_out_2 <= in_1 + 5'b00001;
next_state <= state_1;

end
state_1: begin

if (in_1 < in_2) begin
next_state <= state_2;
tmp_out_2 <= tmp_out_0;

end
else begin

next_state <= state_3;
tmp_out_2 <= tmp_out_1;

end
end
state_2: begin

tmp_out_2 <= tmp_out_0 - 5'b00001;
next_state <= state_3;

end
state_3: begin

tmp_out_2 <= tmp_out_1 + 5'b00001;
next_state <= state_0;

end
state_4:begin

tmp_out_2 <= in_2 + 5'b00001;
next_state <= state_0;

end
default:begin

tmp_out_2 <= 5'b00000;
next_state <= state_0;

end
endcase

end
assign out = tmp_out_2;

endmodule

An equivalent implementation of this state machine can be achieved by
using ‘define instead of the parameter data type, as follows:

‘define state_0 3'b000
‘define state_1 3'b001
‘define state_2 3'b010
‘define state_3 3'b011
‘define state_4 3'b100

In this case, the state and next_state assignments are assigned a
‘state_x instead of a state_x, as shown in the following example:

next_state <= ‘state_3;

Altera Corporation 6–57
October 2007 Preliminary

General Coding Guidelines

1 Although the ‘define construct is supported, Altera strongly
recommends the use of the parameter data type because doing
so preserves the state names throughout synthesis.

SystemVerilog State Machine Coding Example
The module enum_fsm shown in Example 6–42 is an example of a
SystemVerilog state machine implementation that uses enumerated
types. Altera recommends using this coding style to describe state
machines in SystemVerilog.

1 In Quartus II integrated synthesis, the enumerated type that
defines the states for the state machine must be of an unsigned
integer type as shown in Example 6–42. If you do not specify the
enumerated type as int unsigned, a signed int type is used
by default. In this case, the Quartus II integrated synthesis
synthesizes the design, but does not infer or optimize the logic
as a state machine.

Example 6–42. SystemVerilog State Machine Using Enumerated Types
module enum_fsm (input clk, reset, input int data[3:0], output int o);

 enum int unsigned { S0 = 0, S1 = 2, S2 = 4, S3 = 8 } state, next_state;

 always_comb begin : next_state_logic
 next_state = S0;
 case(state)

S0: next_state = S1;
S1: next_state = S2;
S2: next_state = S3;
S3: next_state = S3;

 endcase
 end

 always_comb begin
 case(state)

 S0: o = data[3];
 S1: o = data[2];
 S2: o = data[1];
 S3: o = data[0];

 endcase
 end

 always_ff@(posedge clk or negedge reset) begin
 if(~reset)

 state <= S0;
 else

 state <= next_state;
 end
endmodule

6–58 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

VHDL State Machines

To ensure proper recognition and inference of VHDL state machines,
represent the states in a state machine with enumerated types and use the
corresponding types to make state assignments. This implementation
makes the state machine easier to read and reduces the risk of errors
during coding. If the state is not represented by an enumerated type,
synthesis software (such as Quartus II integrated synthesis) does not
recognize the state machine. Instead, the state machine is implemented as
regular logic gates and registers and the state machine is not listed as a
state machine in the Analysis & Synthesis section of the Quartus II
Compilation Report. In this case, the software does not perform any of the
optimizations that are specific to state machines.

VHDL State Machine Coding Example
The following entity, vhd1_fsm, is an example of a typical VHDL state
machine implementation (Example 6–43).

This state machine has five states. The asynchronous reset sets the
variable state to state_0. The sum of in1 and in2 is an output of the
state machine in state_1 and state_2. The difference (in1 - in2) is
also used in state_1 and state_2. The temporary variables
tmp_out_0 and tmp_out_1 store the sum and the difference of in1 and
in2. Using these temporary variables in the various states of the state
machine ensures proper resource sharing between the mutually exclusive
states.

Example 6–43. VHDL State Machine
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY vhdl_fsm IS
PORT(

clk: IN STD_LOGIC;
reset: IN STD_LOGIC;
in1: IN UNSIGNED(4 downto 0);
in2: IN UNSIGNED(4 downto 0);
out_1: OUT UNSIGNED(4 downto 0)
);

END vhdl_fsm;

ARCHITECTURE rtl OF vhdl_fsm IS
TYPE Tstate IS (state_0, state_1, state_2, state_3, state_4);
SIGNAL state: Tstate;
SIGNAL next_state: Tstate;

BEGIN
PROCESS(clk, reset)
BEGIN

IF reset = '1' THEN
state <=state_0;

Altera Corporation 6–59
October 2007 Preliminary

General Coding Guidelines

ELSIF rising_edge(clk) THEN
state <= next_state;

END IF;
END PROCESS;
PROCESS (state, in1, in2)

VARIABLE tmp_out_0: UNSIGNED (4 downto 0);
VARIABLE tmp_out_1: UNSIGNED (4 downto 0);

BEGIN
tmp_out_0 := in1 + in2;
tmp_out_1 := in1 - in2;
CASE state IS

WHEN state_0 =>
out_1 <= in1;
next_state <= state_1;

WHEN state_1 =>
IF (in1 < in2) then

next_state <= state_2;
out_1 <= tmp_out_0;

ELSE
next_state <= state_3;
out_1 <= tmp_out_1;

END IF;
WHEN state_2 =>

IF (in1 < "0100") then
out_1 <= tmp_out_0;

ELSE
out_1 <= tmp_out_1;

END IF;
next_state <= state_3;

WHEN state_3 =>
out_1 <= "11111";
next_state <= state_4;

WHEN state_4 =>
out_1 <= in2;
next_state <= state_0;

WHEN OTHERS =>
out_1 <= "00000";
next_state <= state_0;

END CASE;
END PROCESS;

END rtl;

6–60 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Multiplexers

Multiplexers form a large portion of the logic utilization in many FPGA
designs. By optimizing your multiplexer logic, you ensure the most
efficient implementation in your Altera device. This section addresses
common problems and provides design guidelines to achieve optimal
resource utilization for multiplexer designs. The section also describes
various types of multiplexers, and how they are implemented in the
4-input LUT found in many FPGA architectures, such as Altera’s Stratix
devices.

1 Stratix II and newer high-performance devices have 6-input
ALUTs and are not specifically addressed here. Although many
of the principles and techniques for optimization are similar,
device utilization differs in the 6-input LUT devices. For
example, these devices can implement wider multiplexers in
one ALM than can be implemented in the 4-input LUT of an LE.

Quartus II Software Option for Multiplexer Restructuring

Quartus II integrated synthesis provides the Restructure Multiplexers
logic option that extracts and optimizes buses of multiplexers during
synthesis. In certain situations, this option automatically performs some
of the recoding functions described in this section without changing the
HDL code in your design. This option is on by default, when the
Optimization technique is set to Balanced (the default for most device
families) or set to Area.

f For details, refer to the Restructure Multiplexers subsection in the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook.

Even with this Quartus II-specific option turned on, it is beneficial to
understand how your coding style can be interpreted by your synthesis
tool, and avoid the situations that can cause problems in your design.

Multiplexer Types

This first subsection addresses how multiplexers are created from various
types of HDL code. CASE statements, IF statements, and state machines
are all common sources of multiplexer logic in designs. These HDL
structures create different types of multiplexers including binary
multiplexers, selector multiplexers, and priority multiplexers.
Understanding how multiplexers are created from HDL code and how
they might be implemented during synthesis is the first step towards
optimizing multiplexer structures for best results.

Altera Corporation 6–61
October 2007 Preliminary

General Coding Guidelines

Binary Multiplexers
Binary multiplexers select inputs based on binary-encoded selection bits.
Example 6–44 shows Verilog HDL code for two ways to describe a simple
4:1 binary multiplexer.

Example 6–44. Verilog HDL Binary-Encoded Multiplexers
case (sel)

2'b00: z = a;
2'b01: z = b;
2'b10: z = c;
2'b11: z = d;

endcase

A 4:1 binary multiplexer is efficiently implemented by using two 4-input
LUTs. Larger binary multiplexers can be constructed that use the 4:1
multiplexer; constructing an N-input multiplexer (N:1 multiplexer) from
a tree of 4:1 multiplexers can result in a structure using as few as
0.66*(N - 1) LUTs.

Selector Multiplexers
Selector multiplexers have a separate select line for each data input. The
select lines for the multiplexer are one-hot encoded. Example 6–45 shows
a simple Verilog HDL code example describing a one-hot selector
multiplexer.

Example 6–45. Verilog HDL One-Hot-Encoded Case Statement
case (sel)

4'b0001: z = a;
4'b0010: z = b;
4'b0100: z = c;
4'b1000: z = d;
default: z = 1'bx;

endcase

Selector multiplexers are commonly built as a tree of AND and OR gates.
Using this scheme, two inputs can be selected using two select lines in a
single 4-input LUT that uses two AND gates and an OR gate. The outputs
of these LUTs can be combined with a wide OR gate. An N-input selector
multiplexer of this structure requires at least 0.66*(N-0.5) LUTs, which is
just slightly worse than the best binary multiplexer.

Priority Multiplexers
In priority multiplexers, the select logic implies a priority. The options to
select the correct item must be checked in a specific order based on signal
priority. These structures commonly are created from IF, ELSE, WHEN,

6–62 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

SELECT, and ?: statements in VHDL or Verilog HDL. The example
VHDL code in Example 6–46 will probably result in the schematic
implementation illustrated in Figure 6–2.

Example 6–46. VHDL IF Statement Implying Priority
IF cond1 THEN z <= a;
ELSIF cond2 THEN z <= b;
ELSIF cond3 THEN z <= c;
ELSE z <= d;
END IF;

The multiplexers shown in Figure 6–2 form a chain, evaluating each
condition or select bit, one at a time.

Figure 6–2. Priority Multiplexer Implementation of an IF Statement

An N-input priority multiplexer uses a LUT for every 2:1 multiplexer in
the chain, requiring N-1 LUTs. This chain of multiplexers generally
increases delay because the critical path through the logic traverses every
multiplexer in the chain.

To improve the timing delay through the multiplexer, avoid priority
multiplexers if priority is not required. If the order of the choices is not
important to the design, use a CASE statement to implement a binary or
selector multiplexer instead of a priority multiplexer. If delay through the
structure is important in a multiplexed design requiring priority,
consider recoding the design to reduce the number of logic levels to
minimize delay, especially along your critical paths.

1 0

1 0

cond3

cond2

cond1 1 0

c

b

a

z

d

Altera Corporation 6–63
October 2007 Preliminary

General Coding Guidelines

Default or Others Case Assignment

To fully specify the cases in a CASE statement, include a DEFAULT
(Verilog HDL) or OTHERS (VHDL) assignment. This assignment is
especially important in one-hot encoding schemes where many
combinations of the select lines are unused. Specifying a case for the
unused select line combinations gives the synthesis tool information
about how to synthesize these cases, and is required by the Verilog HDL
and VHDL language specifications.

Some designs do not require that the outcome in the unused cases be
considered, often because designers assume these cases will not occur.
For these types of designs, you can choose any value for the DEFAULT or
OTHERS assignment. However, be aware that the assignment value you
choose can have a large effect on the logic utilization required to
implement the design due to the different ways synthesis tools treat
different values for the assignment, and how the synthesis tools use
different speed and area optimizations.

In general, to obtain best results, explicitly define invalid CASE selections
with a separate DEFAULT or OTHERS statement instead of combining the
invalid cases with one of the defined cases.

If the value in the invalid cases is not important, specify those cases
explicitly by assigning the X (don’t care) logic value instead of choosing
another value. This assignment allows your synthesis tool to perform the
best area optimizations.

You can experiment with different DEFAULT or OTHERS assignments for
your HDL design and your synthesis tool to test the effect they have on
logic utilization in your design.

Implicit Defaults

The IF statements in Verilog HDL and VHDL can be a convenient way to
specify conditions that do not easily lend themselves to a CASE-type
approach. However, using IF statements can result in complicated
multiplexer trees that are not easy for synthesis tools to optimize.

In particular, every IF statement has an implicit ELSE condition, even
when it is not specified. These implicit defaults can cause additional
complexity in a multiplexed design.

6–64 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The code in Example 6–47 represents a multiplexer with four inputs (a, b,
c, d) and one output (z).

Example 6–47. VHDL IF Statement with Implicit Defaults
IF cond1 THEN

IF cond2 THEN
z <= a;

END IF;
ELSIF cond3 THEN

IF cond4 THEN
z <= b;

ELSIF cond5 THEN
z <= c;

END IF;
ELSIF cond6 THEN

z <= d;
END IF;

This is not a recommended coding style. Although the code appears to
implement a 4:1 multiplexer, each of the three separate IF statements in
the code has an implicit ELSE condition that is not specified. Because the
output values for the ELSE cases are not specified, the synthesis tool
assumes the intent is to maintain the same output value for these cases
and infers a combinational loop, such as a latch. Latches add to the
design’s logic utilization and can also make timing analysis difficult and
lead to other problems.

The code sample shown in Example 6–48 shows code with the same
functionality as the code shown in Example 6–47, but specifies the ELSE
cases explicitly. (This is not a recommended coding style improvement,
but it explicitly shows the default conditions from the previous example.)

Example 6–48. VHDL IF Statement with Default Conditions Explicitly Specified
IF cond1 THEN

IF cond2 THEN
z <= a;

ELSE
z <= z;

END IF;
ELSIF cond3 THEN

IF cond4 THEN
z <= b;

ELSIF cond5 THEN
z <= c;

ELSE
z <= z;

END IF;
ELSIF cond6 THEN

z <= d;
ELSE

z <= z;
END IF;

Altera Corporation 6–65
October 2007 Preliminary

General Coding Guidelines

Figure 6–3 is a schematic representing the code in Example 6–48, which
illustrates that the multiplexer logic is significantly more complicated
than a basic 4:1 multiplexer, although there are only four inputs.

Figure 6–3. Multiplexer Implementation of an IF Statement with Implicit
Defaults

There are several ways you can simplify the multiplexed logic and
remove the unneeded defaults. The optimal method may be to recode the
design so the logic takes the structure of a 4:1 CASE statement.
Alternatively, if priority is important, you can restructure the code to
deduce default cases and flatten the multiplexer. In this example, instead
of IF cond1 THEN IF cond2, use IF (cond1 AND cond2), which
performs the same function. In addition, examine whether the defaults
are don’t care cases. In this example, you can promote the last ELSIF
cond6 statement to an ELSE statement if no other valid cases can occur.

Avoid unnecessary default conditions in your multiplexer logic to reduce
the complexity and logic utilization required to implement your design.

Degenerate Multiplexers

A degenerate multiplexer is a multiplexer in which not all of the possible
cases are used for unique data inputs. The unneeded cases tend to
contribute to inefficiency in the logic utilization for these multiplexers.
You can recode degenerate multiplexers so they take advantage of the
efficient logic utilization possible with full binary multiplexers.

1 0

1 0

cond6
0 1cond4

0 1cond2

cond3

cond1

0 1cond5

1 0

z

z a

z c

d

b

z

6–66 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example 6–49 shows a VHDL CASE statement describing a degenerate
multiplexer.

Example 6–49. VHDL CASE Statement Describing a Degenerate Multiplexer
CASE sel[3:0] IS

WHEN "0101" => z <= a;
WHEN "0111" => z <= b;
WHEN "1010" => z <= c;
WHEN OTHERS => z <= d;

END CASE;

The number of select lines in a binary multiplexer normally dictates the
size of a multiplexer needed to implement the desired function. For
example, the multiplexer structure represented in Figure 6–4 has four
select lines capable of implementing a binary multiplexer with 16 inputs.
However, the design does not use all 16 inputs, which makes this
multiplexer a degenerate 16:1 multiplexer.

Figure 6–4. Binary Degenerate Multiplexer

In the example in Figure 6–4, the first and fourth multiplexers in the top
level can easily be eliminated because all four inputs to each multiplexer
are the same value, and the number of inputs to the other multiplexers
can be reduced, as shown in Figure 6–5.

sel[1:0]

Binary mux
sel[3:2]

"10xx""01xx"

"00xx" "11xx"

z

a b c d

Altera Corporation 6–67
October 2007 Preliminary

General Coding Guidelines

Figure 6–5. Optimized Version of the Degenerate Binary Multiplexer

Implementing this version of the multiplexer still requires at least five
4-input LUTs, two for each of the remaining 3:1 multiplexers and one for
the 2:1 multiplexer. This design selects an output from only four inputs,
a 4:1 binary multiplexer can be implemented optimally in two LUTs, so
this degenerate multiplexer tree reduces the efficiency of the logic.

You can improve logic utilization of this structure by recoding the select
lines to implement a full 4:1 binary multiplexer. The code sample shown
in Example 6–50 shows a recoder design that translates the original select
lines into the z_sel signal with binary encoding.

Example 6–50. VHDL Recoder Design for Degenerate Binary Multiplexer
CASE sel[3:0] IS

WHEN "0101" => z_sel <= "00";
WHEN "0111" => z_sel <= "01";
WHEN "1010" => z_sel <= "10";
WHEN OTHERS => z_sel <= "11";

END CASE;

The code sample shown in Example 6–51 shows you how to implement
the full binary multiplexer.

Example 6–51. VHDL 4:1 Binary Multiplexer Design
CASE z_sel[1:0] IS

WHEN "00" => z <= a;
WHEN "01" => z <= b;
WHEN "10" => z <= c;
WHEN "11" => z <= d;

END CASE;

sel[1:0]

sel[3:2]

"10xx""01xx"

"00xx" "11xx"

3:1

3:1

2:1

a

z

b c d

6–68 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Use the new z_sel control signal from the recoder design to control the
4:1 binary multiplexer that chooses between the four inputs a, b, c, and d,
as illustrated in Figure 6–6. The complexity of the select lines is handled
in the recoder design, and the data multiplexing is performed with simple
binary select lines enabling the most efficient implementation.

Figure 6–6. Binary Multiplexer with Recorder

The design for the recoder can be implemented in two LUTs and the
efficient 4:1 binary multiplexer uses two LUTs, for a total of four LUTs.
The original degenerate multiplexer required five LUTs, so the recoded
version uses 20% less logic than the original.

You can often improve the logic utilization of multiplexers by recoding
the select lines into full binary cases. Although logic is required to
perform the encoding, the overall logic utilization is often improved.

Buses of Multiplexers

The inputs to multiplexers are often data input buses in which the same
multiplexer function is performed on a set of data input buses. In these
cases, any inefficiency in the multiplexer is multiplied by the number of
bits in the bus. The issues described in the previous sections become even
more important for wide multiplexer buses.

For example, the recoding of select lines into full binary cases detailed in
the previous section can often be used in multiplexed buses. Recoding the
select lines may need to be completed only once for all the multiplexers
in the bus. By sharing the recoder logic among all the bits in the bus, you
can greatly improve the logic efficiency of a bus of multiplexers.

The degenerate multiplexer in the previous section requires five LUTs to
implement. If the inputs and output are 32 bits wide, the function could
require 32 × 5 or 160 LUTs for the whole bus. The recoder design uses only
two LUTs, and the select lines only need to be recoded once for the entire
bus. The binary 4:1 multiplexer requires two LEs per bit of the bus. The

sel[3:0]

z_sel[1:0]

Recoder

4:1

z

a b c d

Altera Corporation 6–69
October 2007 Preliminary

General Coding Guidelines

total logic utilization for the recoded version could be 2 + (2 x 32) or 66
LUTs for the whole bus, compared to 160 LUTs for the original version.
The logic savings become more important with wide multiplexer buses.

Using techniques to optimize degenerate multiplexers, removing
unneeded implicit defaults, and choosing the optimal DEFAULT or
OTHERS case can play an important role when optimizing buses of
multiplexers.

Cyclic Redundancy Check Functions

Cyclic redundancy check (CRC) computations are used heavily by
communications protocols and storage devices to detect any corruption
of the data. These functions are highly effective; there is a very low
probability that corrupted data can pass a 32-bit CRC check.

CRC functions typically use wide XOR gates to compare the data. The
way that synthesis tools flatten and factor these XOR gates to implement
the logic in FPGA LUTs can greatly impact the area and performance
results for the design. XOR gates have a cancellation property which
creates an exceptionally large number of reasonable factoring
combinations, so synthesis tools cannot always choose the best result by
default.

The 6-input ALUT has a significant advantage over 4-input LUTs for
these designs. When properly synthesized, CRC processing designs can
run at high speeds in devices with 6-input ALUTs.

The following guidelines help you improve the quality of results for CRC
designs in Altera devices.

If Performance is Important, Optimize for Speed

Synthesis tools flatten XOR gates to minimize area and depth of levels of
logic. Synthesis tools such as Quartus II integrated synthesis target area
optimization by default for these logic structures. Therefore, for more
focus on depth reduction, set the synthesis optimization technique to
speed.

1 Note that flattening for depth sometimes causes a significant
increase in area.

Use Separate CRC Blocks Instead of Cascaded Stages

Some designers optimize their CRC designs to use cascaded stages, for
example, four stages of 8 bits. In such designs, intermediate calculations
are used as needed (such as the calculations after 8, 24, or 32 bits)

6–70 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

depending on the data width. This design is not optimal in FPGA devices.
The XOR cancellations that can be performed in CRC designs mean that
the function does not require all the intermediate calculations to
determine the final result. Therefore, forcing the use of intermediate
calculations increases the area required to implement the function, as
well as increasing the logic depth because of the cascading. It is typically
better to create full separate CRC blocks for each data width that you
need in the design, then multiplex them together to choose the
appropriate mode at a given time.

Use Separate CRC Blocks Instead of Allowing Blocks to Merge

Synthesis tools often attempt to optimize CRC designs by sharing
resources and extracting duplicates in two different CRC blocks because
of the factoring options in the XOR logic. As addressed previously, the
CRC logic allows significant reductions but this works best when each
CRC function is optimized separately. Check for duplicate extraction
behavior if you have different CRC functions that are driven by common
data signals or that feed the same destination signals.

If you are having problems with the quality of results and you see that
two CRC functions are sharing logic, ensure that the blocks are
synthesized independently using one of the following methods:

■ Define each CRC block as a separate design partition in an
incremental compilation design flow.

f For details, refer to the Quartus II Incremental Compilation
for Hierarchical and Team-Based Design chapter in volume 1
of the Quartus II Handbook.

■ Synthesize each CRC block as a separate project and then write a
separate VQM or EDIF netlist file for each.

Take Advantage of Latency if Available

If your design can use more than one cycle to implement the CRC
functionality, adding registers and retiming the design can help reduce
area, improve performance, and reduce power utilization. If your
synthesis tool offers a retiming feature (such as the Quartus II software
Perform gate-level register retiming option), you can insert an extra
bank of registers at the input and allow the retiming feature to move the
registers for better results. You can also build the CRC unit half as wide
and alternate between halves of the data in each clock cycle.

Altera Corporation 6–71
October 2007 Preliminary

General Coding Guidelines

Save Power by Disabling CRC Blocks When Not in Use

CRC designs are heavy consumers of dynamic power because the logic
toggles whenever there is a change in the design. To save power, use
clock enables to disable the CRC function for every clock cycle that the
logic is not needed. Some designs don't check the CRC results for a few
clock cycles while other logic is performed. It is valuable to disable the
CRC function even for this short amount of time.

Use the Device Synchronous Load (sload) Signal to Initialize

The data in many CRC designs must be initialized to 1’s before operation.
If your target device supports the use of the sload signal, you should use
it to set all the registers in your design to 1’s before operation. To enable
use of the sload signal, follow the coding guidelines presented in
“Secondary Register Control Signals Such as Clear and Clock Enable” on
page 6–39. You can check the register equations in the Timing Closure
Floorplan or the Chip Planner to ensure that the signal was used as
expected.

f If you must force a register implementation using an sload signal, you
can use low-level device primitives as described in the Introduction to
Low-Level Primitives Design User Guide.

Comparators

Synthesis software, including Quartus II integrated synthesis, uses
device and context-specific implementation rules for comparators (<, >,
or ==) and selects the best one for your design. This section provides
some information about the different types of implementations available
and provides suggestions on how you can code your design to encourage
a specific implementation.

The == comparator is implemented in general logic cells. The <
comparison can be implemented using the carry chain or general logic
cells. In devices with 6-input ALUTs, the carry chain is capable of
comparing up to three bits per cell. In devices with 4-input LUTs, the
capacity is one bit of comparison per cell, similar to an add/subtract
chain. The carry chain implementation tends to be faster than the general
logic on standalone benchmark test cases, but can result in lower
performance when it is part of a larger design due to the increased
restriction on the Fitter. The area requirement is similar for most input
patterns. The synthesis software selects an appropriate implementation
based on the input pattern.

6–72 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

If you are using Quartus II integrated synthesis, you can guide the
synthesis by using specific coding styles. To select a carry chain
implementation explicitly, rephrase your comparison in terms of
addition. As a simple example, the following coding style allows the
synthesis tool to select the implementation, which is most likely using
general logic cells in modern device families:

wire [6:0] a,b;
wire alb = a<b;

In the following coding style, the synthesis tool uses a carry chain (except
for a few cases, such as when the chain is very short or the signals a and
b minimize to the same signal):

wire [6:0] a,b;
wire [7:0] tmp = a - b;
wire alb = tmp[7]

This second coding style uses the top bit of the tmp signal, which is 1 in
twos complement logic if a is less than b, because the subtraction a – b
results in a negative number.

If you have any information about the range of the input, you have “don't
care” values that you can use to optimize the design. Because this
information is not available to the synthesis tool, you can often reduce the
device area required to implement the comparator with specific hand
implementation of the logic.

You can also check whether a bus value is within a constant range with a
small amount of logic area by using the logic structure shown in
Figure 6–7. This type of logic occurs frequently in address decoders.

Figure 6–7. Example Logic Structure for Using Comparators to Check a Bus
Value Range

Address[]

Select[0]Select[3] Select[2] Select[1]

< 200< 2f00 < 1a0 < 100

Altera Corporation 6–73
October 2007 Preliminary

Designing with Low-Level Primitives

Counters

Implementing counters in HDL code is easy; they are implemented with
an adder followed by registers. Remember that the register control
signals, such as enable (ena), synchronous clear (sclr) and synchronous
load (sload), are available. For the best area utilization, ensure that the
up/down control or controls are expressed in terms of one addition
instead of two separate addition operators.

If you use the following coding style, your synthesis tool may implement
two separate carry chains for addition (if it doesn't detect the issue and
optimize the logic):

out <= count_up ? out + 1 : out - 1;

The following coding style requires only one adder along with some
other logic:

out <= out + (count_up ? 1 : -1);

In this case, the coding style better matches the device hardware because
there is only one carry chain adder, and the –1 constant logic is
implemented in the look-up table in front of the adder without adding
extra area utilization.

Designing with
Low-Level
Primitives

Low-level HDL design is the practice of using low-level primitives and
assignments to dictate a particular hardware implementation for a piece
of logic. Low-level primitives are small architectural building blocks that
assist you in creating your design. With the Quartus II software, you can
use low-level HDL design techniques to force a specific hardware
implementation that can help you achieve better resource utilization or
faster timing results.

1 Using low-level primitives is an advanced technique to help
with specific design challenges, and is optional in the Altera
design flow. For many designs, synthesizing generic HDL
source code and Altera megafunctions gives you the best
results.

Low-level primitives allow you to use the following types of coding
techniques:

■ Instantiate the logic cell or LCELL primitive to prevent Quartus II
integrated synthesis from performing optimizations across a logic
cell

■ Create carry and cascade chains using CARRY, CARRY_SUM, and
CASCADE primitives

6–74 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

■ Instantiate registers with specific control signals using DFF
primitives

■ Specify the creation of LUT functions by identifying the LUT
boundaries

■ Use I/O buffers to specify I/O standards, current strengths, and
other I/O assignments

■ Use I/O buffers to specify differential pin names in your HDL code,
instead of using the automatically-generated negative pin name for
each pair

Refer to the Designing With Low-Level Primitives User Guide for details
about and examples of using these types of assignments.

Conclusion Because coding style and megafunction implementation can have such a
large effect on your design performance, it is important to match the
coding style to the device architecture from the very beginning of the
design process. To improve design performance and area utilization, take
advantage of advanced device features, such as memory and DSP blocks,
as well as the logic architecture of the targeted Altera device by following
the coding recommendations presented in this chapter.

f For additional optimization recommendations, refer to the
Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook.

Referenced
Documents

This chapter references the following documents:

■ Area and Timing Optimization in volume 2 of the Quartus II Handbook
■ Design Recommendations for Altera Devices in volume 1 of the

Quartus II Handbook
■ Quartus II Integrated Synthesis in volume 1 of the Quartus II Handbook
■ Synthesis section in volume 1 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Altera Corporation 6–75
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 6–2 shows the revision history for this chapter.

Table 6–2. Document Revision History (Part 1 of 2)

Date and
Document
Version

Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 6–74. Updates for the Quartus II
software version 7.2.

May 2007
v7.1.0

Updates for the Quartus II software version 7.1 release,
including:
● Added Quartus II Language Templates.
● Updated text in Using Altera Megafunctions.
● Updated Table 6-1.
● Added Avoide Unsupported Reset Conditions.
● Added Check Read-During-Write Behavior.
● Added True Dual-Port Synchronous RAM.
● Added Specifying Initial Memory Contents at Power-Up.
● Added Referenced Documents.

Updates for the Quartus II
software version 7.1,
including the addition of
Arria GX devices, new HDL
design templates, new
support for inferring true
dual-port RAM blocks.
Clarified RAM inference
guidelines with respect to
synchronous memory and
read-during-write behavior.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

Updates for the Quartus II software version 6.1 release,
including:
● Moved the “Simple Dual-Port, Dual-Clock Synchronous

RAM” on page 7–19 section within the chapter
● Added information about read-through-write conditions
● Added example code, including Examples 7–13 and 7–14;

Examples 7–17 and 7–19; and Example 7–23
● Added a section about “Designing with Low-Level Primitives”

on page 7–71
● Added information about implementing a safe state machine
● Reorganized the chapter, shuffling the “Coding Guidelines

for Registers and Latches” and “General Coding Guidelines”
and the subsections therein

● Added “Comparators” on page 7–69 and “Counters” on
page 7–71 to the General Coding Guidelines section

Updates for the Quartus II
software version 6.1,
including the addition of
Stratix III devices.
Changes to the
recommendations for RAM
block inference to ensure
better quality of results,
and new suggestions for
different general logic
structures.

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0. —

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

6–76 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

May 2005
v5.0.0

Chapter 4 was formerly Chapter 1 in version 4.2. —

December 2004
v2.1

Updated for Quartus II software version 4.2:
● Chapter 4 was formerly Chapter 1.
● General formatting and editing updates.
● Device family support descriptions updated.
● Updated HardCopy structured support for performance

improvements.
● Quartus II Archive File automatically receives buffer

insertion.
● Power Calculator now Power Estimator for affected devices.
● Updates to tables, figures.
● The description of How to Design HardCopy Stratix Devices

was updated.
● The description of HardCopy Timing Optimization Wizard

was updated.
● HardCopy Floorplans and Timing Modules was renamed to

Design Optimization.
● The description of Performance Estimation was updated.
● Added new section on Buffer Insertion.
● Location Constraints was updated.
● Targeting Designs to HardCopy APEX 20KC and HardCopy

APEX 20KE Devices was removed.
● A new section Altera Recommended HDL was added.
● Table 2–5 was added. It lists the HardCopy Stratix design

files collected by the hardCopy Files Wizard.
● The description of the HardCopy APEX Power Estimator was

updated.
● A new section about Targeting Designs to HardCopy APEX

Devices was added.

—

Table 6–2. Document Revision History (Part 2 of 2)

Date and
Document
Version

Changes Made Summary of Changes

Altera Corporation Section III–i
Preliminary

Section III. Synthesis

As programmable logic devices (PLDs) become more complex and
require increased performance, advanced design synthesis has become
an important part of the design flow. In the Quartus® II software you can
use the Analysis and Synthesis module of the Compiler to analyze your
design files and create the project database. You can also use other EDA
synthesis tools to synthesize your designs, and then generate EDIF netlist
files or VQM files that can be used with the Quartus II software. This
section explains the options that are available for each of these flows, and
how they are supported in the Quartus II, version 7.2 software.

This section includes the following chapters:

■ Chapter 7, Synplicity Synplify and Synplify Pro Support
■ Chapter 8, Quartus II Integrated Synthesis
■ Chapter 9, Mentor Graphics LeonardoSpectrum Support
■ Chapter 10, Mentor Graphics Precision RTL Synthesis Support
■ Chapter 11, Synopsys Design Compiler FPGA Support
■ Chapter 12, Analyzing Designs with Quartus II Netlist Viewers

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section III–ii Altera Corporation
Preliminary

Synthesis Quartus II Handbook, Volume 1

Altera Corporation 7–1
October 2007

7. Synplicity Synplify and
Synplify Pro Support

Introduction As programmable logic device (PLD) designs become more complex and
require increased performance, advanced synthesis has become an
important part of the design flow. This chapter documents support for
the Synplicity Synplify and Synplify Pro software in the Quartus® II
software, as well as key design flows, methodologies, and techniques for
achieving good results in Altera® devices. This chapter includes the
following topics:

■ General design flow with the Synplify and Quartus II software
■ Synplify software optimization strategies, including timing-driven

compilation settings, optimization options, and Altera-specific
attributes

■ Exporting designs and constraints to the Quartus II software using
NativeLink® integration

■ Guidelines for Altera megafunctions and library of parameterized
module (LPM) functions, instantiating them with the MegaWizard®
Plug-In Manager, and tips for inferring them from hardware
description language (HDL) code

■ Incremental compilation and block-based design, including the
Synplify Pro software MultiPoint flow

The content in this chapter applies to both the Synplify and Synplify Pro
software unless otherwise specified.This chapter includes the following
sections:

■ “Altera Device Family Support” on page 7–2
■ “Design Flow” on page 7–3
■ “Synplify Optimization Strategies” on page 7–8
■ “Exporting Designs to the Quartus II Software Using NativeLink

Integration” on page 7–17
■ “Guidelines for Altera Megafunctions and Architecture-Specific

Features” on page 7–32
■ “Incremental Compilation and Block-Based Design” on page 7–44

This chapter assumes that you have set up, licensed, and are familiar with
the Synplify or Synplify Pro software.

QII51009-7.2.0

7–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Altera Device
Family Support

The Synplify software maps synthesis results to Altera device families.
The following list shows the Altera device families supported by the
Synplify software version 9.0, with the Quartus II software version 7.2:

■ Cyclone® III
■ Stratix® III
■ Stratix II, Stratix II GX, Hardcopy® II
■ Stratix, Stratix GX, HardCopy Stratix
■ Cyclone II
■ Cyclone
■ MAX® II
■ MAX® 7000, MAX 3000
■ APEX™ II
■ APEX 20K, APEX 20KC, APEX 20KE
■ FLEX® 10K, FLEX 6000
■ ACEX® 1K

The Synplify software also supports the following legacy devices that are
supported in the Quartus II software only with a specific license
requested at www.altera.com/mysupport:

■ Excalibur™ ARM®
■ Mercury™

The Synplify software also supports the following legacy devices that are
supported only in the Altera MAX+PLUS II software:

■ FLEX 8000
■ MAX 9000

1 To learn about new device support for a specific Synplify
version, refer to the release notes on Synplicity's web site at
www.synplicity.com.

http://www.altera.com/mysupport
http://www.altera.com/mysupport
www.synplicity.com

Altera Corporation 7–3
October 2007

Design Flow

Design Flow A Quartus II software design flow using the Synplify software consists of
the following steps:

1. Create Verilog HDL or VHDL design files in the Quartus II
software, Synplify software, or a text editor.

2. Set up a project in the Synplify software and add the HDL design
files for synthesis.

3. Select a target device and add timing constraints and compiler
directives to optimize the design during synthesis.

4. Create a Quartus II project and import the technology-specific EDIF
(.edf) or VQM (.vqm) netlist, the Synopsys Constraints Format (.scf)
file (for TimeQuest constraints if a Stratix III or Cyclone III device is
selected), and the tool command language (.tcl) constraint file
generated by the Synplify software into the Quartus II software for
placement and routing, and for performance evaluation.

5. After obtaining place-and-route results that meet your needs,
configure or program the Altera device.

7–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 7–1 shows the recommended design flow when using the Synplify
and the Quartus II software.

Figure 7–1. Recommended Design Flow

The Synplify and Synplify Pro software support both VHDL and Verilog
HDL source files. The Synplify Pro software also supports mixed
synthesis, allowing a combination of VHDL and Verilog HDL source
files.

No

Yes

Timing & Area
Requirements

Satisfied?

Gate-Level Timing
Simulation

Gate-Level
Functional
Simulation

Configuration/
Programming

Files (.sof/.pof)

Quartus II Software

Constraints
& Settings

Constraints
& Settings

Program/Configure Device

Post-Synthesis
Simulation Files

(.vho/.vo)

Post Place-and-Route
Simulation File

(.vho/.vo)

Functional/RTL
Simulation

Synplify Software

Verilog
HDL
(.v)

VHDL
(.vhd)

Forward Annotated
Project & Timing Constraints

(.tcl/.acf)

Technology-
Specific Netlist

(.vqm/.edf)

(1)Synopsys Constraints
Format (.scf) File

Altera Corporation 7–5
October 2007

Design Flow

Specify timing constraints and attributes for the design in a Synplify
Constraints File (.sdc) with the SCOPE window in the Synplify software
or directly in the HDL source file. Compiler directives can also be defined
in the HDL source file. Many of these constraints are forward-annotated
for use by the Quartus II software.

The HDL Analyst that is included in the Synplify software is a graphical
tool for generating schematic views of the technology-independent
register transfer level (RTL) view netlist (.srs) and technology-view netlist
(.srm) files. You can use the Synplify HDL Analyst to analyze and debug
your design visually. The HDL Analyst supports cross probing between
the RTL and Technology views, the HDL source code, and the Finite State
Machine (FSM) viewer. Refer to “FSM Compiler” on page 7–11.

1 A separate license file is required to enable the HDL Analyst in
the Synplify software. The Synplify Pro software includes the
HDL Analyst.

Once synthesis is complete, import the electronic design interchange
format (EDIF) or Verilog Quartus Mapping (VQM) netlist to the
Quartus II software for place-and-route. You can use the Tcl file
generated by the Synplify software to forward-annotate your constraints
(including device selection), and optionally to set up your project in the
Quartus II software.

If a Stratix III or Cyclone III device is selected, the Quartus II software
uses the SDC-format timing constraints from the .scf file with the
TimeQuest Timing Analyzer by default. For other devices, the Quartus II
software uses the Tcl Classic Timing Analyzer timing constraints written
to the Quartus Setting File (.qsf). Refer to “Passing TimeQuest SDC
Timing Constraints to the Quartus II Software in the .scf File” on
page 7–20 for information about to manually changing from the
TimeQuest Timing Analyzer to the Classic Timing Analyzer manually for
Stratix III and Cyclone III devices.

If the area and timing requirements are satisfied, use the files generated
by the Quartus II software to program or configure the Altera device. As
shown in Figure 7–1, if your area or timing requirements are not met, you
can change the constraints in the Synplify software or the Quartus II
software and repeat the synthesis. Repeat the process until the area and
timing requirements are met.

While you can perform simulation at various points in the process, final
timing analysis should be performed after placement and routing is
complete. Formal verification may also be performed at various stages of
the design process.

7–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

f For more information about how the Synplify software supports formal
verification, refer to the Formal Verification section in volume 3 of the
Quartus II Handbook.

You can also use other options and techniques in the Quartus II software
to meet area and timing requirements. One such option is called
WYSIWYG Primitive Resynthesis, which can perform optimizations on
your VQM netlist within the Quartus II software.

f For information about netlist optimizations, refer to the Netlist
Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II
Handbook.

In some cases, you may be required to modify the source code if area and
timing requirements cannot be met using options in the Synplify and
Quartus II software.

After synthesis, the Synplify software produces several intermediate and
output files. Table 7–1 lists these file types.

Table 7–1. Synplify Intermediate and Output Files (Part 1 of 2)

File Extensions File Description

.srs Technology-independent RTL netlist that can be read only by the Synplify software

.srm Technology view netlist

.srr (1) Synthesis Report file

.edf/.vqm (2) Technology-specific netlist in electronic design interchange format (EDIF) or VQM file
format

Altera Corporation 7–7
October 2007

Design Flow

Output Netlist File Name and Result Format

Specify the output netlist directory location and name by performing the
following steps:

1. On the Project menu, click Implementation Options.

2. Click the Implementation Results tab.

3. In the Results Directory box, type your output netlist file directory
location.

4. In the Result File Name box, type your output netlist file name.

By default, directory and file name are set to the project implementation
directory and the top-level design module or entity name.

The Result Format and Quartus version options are also available on the
Implementation Results tab. The Result Format list specifies an EDIF or
VQM netlist depending on your device family. The software creates an
EDIF output netlist file only for ACEX 1K, FLEX 10K, FLEX 6000,
FLEX 8000, MAX 7000, MAX 9000, and MAX 3000 devices. For other
Altera devices, the software generates a VQM-formatted netlist.

.acf/.tcl (3) Forward-annotated constraints file containing constraints and assignments

.scf Synopsys Constraint Format file containing timing constraints for the TimeQuest Timing
Analyzer

Notes to Table 7–1:
(1) This report file includes performance estimates that are often based on pre-place-and-route information. Use the

fMAX reported by the Quartus II software after place-and-route—it is the only reliable source of timing information.
This report file includes post-synthesis device resource utilization statistics that may inaccurately predict resource
usage after place-and-route. The Synplify software does not account for black box functions nor for logic usage
reduction achieved through register packing performed by the Quartus II software. Register packing combines a
single register and look-up table (LUT) into a single logic cell, reducing the logic cell utilization below the Synplify
software estimate. Use the device utilization reported by the Quartus II software after place-and-route.

(2) An EDIF output file (.edf) is created for ACEX 1K, FLEX 10K, FLEX 10KA, FLEX 10KE, FLEX 6000, FLEX 8000,
MAX 7000, MAX 9000, and MAX 3000 devices. A VQM file is created for all other Altera device families.

(3) An Assignment and Configuration File (.acf) file is created only for ACEX 1K, FLEX 10K, FLEX 10KA, FLEX 10KE,
FLEX 6000, FLEX 8000, MAX 7000, MAX 9000, and MAX 3000 devices. The ACF is generated for backward
compatibility with the MAX+PLUSII software. A Tcl file for the Quartus II software is created for all devices. The
Tcl file contains the appropriate Tcl commands to create and set up a Quartus II project and, if applicable, the
MAX+PLUS II assignments are imported from the ACF file.

Table 7–1. Synplify Intermediate and Output Files (Part 2 of 2)

File Extensions File Description

7–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Beginning with the Synplify software version 8.4, select the version of the
Quartus II software that you are using in the Quartus version list. This
option ensures that the netlist is compatible with the software version and
supports the newest features. Altera recommends using the latest version
of the Quartus II software whenever possible. If your Quartus II software
is newer than the versions available in the Quartus version list, check if
there is a newer version of the Synplify software available that supports
the current Quartus II software version. Otherwise, choose the latest
version in the list for the best compatibility.

1 The Quartus version list is available only after selecting an
Altera device.

Synplify
Optimization
Strategies

As designs become more complex and require increased performance,
using different optimization strategies has become important.
Combining Synplify software constraints with VHDL and Verilog HDL
coding techniques and Quartus II software options can help you obtain
the required results.

f For additional design and optimization techniques, refer to the Design
Recommendations for Altera Devices chapter in volume 1 and the Area and
Timing Optimization chapter in volume 2 of the Quartus II Handbook.

The Synplify software offers many constraints and optimization
techniques to improve your design’s performance. The Synplify Pro
software adds some additional techniques that are not supported in the
basic Synplify software. Wherever this document describes Synplify
support, this includes both the basic Synplify and the Synplify Pro
software; Synplify Pro-only features are labeled as such. This section
provides an overview of some of the techniques you can use to help
improve the quality of your results.

f For more information about applying the attributes discussed in this
section, refer to the Tasks and Tips chapter of the Synplify Software User
Guide.

Implementations in Synplify Pro

To create different synthesis results without overwriting the others, In the
Synplify Pro software, on the Project menu, click New Implementation.
For each implementation, specify the target device, synthesis options,
and constraint files. Each implementation generates its own subdirectory
that contains all the resulting files, including VQM/EDIF, .scf and Tcl
files, from a compilation of the particular implementation. You can then
compare the results of the different implementations to find the optimal
set of synthesis options and constraints for a design.

Altera Corporation 7–9
October 2007

Synplify Optimization Strategies

Timing-Driven Synthesis Settings

The Synplify software supports timing-driven synthesis with
user-assigned timing constraints to optimize the performance of the
design. The Synplify software optimizes the design to attempt to meet
these constraints.

The Quartus II NativeLink feature allows timing constraints that are
applied in the Synplify software to be forward-annotated for the
Quartus II software using either a Tcl script file or a .scf file for
timing-driven place and route. Refer to “Passing TimeQuest SDC Timing
Constraints to the Quartus II Software in the .scf File” on page 7–20 or
“Passing Constraints to the Quartus II Software using Tcl Commands” on
page 7–22 for more details about how constraints such as clock
frequencies, false paths, and multicycle paths are forward-annotated.
This section explains some of the important timing constraints in the
Synplify software.

1 The Synplify Synthesis Report File (.srr) contains timing reports
of estimated place-and-route delays. The Quartus II software
can perform further optimizations on a post-synthesis netlist
from third-party synthesis tools. In addition, designs may
contain black boxes or intellectual property (IP) functions that
have not been optimized by the third-party synthesis software.
Actual timing results are obtained only after the design has gone
through full placement and routing in the Quartus II software.
For these reasons, the Quartus II post place-and-route timing
reports provide a more accurate representation of the design.
The statistics in these reports should be used to evaluate design
performance.

Clock Frequencies

For single-clock designs, specify a global frequency when using the
push-button flow. While this flow is simple and provides good results,
often it does not meet the performance requirements for more advanced
designs. You can use timing constraints, compiler directives, and other
attributes to help optimize the performance of a design. You can enter
these attributes and directives directly in the HDL code. Alternatively,
you can enter attributes (not directives) into an .sdc file with the SCOPE
window in the Synplify software.

Use the SCOPE window to set global frequency requirements for the
entire design and individual clock settings. Use the Clocks tab in the
SCOPE window to specify frequency (or period), rise times, fall times,
duty cycle, and other settings. Assigning individual clock settings, rather
than over-constraining the global frequency, helps the Quartus II

7–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

software and the Synplify software achieve the fastest clock frequency for
the overall design. The define_clock attribute assigns clock
constraints.

Multiple Clock Domains

The Synplify software can perform timing analysis on unrelated clock
domains. Each clock group is a different clock domain and is treated as
unrelated to the clocks in all other clock groups. All the clocks in a single
clock group are assumed to be related and the Synplify software
automatically calculates the relationship between the clocks. You can
assign clocks to a new clock group, or put related clocks in the same clock
group by using the Clocks tab in the SCOPE window or with the
define_clock attribute.

Input/Output Delays

Specify the input and output delays for the ports of a design in the
Input/Output tab of the SCOPE window or with the
define_input_delay and define_output_delay attributes. The
Synplify software does not allow you to assign the tCO and tSU values
directly to inputs and outputs. However, a tCO value can be inferred by
setting an external output delay, and a tSU value can be inferred by setting
an external input delay. Equation 1 and 2 below illustrate the relationship
between tCO /tSU and the input/output delays:

(1) tCO = clock period – external output delay

(2) tSU = clock period – external input delay

When the syn_forward_io_constraints attribute is set to 1, the
Synplify software passes the external input and output delays to the
Quartus II software using NativeLink integration. The Quartus II
software then uses the external delays to calculate the maximum system
frequency.

Multicycle Paths

Specify any multicycle paths in the design in the Multi-Cycle Paths tab
of the SCOPE window or with the define_multicycle_path
attribute. A multicycle path is a path that requires more than one clock
cycle to propagate. It is important to specify which paths are multicycle
to avoid having the Quartus II and the Synplify compilers work
excessively on a non-critical path. Not specifying these paths can also
result in an inaccurate critical path being reported during timing analysis.

Altera Corporation 7–11
October 2007

Synplify Optimization Strategies

False Paths

False paths are paths that should not be considered during timing
analysis or which should be assigned low (or no) priority during
optimization. Some examples of false paths are slow asynchronous resets
and test logic added to the design. Set these paths in the False Paths tab
of the SCOPE window. Use the define_false_path attribute.

FSM Compiler

If the FSM Compiler is turned on, the compiler automatically detects state
machines in a design. The compiler can then extract and optimize the
state machine. The FSM Compiler analyzes the state machine and decides
to implement sequential, gray, or one-hot encoding based on the number
of states. It also performs unused-state analysis, optimization of
unreachable states, and minimization of transition logic.

If the FSM Compiler is turned off, the compiler does not infer state
machines. The state machines are implemented as coded in the HDL
code. Thus, if the coding style for the state machine was sequential, then
the implementation is also sequential. If the FSM Compiler is turned on,
the compiler infers the state machines. The implementation is based on
the number of states regardless of the coding style in the HDL code.

You can use the syn_state_machine complier directive to specify or
prevent a state machine from being extracted and optimized. To override
the default encoding of the FSM Compiler, use the syn_encoding
directive.

The values for the syn_encoding directive are shown in Table 7–2.

Table 7–2. syn_encoding Directive Values

Value Description

Sequential Generates state machines with the fewest possible flip-flops. Sequential, also called binary,
state machines are useful for area-critical designs when timing is not the primary concern.

Gray Generates state machines where only one flip-flop changes during each transition.
Gray-encoded state machines tend to be free of glitches.

One-hot Generates state machines containing one flip-flop for each state. One-hot state machines
typically provide the best performance and shortest clock-to-output delays. However, one-hot
implementations are usually larger than binary implementations.

Safe Generates extra control logic to force the state machine to the reset state if an invalid state is
reached. The safe value can be used in conjunction with the other three values, which results
in the state machine being implemented with the requested encoding scheme and the
generation of the reset logic.

7–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 7–1 shows sample VHDL code for applying the syn_encoding
directive.

Example 7–1. VHDL Code for syn_encoding
SIGNAL current_state : STD_LOGIC_VECTOR(7 DOWNTO 0);
ATTRIBUTE syn_encoding : STRING;
ATTRIBUTE syn_encoding OF current_state : SIGNAL IS "sequential";

The default is to optimize state machine logic for speed and area, but this
is potentially undesirable for critical systems. The safe value generates
extra control logic to force the state machine to the reset state if an invalid
state is reached.

FSM Explorer in Synplify Pro

The Synplify Pro software can use the FSM Explorer to explore different
encoding styles for a state machine automatically, and then implement
the best encoding based on the overall design constraints. The FSM
Explorer uses the FSM Compiler to identify and extract state machines
from a design. However, unlike the FSM Compiler which chooses the
encoding style based on the number of states, the FSM Explorer tries
several different encoding styles before choosing a specific one. The
trade-off is that the compilation requires more time to perform the
analysis of the state machine, but finds an optimal encoding scheme for
the state machine.

Optimization Attributes and Options

The following sections describe other attributes and options that you can
modify in the Synplify software to improve your design performance.

Retiming in Synplify Pro

The Synplify Pro software can retime a design, which can improve the
timing performance of sequential circuits by moving registers (register
balancing) across combinational elements. Be aware that retimed
registers incur name changes. To retime your design, turn on the
Retiming option in the Device tab in the Implementation Options
section, or use the syn_allow_retiming attribute.

Maximum Fan-Out

When your design has critical path nets with high fan-out, you can use
the syn_maxfan attribute to control the fan-out of the net. Setting this
attribute for a specific net results in the replication of the driver of the net
to reduce the overall fan-out. The syn_maxfan attribute takes an integer

Altera Corporation 7–13
October 2007

Synplify Optimization Strategies

value and applies it to inputs or registers. (The syn_maxfan attribute
cannot be used to duplicate control signals, and the minimum allowed
value of the attribute is 4.) Using this attribute may result in increased
logic resource utilization, thus putting a strain on routing resources and
leading to long compile times and difficult fitting.

If you need to duplicate an output register or output enable register, you
can create a register for each output pin by using the syn_useioff
attribute (refer to “Register Packing”).

Preserving Nets

During synthesis, the compiler maintains ports, registers, and
instantiated components. However, some nets may not be maintained to
create an optimized circuit. Applying the syn_keep directive overrides
the optimization of the compiler and preserves the net during synthesis.
The syn_keep directive takes a Boolean value and can be applied to
wires (Verilog HDL) and signals (VHDL). Setting the value to true
preserves the net through synthesis.

Register Packing

Altera devices allow for the packing of registers into I/O cells. Altera
recommends allowing the Quartus II software to make the I/O register
assignments. However, it is possible to control register packing with the
syn_useioff attribute. The syn_useioff attribute takes a Boolean
value and can be applied to ports or entire modules. Setting the value to
1 instructs the compiler to pack the register into an I/O cell. Setting the
value to 0 prevents register packing in both the Synplify and Quartus II
software.

Resource Sharing

The Synplify software uses resource sharing techniques during synthesis
by default to reduce area. Turning off the Resource Sharing option on the
Options tab of the Implementation Options dialog box can improve
performance results for some designs. If you turn off this option, be sure
to check the results to determine if it helps the timing performance; if it
does not help, then you should leave Resource Sharing turned on.

Preserving Hierarchy

The Synplify software performs cross-boundary optimization by default.
This results in the flattening of the design to allow optimization. Use the
syn_hier attribute to over-ride the default compiler settings. The

7–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

syn_hier attribute takes a string value and applies it to modules and/or
architectures. Setting the value to hard maintains the boundaries of a
module and/or architecture, and prevents cross-boundary optimization.

By default, the Synplify software generates a hierarchical VQM file. To
flatten the file, set the syn_netlist_hierarchy attribute equal to 0.

Register Input and Output Delays

The advanced options called define_reg_input_delay and
define_reg_output_delay can speed up paths feeding a register or
coming from a register by a specific number of nanoseconds. The Synplify
software attempts to meet the global clock frequency goals for a design as
well as the individual clock frequency goals (set with define_clock).
You can use these attributes to add delay to paths feeding into or out of
registers to further constrain critical paths.

These options are useful to close timing when your design does not meet
timing goals because the routing delay after placement and routing
exceeds the delay predicted by the Synplify software. Rerun synthesis
using this option, specifying the actual routing delay (from
place-and-route results) so that the tool can meet the required clock
frequency.

In the SCOPE constraint window, use the registers panel with the
following entries:

■ Register—Specifies the name of the register. If you have initialized a
compiled design, you can choose the name from the list.

■ Type—Specifies whether the delay is an input or output delay.
■ Route—Shrinks the effective period for the constrained registers by

the specified value without affecting the clock period that is
forward-annotated to the Quartus II software.

Use the following Tcl command syntax to specify an input or output
register delay in nanoseconds.

Example 7–2. Specifying an Input or Output Register Delay Using Tcl Command Syntax
define_reg_input_delay {<register>} -route <delay in ns>
define_reg_output_delay {<register>} -route <delay in ns>

Altera Corporation 7–15
October 2007

Synplify Optimization Strategies

syn_direct_enable

This attribute controls the assignment of a clock-enable net to the
dedicated enable pin of a register. Using this attribute, you can direct the
Synplify mapper to use a particular net as the only clock enable when the
design has multiple clock enable candidates.

You can also use this attribute as a compiler directive to infer registers
with clock enables. To do so, enter the syn_direct_enable directive in
your source code, not the SCOPE spreadsheet.

The syn_direct_enable data type is Boolean. A value of 1 or true
enables net assignment to the clock-enable pin. The syntax for Verilog
HDL is shown below:

object /* synthesis syn_direct_enable = 1 */ ;

Standard I/O Pad

For certain Altera devices and the equivalent device I/O standard, you
can specify the I/O standard type to use for the I/O pad in the design
using the I/O Standard panel in the Synplify SCOPE window.

Example 7–3 shows the Synplify SDC syntax for the define_io_standard
constraint, in which the delay_type must be either input_delay or
output_delay.

Example 7–3. Synplify SDC Syntax for the define_io_standard Constraint
define_io_standard [-disable|-enable] {<objectName>} -delay_type \
[input_delay|output_delay] <columnTclName>{<value>} \
[<columnTclName>{<value>}...]

f For details about supported I/O standards, refer to Altera I/O Standards
in the Synplify Reference Manual.

Altera-Specific Attributes

The following attributes are for use with specific Altera device features.
These attributes are forward-annotated to the Quartus II project and are
used during the place-and-route process.

7–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

altera_chip_pin_lc

Use this attribute to make pin assignments. This attribute takes a string
value and applies it to inputs and outputs. The attribute can be used only
on the ports of the top-level entity in the design, and cannot be used to
assign pin locations from entities at lower levels of the design hierarchy.

1 This attribute is not supported for any of the MAX series
devices. In the SCOPE window, select the attribute
altera_chip_pin_lc and set the value to a pin number or a list of
pin numbers.

Example 7–4 shows VHDL code for making location assignments to
ACEX 1K and FLEX 10KE devices.

1 The “@” is used to specify pin locations for ACEX 1K and
FLEX 10KE devices. For these devices, the pin location
assignments are written to the output EDIF.

Example 7–4. Making Location Assignments to ACEX 1K and FLEX 10KE Devices, VHDL
ENTITY sample (data_in : IN STD_LOGIC_VECTOR (3 DOWNTO 0);

data_out: OUT STD_LOGIC_VECTOR (3 DOWNTO 0));
ATTRIBUTE altera_chip_pin_lc : STRING;
ATTRIBUTE altera_chip_pin_lc OF data_out : SIGNAL IS "@14, @5,@16, @15";

Example 7–5 shows VHDL code for making location assignments for
other Altera devices. The pin location assignments for these devices are
written to the output Tcl script.

Example 7–5. Making Location Assignments to Other Devices, VHDL
ENTITY sample (data_in : IN STD_LOGIC_VECTOR (3 DOWNTO 0);

data_out: OUT STD_LOGIC_VECTOR (3 DOWNTO 0));
ATTRIBUTE altera_chip_pin_lc : STRING;
ATTRIBUTE altera_chip_pin_lc OF data_out : SIGNAL IS "14, 5, 16,

15";

1 The data_out signal is a 4-bit signal; data_out[3] is
assigned to pin 14 and data_out[0] is assigned to pin 15.

altera_implement_in_esb or altera_implement_in_eab

You can use these attributes to implement logic in either embedded
system blocks (ESBs) or embedded array blocks (EABs) rather than in
logic resources to improve area utilization. The modules selected for such
implementation cannot have feedback paths, and either all or none of the

Altera Corporation 7–17
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

I/Os must be registered. This attribute takes a boolean value and can be
applied to instances. (This option is applicable for devices with
ESBs/EABs only. For example, the Stratix family of devices is not
supported by this option. This attribute is ignored for designs targeting
devices that do not have ESBs or EABs.)

altera_io_powerup

You can use this attribute to define the power-up value of an I/O register
that has no set or reset. This attribute takes a string value (high|low) and
applies it to ports that have I/O registers.

altera_io_opendrain

Use this attribute to specify open-drain mode I/O ports. This attribute
takes a boolean value and applies it to outputs or bidirectional ports for
devices that support open-drain mode.

Exporting
Designs to the
Quartus II
Software Using
NativeLink
Integration

The NativeLink feature in the Quartus II software facilitates the seamless
transfer of information between the Quartus II software and EDA tools,
and allows you to run other EDA design entry or synthesis, simulation,
and timing analysis tools automatically from within the Quartus II
software. After a design is synthesized in the Synplify software, a VQM
(or EDIF) netlist file, an .scf file for TimeQuest Timing Analyzer timing
constraints, and Tcl files are used to import the design into the Quartus II
software for place-and-route. You can run the Quartus II software from
within the Synplify software or as a standalone application. Once you
have imported the design into the Quartus II software, you can specify
different options to further optimize the design.

1 When you are using NativeLink integration, the path to your
project must not contain white space. The Synplify software
uses Tcl scripts to communicate with the Quartus II software,
and the Tcl language does not accept arguments with white
space in the path.

You can use NativeLink integration to integrate the Synplify software
and Quartus II software with a single GUI for both the synthesis and
place-and-route operations. NativeLink integration allows you to run the
Quartus II software from within the Synplify software GUI or to run the
Synplify software from within the Quartus II software GUI.

7–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

This section explains the different Nativelink flows and provides details
on how constraints are passed to the Quartus II software. This section
describes the following topics:

■ “Running the Quartus II Software from within the Synplify
Software” on page 7–18

■ “Using the Quartus II Software to Run the Synplify Software” on
page 7–19

■ “Running the Quartus II Software Manually Using the
Synplify-Generated Tcl Script” on page 7–19

■ “Passing TimeQuest SDC Timing Constraints to the Quartus II
Software in the .scf File” on page 7–20

■ “Passing Constraints to the Quartus II Software using Tcl
Commands” on page 7–22

Running the Quartus II Software from within the Synplify
Software

To use the Quartus II software from within the Synplify software, you
must first verify that the QUARTUS_ROOTDIR environment variable
contains the Quartus II software installation directory. This environment
variable is required to use the Synplify and Quartus II software together.

Under each Implementation in the Synplify Pro software, you can create
a place-and-route implementation called pr_<number> Altera Place and
Route. You can create new place and route implementations using the
New P&R button in the GUI. To run the Quartus II software in
command-line mode after each synthesis run, use the text box to turn on
the place-and-route implementation. The results of the place and route
are written to a log file in the pr_<number> directory under the current
implementation directory.

You can also use the commands in the Quartus II menu to run the
Quartus II software at any time following a successful completion of
synthesis. Use one of the following commands from the Quartus II
submenu under the Options menu in the Synplify software:

■ Launch Quartus—Opens the Quartus II software GUI and creates a
Quartus II project with the synthesized output file,
forward-annotated timing constraints, and pin assignments. You can
use this to configure options for the project and execute any
Quartus II commands.

■ Run Background Compile—Runs the Quartus II software in
command-line mode with the project settings from the synthesis run.
The results of the place-and-route are written to a log file.

Altera Corporation 7–19
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

The <project_name>_cons.tcl file is used to set up the Quartus II project
and calls the <project_name>.tcl file to pass constraints from the Synplify
software to the Quartus II software. By default, the <project_name>.tcl file
contains device, timing, and location assignments. If a Stratix III or a
Cyclone III device is selected, the <project_name>.tcl file contains the
command to use the Synplify-generated .scf constraints file with the
TimeQuest Timing Analyzer instead of using the Tcl constraints with the
Classic Timing Analyzer.

Using the Quartus II Software to Run the Synplify Software

You can set up the Quartus II software to run the Synplify software for
synthesis using NativeLink integration. This feature allows you to use the
Synplify software to synthesize a design as part of a normal compilation
in the Quartus II software.

To set up Synplify in Quartus II, on the Tools menu, click Options. In the
Options window, click EDA Tool Options and specify the path of
Synplify or Synplify Pro software.

f For detailed information about using NativeLink integration with the
Synplify software, refer to the Quartus II Help.

1 If you are running the Quartus II software version 7.1 or later,
running the Synplify software with NativeLink integration is
supported on both floating network and node-locked single-PC
licenses. Both types of licenses support batch mode compilation.

Running the Quartus II Software Manually Using the
Synplify-Generated Tcl Script

You can also use the Quartus II software separately from the Synplify
software. To run the Tcl script generated by the Synplify software to set
up your project and set up assignments such as the device selection,
perform the following steps:

1. Ensure the VQM/EDIF, .scf (if you are using the TimeQuest Timing
Analyzer timing constraints), and Tcl files are located in the same
directory (they should be located in the implementation directory
by default).

2. In the Quartus II software, on the View menu, point to Utility
Windows and click Tcl Console. The Quartus II Tcl Console opens.

3. At the Tcl Console command prompt, type the following:

source <path>/<project name>_cons.tcl r

7–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Passing TimeQuest SDC Timing Constraints to the Quartus II
Software in the .scf File

The TimeQuest Timing Analyzer is a powerful ASIC-style timing
analysis tool that validates the timing performance of all logic in your
design using an industry standard constraints format, Synopsys Design
Constraints (SDC). This section explains how timing constraints set in
Synplify are passed to the Quartus II software for use with the TimeQuest
Timing Analyzer.

The timing constraints you set in Synplify are stored in the Synplify
Design Constraints (.sdc) file. The Tcl file always contains all other
constraints for the Quartus II software, such as the device specification
and any location constraints. The timing constraints are
forward-annotated using the Tcl file for the Quartus II Classic Timing
Analyzer, as described in “Passing Constraints to the Quartus II Software
using Tcl Commands” on page 7–22. For the TimeQuest Timing Analyzer,
the timing constraints are forward-annotated in the Synopsys Constraints
Format (.scf) file.

Altera recommends that you use the TimeQuest Timing Analyzer for
Stratix III and Cyclone III devices, as specified in the Synplify Tcl file that
sets up the Quartus II project. However, you can continue to use the Tcl
commands for the Classic Timing Analyzer if required. You can manually
change from the TimeQuest Timing Analyzer to the Classic Timing
Analyzer in the Quartus II software by performing the following steps:

1. From the Assignments menu, select Settings.

2. Click Timing Analysis Settings.

3. Under Timing analysis processing, click the Use Classic Timing
Analyzer during compilation radio button. Click OK.

1 For addition information about the TimeQuest Timing
Analyzer, refer to the Quartus II TimeQuest Timing Analyzer
chapter in the Quartus II Handbook.

Synplicity recommends that you modify constraints using the SCOPE
constraint editor window and not through the generated .sdc, .scf or .tcl
file.

The following list of Synplify constraints are converted to the equivalent
Quartus II SDC commands and are forward-annotated to the Quartus II
software in the .scf file:

■ define_clock

Altera Corporation 7–21
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

■ define_input_delay
■ define_output_delay
■ define_multicycle_path
■ define_false_path

All Synplify constraints described in the following sections use the same
Synplify commands as described in “Passing Constraints to the
Quartus II Software using Tcl Commands” on page 7–22; however, the
constraints are mapped to SDC commands for the TimeQuest Timing
Analyzer.

f For the syntax and arguments for these commands, refer to the
applicable subsection or refer to the Synplify Help. For a list of
corresponding commands in the Quartus II software, refer to the
Quartus II Help.

Individual Clocks and Frequencies

You can specify clock frequencies for individuals clocks in Synplify
software with the command, define_clock. This command is passed
to Quartus II software with create_clock.

Input and Output Delay

You can specify input delay and output delay constraints in Synplify
software with the commands define_input_delay and
define_output_delay respectively. These commands are passed to
the Quartus II software with set_input_delay and
set_output_delay.

Multicycle Path

You can specify a multicycle path constraint in Synplify with the
command define_multicycle_path. This command is passed to the
Quartus II software with define_multicycle_path.

False Path

You can specify a false path constraint in Synplify software with the
command define_false_path. This command is passed to the
Quartus II software with set_false_path.

7–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Passing Constraints to the Quartus II Software using Tcl
Commands

This section describes how Synplify constraints are converted to the
equivalent Quartus II assignments and are forward-annotated to the
Quartus II software with Tcl commands.

This section discusses timing constraints for the Quartus II Classic
Timing Analyzer. If you are using the TimeQuest Timing Analyzer, the
Quartus II timing constraints described in this section do not apply. Refer
to “Passing TimeQuest SDC Timing Constraints to the Quartus II
Software in the .scf File” on page 7–20 for information about timing
constraints supported by TimeQuest.

Global Signals

The Synplify software automatically promotes clock signals to global
routing lines and passes Global Signal assignments to the Quartus II
software. The assignments ensure that the same global routing
constraints are applied during placement and routing.

1 The signals promoted to global routing can be different than the
ones that the Quartus II software promotes to global routing by
default. Synplify promotes only clock signals and not other
control signals such as reset or enable. By default, without
constraints from the Synplify software, the Quartus II software
promotes control signals to global routing if they have high fan-
out.

Default or Global Clock Frequency

Use the following Synplify command to set the Synplify default or global
clock frequency that applies to the entire project:

set_option -frequency <frequency>

The <frequency> is specified in MHz. If a global frequency is not specified,
the software uses the default global clock frequency of 1 MHz.

The set_option Synplify constraint is passed to the Quartus II software
with the following command:

set_global_assignment -name FMAX_REQUIREMENT
<frequency> MHz

If a frequency is not specified in the Quartus II software, the software uses
the default global clock frequency of 1 GHz.

Altera Corporation 7–23
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

Individual Clocks and Frequencies

You can specify clock frequencies for individual clocks with the following
Synplify commands:

Example 7–6. Specifying Clock Frequencies for Individual Clocks
define_clock -name {<clock_name>} -freq <frequency> -clockgroup <clock_group>
-rise <rise_time> -fall <fall_time>
define_clock -name {<clock_name>} -period <period> -clockgroup <clock_group>
-rise <rise_time> -fall <fall_time>

Table 7–3 shows the command arguments.

The equivalent Quartus II Classic Timing Analyzer commands depend
on how the clock groups are defined. In the Quartus II software, clocks
that belong to the same or related clock settings are considered related
clocks. Clocks assigned to unrelated clock settings are unrelated clocks.
There is a one-to-one correspondence between each Quartus II clock
setting and a Synplify clock group.

1 The following sections describe only the frequency constraints.
You can use the corresponding constraints for period.

Table 7–3. Command Arguments

Argument Description

-name The <clock_name> specifies a design port name or a register output signal name, and, after
synthesis, corresponds to a <mapped_clock_name>.

-freq (1) The <frequency> is specified in MHz.

-period (2) The <period> is specified in ns.

-clockgroup If the <clock_group> is not specified, it defaults to default_clkgroup. Synplify assumes all
clocks belonging to the same clock group are related. If you do not specify a clock group, the
clock belongs to the default clock group. Therefore, if you do not specify any clock groups, all
the clocks are considered related by default in the software.

-rise
-fall

The <rise_time> and <fall_time> specify a non-default duty cycle. By default, the Synplify
synthesis tool assumes that the clock is a 50% duty cycle clock, with the rising edge at 0 and
the falling edge at period/2. If you have another duty clock cycle, you can specify the
appropriate Rise At and Fall At values.

Notes to Table 7–3:
(1) When the <frequency> is specified, the Synplify software uses <fall_time> and <frequency> to calculate the

duty_cycle with the following formula: duty_cycle = (<fall_time> – <rise_time>) × <frequency> ÷ 10.
(2) When the <period> is specified, the Synplify software uses <fall_time> and <period> to calculate the duty_cycle

with the following formula: duty_cycle = 100 × (<fall_time> – <rise_time>) ÷ <period>.

7–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Virtual Clocks

The Quartus II software supports virtual clocks. If you use the virtual
clock setting in Synplify, the setting is mapped to a constraint in the
Quartus II software.

Route Delay Option

The -route option in Synplify clock constraints is designed for use for
synthesis only if you do not meet timing goals because the routing delay
after placement and routing exceeds the delay predicted by the Synplify
software. This constraint does not have to be forward annotated to the
Quartus II software.

Multiple Clocks in Different Clock Groups

You can specify clock frequencies for multiple clocks with the Synplify
commands shown in Example 7–7.

Example 7–7. Specifying Clock Frequencies for Multiple Clocks
define_clock -name {<clock_name1>} -freq <frequency1> \
-clockgroup <clock_group1> -rise <rise_time1> -fall <fall_time1>

define_clock -name {<clock_name2>} -freq <frequency2> \
-clockgroup <clock_group2> -rise <rise_time2> -fall <fall_time2>

<clock_group1> and <clock_group2> are unique names defined in the
Synplify software for base clock settings in the Quartus II Classic Timing
Analyzer.

If the clock <rise_time> is zero (“0”), multiple separate clocks are passed
to the Quartus II software with the commands shown in Example 7–8:

Example 7–8. Quartus II Assignments for Multiple Clocks if the Clock Rise Time is Zero
create_base_clock -fmax <frequency1>MHz -duty_cycle <duty_cycle1> \
-target mapped_clock_name1 <base_clock_setting1>

create_base_clock -fmax <frequency2>MHz -duty_cycle <duty_cycle2> \
-target mapped_clock_name2 <base_clock_setting2>

Altera Corporation 7–25
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

If the clock <rise_time> is non-zero, multiple separate clocks are passed to
the Quartus II software with the following commands shown in
Example 7–9:

Example 7–9. Quartus II Assignments for Multiple Clocks if the Clock Rise Time is Not Zero
create_base_clock -fmax <frequency1>MHz -duty_cycle <duty cycle1> \
-no_target <base clock setting1>

create_base_clock -fmax <frequency2>MHz -duty_cycle <duty cycle2> \
-no_target <base clock setting2>

create_relative_clock -base_clock <base clock setting1> -offset <rise time1>ns \
-duty_cycle <duty cycle1> -multiply <multiply by> -divide <divide by> \
-target <mapped clock name1> <derived clock setting1>

create_relative_clock -base_clock <base clock setting2> -offset <rise time2>ns \
-duty_cycle <duty cycle2> -multiply <multiply by> -divide <divide by> \
-target <mapped clock name2> <derived clock_setting2>

Multiple Clocks with Different Frequencies in the Same Clock Group

You can specify multiple clocks with relative clock settings in the same
clock group in Synplify with different frequencies with the commands
shown in Example 7–10:

Example 7–10. Specifying Multiple Clocks with Different Frequencies in the Same Clock Group
define_clock -name {<clock_name1>} -freq <frequency1> -clockgroup <clock_group1> \
-rise <rise_time1> -fall <fall_time1>

define_clock -name {<clock_name2>} -freq <frequency2> -clockgroup <clock_group1> \
-rise <rise_time2> -fall <fall_time2>

1 When you specify clocks with different frequencies in the same
clock group, the software calculates the <multiply_by> and the
<divide_by> factors for relative clock settings from <frequency1>
and <frequency2> in the clock group settings.

7–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

If the clock <rise_time> is zero, multiple clocks with relative clock settings
in the same clock group with different frequencies are passed to the
Quartus II software with the commands shown in Example 7–11:

Example 7–11. Quartus II Assignments for Multiple Clocks with Different Frequencies in the Same Clock
Group, if the Clock Rise Time is Zero
create_base_clock -fmax <frequency1>MHz -duty_cycle <duty_cycle1> \
-target <mapped_clock_name1> <base_clock_setting1>

create_relative_clock -base_clock <base_clock_setting1> \
-duty_cycle <duty_cycle2> -multiply <multiply_by> -divide <divide_by> \
-target <mapped_clock_name2> <derived_clock_setting2>

Inter-Clock Relationships—Delays and False Paths between Clocks

You can set a clock-to-clock delay constraint in Synplify with the
commands in Example 7–12.

Example 7–12. Specifying Clock-to-Clock Delay Constraints
define_clock_delay -fall <clock_name1> -rise <clock_name2> <delay_value>
define_clock_delay -rise <clock_name1> -fall <clock_name2> <delay_value>
define_clock_delay -rise <clock_name1> -rise <clock_name2> <delay_value>
define_clock_delay -fall <clock_name1> -fall <clock_name2> <delay_value>

If <delay_value> is set to false, these constraints in Synplify indicate a
false path between the two clocks. If all four rise/fall clock-edge pairs are
specified in the Synplify software, the Synplify constraints are mapped to
the following constraint in the Quartus II software:

set_timing_cut_assignment -from <clock_name1> \
-to <clock_name2>

If all four clock-edge pairs are not specified in Synplify, the constraint
cannot be mapped to a constraint for the Quartus II Classic Timing
Analyzer.

If <delay_value> is set to a value other than false, these constraints in
Synplify is not mapped to a constraint in the Quartus II software. The
Quartus II Classic Timing Analyzer does not support clock-edge to clock-
edge delay constraints.

Altera Corporation 7–27
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

False Paths

You can specify the false path constraint in Synplify with the following
command:

define_false_path -from <sig_name1> -to <sig_name2>

The signals <sig_name1> and <sig_name1> can be design port names or
register instance names.

The define_false_path constraint in Synplify is mapped to the constraint
in the Quartus II software, as shown below.

set_timing_cut_assignment -from <sig_name1> \
-to <sig_name2>

Synplify can identify pairs of signal sets such that every member of the
cross-product of these two sets is a valid false path constraint. Signal
groups can be defined in the Quartus II Classic Timing Analyzer with the
following commands:

timegroup -add_member sig_name1_i <sig_group1>
(for every signal in <sig_group1>)

timegroup -add_member sig_name2_i <sig_group2>
(for every signal in <sig_group2>)

set_timing_cut_assignment -from <sig_group1> \
-to <sig_group2>

If the signals <sig_name1> or <sig_name2> represent multiple signals such
as a wildcard, group, or bus, the constraints you can expand
appropriately for representation in the Quartus II software. The
Quartus II software supports wildcard signal names, and signal groups
for timing assignments. The Quartus II software does not support bus
notation, such as A[7:4].

7–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

False Path from a Signal
You can specify a false path constraint from a signal in Synplify with the
following command:

define_false_path -from <sig_name>

The Quartus II Classic Timing Analyzer does not support “from-only”
path specifications. You must also include a “to-path” specification.
However, you can specify a wildcard for the -to signal. This constraint
in Synplify is mapped to the following constraint in the Quartus II
software:

set_timing_cut_assignment -from <sig_name> -to {*}

False Path to a Signal
You can specify a false path constraint to a signal in Synplify with the
following command:

define_false_path -to <sig_name>

The Quartus II Classic Timing Analyzer does not support to-only path
specifications. You must include a from-path specification.” However,
you can specify a wildcard for the -from signal. This constraint in
Synplify is mapped to the following constraint in the Quartus II software:

set_timing_cut_assignment -from {*} -to <sig_name>

False Path Through a Signal
You can specify a false path constraint through a signal in Synplify with
the following command:

define_false_path -from <sig_name1> -to <sig_name2> \
-through <sig_name3>

The Quartus II Classic Timing Analyzer does not support false paths with
a “through path” specification. Any constraint in Synplify with a
-through specification is not mapped to a constraint for the Quartus II
Classic Timing Analyzer.

Multicycle Paths

You can specify a multicycle path constraint in Synplify with the
following command:

define_multicycle_path -from <sig_name1> \
-to <sig_name2> <clock_cycles>

Altera Corporation 7–29
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

This constraint in Synplify is mapped to the following constraint in the
Quartus II software:

set_multicycle_assignment -from <sig_name1> \
-to <sig_name2> <clock_cycles>

If the signals <sig_name1> or <sig_name2> represent multiple signals such
as a wildcard, group, or bus, the constraints can be appropriately
expanded for representation in the Quartus II software as described in
“False Paths” on page 7–11.

1 <clock_cycles> is the number of clock cycles for the multicycle
path.

Multicycle Path from a Signal
You can specify a multicycle path constraint from a signal in Synplify
with the following command:

define_multicycle_path -from <sig_name> <clock_cycles>

This constraint is mapped using a wildcard for the -to value in the
Quartus II Classic Timing Analyzer, similar to the false path constraints:

set_multicycle_assignment -from <sig_name> \
-to {*} <clock_cycles>

Multicycle Path to a Signal
You can specify a multicycle path constraint to a signal in Synplify with
the following command:

define_multicycle_path -to <sig_name> <clock_cycles>

This constraint is mapped using a wildcard for the -from value in the
Quartus II Classic Timing Analyzer, similar to the false path constraints:

set_multicycle_assignment -from {*} <sig_name> \
<clock_cycles>

Multicycle Path Through a Signal
You can specify a multicycle path constraint through a signal in Synplify
using the following command:

define_multicycle_path -from <sig_name1> -to <sig_name2> \
-through <sig_name3> <clock_cycles>

7–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

The Quartus II Classic Timing Analyzer does not support multicycle
paths with a “through path” specification. Any constraint in Synplify
with a -through specification is not mapped to a constraint for the
Quartus II Classic Timing Analyzer.

Maximum Path Delays

You can specify the maximum path delay relationships between signals
in Synplify with the following command:

define_path_delay -from <sig_name1> -to <sig_name2> \
-max <delay_value>

This constraint in Synplify is mapped to the following constraint in the
Quartus II software:

set_instance_assignment -from <sig_name1> \
-to <sig_name2> -name SETUP_RELATIONSHIP <delay_value>ns

The Quartus II Classic Timing Analyzer does not support signal groups
or bus notation, and supports only register names for this constraint.

Maximum Path Delay from a Signal
You can specify the maximum path delay constraint from a signal in
Synplify with the following command:

define_path_delay -from <sig_name> -max <delay_value>

This constraint is mapped using a wildcard for the -to value in the
Quartus II Classic Timing Analyzer, similar to false path constraints:

set_instance_assignment -from <sig_name> -to {*} \
-name SETUP_RELATIONSHIP <delay_value>ns

Maximum Path Delay to a Signal
You can specify the maximum path delay constraint to a signal in
Synplify with the following command:

define_path_delay -to <sig_name> -max <delay_value>

This constraint is mapped using a wildcard for the -from value in the
Quartus II Classic Timing Analyzer, similar to the false path constraints.

set_instance_assignment -from {*}<sig_name> \
-to <sig_name> -name SETUP_RELATIONSHIP <delay_value>ns

Altera Corporation 7–31
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

Maximum Path Delay through a Signal
You can specify the maximum path delay constraint through a signal in
Synplify with the following command:

define_path_delay -from <sig_name1> -to <sig_name2> \
-through <sig_name3> -max <delay_value>

The Quartus II Classic Timing Analyzer does not support maximum path
delay constraints with a “through path” specification. Any constraint in
Synplify with a -through specification is not mapped to a constraint for
the Quartus II Classic Timing Analyzer.

Register Input and Output Delays
These register input delay and register output delay constraints in
Synplify are for use in synthesis only, and therefore are not
forward-annotated to the Quartus II software.

Default External Input Delay
You can specify the default input delay constraint in Synplify with the
following command:

define_input_delay -default <delay_value>

This constraint is mapped to the following constraint in the Quartus II
software:

set_input_delay -clock {*} <delay_value> {*}

Port-Specific External Input Delay
You can specify a port-specific input delay constraint in Synplify with the
following command:

define_input_delay <input_port_name> <delay_value> \
-ref <clock_name>:<clock_edge>

The <clock_edge> can be set to r (rising edge) or f (falling edge).

When the clock edge is r (rising edge), this constraint is mapped to the
following constraint in the Quartus II software:

set_input_delay -clock <clock_name> <delay_value> \
<input_port_name>

When the clock_edge is f (falling edge), this constraint is not mapped to
a constraint in the Quartus II software. The Quartus II Classic Timing
Analyzer does not support the specification of input delays with respect
to the falling edge of the clock.

7–32 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Default External Output Delay
You can specify the default output delay constraint in Synplify with the
following command:

define_output_delay -default <delay_value>

This constraint is mapped to the following constraint in the Quartus II
software:

set_output_delay -clock {*} <delay_value> {*}

Port-Specific External Output Delay
You can specify a port-specific input delay constraint in Synplify with the
following command:

define_output_delay <output_port_name> <delay_value> \
-ref <clock_name>:<clock_edge>

The <clock_edge> can be set to r (rising edge) or f (falling edge). When the
clock edge is r (rising edge), this constraint is mapped to the following
constraint in the Quartus II software:

set_output_delay -clock <clock_name> <delay_value> \
<output_port_name>

When the clock_edge is f (falling edge), this constraint is not mapped to
a constraint in the Quartus II software. The Quartus II Classic Timing
Analyzer does not support the specification of output delays with respect
to the falling edge of the clock.

Guidelines for
Altera
Megafunctions
and
Architecture-
Specific
Features

Altera provides parameterizable megafunctions including the LPMs,
device-specific Altera megafunctions, IP available as Altera MegaCore®
functions, and IP available through the Altera Megafunction Partners
Program (AMPPSM). You can use megafunctions by instantiating them in
your HDL code or inferring them from generic HDL code.

If you want to instantiate a megafunction in your HDL code, you can do
so with the MegaWizard Plug-In Manager to parameterize the function or
instantiating the function using the port and parameter definition. The
MegaWizard Plug-In Manager provides a graphical interface within the
Quartus II software for customizing and parameterizing any available
megafunction for the design. “Instantiating Altera Megafunctions Using
the MegaWizard Plug-In Manager” on page 7–33 describes the
MegaWizard Plug-In Manager flow with the Synplify software.

Altera Corporation 7–33
October 2007

Guidelines for Altera Megafunctions and Architecture-Specific Features

f For more information about specific Altera megafunctions, refer to the
Quartus II Help. For more information about IP functions, refer to the
appropriate IP documentation.

The Synplify software also automatically recognizes certain types of HDL
code and infers the appropriate megafunction when a megafunction
provides optimal results. The Synplify software provides options to
control inference of certain types of megafunctions, as described in
“Inferring Altera Megafunctions from HDL Code” on page 7–37.

f For a detailed discussion about instantiating versus inferring
megafunctions, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook. The Recommended HDL Coding
Styles chapter also provides details on using the MegaWizard Plug-In
Manager in the Quartus II software and explains the files generated by
the wizard, as well as providing coding style recommendations and
HDL examples for inferring megafunctions in Altera devices.

Instantiating Altera Megafunctions Using the MegaWizard
Plug-In Manager

When you use the MegaWizard Plug-In Manager to set up and
parameterize a megafunction, the MegaWizard Plug-In Manager creates
a VHDL or Verilog HDL wrapper file that instantiates the megafunction.

1 Beginning with the Quartus II software version 7.1, there is an
option in the MegaWizard Plug-In Manager to create a netlist
for area and timing estimation instead of a wrapper file. This
option is not supported with the Synplify software version 8.8,
therefore you must use the megafunction wrapper file as
described in this section.

Using the MegaWizard Plug-In Manager-generated wrapper file is
referred to as a black box methodology because the megafunction is
treated as a black box in the Synplify software. The black box
methodology does not allow the synthesis tool any visibility into the
function module and therefore does not take full advantage of the
synthesis tool’s timing-driven optimization. For better timing
optimization, especially if the black box does not have registered inputs
and outputs, add timing models to black boxes. Refer to “Other Synplify
Software Attributes for Creating Black Boxes” on page 7–36 for details.

Make sure to set the correct Quartus II version in the Synplify software
before compiling the Megawizard-generated file. The Quartus version
setting should match the version of the Quartus II software used to
generate the customized megafunction in the MegaWizard Plug-In
Manager.

7–34 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1. On the Project menu, click Implementation Options.

2. Click the Implementation Results tab, then click Quartus Version.

3. Choose the correct version number in the list.

Alternately, use the following command from the command line:

set_option -quartus_version <version number> r

Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for
Black Box Megafunction Instantiation

If you check the <output file>_inst.v and <output file>_bb.v options on the
last page of the wizard, the MegaWizard Plug-In Manager generates a
Verilog HDL instantiation template file and a hollow-body black box
module declaration for use in your Synplify design. The instantiation
template file helps to instantiate the megafunction variation wrapper file,
<output file>.v, in your top-level design. Do not include the megafunction
variation wrapper file in your Synplify Project, but add it, with your
Synplify-generated VQM netlist, to your Quartus II project. Add the
hollow-body black box module declaration <output file>_bb.v to your
Synplify project to describe the port connections of the black box.

1 The Synplify software reads black box instantiations for the
alt_pll megafunction and writes the phase-locked loop (PLL)
instance into the resulting VQM output netlist. Reading the PLL
function allows the Synplify software to interpret the
multiplication and division factors in the PLL instantiation to
make the correct timing assignments. Therefore, for alt_pll
instantiations, make sure to include the megafunction variation
wrapper file <output file>.v in your Synplify project and do not
declare it as a black box. Because the instance is written in the
VQM file, do not include the alt_pll megafunction variation
wrapper file <output file>.v in your Quartus II project.

You can use the syn_black_box compiler directive to declare a module
as a black box. The top-level design files must contain the megafunction
port mapping and hollow-body module declaration, as described above.
You can apply the syn_black_box directive to the module declaration
in the top-level file or a separate file included in the project (such as the
<output file>_bb.v file) to instruct the Synplify software that this is a black
box. The software compiles successfully without this directive, but
reports an additional warning message. Using this directive allows you
to add other directives as discussed in “Other Synplify Software
Attributes for Creating Black Boxes” on page 7–36.

Altera Corporation 7–35
October 2007

Guidelines for Altera Megafunctions and Architecture-Specific Features

Example 7–13 shows a sample top-level file that instantiates
verilogCount.v, which is a customized variation of the lpm_counter
generated by the MegaWizard Plug-In Manager.

Example 7–13. Top-Level Verilog HDL Code with Black Box Instantiation of lpm_counter
module topCounter (clk, count);

input clk;
output[7:0] count;
verilogCounter verilogCounter_inst (

.clock (clk),

.q (count)
);
endmodule
// Module declaration found in verilogCounter_bb.v
// The following attribute is added to create a
// black box for this module.
module verilogCounter (

clock,
q) /* synthesis syn_black_box */;
input clock;
output[7:0] q;

endmodule

Using MegaWizard Plug-In Manager-Generated VHDL Files for Black Box
Megafunction Instantiation

If you check the <output file>.cmp and <output file>_inst.vhd options on
the last page of the wizard, the MegaWizard Plug-In Manager generates
a VHDL component declaration file and a VHDL instantiation template
file for use in your Synplify design. These files can help you instantiate
the megafunction variation wrapper file, <output file>.vhd, in your
top-level design. Do not include the megafunction variation wrapper file
in your Synplify project, but add it, along with your Synplify-generated
VQM netlist, to your Quartus II project.

1 The Synplify software reads black box instantiations for the
alt_pll megafunction and writes the phase-locked loop (PLL)
instance into the resulting VQM output netlist. Reading the PLL
function allows the Synplify software to interpret the
multiplication and division factors in the PLL instantiation to
make the correct timing assignments. Therefore, for alt_pll
instantiations, make sure to include the megafunction variation
wrapper file <output file>.vhd in your Synplify project and do
not declare it as a black box. Because the instance is written in
the VQM file, do not include the alt_pll megafunction
variation wrapper file <output file>.vhd in your Quartus II
project.

7–36 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

You can use the syn_black_box compiler directive to declare a
component as a black box. The top-level design files must contain the
megafunction variation component declaration and port mapping, as
described above. Apply the syn_black_box directive to the component
declaration in the top-level file. The software compiles successfully
without this directive, but reports an additional warning message. Using
this directive allows you to add other directives such as the ones in the
“Other Synplify Software Attributes for Creating Black Boxes” section.

Example 7–14 shows a sample top-level file that instantiates
vhdlCount.vhd, which is a customized variation of the lpm_counter
generated by the MegaWizard Plug-In Manager.

Example 7–14. Top-Level VHDL Code with Black Box Instantiation of lpm_counter
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY testCounter IS

PORT
(

clk: IN STD_LOGIC ;
count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);
END testCounter;

ARCHITECTURE top OF testCounter IS
component vhdlCount

PORT (
clock: IN STD_LOGIC ;
q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);
end component;
attribute syn_black_box : boolean;
attribute syn_black_box of vhdlCount: component is true;
BEGIN

vhdlCount_inst : vhdlCount PORT MAP (
clock => clk,
q => count

);
END top;

Other Synplify Software Attributes for Creating Black Boxes

The black box methodology does not allow the synthesis tool any
visibility into the function module. Thus, it does not take full advantage
of the synthesis tool’s timing-driven optimization. For better timing
optimization, especially if the black box does not have registered inputs
and outputs, add timing models to black boxes. This can be done by
adding the syn_tpd, syn_tsu, and syn_tco attributes. Refer to
Example 7–15 for a Verilog HDL example.

Altera Corporation 7–37
October 2007

Guidelines for Altera Megafunctions and Architecture-Specific Features

Example 7–15. Verilog HDL Example
module ram32x4(z,d,addr,we,clk);
/* synthesis syn_black_box syn_tco1="clk->z[3:0]=4.0"

syn_tpd1="addr[3:0]->z[3:0]=8.0"
syn_tsu1="addr[3:0]->clk=2.0"
syn_tsu2="we->clk=3.0" */

output[3:0]z;
input[3:0]d;
input[3:0]addr;
input we
input clk
endmodule

The following additional attributes are supported by the Synplify
software to communicate details about the characteristics of the black box
module within the HDL code:

■ syn_resources—Specifies the resources used in a particular black
box

■ black_box_pad_pin—Prevents mapping to I/O cells
■ black_box_tri_pin—Indicates a tri-stated signal

f For more information about applying these attributes, refer to the Tasks
and Tips chapter of the Synplify User Guide.

Inferring Altera Megafunctions from HDL Code

The Synplify software uses Behavior Extraction Synthesis Technology
(BEST) algorithms to infer high-level structures such as RAMs, ROMs,
operators, FSMs, and so forth. It then keeps the structures abstract for as
long as possible in the synthesis process. This allows the use of
technology-specific resources to implement these structures by inferring
the appropriate Altera megafunction when a megafunction provides
optimal results. The following sections outline some of the
Synplify-specific details when inferring Altera megafunctions. The
Synplify software provides options to control inference of certain types of
megafunctions, which is also described in the following sections.

f For coding style recommendations and examples for inferring
megafunctions in Altera devices, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

7–38 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Inferring Multipliers

Figure 7–2 shows the HDL Analyst view of an unsigned 8 × 8 multiplier
with two pipeline stages after synthesis as seen in HDL Analyst in the
Synplify software. This multiplier is converted into an lpm_mult
megafunction. For devices with DSP blocks, the software may implement
the lpm_mult function in a DSP block instead of regular logic,
depending on device utilization. For Stratix II and Stratix III devices, the
software maps directly to DSP block device atoms instead of instantiating
a megafunction in the .vqm file.

Figure 7–2. HDL Analyst View of lpm_mult Megafunction (Unsigned 8 × 8
Multiplier with Pipeline=2)

Resource Balancing
While mapping multipliers to DSP blocks, the Synplify software
performs resource balancing for optimum performance.

Altera devices have a fixed number of DSP blocks, which include a fixed
number of embedded multipliers. If the design uses more multipliers
than are available, the Synplify software automatically maps the extra
multipliers to logic elements (LEs), or adaptive logic modules (ALMs).

If a design uses more multipliers than are available in the DSP blocks, the
Synplify software maps the multipliers in the critical paths to DSP blocks.
Next, any wide multipliers, which may or may not be in the critical paths,
are mapped to DSP blocks. Smaller multipliers and multipliers that are
not in the critical paths may then be implemented in the logic (LEs or
ALMs). This ensures that the design fits successfully in the device.

Controlling the Inferring of DSP Blocks
Multipliers can be implemented in DSP blocks or in logic in Altera
devices that contain DSP blocks. You can control this implementation
through attribute settings in the Synplify software.

Altera Corporation 7–39
October 2007

Guidelines for Altera Megafunctions and Architecture-Specific Features

Signal Level Attribute
You can control the implementation of individual multipliers by using
the syn_multstyle attribute as shown below:

<signal_name> /* synthesis syn_multstyle = "logic" */

where signal_name is the name of the signal.

1 This setting applies to wires only; it cannot be applied to
registers.

Table 7–4 shows the values for the signal level attribute in the Synplify
software that controls the implementation of the multipliers in the DSP
blocks or LEs.

Example 7–16 and Example 7–17 show simple Verilog HDL and VHDL
code using the syn_multstyle attribute.

Example 7–16. Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code
module mult(a,b,c,r,en);

input [7:0] a,b;
output [15:0] r;
input [15:0] c;
input en;
wire [15:0] temp /* synthesis syn_multstyle="logic" */;

assign temp = a*b;
assign r = en ? temp : c;
endmodule

Table 7–4. Attribute Settings for DSP Blocks in the Synplify Software

Attribute Name Value Description

syn_multstyle lpm_mult LPM Function inferred and multipliers implemented in
DSP blocks

syn_multstyle logic LPM function not inferred and multipliers implemented
LEs by the Synplify software

syn_multstyle block_mult DSP megafunction is inferred and multipliers are
mapped directly to DSP block device atoms (for
supported devices)

7–40 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 7–17. Signal Attributes for Controlling DSP Block Inference in VHDL Code
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity onereg is port (
r : out std_logic_vector(15 downto 0);
en : in std_logic;
a : in std_logic_vector(7 downto 0);
b : in std_logic_vector(7 downto 0);
c : in std_logic_vector(15 downto 0)
);

end onereg;

architecture beh of onereg is
signal temp : std_logic_vector(15 downto 0);
attribute syn_multstyle : string;
attribute syn_multstyle of temp : signal is "logic";

begin
temp <= a * b;

r <= temp when en='1' else c;
end beh;

Inferring RAM

When a RAM block is inferred from an HDL design, the software uses an
Altera megafunction to target the device memory architecture. For
Stratix II and Stratix III devices, the software maps directly to memory
block device atoms instead of instantiating a megafunction in the VQM
file.

Follow the guidelines below for the Synplify software to successfully
infer RAM in a design:

■ The address line must be at least two bits wide.
■ Resets on the memory are not supported. Refer to the device family

documentation for information about whether read and write ports
must be synchronous.

■ Some Verilog HDL statements with blocking assignments may not
be mapped to RAM blocks, so avoid blocking statements when
modeling RAMs in Verilog HDL.

For certain device families, the syn_ramstyle attribute specifies the
implementation to use for an inferred RAM. You can apply
syn_ramstyle globally, to a module, or to a RAM instance, to specify
registers or block_ram values. To turn off RAM inference, set the
attribute value to registers.

Altera Corporation 7–41
October 2007

Guidelines for Altera Megafunctions and Architecture-Specific Features

When inferring RAM for certain Altera device families, the Synplify
software generates additional bypass logic. This logic is generated to
resolve a half-cycle read/write behavior difference between the RTL and
post-synthesis simulations. The RTL simulation shows the memory being
updated on the positive edge of the clock, and the post-synthesis
simulation shows the memory being updated on the negative edge. To
eliminate the bypass logic, the output of the RAM must be registered. By
adding this register, the output of the RAM is seen after a full clock cycle,
by which time the update has occurred; thus, eliminating the need for the
bypass logic.

For devices with TriMatrix memory blocks, you can disable the creation
of glue logic by setting the syn_ramstyle value to no_rw_check. Use
syn_ramstyle with a value of no_rw_check to disable the creation of
glue logic in dual-port mode.

Example 7–18 shows sample VHDL code for inferring dual-port RAM.

Example 7–18. VHDL Code for Inferred Dual-Port RAM
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

data_in: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
wr_addr, rd_addr: IN STD_LOGIC_VECTOR (6 DOWNTO 0);
we: IN STD_LOGIC;
clk: IN STD_LOGIC);

END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL mem: Mem_Type;
SIGNAL addr_reg: STD_LOGIC_VECTOR (6 DOWNTO 0);

BEGIN
data_out <= mem (CONV_INTEGER(rd_addr));
PROCESS (clk, we, data_in) BEGIN

IF (clk='1' AND clk'EVENT) THEN
IF (we='1') THEN
mem(CONV_INTEGER(wr_addr)) <= data_in;
END IF;

END IF;
END PROCESS;

END ram_infer;

7–42 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 7–19 shows an example of the VHDL code preventing bypass
logic for inferring dual-port RAM. The extra latency behavior stems from
the inferring methodology and is not required when instantiating a
megafunction.

Example 7–19. VHDL Code for Inferred Dual-Port RAM Preventing Bypass Logic
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

data_in : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
wr_addr, rd_addr : IN STD_LOGIC_VECTOR (6 DOWNTO 0);
we : IN STD_LOGIC;
clk : IN STD_LOGIC);

END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL mem : Mem_Type;
SIGNAL addr_reg : STD_LOGIC_VECTOR (6 DOWNTO 0);
SIGNAL tmp_out : STD_LOGIC_VECTOR(7 DOWNTO 0); --output register

BEGIN
tmp_out <= mem (CONV_INTEGER(rd_addr));
PROCESS (clk, we, data_in) BEGIN

IF (clk='1' AND clk'EVENT) THEN
IF (we='1') THEN
mem(CONV_INTEGER(wr_addr)) <= data_in;
END IF;
data_out <= tmp_out; --registers output preventing

 -- bypass logic generation.
END IF;

END PROCESS;
END ram_infer;

RAM Initialization

You can use Verilog system tasks $readmemb or $readmemh in your
HDL code to initialize RAM memories. The Synplify compiler
forward-annotates the initialization values in the .srs
(technology-independent RTL netlist) file and the mapper generates a
corresponding hexadecimal memory initialization (.hex) file. One HEX
file is created for each of the altsyncram megafunctions that are
inferred in the design. The HEX file is associated with the altsyncram
instance in the .vqm file using the init_file attribute.

Altera Corporation 7–43
October 2007

Guidelines for Altera Megafunctions and Architecture-Specific Features

Example 7–20 and Example 7–21 illustrate how RAM memories can be
initialized through HDL code, and how the corresponding HEX file is
generated using Verilog HDL.

Example 7–20. Using $readmemb System Task to Initialize an Inferred RAM in Verilog HDL Code
initial
begin
 $readmemb("mem.ini", mem);
end

always @(posedge clk)
begin

raddr_reg <= raddr;
if(we)

begin
mem[waddr] <= data;

end
end

Example 7–21. Sample VQM Instance Containing Memory Initialization File from Example 7–20
altsyncram mem_hex(.wren_a(we), .wren_b(GND),...);

defparam mem_hex.lpm_type = "altsyncram";
defparam mem_hex.operation_mode = "Dual_Port";
...
defparam mem_hex.init_file = "mem_hex.hex";

Inferring ROM

When a ROM block is inferred from an HDL design, the software uses an
Altera megafunction to target the device memory architecture. For
Stratix II and Stratix III devices, the software maps directly to memory
block device atoms instead of instantiating a megafunction in the VQM
file. Follow the guidelines below for the Synplify software to successfully
infer ROM in a design:

■ The address line must be at least two bits wide.
■ ROM must be at least half full.
■ A CASE or IF statement must make 16 or more assignments using

constant values of the same width.

Inferring Shift Registers

The software infers shift registers for sequential shift components so that
they can be placed in dedicated memory blocks in supported device
architectures using the altshift_taps megafunction.

7–44 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

If required, set the implementation style with the syn_srlstyle
attribute. If you do not want the components automatically mapped to
shift registers, set the value to registers. You can set the value globally
or on individual modules or registers.

For some designs, turning off shift register inference can improve the
design performance.

Incremental
Compilation and
Block-Based
Design

As designs become more complex and designers work in teams, a
block-based hierarchical or incremental design flow is often an effective
design approach. In an incremental compilation flow, you can make
changes to part of the design while maintaining the placement and
performance of unchanged parts of the design. Design iterations are
made dramatically faster by focusing new compilations on a particular
design partitions and merging results with previous compilation results
of other partitions. In a bottom-up or team-based approach, you can
perform optimization on individual subblocks and then preserve the
results before you integrate the blocks into a final design and optimize it
at the top level.

MultiPoint synthesis, which is available for certain device technologies in
the Synplify Pro software, provides an automated block-based
incremental synthesis flow. The MultiPoint feature manages a design
hierarchy to let you design incrementally and synthesize designs that
take too long for top-down synthesis of the entire project. MultiPoint
synthesis allows different netlist files to be created for different sections
of a design hierarchy, and supports Quartus II incremental compilation
and LogicLock design methodologies. It also ensures that only those
sections of a design that have been updated are resynthesized when the
design is compiled, reducing synthesis run time and preserving the
results for the unchanged blocks. You can change and resynthesize one
section of a design without affecting other sections of the design.

You can also partition your design and create different netlist files
manually with the Synplify software (basic Synplify and Synplify Pro) by
creating a separate project for the logic in each partition of the design.
Creating different netlist files for each partition of the design means that
each partition is independent of the others. When synthesizing the entire
project, only portions of a design that have been updated have to be
resynthesized when you compile the design. You can make changes and
resynthesize one partition of a design to create a new netlist file without
affecting the synthesis results and placement of other partitions.

Hierarchical design methodologies can improve the efficiency of your
design process, providing better design reuse opportunities and fewer
integration problems when working in a team environment. When you
use these incremental synthesis methodologies, you can take advantage

Altera Corporation 7–45
October 2007

Incremental Compilation and Block-Based Design

of the incremental compilation and methodologies in the Quartus II
software. You can perform placement and routing on only the changed
partitions of the design, reducing place-and-route time and preserving
your fitting results. Following the guidelines in this section can help you
achieve good results with these methodologies.

The following list shows the general top-down compilation flow when
using these features of the Quartus II software:

1. Create Verilog HDL or VHDL design files as in the regular design
flow.

2. Determine which hierarchical blocks are to be treated as separate
partitions in your design.

3. Set up your design using the MultiPoint feature or separate projects
so that a separate netlist file is created for each partition of the
design.

4. If using separate projects, disable I/O pad insertion in the
implementations for lower-level partitions.

5. Compile and technology-map each partition in the Synplify Pro or
Synplify software, making constraints as you would in the regular
design flow.

6. Import the VQM or EDIF netlist and the Tcl file for each partition
into the Quartus II software and set up the Quartus II project(s) to
use incremental compilation.

7. Compile your design in the Quartus II software and preserve the
compilation results using the post-fit netlist in incremental
compilation.

8. When you make design or synthesis optimization changes to part of
your design, resynthesize only the changed partition to generate a
new netlist and Tcl file. Do not regenerate netlist files for the
unchanged partitions.

9. Import the new netlist and Tcl file into the Quartus II software and
recompile the design in the Quartus II software using incremental
compilation.

f For more information about creating partitions and using the
incremental compilation in the Quartus II software, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

7–46 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Hierarchy and Design Considerations with Multiple VQM Files

To ensure the proper functioning of the synthesis flow, you can create
separate netlist files only for modules and entities. In addition, each
module or entity should have its own design file. If two different modules
are in the same design file but are defined as being part of different
partitions, you cannot maintain incremental compilation since both
partitions would have to be recompiled when you change one of the
modules.

Altera recommends that you register all inputs and outputs of each
partition. This makes logic synchronous and avoids any delay penalty on
signals that cross partition boundaries.

If you use boundary tri-states in a lower-level block, the Synplify
software pushes (or “bubbles”) the tri-states through the hierarchy to the
top level to make use of the tri-state drivers on output pins of Altera
devices. Because bubbling tri-states requires optimizing through
hierarchies, lower-level tri-states are not supported with a block-based
compilation methodology. You should use tri-state drivers only at the
external output pins of the device and in the top-level block in the
hierarchy.

Creating a Design with Separate Netlist Files

The first stage of a hierarchical or incremental design flow is to ensure
that different parts of your design do not affect each other. Ensure that
you have separate netlists for each partition in your design so that you
can take advantage of incremental compilation in the Quartus II software.
If the entire design is in one netlist file, changes in one partition may affect
other partitions because of possible node name changes when you
resynthesize the design.

You can generate multiple VQM files either by using the MultiPoint
synthesis flow and LogicLock attributes in the Synplify Pro software, or
by manually creating separate Synplify projects and creating a black box
for each block that you want to be considered as a separate design
partition.

In the MultiPoint synthesis flow (Synplify Pro only), you create multiple
VQMs from one easy-to-manage, top-level synthesis project. By using the
manual black box method (Synplify or Synplify Pro), you have multiple
synthesis projects, which may be required for certain team-based or
bottom-up designs where a single top-level project is not desired.

Altera Corporation 7–47
October 2007

Incremental Compilation and Block-Based Design

Once you have created multiple VQM files using one of these two
methods, you must create the appropriate Quartus II projects to
place-and-route the design.

Creating a Design with Multiple VQM Files Using Synplify Pro
MultiPoint Synthesis

This section describes how to generate multiple VQM files using the
Synplify Pro MultiPoint synthesis flow. You must first set up your
compile points, constraint files, and Synplify Pro options, then apply
Altera-specific attributes to write multiple VQM files and create
LogicLock region assignments.

Set Compile Points and Create Constraint Files

The MultiPoint flow lets you segment a design into smaller synthesis
units, called “Compile Points.” The synthesis software treats each
Compile Point as a partition for incremental mapping, which allows you
to isolate and work on individual Compile Point modules as independent
segments of the larger design without impacting other design modules.
A design can have any number of Compile Points, and Compile Points
can be nested. The top-level module is always treated as a Compile Point.

Compile Points are optimized in isolation from their parent, which can be
another Compile Point or a top-level design. Each block created with a
Compile Point is unaffected by critical paths or constraints on its parent
or other blocks. A Compile Point is independent, with its own individual
constraints. During synthesis, any Compile Points that have not yet been
synthesized are synthesized before the top level. Nested Compile Points
are synthesized before the parent Compile Points in which they are
contained. When you apply the appropriate Synplify Pro LogicLock
constraints to a Compile Point module, then a separate netlist is created
for that Compile Point, isolating that logic from any other logic in the
design.

Figure 7–3 on page 7–48 shows an example of a design hierarchy that can
be split into multiple partitions. The top-level block of each partition can
be synthesized as a separate Compile Point.

7–48 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 7–3. Partitions in a Hierarchical Design

In this case, modules A, B, and F are Compile Points. The top-level
Compile Point consists of the top-level block in the design (that is, block
A in this example), including the logic that is not defined under another
Compile Point. In this example, the design for top-level Compile Point A
also includes the logic in one of its subblocks, C. Because block F is
defined as its own Compile Point, it is not treated as part of the top-level
Compile Point A. Another separate Compile Point B contains the logic in
blocks B, D, and E. One netlist is created for the top-level module A and
submodule C, another netlist is created for B and its submodules D and
E, while a third netlist is created for F.

Apply Compile Points to the module or architecture in the Synplify Pro
SCOPE spreadsheet or in the .sdc file. You cannot set a Compile Point in
the Verilog HDL or VHDL source code. You can set the constraints
manually using Tcl or by editing the .sdc file. You can also use the GUI
which provides two methods, manual or automated, as shown below.

Defining Compile Points Using Tcl or SDC
To set Compile Points using Tcl or an .sdc file, use the
define_compile_point command, as shown in Example 7–22.

Example 7–22. The define_compile_point Command
define_compile_point [-disable] [-comment <comment>] <objname> \
[-type <compile point type>]

In the syntax statement above, objname represents any module in the
design. Currently, locked is the only Compile Point type supported.

Partition Top

Partition B Partition F

D E

B

A

F

C

Altera Corporation 7–49
October 2007

Incremental Compilation and Block-Based Design

Each Compile Point has a set of constraint files that begin with the
define_current_design command to set up the SCOPE
environment, as shown below.

define_current_design {<my_module>}

Manually Defining Compile Points from the GUI
The manual method requires you to separately create constraint files for
the top-level and the lower-level Compile Points. To use the manual
method:

1. From the top level, select the Compile Points tab in the SCOPE
spreadsheet.

2. Select the modules that you want to define as Compile Points.

Currently, locked Compile Points are the only type supported. All
Compile Points must be defined from the top level because the
Compile Points tab is not available in the SCOPE spreadsheet from
lower level modules.

3. Manually create a constraint file for each module.

To ensure that changes to a Compile Point do not affect the top-level
parent module, disable the Update Compile Point Timing Data option
on the Implementation Options dialog box. If this option is enabled,
updates to a child module can impact the top-level module.

Automatically Defining Compile Points from the GUI
When you use the automated process, the lower-level constraint file is
created automatically. This eliminates the manual step necessary to set up
each Compile Point. To use the automated method, perform the
following steps:

1. On the File menu, select New. Click to create a new Constraint File,
or click the SCOPE icon in the tool bar.

2. From the Select File Type tab of the Create a New SCOPE File
dialog box, select Compile Point.

3. Select the module you want to designate as a Compile Point. The
software automatically sets the Compile Points in the top-level
constraint file and creates a lower-level constraint file for each
Compile Point.

7–50 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

To ensure that changes to a Compile Point do not affect the top-level
parent module, disable the Update Compile Point Timing Data option
on the Implementation Options dialog box. If this option is enabled,
updates to a child module can impact the top-level module.

When using Compile Points with incremental compilation, keep the
following restrictions in mind:

■ To use Compile Points effectively, you must provide timing
constraints (timing budgeting) for each Compile Point; the more
accurate the constraints, the better your results are. Constraints are
not automatically budgeted, so manual time budgeting is essential.
Altera recommends that you register all inputs and outputs of each
partition. This avoids any logic delay penalty on signals that cross
partition boundaries.

■ When using the Synplify Pro attribute syn_useioff to pack
registers in the I/O Elements (IOEs) of Altera devices, these registers
must be in the top-level module, not a lower level. Otherwise, you
must allow the Quartus II software to perform I/O register packing
instead of the syn_useioff attribute. You can use the Fast Input
Register or Fast Output Register options, or set I/O timing
constraints and turn on Optimize I/O cell register placement for
timing on the Fitter Settings page of the Settings dialog box in the
Quartus II software.

■ There is no incremental synthesis support for top-level logic; any
logic in the top-level is resynthesized during every compilation in
the Synplify Pro software.

f For more information about Compile Points, refer to the Synplify Pro
User Guide and Reference Manual on the Synplicity web site at
www.synplicity.com.

Apply the LogicLock Attributes

To instruct the Synplify Pro software to create a separate VQM netlist file
for each Compile Point, you must indicate that the Compile Point is being
used with LogicLock regions in the incremental compilation or
LogicLock design methodology. Because separate netlist files are
required for incremental compilation, you must use the LogicLock
attributes if you plan to use the incremental compilation feature in the
Quartus II software. When you apply the appropriate LogicLock
attributes, the Synplify Pro software also writes out Tcl commands for the
Quartus II software to create a LogicLock region for each netlist.

LogicLock regions in the Quartus II software have size and location
properties. The region’s size is defined by the height and width of the
rectangular area. If the region is specified as auto-size, then the Quartus II

http://www.synplicity.com

Altera Corporation 7–51
October 2007

Incremental Compilation and Block-Based Design

software determines the appropriate size to fit the logic assigned to the
region. When you specify the size, you must include enough device
resources to accommodate the assigned logic. The location of a region is
defined by its origin, which is the position of its bottom-left corner or
top-left corner, depending on the target device family. In the Quartus II
software, this location can be specified as “locked” or “floating.” If the
location is floating, the Quartus II software determines the location
during its optimization process.

1 Floating locations are the only type currently supported in the
Synplify Pro software.

When you use incremental compilation in the Quartus II software, you
should lock down the size and location of the region in the Quartus II
software after the first compilation to achieve the best quality of results.

Table 7–5 shows the valid combinations of the LogicLock attributes.

You can apply these attributes to the top-level constraint file or to the
individual constraint files for each lower-level Compile Point. You can
use the Attribute tab of the SCOPE spreadsheet to set attributes.

Synplify Pro offers another attribute, syn_allowed_resources, which
restricts the number of resources for a given module. You can apply the
syn_allowed_resources attribute to any Compile Point view.

f For specific information about these attributes, refer to the Synplify Pro
online help or reference manual.

Creating a Quartus II Project for Multiple VQM Files

During compilation, the Synplify Pro software creates a <top-level
project>.tcl file that provides the Quartus II software with the appropriate
constraints and LogicLock assignments, creating a region for each VQM
file along with the information to set up a Quartus II project.

Table 7–5. LogicLock Location and Size Properties

altera_logiclock_location
Attribute

altera_logiclock_size
Attribute Description

Floating Auto The most flexible type of LogicLock constraint. Allows the
Quartus II software to choose the appropriate region size
and location.

Floating Fixed Assumes the size of LogicLock constraint area is already
optimal in the existing Quartus II project.

7–52 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

The Tcl file contains the following commands for each LogicLock region.
Example 7–23 is for module A (instance u1) in the project named top
where the region name cpll_1 was selected by Synplify Pro for the
Compile Point.

Example 7–23. Commands for Each LogicLock Region in a Tcl File
set_global_assignment -section_id{taps_region} -name{LL_AUTO_SIZE}{ON}
set_global_assignment -section_id{taps_region} -name{LL_STATE}{FLOATING}
set_instance_assignment -section_id{taps_region} -to{|taps:u1} \
-name{LL_MEMBER_OF} {taps_region}

These commands create a LogicLock region with auto size and floating
origin properties. This flexible LogicLock region allows the Quartus II
Compiler to select the size and location of the region.

f For more information about Tcl commands, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook.

Depending on your design methodology, you can create one Quartus II
project for all netlists (a top-down placement and routing flow) or a
separate Quartus II project for each netlist (a bottom-up placement and
routing flow). In a top-down incremental compilation design flow, you
create design partition assignments and LogicLock floorplan location
assignments for each partition in the design within a single Quartus II
project. This methodology allows for the best quality of results and
performance preservation during incremental changes to your design.

You may require a bottom-up design flow if each partition must be
optimized separately, such as in certain team-based design flows. To
perform a bottom-up compilation in the Quartus II software, create
separate Quartus II projects and import each design partition into a
top-level design using the incremental compilation export and import
features to maintain placement results.

The following sections describe how to create the Quartus II projects for
these two design flows.

Creating a Single Quartus II Project for a Top-Down Incremental
Compilation Flow
Use the <top-level project>.tcl file that contains the Synplify Pro
assignments for all partitions within the project. This method allows you
to import all the partitions into one Quartus II project and optimize all
modules within the project at once, taking advantage of the performance
preservation and compilation-time reduction incremental compilation
offers. Figure 7–4 shows a visual representation of the design flow for the
example design in Figure 7–3.

Altera Corporation 7–53
October 2007

Incremental Compilation and Block-Based Design

Figure 7–4. Design Flow Using Multiple VQM Files with One Quartus II Project

Creating Multiple Quartus II Projects for a Bottom-Up LogicLock
Design Flow
Generate multiple Quartus II projects, one for each partition and netlist in
the design. Each designer in the project can optimize their partition
separately within the Quartus II software and export the placement for
their partitions. Figure 7–5 shows a visual representation of the design
flow for the example design in Figure 7–3. The optimized sub-designs can
be brought into one top-level Quartus II project using incremental
compilation.

Figure 7–5. Design Flow Using Multiple VQM Files with Multiple Quartus II Projects

Quartus II Project Quartus II Project

a.vqm

b.vqm f.vqm

Quartus II Project

Use a.tcl to Import
Synplify Pro Assignments

Use f.tcl to Import
Synplify Pro
Assignments

Use b.tcl to Import
Synplify Pro

Assignments

7–54 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Generating a Design with Multiple VQM Files Using Black Boxes

This section describes how to manually generate multiple VQM files
using black boxes. This manual flow is supported in versions of the
Synplify software that do not include the MultiPoint Synthesis feature.

Manually Creating Multiple VQM Files Using Black Boxes

To create multiple VQM files manually in the Synplify software, create a
separate project for each low-level module and the top-level design that
you want to maintain as a separate VQM file. Implement black box
instantiations of lower-level partitions in your top-level project.

When synthesizing the projects for the lower-level modules, perform the
following steps:

1. In the Implementation Options dialog box, turn on Disable I/O
Insertion for the target technology.

2. Read the HDL files for the modules.

1 Modules may include black box instantiations of
lower-level modules that are also maintained as separate
VQM files.

3. Add constraints with the SCOPE constraint window.

4. Enter the clock frequency to ensure that the sub-design is correctly
optimized.

5. In the Attributes tab, set syn_netlist_hierarchy to 0.

When synthesizing the top-level design project, perform the following
steps:

1. Turn off Disable I/O Insertion for the target technology.

2. Read the HDL files for top-level designs.

3. Create black boxes using lower-level modules in the top-level
design.

4. Add constraints with the SCOPE constraint window.

5. Enter the clock frequency to ensure that the design is correctly
optimized.

Altera Corporation 7–55
October 2007

Incremental Compilation and Block-Based Design

6. In the Attributes tab, set syn_netlist_hierarchy to 0.

The following sections describe an example of black box implementation
to create separate VQM files. Figure 7–3 for an example of a design
hierarchy that is split into multiple partitions.

Figure 7–6. Partitions in a Hierarchical Design

In Figure 7–3, the partition top contains the top-level block in the design
(block A) and the logic that is not defined as part of another partition. In
this example, the partition for top-level block A also includes the logic in
one of its sub-blocks, C. Because block F is contained in its own partition,
it is not treated as part of the top-level partition A. Another separate
partition, B, contains the logic in blocks B, D, and E. In a team-based
design, different engineers may work on the logic in different partitions.
One netlist is created for the top-level module A and its submodule C,
another netlist is created for B and its submodules D and E, while a third
netlist is created for F. To create multiple VQM files for this design, follow
these steps:

1. Generate a VQM file for module B. Use B.v/.vhd, D.v/.vhd, and
E.v/.vhd as the source files.

2. Generate a VQM file for module F. Use F.v/.vhd as the source files.

3. Generate a top-level VQM file for module A. Use A.v/.vhd and
C.v/.vhd as the source files. Ensure that you use black box modules
B and F, which were optimized separately in the previous steps.

Partition Top

Partition B Partition F

D E

B

A

F

C

7–56 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Creating Black Boxes in Verilog HDL
Any design block that is not defined in the project or included in the list
of files to be read for a project are treated as a black box by the software.
Use the syn_black_box attribute to indicate that you intend to create a
black box for the given module. In Verilog HDL, you must provide an
empty module declaration for the module that is treated as a black box.

Example 7–24 shows an example of the A.v top-level file. Follow the same
procedure below for lower-level files which also contain a black box for
any module beneath the current level hierarchy.

Example 7–24. Verilog HDL Black Box for Top-Level File A.v
module A (data_in, clk, e, ld, data_out);

input data_in, clk, e, ld;
output [15:0] data_out;

wire [15:0] cnt_out;

B U1 (.data_in (data_in),.clk(clk), .ld (ld),.data_out(cnt_out));
F U2 (.d(cnt_out), .clk(clk), .e(e), .q(data_out));

// Any other code in A.v goes here.

endmodule

// Empty Module Declarations of Sub-Blocks B and F follow here.
// These module declarations (including ports) are required for black
boxes.

module B (data_in, clk, ld, data_out) /* synthesis syn_black_box */ ;
input data_in, clk, ld;
output [15:0] data_out;

endmodule

module F (d, clk, e, q) / *synthesis syn_black_box */ ;
input [15:0] d;
input clk, e;
output [15:0] q;

endmodule

Altera Corporation 7–57
October 2007

Incremental Compilation and Block-Based Design

Creating Black Boxes in VHDL
Any design block that is not defined in the project or included in the list
of files to be read for a project are treated as a black box by the software.
Use the syn_black_box attribute to indicate that you intend to treat the
given component as a black box. In VHDL, you need a component
declaration for the black box just like any other block in the design.

1 Although VHDL is not case-sensitive, VQM (a subset of
Verilog HDL) is case-sensitive. Entity names and their port
declarations are forwarded to the VQM. Black box names and
port declarations are also passed to the VQM. To prevent
case-based mismatches between VQM, use the same
capitalization for black box and entity declarations in VHDL
designs.

Example 7–25 shows an example of the A.vhd top-level file. Follow this
same procedure for any lower-level files that contain a black box for any
block beneath the current level of hierarchy.

Example 7–25. VHDL Black Box for Top-Level File A.vhd
LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY synplify;
use synplify.attributes.all;

ENTITY A IS
PORT (data_in : IN INTEGER RANGE 0 TO 15;

clk, e, ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15);

END A;

ARCHITECTURE a_arch OF A IS

COMPONENT B PORT(
data_in : IN INTEGER RANGE 0 TO 15;
clk, ld : IN STD_LOGIC;
d_out : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;

COMPONENT F PORT(
d : IN INTEGER RANGE 0 TO 15;
clk, e: IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;

attribute syn_black_box of B: component is true;
attribute syn_black_box of F: component is true;

-- Other component declarations in A.vhd go here

7–58 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

signal cnt_out : INTEGER RANGE 0 TO 15;

BEGIN

U1 : B
PORT MAP (

data_in => data_in,
clk => clk,
ld => ld,
d_out => cnt_out);

U2 : F
PORT MAP (

d => cnt_out,
clk => clk,
e => e,
q => data_out);

-- Any other code in A.vhd goes here

END a_arch;

After you have completed the steps described in this section, you have a
netlist file for each partition of the design. These files are ready for use
with incremental compilation in the Quartus II software.

Creating a Quartus II Project for Multiple VQM Files

The Synplify software creates a Tcl file for each VQM file that provides
the Quartus II software with the appropriate constraints and information
to set up a project. For details about using the Tcl script generated by the
Synplify software to set up your Quartus II project and pass your
constraints, refer to “Running the Quartus II Software Manually Using
the Synplify-Generated Tcl Script” on page 7–19.

Depending on your design methodology, you can create one Quartus II
project for all netlists (a top-down placement and routing flow) or a
separate Quartus II project for each netlist (a bottom-up placement and
routing flow). In a top-down incremental compilation design flow, you
create design partition assignments and LogicLock floorplan location
assignments for each partition in the design within a single Quartus II
project. This methodology allows for the best quality of results and
performance preservation during incremental changes to your design.
You may require a bottom-up design flow where each partition must be
optimized separately, such as in certain team-based design flows.

Altera Corporation 7–59
October 2007

Incremental Compilation and Block-Based Design

To perform a bottom-up compilation in the Quartus II software, create
separate Quartus II projects and import each design partition into a
top-level design using the incremental compilation export and import
features to maintain placement results.

The following sections describe how to create the Quartus II projects for
these two design flows.

Creating Compile Points in a Single Quartus II Project for a
Top-Down Incremental Compilation Flow
Use the <top-level project>.tcl file that contains the Synplify assignments
for the top-level design. This method allows you to import all of the
partitions into one Quartus II project and optimize all modules within the
project at once, taking advantage of the performance preservation and
compilation time reduction offered by incremental compilation.
Figure 7–7 shows a visual representation of the design flow for the
example design in Figure 7–3.

All of the constraints from the top-level project are passed to the
Quartus II software in the top-level Tcl file, but any constraints made in
the lower-level projects within the Synplify software is not
forward-annotated. Enter these constraints manually in your Quartus II
project.

Figure 7–7. Design Flow Using Multiple VQM Files with One Quartus II Project

Creating Multiple Quartus II Projects for a Bottom-Up Design Flow
Use the Tcl file that is created for each VQM file by the Synplify software
for each Synplify Project. This method generates multiple Quartus II
projects, one for each block in the design. Each designer in the project can

a.vqm

b.vqm f.vqm

Quartus II Project

Use a.tcl to import top-level
Synplify Pro assignment.

Enter any lower-level
asignments manually.

7–60 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

optimize their block separately within the Quartus II software and export
the placement of their blocks. Figure 7–8 shows a visual representation of
the design flow for the example in Figure 7–3 on page 7–48.

Designers should create a LogicLock region for each block; the top-level
designer should then import all the blocks and assignments into the top-
level project. This method allows each block in the design to be treated
separately; each block can then be imported into one top-level project.

Figure 7–8. Design Flow Using Multiple Synplify Projects and Multiple Quartus II Projects

Conclusion Advanced synthesis is an important part of the design flow. Taking
advantage of the Synplicity Synplify and Quartus II design flows allow
you to control how your design files are prepared for the Quartus II
place-and-route process, as well as improve performance and optimize a
design for use with Altera devices. Several of the methodologies outlined
in this chapter can help optimize a design to achieve performance goals
and save design time.

Quartus II Project Quartus II Project

a.vqm

b.vqm f.vqm

Quartus II Project

Use a.tcl to Import
Synplify Assignments

Use f.tcl to Import
Synplify Assignments

Use b.tcl to Import
Synplify Assignments

Altera Corporation 7–61
October 2007

Referenced Documents

Referenced
Documents

This chapter references the following documents:

■ Netlist Optimizations and Physical Synthesis chapter in volume 2 of the
Quartus II Handbook

■ Design Recommendations for Altera Devices chapter in volume 1 of the
Quartus II Handbook

■ Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook

■ Tasks & Tips chapter of the Synplify Software User Guide
■ Altera I/O Standards in the Synplify Reference Manual
■ Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Synplify Pro User Guide and Reference Manual on the Synplicity web

site at www.synplicity.com/literature/index.html
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document
Revision History

Table 7–6 shows the revision history for this chapter.

Table 7–6. Document Revision History

Date and Version Changes Made Summary of Changes

October 2007
v7.2.0

The following changes were made to this document:
● Updated Synplicity version support
● Added information on how to set the correct Quartus II

version prior to compiling a MegaWizard-generated file

Updated chapter based on the
Synplicity functionality
supported with the Quartus II
software release, version 7.2

May 2007
v7.1.0

● Removed figure 7-2 (no longer applicable)
● Updated the section “Instantiating Altera

Megafunctions Using the MegaWizard Plug-In
Manager” to specify using the MegaWizard Plug-In
Manager-generated wrapper file only when using
Synplify software version 8.8

● Replaced references to “clear-box” methodologies with
information supporting Synthesis Area and Timing
Estimation Netlists

● Minor updates for the Quartus II software version 7.1.
● Added Referenced Documents section.

Updated chapter based on the
Synplify software, version 8.8
and the Quartus II software
release, version 7.1

March 2007
v7.0.0

● Added Cyclone III to list of devices supported
● Clarified that the Synplify software generates the .scf

file regardless of the device selected.

This chapter has been updated
to include Cyclone III support
for this release.

http://www./altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.synplicity.com/literature/pdf/synplify_ref_1001.pdf
http://www./altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www./altera.com/literature/hb/qts/qts_qii52003.pdf

7–62 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

November 2006
v6.1.0

● Chapter 9 was formally Chapter 8 in version 6.0.0.
● Added that SCF is generated to pass SDC constraints

for TimeQuest.
● Added timing constraint information when using

TimeQuest.
● Moved note about alt_pll megafunctions from clear box

section to black box section.
● Clarified that Synplify reads the alt_pll megafunction

black box file for Stratix and Cyclone series devices.

 Updated to include Stratix III
support and added information
on how to pass timing
constraint information for
TimeQuest.

May 2006
v6.0.0

Updated for the Quartus II software version 6.0.0:
● Updated cross probing information.
● Added NativeLink® integration information.
● Added Synplify design flow support.
● Added Altera megafunction guidelines and

architecture-specific features.

—

December 2005
v5.1.1

Minor typographical corrections —

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.
● Chapter 8 was formerly chapter 9 in version 5.0.

—

May 2005
v5.0.0

Chapter 9 was formerly chapter 7 in version 4.2. —

December 2004
v2.1.0

● Chapter 8 was formerly Chapter 9 in version 4.1.
● Updated information.
● New functionality for Quartus II software version 4.2.
● Updated figure 8-1.

—

June 2004
v2.0.0

● Updates to tables, figures.
● New functionality for Quartus II software version 4.1.

—

February 2004
v1.0.0

Initial release. —

Table 7–6. Document Revision History (Continued)

Date and Version Changes Made Summary of Changes

Altera Corporation 8–1
October 2007

8. Quartus II Integrated
Synthesis

Introduction As programmable logic designs become more complex and require
increased performance, advanced synthesis has become an important
part of the design flow. The Quartus® II software includes advanced
integrated synthesis that fully supports VHDL and Verilog HDL, as well
as Altera®-specific design entry languages, and provides options to
control the synthesis process. With this synthesis support, the Quartus II
software provides a complete, easy-to-use solution.

This chapter documents the design flow and language support in the
Quartus II software. It explains how you can use incremental compilation
to reduce your compilation time, and how you can improve synthesis
results with Quartus II synthesis options and by controlling the inference
of architecture-specific megafunctions. This chapter also explains some of
the node-naming conventions used during synthesis to help you better
understand your synthesized design, and the messages issued during
synthesis to improve your HDL code. Scripting techniques for applying
all the options and settings described are also provided.

This chapter contains the following sections:

■ “Design Flow” on page 8–2
■ “Language Support” on page 8–5
■ “Incremental Synthesis and Incremental Compilation” on page 8–23
■ “Quartus II Synthesis Options” on page 8–24
■ “Analyzing Synthesis Results” on page 8–73
■ “Analyzing and Controlling Synthesis Messages” on page 8–74
■ “Node-Naming Conventions in Quartus II Integrated Synthesis” on

page 8–79
■ “Scripting Support” on page 8–86

This chapter provides examples of how to use attributes described within
the chapter, but does not cover specific coding examples.

f For examples of Verilog HDL and VHDL code synthesized for specific
logic functions, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook. For information about coding with
primitives that describe specific low-level functions in Altera devices,
refer to the Designing With Low-Level Primitives User Guide.

QII51008-7.2.0

8–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Design Flow The Quartus II Analysis and Synthesis process includes Quartus II
integrated synthesis, which fully supports Verilog HDL and VHDL
languages as well as Altera-specific languages, and supports major
features in the SystemVerilog language (refer to “Language Support” on
page 8–5 for details). This stage of the compilation flow performs logic
synthesis to optimize design logic, and performs technology mapping to
implement the design logic using device resources, such as logic elements
(LEs) or adaptive logic modules (ALMs) and other dedicated logic blocks.
This stage also generates the single project database that integrates all the
design files in a project (including any netlists from third-party synthesis
tools).

You can use the Analysis and Synthesis stage of the Quartus II
compilation to perform any of the following levels of analysis and
synthesis:

■ Analyze Current File—Parse the current design source file to check
for syntax errors. This command does not report on many semantic
errors that require further design synthesis. On the Processing menu,
click Analyze Current File.

■ Analysis & Elaboration—Check a design for syntax and semantic
errors and perform elaboration to identify the design hierarchy. On
the Processing menu, point to Start, then click Start Analysis &
Elaboration.

■ Analysis & Synthesis—Perform complete analysis and synthesis on
a design, including technology mapping. On the Processing menu,
point to Start, then click Start Analysis & Synthesis. This is the most
commonly used command and is part of the full compilation flow.

The Quartus II design and compilation flow using Quartus II integrated
synthesis is made up of the following steps:

1. Create a project in the Quartus II software, and specify the general
project information, including the top-level design entity name. On
the File menu, click New Project Wizard.

2. Create design files in the Quartus II software or with a text editor.

3. On the Project menu, click Add/Remove Files in Project and add all
design files to your Quartus II project using the Files page of the
Settings dialog box.

4. Specify compiler settings that control the compilation and
optimization of the design during synthesis and fitting. For
synthesis settings, refer to “Quartus II Synthesis Options” on
page 8–24. Add timing constraints to specify the timing
requirements.

Altera Corporation 8–3
October 2007

Design Flow

5. Compile the design in the Quartus II software. To synthesize the
design, on the Processing menu, point to Start, and click Start
Analysis & Synthesis.

1 On the Processing menu, click Start Compilation to run a
complete compilation flow including placement, routing,
creation of a programming file, and timing analysis.

6. After obtaining synthesis and place-and-route results that meet
your needs, program or configure the Altera device.

The software provides netlists that allow you to perform functional
simulation and gate-level timing simulation in the Quartus II simulator
or a third-party simulator, perform timing analysis in a third-party timing
analysis tool in addition to the TimeQuest Timing Analyzer or Classic
Timing Analyzer, and/or perform formal verification in a third-party
formal verification tool. The Quartus II software also provides many
additional analysis and debugging features.

f For more information about creating a project, compilation flow, and
other features in the Quartus II software, refer to the Quartus II Help.
For an overall summary of Quartus II features, refer to the Introduction to
the Quartus II Software.

8–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 8–1 shows the basic design flow using Quartus II integrated
synthesis.

Figure 8–1. Quartus II Design Flow Using Quartus II Integrated Synthesis

No

VHDLVerilog HDL AHDL BDF

Formal Verification
Using Source Code
as Golden Netlist

Gate-Level
Functional
Simulation

Post Synthesis
Simulation File

(.vho/.vo)

Functional/RTL
Simulation

Yes

Timing & Area
Requirements

Satisfied?

Gate-Level Timing
Simulation

Post
Place-and-Route
Simulation File

(.vho/.vo)

Formal Verification
Using VO as

Revised Netlist

Post
Place-and-Route

Formal Verification File
(.vo)

Internal
Synthesis
Netlist

Configuration/
Programming
Files (.sof/.pof)

Analysis & SynthesisConstraints
& Settings

Constraints
& Settings

Fitter Assembler Timing
Analyzer

Configure/Program Device

Altera Corporation 8–5
October 2007

Language Support

Language
Support

This section explains the Quartus II software’s integrated synthesis
support for HDL and schematic design entry, as well as graphical state
machine entry, and explains how to specify the Verilog or VHDL
language version used in your design. It also documents language
features such as Verilog macros, initial constructs and memory system
tasks, and VHDL libraries. “Design Libraries” on page 8–14 describes
how to compile and reference design units in different custom libraries
and “Using Parameters/Generics” on page 8–18 describes how to use
parameters or generics and how to pass them between different
languages.

To ensure that the software reads all associated project files, add each file
to your Quartus II project. To add files to your project in the Quartus II
GUI, on the Project menu, click Add/Remove Files In Project. Design
files can be added to the project in any order. You can mix all supported
languages and netlists generated by third-party synthesis tools in a single
Quartus II project.

Verilog HDL Support

The Quartus II Compiler’s analysis and synthesis module supports the
following Verilog HDL standards:

■ Verilog-1995 (IEEE Standard 1364-1995)
■ Verilog-2001 (IEEE Standard 1364-2001)
■ SystemVerilog-2005 (IEEE Standard 1800-2005) (not all constructs are

supported)

f For complete information about specific Verilog syntax features and
language constructs, refer to the Quartus II Help.

The Quartus II Compiler uses the Verilog-2001 standard by default for
files that have the extension .v, and the SystemVerilog standard for files
that have the extension .sv.

1 The Verilog HDL code samples provided in this document
follow the Verilog-2001 standard unless otherwise specified.

To specify a default Verilog HDL version for all files, perform the
following steps:

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, under Category, expand Analysis &
Synthesis Settings, and select Verilog HDL Input.

8–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

3. On the Verilog HDL Input page, under Verilog version, select the
appropriate Verilog version, then click OK.

You can override the default Verilog HDL version for each Verilog design
file by performing the following steps:

1. On the Project menu, click Add/Remove Files in Project. The
Settings dialog box appears.

2. On the Files page, click on the appropriate file in the list and click
the Properties button.

3. In the HDL Version list, select SystemVerilog_2005, Verilog_2001,
or Verilog_1995 and click OK.

You can also control the Verilog HDL version inside a design file using the
VERILOG_INPUT_VERSION synthesis directive, as shown in
Example 8–1. This directive overrides the default HDL version and any
HDL version specified in the File Properties dialog box.

Example 8–1. Controlling the Verilog HDL Input Version with a Synthesis Directive
// synthesis VERILOG_INPUT_VERSION <language version>

The variable <language version> takes one of the following values:

■ VERILOG_1995
■ VERILOG_2001
■ SYSTEMVERILOG_2005

When the software reads a VERILOG_INPUT_VERSION synthesis
directive, the current language version changes as specified until the end
of the file, or until the next VERILOG_INPUT_VERSION directive is
reached.

1 You cannot change the language version in the middle of a
Verilog module.

For more information about specifying synthesis directives, refer to
“Synthesis Directives” on page 8–29.

If you use scripts to add design files, you can use the -HDL_VERSION
command to specify the HDL version for each design file. Refer to
“Adding an HDL File to a Project and Setting the HDL Version” on
page 8–87.

Altera Corporation 8–7
October 2007

Language Support

The Quartus II software support for Verilog HDL is case-sensitive in
accordance with the Verilog HDL standard. The Quartus II software
supports the compiler directive `define, in accordance with the Verilog
HDL standard.

The Quartus II software supports the include compiler directive to
include files with absolute paths (with either “/” or “\” as the separator),
or relative paths (relative to project root, user libraries, or current file
location). When searching for a relative path, the Quartus II software
initially searches relative to the project directory. If the software cannot
find the file, it then searches relative to all user libraries, and finally
relative to the directory location of the current file.

Verilog-2001 Support

The Quartus II software does not support Verilog-2001 libraries and
configurations.

SystemVerilog Support

The Quartus II software supports the following SystemVerilog
constructs:

■ Parameterized interfaces, generic interfaces, and modport
constructs

■ Packages
■ Extern module declarations
■ Built-in data types logic, bit, byte, shortint, longint, int
■ Unsized integer literals ‘0, ‘1, ‘x, ‘z, ‘X, and ‘Z
■ Structure data types using struct
■ Ports and parameters with unrestricted data types
■ Unpacked and packed arrays (does not support packed arrays with

more than one dimension)
■ User-defined types using typedef
■ Global declarations of task/functions/parameters/types (does not

support global variables)
■ Coding constructs always_comb, always_latch, always_ff
■ Continuous assignments to nodes other than nets, and procedural

assignments to nodes other than reg
■ Enumeration methods First, Last, Next(n), Prev(n), Num,

and Name
■ Assignment operators +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=,

<<<=, and >>>=
■ Increment ++ and decrement --
■ Jump statements return, break, and continue
■ Enhanced for loop (declare loop variables inside initial condition)
■ Do-while loop

8–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

■ Assignment patterns
■ Keywords unique and priority in case statements
■ Default values for function/task arguments
■ Closing labels
■ Extensions to directives ‘define and ‘include
■ Expression size system function $bits
■ Array query system functions $dimensions,

$unpacked_dimensions, $left, $right, $high, $low,
$increment, $size

Quartus II integrated synthesis also parses, but otherwise ignores,
SystemVerilog assertions.

1 Designs written to comply with the Verilog-2001 standard may
not compile successfully using the SystemVerilog setting
because the SystemVerilog standard adds a number of new
reserved keywords. For a list of reserved words in each
language standard, refer to the Quartus II Help.

Initial Constructs and Memory System Tasks

The Quartus II software infers power-up conditions from Verilog
initial constructs. The software creates power-up settings for
variables, including RAM blocks. If the Quartus II software encounters
non-synthesizable constructs in an initial block, it generates an error.
To avoid such errors, enclose non-synthesizable constructs (such as those
intended only for simulation) in translate_off and translate_on
synthesis directives, as described in “Translate Off and On / Synthesis Off
and On” on page 8–65. Synthesis of initial constructs enables the
power-up state of the synthesized design to match, as closely as possible,
the power-up state of the original HDL code in simulation.

1 Initial blocks do not infer power-up conditions in some
third-party EDA synthesis tools. If converting between
synthesis tools, ensure that your power-up conditions are set
correctly.

Quartus II integrated synthesis supports the $readmemb and
$readmemh system tasks to initialize memories. Example 8–2 shows an
initial construct that initializes an inferred RAM with $readmemb.

Altera Corporation 8–9
October 2007

Language Support

Example 8–2. Verilog Example of Initializing RAM with the readmemb Command
reg [7:0] ram[0:15];
initial
begin
 $readmemb("ram.txt", ram);
end

When creating a text file to use for memory initialization, specify the
address using the format @<location> on a new line, then specify the
memory word such as 110101 or abcde on the next line. Example 8–3
shows a portion of a memory initialization file for the RAM in
Example 8–2.

Example 8–3. Text File Format for Initializing RAM with the readmemb Command
@0
00000000
@1
00000001
@2
00000010
…
@e
00001110
@f
00001111

Verilog HDL Macros

The Quartus II software fully supports Verilog HDL macros, which you
can define with the ̀ define compiler directive in your source code. You
can also define macros in the GUI or on the command line.

Setting a Verilog Macro Default Value in the GUI
To specify a macro in the GUI, on the Assignments menu, click Settings.
Under Category, expand Analysis & Synthesis Settings and click
Verilog HDL Input. Under Verilog HDL macro, type the macro name in
the Name box, the value in the Setting box, and click Add.

Setting a Verilog Macro Default Value on the Command Line
To set a default value for a Verilog macro on the command line, use the
--verilog_macro option, as shown in Example 8–4.

Example 8–4. Command Syntax for Specifying a Verilog Macro
quartus_map <Design name> --verilog_macro= "<Macro Name>=<Macro Setting>" r

8–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

The command in Example 8–5 has the same effect as specifying
`define a 2 in the Verilog HDL source code.

Example 8–5. Specifying a Verilog Macro a = 2
quartus_map my_design --verilog_macro="a=2" r

To specify multiple macros, you can repeat the option more than once, as
in Example 8–6.

Example 8–6. Specifying Verilog Macros a = 2 and a = 3
quartus_map my_design --verilog_macro="a=2" --verilog_macro="b=3" r

VHDL Support

The Quartus II Compiler’s Analysis and Synthesis module supports the
following VHDL standards:

■ VHDL 1987 (IEEE Standard 1076-1987)
■ VHDL 1993 (IEEE Standard 1076-1993)

f For information about specific VHDL syntax features and language
constructs, refer to the Quartus II Help.

The Quartus II Compiler uses the VHDL 1993 standard by default for files
that have the extension .vhdl or .vhd.

1 The VHDL code samples provided in this document follow the
VHDL 1993 standard.

To specify a default VHDL version for all files, perform the following
steps:

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, under Category, expand Analysis &
Synthesis Settings, and select VHDL Input.

3. On the VHDL Input page, under VHDL version, select the
appropriate version, then click OK.

You can override the default VHDL version for each VHDL design file by
performing the following steps:

Altera Corporation 8–11
October 2007

Language Support

1. On the Project menu, click Add/Remove Files in Project. The
Settings dialog box appears.

2. On the Files page, click on the appropriate file in the list and click
Properties.

3. In the HDL version list, select VHDL93 or VHDL87 and click OK.

You can also specify the VHDL version for each design file using the
VHDL_INPUT_VERSION synthesis directive, as shown in Example 8–7.
This directive overrides the default HDL version and any HDL version
specified in the File Properties dialog box.

Example 8–7. Controlling the VHDL Input Version with a Synthesis Directive
--synthesis VHDL_INPUT_VERSION <language version>

The variable <language version> takes one of the following values:

■ VHDL87
■ VHDL93

When the software reads a VHDL_INPUT_VERSION synthesis directive, it
changes the current language version as specified until the end of the file,
or until it reaches the next VHDL_INPUT_VERSION directive.

1 You cannot change the language version in the middle of a
VHDL design unit.

For more information about specifying synthesis directives, refer to
“Synthesis Directives” on page 8–29.

If you use scripts to add design files, you can use the —HDL_VERSION
command to specify the HDL version for each design file. Refer to
“Adding an HDL File to a Project and Setting the HDL Version” on
page 8–87.

The Quartus II software reads default values for registered signals
defined in the VHDL code and converts the default values into power-up
level settings. This enables the power-up state of the synthesized design
to match, as closely as possible, the power-up state of the original HDL
code in simulation.

8–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

VHDL Standard Libraries and Packages

The Quartus II software includes the standard IEEE libraries and a
number of vendor-specific VHDL libraries. For information about
organizing your own design units into custom libraries, refer to “Design
Libraries” on page 8–14.

The IEEE library includes the standard VHDL packages
std_logic_1164, numeric_std, numeric_bit, and math_real.
The STD library is part of the VHDL language standard and includes the
packages standard (included in every project by default) and textio.
For compatibility with older designs, the Quartus II software also
supports the following vendor-specific packages and libraries:

■ Synopsys packages such as std_logic_arith and
std_logic_unsigned in the IEEE library

■ Mentor Graphics® packages such as std_logic_arith in the
ARITHMETIC library

■ Altera primitive packages altera_primitives_components
(for primitives such as GLOBAL and DFFE) and maxplus2 (for legacy
support of MAX+PLUS® II primitives) in the ALTERA library

■ Altera megafunction packages altera_mf_components and
stratixgx_mf_components in the ALTERA_MF library (for
Altera-specific megafunctions including LCELL), and
lpm_components in the LPM library for library of parameterized
modules (LPM) functions.

f For a complete listing of library and package support, refer to the
Quartus II Help.

1 Beginning with the Quartus II software version 5.1, you should
import component declarations for Altera primitives such as
GLOBAL and DFFE from the
altera_primitives_components package and not the
altera_mf_components package.

AHDL Support

The Quartus II Compiler’s Analysis and Synthesis module fully supports
the Altera Hardware Description Language (AHDL).

AHDL designs use Text Design Files (.tdf). You can import AHDL
Include Files (.inc) into a Text Design File with an AHDL include
statement. Altera provides AHDL Include Files for all megafunctions
shipped with the Quartus II software.

Altera Corporation 8–13
October 2007

Language Support

f For information about specific AHDL syntax features and language
constructs, refer to the Quartus II Help.

1 The AHDL language does not support the synthesis directives
or attributes described in this chapter.

Schematic Design Entry Support

The Quartus II Compiler’s analysis and synthesis module fully supports
Block Design Files (.bdf) for schematic design entry.

You can use the Quartus II software’s Block Editor to create and edit Block
Design Files and open Graphic Design Files (.gdf) imported from the
MAX+PLUS II software. Use the Symbol Editor to create and edit Block
Symbol Files (.bsf) and open MAX+PLUS II Symbol Files (.sym). You can
read and edit these legacy MAX+PLUS II formats with the Quartus II
Block and Symbol Editors; however, the Quartus II software saves them
as .bdf or .bsf files.

f For information about creating and editing schematic designs, refer to
the Quartus II Help.

1 Schematic entry methods do not support the synthesis directives
or attributes described in this chapter.

State Machine Editor

The Quartus II software supports graphical state machine entry. To create
a new finite state machine (FSM) design, on the File menu, click New. On
the Device Design Files tab, choose State Machine Editor.

In the editor, you can use the State Machine Wizard to step you through
the state machine creation. Click the State Machine Wizard icon. Specify
the reset information, define the input ports, states, and transitions, and
then define the output ports and output conditions. Click Finish to create
the state machine diagram.

Alternately, create the state machine diagram in the editor GUI. Use the
icons or right-click menu options to insert new input and output signals
and create states in the schematic display. To specify transitions, select the
Transition Tool and click on the source state, then drag the mouse to the
destination state. Double-click on a transition to specify the transition
equation, using a syntax that conforms to Verilog HDL. Double-click on a
state to open the State Properties dialog box, where you can change the
state name, specify whether it acts as the reset state, and change the
incoming and outgoing transition equations.

8–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

To view and edit state machine information in a table format, click the
State Machine Table icon.

The state machine diagram is saved as a State Machine File (.smf). When
you have finished defining the state machine logic, create a Verilog HDL
or VHDL design file by clicking the Generate HDL File icon. You can
then instantiate the state machine in your design using any design entry
language.

f For more information about creating and editing state machine
diagrams, refer to the Quartus II Help.

Design Libraries

By default, the Quartus II software compiles all design files into the work
library. If you do not specify a design library, or if a file refers to a library
that does not exist, or if the library does not contain a referenced design
unit, the software searches the work library. This behavior allows the
Quartus II software to compile most designs with minimal setup.
(Creating separate custom design libraries is optional.)

To compile your design files into specific libraries (for example, when you
have two or more functionally different design entities that share the
same name), you can specify a destination library for each design file in
various ways, as described in the following subsections:

■ “Specifying a Destination Library Name in the Settings Dialog Box”
on page 8–15

■ “Specifying a Destination Library Name in the Quartus II Settings
File or Using Tcl” on page 8–15

When the Quartus II Compiler analyzes the file, it stores the analyzed
design units in the file’s destination library.

1 Beginning with the Quartus II software version 6.1, a design can
contain two or more entities with the same name if they are
compiled into separate libraries.

When compiling a design instance, the Quartus II software initially
searches for the entity in the library associated with the instance (which
is the work library if no other library is specified). If the entity definition
is not found, the software searches for a unique entity definition in all
design libraries. If more than one entity with the same name is found, the
software generates an error. If your design uses multiple entities with the
same name, you must compile the entities into separate libraries.

Altera Corporation 8–15
October 2007

Language Support

In VHDL, there are several ways to associate an instance with a particular
entity, as described in “Mapping a VHDL Instance to an Entity in a
Specific Library” on page 8–16. In Verilog HDL, BDF, AHDL, as well as
VQM and EDIF netlists, use different libraries for each of the entities that
have the same name, and compile the instantiation into the same library
as the appropriate entity.

Specifying a Destination Library Name in the Settings Dialog Box

To specify a library name for one of your design files, perform the
following steps:

1. On the Assignments menu, click Settings.

2. On the Files page of the Settings dialog box, select the file in the
File Name list.

3. Click Properties.

4. In the File Properties dialog box, select the type of design file from
the Type list.

5. Type the desired library name in the Library field.

6. Click OK.

Specifying a Destination Library Name in the Quartus II Settings File or
Using Tcl

You can specify the library name with the -library option to the
<language type>_FILE assignment in the Quartus II Settings File or with
Tcl commands.

For example, the following Quartus II Settings File or Tcl assignments
specify that the Quartus II software analyze my_file.vhd and store its
contents (design units) in the VHDL library my_lib, and analyze the
Verilog file my_header_file.h and store its contents in a library called
another_lib.

Example 8–8. Specifying a Destination Library Name
set_global_assignment –name VHDL_FILE my_file.vhd –library my_lib
set_global_assignment –name VERILOG_FILE my_header_file.h –library\
another_lib

For more information about Tcl scripting, refer to “Scripting Support” on
page 8–86.

8–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Specifying a Destination Library Name in a VHDL File

You can use the library synthesis directive to specify a library name in
your VHDL source file. This directive takes a single string argument: the
name of the destination library. Specify the library directive in a VHDL
comment prior to the context clause for a primary design unit (that is, a
package declaration, an entity declaration, or a configuration), using one
of the supported keywords for synthesis directives, that is, altera,
synthesis, pragma, synopsys, or exemplar.

For more information about specifying synthesis directives, refer to
“Synthesis Directives” on page 8–29.

The library directive overrides the default library destination work,
the library setting specified for the current file through the Settings
dialog box, any existing Quartus II Settings File setting, any setting made
through the Tcl interface, or any prior library directive in the current
file. The directive remains effective until the end of the file or the next
library synthesis directive.

Example 8–9 uses the library synthesis directive to create a library
called my_lib that contains the design unit my_entity.

Example 8–9. Using the library Synthesis Directive
-- synthesis library my_lib
library ieee;
use ieee.std_logic_1164.all;
entity my_entity(...)
end entity my_entity;

1 You can specify a single destination library for all the design
units in a given source file by specifying the library name in the
the Settings dialog box, editing the Quartus II Settings File, or
using the Tcl interface. Using the library directive to change
the destination VHDL library within a source file gives you the
option of organizing the design units in a single file into
different libraries, rather than just a single library.

The Quartus II software produces an error if you use the library directive
within a design unit.

Mapping a VHDL Instance to an Entity in a Specific Library

The VHDL language provides a number of ways to map or bind an
instance to an entity in a specific library, as described in the following
subsections.

Altera Corporation 8–17
October 2007

Language Support

Direct Entity Instantiation
In the direct entity instantiation method, the instantiation refers to an
entity in a specific library, as shown in Example 8–10.

Example 8–10. VHDL Example of Direct Entity Instantiation
entity entity1 is
port(...);
end entity entity1;

architecture arch of entity1 is
begin
 inst: entity lib1.foo
 port map(...);
end architecture arch;

Component Instantiation—Explicit Binding Indication
There is more than one mechanism for binding a component to an entity.
In an explicit binding indication, you bind a component instance to a
specific entity, as shown in Example 8–11.

Example 8–11. VHDL Example of Explicit Binding Instantiation
entity entity1 is
port(...);
end entity entity1;

package components is
 component entity1 is
 port map (...);
 end component entity1;
end package components;

entity top_entity is
port(...);
end entity top_entity;

use lib1.components.all;
architecture arch of top_entity is
-- Explicitly bind instance I1 to entity1 from lib1
for I1: entity1 use
 entity lib1.entity1
 port map(...);
begin
 I1: entity1 port map(...);
end architecture arch;

8–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Component Instantiation—Default Binding
If you do not provide an explicit binding indication, a component
instance is bound to the nearest visible entity with the same name. If no
such entity is visible in the current scope, the instance is bound to the
entity in the library in which the component was declared. For example,
if the component is declared in a package in library MY_LIB, an instance
of the component is bound to the entity in library MY_LIB. The portions
of code in Example 8–12 and 8–13 show this instantiation method.

Example 8–12. VHDL Example of Default Binding to the Entity in the Same Library as the Component
Declaration
use mylib.pkg.foo; -- import component declaration from package “pkg” in

-- library “mylib”
architecture rtl of top
...
begin
 -- This instance will be bound to entity “foo” in library “mylib”
 inst: foo
 port map(...);
end architecture rtl;

Example 8–13. VHDL Example of Default Binding to the Directly Visible Entity
use mylib.foo; -- make entity “foo” in library “mylib” directly visible
architecture rtl of top
 component foo is
 generic (…)
 port ();
 end component;
begin
 -- This instance will be bound to entity “foo” in library “mylib”
 inst: foo
 port map(...);
end architecture rtl;

Using Parameters/Generics

This section describes how parameters (called generics in VHDL) are
supported in the Quartus II software, and how you can pass these
parameters between different design languages.

You can enter default parameter values for your design in the Default
Parameters box in the Analysis & Synthesis Settings page of the
Settings dialog box. Default parameters allow you to specify the
parameter overrides for your top-level entity. In AHDL, parameters are
inherited, so any default parameters apply to all AHDL instances in the
design. You can also specify parameters for instantiated modules in a

Altera Corporation 8–19
October 2007

Language Support

Block Design File. To modify parameters on a BDF instance, double-click
on the parameter value box for the instance symbol, or right-click on the
symbol and choose Properties, then click the Parameters tab. For these
GUI-based entry methods, refer to “Setting Default Parameter Values and
BDF Instance Parameter Values” on page 8–19 for information about how
parameter values are interpreted, and for recommendations about the
format you should use.

You can specify parameters for instantiated modules in your design
source files, using the syntax provided for that language. Some designs
instantiate entities in a different language; for example, they may
instantiate a VHDL entity from a Verilog design file. You can pass
parameters or generics between VHDL, Verilog HDL, AHDL, and BDF
schematic entry, and from EDIF or VQM to any of these languages. In
most cases, you do not have to do anything special to pass parameters
from one language to another. However, in some cases you may have to
specify the type of the parameter you are passing. In those cases you
should follow certain guidelines to ensure that the parameter value is
interpreted correctly. Refer to “Passing Parameters Between Two Design
Languages” on page 8–20 for parameter type rules.

Setting Default Parameter Values and BDF Instance Parameter Values

Default parameter values and BDF instance parameter values do not have
an explicitly declared type. In most cases, the Quartus II software can
correctly infer the type from the value without ambiguity. For example,
“ABC” is interpreted as a string, 123 as an integer, and 15.4 as a
floating-point value. In other cases, such as when the instantiated
subdesign language is VHDL, the Quartus II software uses the type of the
parameter/generic in the instantiated entity to determine how to
interpret the value, so that a value of 123 is interpreted as a string if the
VHDL parameter is of type string. In addition, you can set the parameter
value in a format that is legal in the language of the instantiated entity. For
example, to pass an unsized bit literal value from BDF to System/Verilog,
you can use '1 as the parameter value, and to pass a 4-bit binary vector
from BDF to Verilog, you can use 4'b1111 as the parameter value.

In a few cases, the Quartus II software cannot infer the correct type of
parameter value. To avoid ambiguity, specify the parameter value in a
type-encoded format where the first or first and second character of the
parameter indicate the type of the parameter, and the rest of the string
indicates the value in a quoted sub-string. For example, to pass a binary
string 1010 from BDF to Verilog HDL, you cannot simply use the value
1001, because the Quartus II software interprets it as a decimal value.
You also cannot use the string "1001", because the Quartus II software
interprets it as an ASCII string. You must use the type-encoded string
B"1001" for the Quartus II software to interpret the parameter value

8–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

correctly. Table 8–1 provides a list of valid parameter strings and shows
how they are interpreted within the Quartus II software. Altera
recommends using the type-encoded format only when necessary to
resolve ambiguity.

Passing Parameters Between Two Design Languages

When passing a parameter between two different languages, a design
block that is higher in the design hierarchy instantiates a lower-level
subdesign block and provides parameter information. It is essential that
the parameter be correctly interpreted by the subdesign language (the
design entity that is instantiated). Based on the information provided by
the higher-level design and the value format, and sometimes by the
parameter type of the subdesign entity, the Quartus II software interprets
the type and value of the passed parameter.

When passing a parameter whose value is an enumerated type value or
literal from a language that does not support enumerated types to one
that does (for example from Verilog to VHDL), it is essential that the
enumeration literal is spelled correctly in the higher-level design. The
parameter value is passed as a string literal, and it is up to the language
of the lower-level design to correctly convert the string literal into the
correct enumeration literal.

Table 8–1. Valid Parameter Strings and How They are Interpreted

Parameter String Quartus II Parameter Type, Format, and Value

S"abc", s"abc" String value “abc”

"abc123", "123abc" String value abc123 or 123abc

F"12.3", f"12.3" Floating point number 12.3

-5.4 Floating point number -5.4

D"123", d"123" Decimal number 123

123, -123 Decimal number 123, -123

X"ff", H"ff" Hexadecimal value FF

Q"77", O"77" Octal value 77

B"1010", b"1010" Unsigned binary value 1010

SB"1010", sb"1010" Signed binary value 1010

R"1", R"0", R"X", R"Z", r"1", r"0", r"X", r"Z" Unsized bit literal

E"apple", e"apple" Enum type, value name is apple

P"1 unit" Physical literal, the value is (1, unit)

A(…), a(…) Array type or record type, whose content is
determined by the string (...)

Altera Corporation 8–21
October 2007

Language Support

If the lower-level language is SystemVerilog, it is essential that the enum
value is used in the correct case. In SystemVerilog, it is recommended that
two enumeration literals do not only differ in case. For example, enum
{item, ITEM} is not a good choice of item names because these names
can create confusion among users and it is more difficult to pass
parameters from case-insensitive HDLs, such as VHDL.

Arrays have different support in different design languages. For details
about the array parameter format, refer to the Parameter section in the
Analysis & Synthesis Report of a design that contains array parameters or
generics.

The following code shows examples of passing parameters from one
design entry language to a subdesign written in another language.
Example 8–14 shows a VHDL subdesign that is instantiated into a
top-level Verilog design in Example 8–15. Example 8–16 shows a Verilog
subdesign that is instantiated in a top-level VHDL design in
Example 8–17.

Example 8–14. VHDL Parameterized Subdesign Entity
type fruit is (apple, orange, grape);
entity vhdl_sub is
 generic (
 name : string := "default",
 width : integer := 8,
 number_string : string := "123",
 f : fruit := apple,
 binary_vector : std_logic_vector(3 downto 0) := "0101",
 signed_vector : signed (3 downto 0) := "1111");

Example 8–15. Verilog HDL Top-level Design Instantiating and Passing Parameters to VHDL Entity from
Example 8–14
vhdl_sub inst (...);
 defparam inst.name = "lower";
 defparam inst.width = 3;
 defparam inst.num_string = "321";
 defparam inst.f = "grape"; // Must exactly match enum value
 defparam inst.binary_vector = 4'b1010;

defparam inst.signed_vector = 4'sb1010;

8–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 8–16. Verilog HDL Parameterized Subdesign Module
module veri_sub (...)
parameter name = "default";
parameter width = 8;
parameter number_string = "123";
parameter binary_vector = 4'b0101;
parameter signed_vector = 4'sb1111;

Example 8–17. VHDL Top-level Design Instantiating and Passing Parameters to the Verilog Module from
Example 8–16
inst:veri_sub
 generic map (
 name => "lower",
 width => 3,
 number_string => "321"
 binary_vector = "1010"
 signed_vector = "1010")

To use an HDL subdesign such as the one shown in Example 8–16 in a
top-level BDF design, you must first generate a symbol for the HDL file,
as shown in Figure 8–2. Open the HDL file in the Quartus II software, and
then, on the File menu, point to Create/Update and click Create Symbol
Files for Current File.

To modify parameters on a BDF instance, double-click on the parameter
value box for the instance symbol, or right-click on the symbol and choose
Properties, then click the Parameters tab.

Figure 8–2. BDF Top-Level Design Instantiating and Passing Parameters to the
Verilog Module from Example 8–16.

Altera Corporation 8–23
October 2007

Incremental Synthesis and Incremental Compilation

Incremental
Synthesis and
Incremental
Compilation

The incremental compilation feature in the Quartus II software manages
a design hierarchy for incremental design by allowing you to divide the
design into multiple partitions. Incremental compilation ensures that
when a design is compiled, only those partitions of the design that have
been updated will be resynthesized, reducing compilation time and
runtime memory usage. This also means that node names are maintained
during synthesis for all registered and combinational nodes in
unchanged partitions.

You can use just incremental synthesis, or use the default full incremental
compilation flow in which you can also preserve the placement (and
optionally routing) information for unchanged partitions. This feature
allows you to preserve performance of unchanged blocks in your design
and reduces the time required for placement and routing, which
significantly reduces your design compilation time. Altera recommends
using the full incremental compilation feature even if you want to
preserve just the synthesis information. You can perform incremental
synthesis by using full incremental compilation with the Netlist Type for
all design partitions set to Post-Synthesis. Some Quartus II features, such
as formal verification and incremental SignalTap® II logic analysis,
require that the full incremental compilation feature be turned on.

f For information about using the recommended full incremental
compilation flow, refer to the Quartus II Incremental Compilation for
Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II
Handbook. For information about the Incremental synthesis only option,
refer to the Quartus II Help.

Partitions for Preserving Hierarchical Boundaries

A design partition represents a portion of the design that you want to
synthesize and fit incrementally. Incremental compilation maintains the
hierarchical boundaries of design partitions, so you can use design
partitions if you need to preserve hierarchical boundaries through the
synthesis and fitting process. For example, if you are performing formal
verification, you must use partitions with the full incremental
compilation flow to ensure that no optimizations occur across specific
design hierarchies.

1 Beginning with the Quartus II software version 6.0, Altera
recommends that you use Design Partition assignments instead
of the Preserve Hierarchical Boundary logic option, which may
be removed in future versions of the Quartus II software.

8–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Quartus II
Synthesis
Options

The Quartus II software offers a number of options to help you control the
synthesis process and achieve the optimal results for your design.
“Setting Synthesis Options” on page 8–25 describes the Analysis &
Synthesis Settings page of the Settings dialog box, where you can set the
most common global settings and options, and defines the following
three types of synthesis options: Quartus II logic options, synthesis
attributes, and synthesis directives. The other subsections describe the
following common synthesis options in the Quartus II software, and
provide HDL examples of how to use each option where applicable:

■ Major Optimization Settings
● “Optimization Technique” on page 8–30
● “Speed Optimization Technique for Clock Domains” on

page 8–30
● “PowerPlay Power Optimization” on page 8–31
● “Restructure Multiplexers” on page 8–32

■ State Machine Settings and Enumerated Types
● “State Machine Processing” on page 8–34
● “Manually Specifying State Assignments Using the

syn_encoding Attribute” on page 8–35
● “Manually Specifying Enumerated Types Using the

enum_encoding Attribute” on page 8–38
● “Safe State Machines” on page 8–40

■ Register Power-Up Settings
● “Power-Up Level” on page 8–42
● “Power-Up Don’t Care” on page 8–43

■ Controlling, Preserving, Removing, and Duplicating Logic and
Registers
● “Remove Duplicate Registers” on page 8–44
● “Remove Redundant Logic Cells” on page 8–44
● “Preserve Registers” on page 8–44
● “Disable Register Merging/Don’t Merge Register” on page 8–45
● “Noprune Synthesis Attribute/Preserve Fan-out Free Register

Node” on page 8–46
● “Keep Combinational Node/Implement as Output of Logic

Cell” on page 8–47
● “Don't Retime, Disabling Synthesis Netlist Optimizations” on

page 8–48
● “Don't Replicate, Disabling Synthesis Netlist Optimizations” on

page 8–49
● “Maximum Fan-Out” on page 8–50
● “Controlling Clock Enable Signals with Auto Clock Enable

Replacement and direct_enable” on page 8–51

Altera Corporation 8–25
October 2007

Quartus II Synthesis Options

● To preserve design hierarchy, refer to “Partitions for Preserving
Hierarchical Boundaries” on page 8–23

■ Megafunction Inference Options
● “Megafunction Inference Control” on page 8–52
● “RAM Style and ROM Style—for Inferred Memory” on

page 8–55
● “Turning Off Add Pass-Through Logic to Inferred RAMs/

no_rw_check Attribute Setting” on page 8–57
● “RAM Initialization File—for Inferred Memory” on page 8–59
● “Multiplier Style—for Inferred Multipliers” on page 8–59

■ Controlling Synthesis with Other Synthesis Directives
● “Full Case” on page 8–62
● “Parallel Case” on page 8–63
● “Translate Off and On / Synthesis Off and On” on page 8–65
● “Ignore translate_off and synthesis_off Directives” on page 8–65
● “Read Comments as HDL” on page 8–66

■ Specifying I/O-Related Assignments
● “Use I/O Flipflops” on page 8–67
● “Specifying Pin Locations with chip_pin” on page 8–68

■ Setting Quartus II Logic Options in Your HDL Source Code
● “Using altera_attribute to Set Quartus II Logic Options” on

page 8–70

Setting Synthesis Options

You can set synthesis options in the Settings dialog box, or with logic
options in the Quartus II software, or you can use synthesis attributes and
directives within the HDL source code.

Analysis & Synthesis Settings Page of the Settings Dialog Box

On the Assignments menu, click Settings to open the Settings dialog box.
The Analysis & Synthesis Settings page allows you to set global
synthesis options that apply to the entire project. These options are
described in later subsections.

Quartus II Logic Options

Quartus II logic options control many aspects of the synthesis and
place-and-route process. To set logic options in the Quartus II graphical
user interface, on the Assignments menu, click Assignment Editor. You
can also use a corresponding Tcl command. Quartus II logic options allow

8–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

you to set instance or node-specific assignments without editing the
source HDL code. Logic options can be used with all design entry
languages supported by the Quartus II software.

f For more information about using the Assignment Editor, refer to the
Assignment Editor chapter in volume 2 of the Quartus II Handbook.

Synthesis Attributes

The Quartus II software supports synthesis attributes for Verilog HDL
and VHDL, also commonly called pragmas. These attributes are not
standard Verilog HDL or VHDL commands; synthesis tools use attributes
to control the synthesis process in a particular manner. Attributes always
apply to a specific design element, and are applied in the HDL source
code. Some synthesis attributes are also available as Quartus II logic
options via the Quartus II user interface or with Tcl. Each attribute
description in this chapter indicates whether there is a corresponding
setting or logic option that can be set in the user interface; some attributes
can be specified only with HDL synthesis attributes.

Attributes specified in your HDL code are not visible in the Assignment
Editor or in the Quartus II Settings File. Assignments or settings made
through the Quartus II user interface, the Quartus II Settings File, or the
Tcl interface take precedence over assignments or settings made with
synthesis attributes in your HDL code. The Quartus II software generates
warning messages if invalid attributes are found, but does not generate
an error or stop the compilation. This behavior is required because
attributes are specific to various design tools, and attributes not
recognized in the Quartus II software may be intended for a different
EDA tool. The Quartus II software lists the attributes specified in your
HDL code in the Source assignments table in the Analysis & Synthesis
report.

The Verilog-2001, SystemVerilog, and VHDL language definitions
provide specific syntax for specifying attributes, but in Verilog-1995 HDL,
you must embed attribute assignments in comments. You can enter
attributes in your code using the syntax in Examples 8–18, 8–19, and 8–20,
where <attribute>, <attribute type>, <value>, <object>, and <object type> are
variables, and the entry in brackets is optional. The examples in this
chapter demonstrate each syntax form.

1 Verilog HDL is case-sensitive; therefore, synthesis attributes are
also case-sensitive.

Altera Corporation 8–27
October 2007

Quartus II Synthesis Options

Example 8–18. Synthesis Attributes in Verilog-1995 HDL
// synthesis <attribute> [= <value>]

or
/* synthesis <attribute> [= <value>] */

Verilog-1995 comment-embedded attributes, as shown in Example 8–18,
must be used as a suffix to (that is, placed after) the declaration of an item
and must appear before the semicolon when one is required.

1 You cannot use the open one-line comment in Verilog HDL
when a semicolon is required at the end of the line, because it is
not clear to which HDL element the attribute applies. For
example, you cannot make an attribute assignment such as
reg r; // synthesis <attribute> because the attribute could
be read as part of the next line.

To apply multiple attributes to the same instance in Verilog-1995, separate
the attributes with spaces, as follows:

//synthesis <attribute1> [= <value>] <attribute2> [= <value>]

For example, to set the maxfan attribute to 16 (Refer to “Maximum Fan-
Out” on page 8–50 for details) and set the preserve attribute (refer to
“Preserve Registers” on page 8–44 for details) on a register called
my_reg, use the following syntax:

reg my_reg /* synthesis maxfan = 16 preserve */;

In addition to the synthesis keyword as shown above, the keywords
pragma, synopsys, and exemplar are supported for compatibility with
other synthesis tools. The keyword altera is also supported, which
allows you to add synthesis attributes that will be recognized only by
Quartus II integrated synthesis and not by other tools that recognize the
same synthesis attribute.

1 Because formal verification tools do not recognize the
exemplar, pragma, and altera keywords, avoid using these
attribute keywords when using formal verification.

Example 8–19. Synthesis Attributes in Verilog-2001 and SystemVerilog
(* <attribute> [= <value>] *)

8–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Verilog-2001 attributes, as shown in Example 8–19, must be used as a
prefix to (that is, placed before) a declaration, module item, statement, or
port connection, and used as a suffix to (that is, placed after) an operator
or a Verilog HDL function name in an expression.

1 Because formal verification tools do not recognize the syntax,
the Verilog-2001 attribute syntax is not supported when using
formal verification.

To apply multiple attributes to the same instance in Verilog-2001 or
SystemVerilog, separate the attributes with commas, as shown in the
following example:

(* <attribute1> [= <value1>], <attribute2> [= <value2>] *)

For example, to set the maxfan attribute to 16 (refer to“Maximum Fan-
Out” on page 8–50 for details) and set the preserve attribute (refer to
“Preserve Registers” on page 8–44 for details) on a register called
my_reg, use the following syntax:

(* preserve, maxfan = 16 *) reg my_reg;

Example 8–20. Synthesis Attributes in VHDL
attribute <attribute> : <attribute type> ;
attribute <attribute> of <object> : <object type> is <value>;

VHDL attributes, as shown in Example 8–20, declare the attribute type
and then apply it to a specific object. For VHDL designs, all supported
synthesis attributes are declared in the altera_syn_attributes
package in the Altera library. You can call this library from your VHDL
code to declare the synthesis attributes, as follows:

LIBRARY altera;
USE altera.altera_syn_attributes.all;

Altera Corporation 8–29
October 2007

Quartus II Synthesis Options

Synthesis Directives

The Quartus II software supports synthesis directives, also commonly
called compiler directives or pragmas. You can include synthesis
directives in Verilog HDL or VHDL code as comments. These directives
are not standard Verilog HDL or VHDL commands; synthesis tools use
directives to control the synthesis process in a particular manner.
Directives do not apply to a specific design node but change the behavior
of the synthesis tool from the point where they occur in the HDL source
code. Other tools, such as simulators, ignore these directives and treat
them as comments.

You can enter synthesis directives in your code using the syntax shown
in Example 8–21 and 8–22, where <directive> and <value> are variables,
and the entry in brackets is optional. Notice that for synthesis directives
there is no = sign before the value; this is different than the syntax for
synthesis attributes. The examples in this chapter demonstrate each
syntax form.

1 Verilog HDL is case-sensitive; therefore, all synthesis directives
are also case-sensitive.

Example 8–21. Synthesis Directives in Verilog HDL
// synthesis <directive> [<value>]

or
/* synthesis <directive> [<value>] */

Example 8–22. Synthesis Directives in VHDL
-- synthesis <directive> [<value>]

In addition to the synthesis keyword shown above, the pragma,
synopsys, and exemplar keywords are supported in both Verilog HDL
and VHDL for compatibility with other synthesis tools. The keyword
altera is also supported, which allows you to add synthesis directives
that will be recognized only by Quartus II integrated synthesis and not by
other tools that recognize the same synthesis directive.

1 Because formal verification tools ignore keywords exemplar,
pragma, and altera, avoid using these directive keywords
when you are using formal verification to prevent mismatches
with the Quartus II results.

8–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Optimization Technique

The Optimization Technique logic option specifies the goal for logic
optimization during compilation; that is, whether to attempt to achieve
maximum speed performance or minimum area usage, or a balance
between the two. Table 8–2 lists the settings for this logic option, which
you can apply only to a design entity. You can also set this logic option for
your whole project on the Analysis & Synthesis Settings page in the
Settings dialog box.

The default setting varies by device family, and is generally optimized for
the best area/speed trade-off. Results are design-dependent and vary
depending on which device family you use.

Speed Optimization Technique for Clock Domains

The Speed Optimization Technique for Clock Domains logic option
specifies that all combinational logic in or between the specified clock
domain(s) is optimized for speed.

When this option is set on a particular clock signal, all the logic in this
clock domain is optimized for speed during synthesis. The remainder of
the design in other clock domains is synthesized with the project-wide
Optimization Technique that is set in the Analysis & Synthesis Settings.
The option can also be set from one clock to another clock signal, in which
case the logic in paths from registers in the first clock domain to registers
in the second clock domain are synthesized for speed. The advantage of
using this option over the project-wide setting to optimize for speed is
that there is less penalty to the area of the design because a smaller part
of the circuit is optimized for speed. This may also have a positive effect
on clock speed. This option also has an advantage over setting the
Optimization Technique on a design entity because that option forces
the hierarchical blocks to be synthesized separately. Doing so may
increase area and decrease performance due to the lack of optimizations
across hierarchies. The Speed Optimization Technique for Clock

Table 8–2. Optimization Technique Settings

Setting Description

Area The Compiler makes the design as small as possible to minimize resource usage.

Speed The Compiler chooses a design implementation that has the fastest fMAX.

Balanced (1) The Compiler maps part of the design for area and part for speed, providing better area
utilization than optimizing for speed, with only a slightly slower fMAX than optimizing for speed.

Note to Table 8–2:
(1) The balanced optimization technique is not supported for all device families.

Altera Corporation 8–31
October 2007

Quartus II Synthesis Options

Domains option does not treat hierarchical entities separately, and can
optimize across hierarchical boundaries for logic within the same clock
domain.

This option is useful if you have one or more clock domains that do not
meet your timing requirements. When there are failing paths within a
clock domain, the option can be set on the clock of that clock domain.
When there are failing paths between clock domains, the option can be set
from one clock domain to the other clock domain.

This option is available for the following device families: Arria™ GX,
Stratix® series, Cyclone® series, HardCopy® II, HardCopy Stratix, and
MAX® II.

PowerPlay Power Optimization

This logic option controls the power-driven compilation setting of
Analysis and Synthesis and determines how aggressively Analysis and
Synthesis optimizes the design for power. On the Assignments menu,
click Settings, and under Category, click Analysis & Synthesis Settings.
This displays the Analysis & Synthesis Settings page. The following
three settings are available for the PowerPlay Power Optimization
option:

■ Off—Analysis and Synthesis does not perform any power
optimizations.

■ Normal Compilation—Analysis and Synthesis performs power
optimizations, without reducing design performance.

■ Extra Effort—Analysis and Synthesis performs additional power
optimizations, which may reduce design performance.

This logic option is available for the following device families: Arria GX,
Stratix series, Cyclone series, HardCopy II, and MAX II.

f For more information about optimizing your design for power
utilization, refer to the Power Optimization chapter in volume 2 of the
Quartus II Handbook. For information about analyzing your power
results, refer to the PowerPlay Power Analysis chapter in volume 3 of the
Quartus II Handbook.

8–32 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Restructure Multiplexers

This option specifies whether the Quartus II software should extract and
optimize buses of multiplexers during synthesis.

This option is useful if your design contains buses of fragmented
multiplexers. This option restructures multiplexers more efficiently for
area, allowing the design to implement multiplexers with a reduced
number of LEs or ALMs. This option is available for the following device
families: Arria GX, Stratix series, Cyclone series, HardCopy II, and
MAX II.

The Restructure Multiplexers option works on entire trees of
multiplexers. Multiplexers may arise in different parts of the design
through Verilog HDL or VHDL constructs such as the “if,” “case,” or
“?:” statements. When multiplexers from one part of the design feed
multiplexers in another part of the design, trees of multiplexers are
formed. Multiplexer buses occur most often as a result of multiplexing
together vectors in Verilog HDL, or STD_LOGIC_VECTOR signals in
VHDL. The Restructure Multiplexers option identifies buses of
multiplexer trees that have a similar structure. When it is turned on, the
Restructure Multiplexers option optimizes the structure of each
multiplexer bus for the target device to reduce the overall amount of logic
used in the design.

Results of the multiplexer optimizations are design dependent, but area
reductions as high as 20% are possible. The option may negatively affect
your design’s fMAX.

Table 8–3 lists the settings for the logic option, which you can apply only
to a design entity. You can also specify this option on the Analysis &
Synthesis Settings page in the Settings dialog box for your whole
project.

Table 8–3. Restructure Multiplexers Settings

Setting Description

On Enables multiplexer restructuring to minimize your design area. This setting may reduce the
fM A X.

Off Disables multiplexer restructuring to avoid possible reductions in fM A X.

Auto (Default) Allows the Compiler to determine whether to enable the option based on your other Quartus II
synthesis settings. The option is On when the Optimization Technique option is set to Area
or Balanced, and Off when the Optimization Technique option is Speed. (Note that since the
default Optimization Technique is Balanced for many device families, including the Stratix
series, this option is turned on by default for those families.)

Altera Corporation 8–33
October 2007

Quartus II Synthesis Options

After you have compiled your design, you can view multiplexer
restructuring information in the Multiplexer Restructuring Statistics
report in the Multiplexer Statistics folder under Analysis & Synthesis
Optimization Results in the Analysis & Synthesis section of the
Compilation Report. Table 8–4 describes the information that is listed in
the Multiplexer Restructuring Statistics report table for each bus of
multiplexers.

For more information about optimizing for multiplexers, refer to the
Multiplexers section of the Design Recommendations for Altera Devices and
the Quartus II Design Assistant chapter in volume 1 of the Quartus II
Handbook.

Table 8–4. Multiplexer Information in the Multiplexer Restructuring Statistics Report

Heading Description

Multiplexer Inputs The number of different choices that are multiplexed together.

Bus Width The width of the bus in bits.

Baseline Area An estimate of how many logic cells are needed to implement the bus of
multiplexers (before any multiplexer restructuring takes place). This estimate can
be used to identify any large multiplexers in the design.

Area if Restructured An estimate of how many logic cells are needed to implement the bus of
multiplexers if Multiplexer Restructuring is applied.

Saving if Restructured An estimate of how many logic cells are saved if Multiplexer Restructuring is
applied.

Registered An indication of whether registers are present on the multiplexer outputs.
Multiplexer Restructuring uses the secondary control signals of a register (such
as synchronous clear and synchronous-load) to further reduce the amount of
logic needed to implement the bus of multiplexers.

Example Multiplexer Output The name of one of the multiplexers’ outputs. This name can help determine
where in the design the multiplexer bus originated.

8–34 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

State Machine Processing

This logic option specifies the processing style used to compile a state
machine. Table 8–5 lists the settings for this logic option, which you can
apply to a state machine name or to a design entity containing a state
machine. You can also set this option for your whole project on the
Analysis & Synthesis Settings page in the Settings dialog box.

The default state machine encoding, which is Auto, uses one-hot
encoding for FPGA devices and minimal-bits encoding for CPLDs. These
settings achieve the best results on average, but another encoding style
might be more appropriate for your design, so this option allows you to
control the state machine encoding.

f For guidelines to ensure that your state machine is inferred and encoded
correctly, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook.

For one-hot encoding, the Quartus II software does not guarantee that
each state has one bit set to one and all other bits to zero. Quartus II
integrated synthesis creates one-hot register encoding by using standard

Table 8–5. State Machine Processing Settings

Setting Description

Auto (Default) Allows the Compiler to choose what it determines to be the
best encoding for the state machine

Minimal Bits Uses the least number of bits to encode the state machine

One-Hot Encodes the state machine in the one-hot style. See the
example below for details.

User-Encoded Encodes the state machine in the manner specified by the
user

Sequential Uses a binary encoding in which the first enumeration literal
in the Enumeration Type has encoding 0, the second 1, and
so on.

Gray Uses an encoding in which the encodings for adjacent
enumeration literals differ by exactly one bit. An N-bit gray
code can represent 2N values.

Johnson Uses an encoding similar to a gray code, in which each state
only has one bit different from its neighboring states. Each
state is generated by shifting the previous state’s bits to the
right by 1; the most significant bit of each state is the negation
of the least significant bit of the previous state. An N-bit
Johnson code can represent at most 2N states but requires
less logic than a gray encoding.

Altera Corporation 8–35
October 2007

Quartus II Synthesis Options

one-hot encoding and then inverting the first bit. This results in an initial
state with all zero values, and the remaining states have two 1 values.
Quartus II integrated synthesis encodes the initial state with all zeros for
the state machine power-up because all device registers power up to a
low value. This encoding has the same properties as true one-hot
encoding: each state can be recognized by the value of one bit. For
example, in a one-hot-encoded state machine with five states including
an initial or reset state, the software uses the following register encoding:

State 0 0 0 0 0 0
State 1 0 0 0 1 1
State 2 0 0 1 0 1
State 3 0 1 0 0 1
State 4 1 0 0 0 1

If the State Machine Processing logic option is set to User-Encoded in a
Verilog HDL design, the software starts with the original design values
for the state constants. For example, a Verilog HDL design can contain a
declaration such as the following:

parameter S0 = 4'b1010, S1 = 4'b0101, ...

If the software infers states S0, S1,... it uses the encoding 4'b1010,
4'b0101,... . If necessary, the software inverts bits in a user-encoded
state machine to ensure that all bits of the reset state of the state machine
are zero.

To assign your own state encoding with the User-Encoded setting of the
State Machine Processing option in a VHDL design, you must apply
specific binary encoding to the elements of an enumerated type because
enumeration literals have no numeric values in VHDL. Use the
syn_encoding synthesis attribute to apply your encoding values. Refer
to “Manually Specifying State Assignments Using the syn_encoding
Attribute” for more information.

For information about the Safe State Machine option, refer to “Safe State
Machines” on page 8–40.

Manually Specifying State Assignments Using the syn_encoding
Attribute

The Quartus II software infers state machines from enumerated types and
automatically assigns state encoding based on “State Machine
Processing” on page 8–34. With this logic option, you can choose the
value User-Encoded to use the encoding from your HDL code. However,

8–36 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

in standard VHDL code, you cannot specify user encoding in the state
machine description because enumeration literals have no numeric
values in VHDL.

To assign your own state encoding for the User-Encoded State Machine
Processing setting, use the syn_encoding synthesis attribute to apply
specific binary encodings to the elements of an enumerated type or to
specify an encoding style. The Quartus II software can implement
Enumeration Types with the different encoding styles shown in
Table 8–6.

The syn_encoding attribute must follow the enumeration type
definition but precede its use.

In Example 8–23, the syn_encoding attribute associates a binary
encoding with the states in the enumerated type count_state. In this
example, the states are encoded with the following values: zero = “11”,
one = “01”, two = “10”, three = “00”.

Table 8–6. syn_encoding Attribute Values

Attribute Value Description

"default" Use an encoding based on the number of enumeration literals
in the Enumeration Type. If there are fewer than five literals,
use the "sequential" encoding. If there are more than
five but fewer than 50 literals, use a "one-hot" encoding.
Otherwise, use a "gray" encoding.

"sequential" Use a binary encoding in which the first enumeration literal in
the Enumeration Type has encoding 0, the second 1, and so
on.

"gray" Use an encoding in which the encodings for adjacent
enumeration literals differ by exactly one bit. An N-bit gray
code can represent 2N values.

"johnson" Use an encoding similar to a gray code. An N-bit Johnson
code can represent at most 2N states but requires less logic
than a gray encoding.

"one-hot" The default encoding style requiring N bits, where N is the
number of enumeration literals in the Enumeration Type.

"compact" Use an encoding with the fewest bits.

Altera Corporation 8–37
October 2007

Quartus II Synthesis Options

Example 8–23. Specifying User Encoded States with the syn_encoding Attribute in VHDL
ARCHITECTURE rtl OF my_fsm IS

TYPE count_state is (zero, one, two, three);
ATTRIBUTE syn_encoding : STRING;
ATTRIBUTE syn_encoding OF count_state : TYPE IS "11 01 10 00";
SIGNAL present_state, next_state : count_state;

BEGIN

You can also use the syn_encoding attribute in Verilog HDL to direct
the synthesis tool to use the encoding from your HDL code, instead of
using the State Machine Processing option.

The syn_encoding value “user” instructs the Quartus II software to
encode each state with its corresponding value from the Verilog source
code. By changing the values of your state constants, you can change the
encoding of your state machine.

Example 8–24. Specifying User Encoded States with the syn_encoding Attribute in Verilog-2001
(* syn_encoding = "user" *) reg [1:0] state;
parameter init = 0, last = 3, next = 1, later = 2;
always @ (state) begin
 case (state)
 init:
 out = 2'b01;
 next:
 out = 2'b10;
 later:
 out = 2'b11;
 last:
 out = 2'b00;
 endcase
end

In Example 8–24, the states will be encoded as follows:

init = "00"
last = "11"
next = "01"
later = "10"

Without the syn_encoding attribute, the Quartus II software would
encode the state machine based on the current value of the State Machine
Processing logic option.

8–38 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

If you are also specifying a safe state machine (as described in “Safe State
Machines” on page 8–40), separate the encoding style value in the
quotation marks with the safe value with a comma, as follows: “safe,
one-hot” or “safe, gray”.

Manually Specifying Enumerated Types Using the
enum_encoding Attribute

By default, the Quartus II software one-hot encodes all user-defined
Enumerated Types. With the enum_encoding attribute, you can specify
the logic encoding for an Enumerated Type and override the default
one-hot encoding to improve the logic efficiency.

1 If an Enumerated Type represents the states of a state machine,
using the enum_encoding attribute to specify a manual state
encoding prevents the Compiler from recognizing state
machines based on the Enumerated Type. Instead, the Compiler
processes these state machines as “regular” logic using the
encoding specified by the attribute, and they are not listed as
state machines in the Report window for the project. If you wish
to control the encoding for a recognized state machine, use the
State Machine Processing logic option and the syn_encoding
synthesis attribute.

To use the enum_encoding attribute in a VHDL design file, associate the
attribute with the Enumeration Type whose encoding you want to
control. The enum_encoding attribute must follow the Enumeration
Type Definition but precede its use. In addition, the attribute value must
be a string literal that specifies either an arbitrary user encoding or an
encoding style of "default", "sequential", "gray", "johnson", or
"one-hot".

An arbitrary user encoding consists of a space-delimited list of encodings.
The list must contain as many encodings as there are enumeration literals
in your Enumeration Type. In addition, the encodings must all have the
same length, and each encoding must consist solely of values from the
std_ulogic type declared by the std_logic_1164 package in the
IEEE library. In the code fragment of Example 8–25, the
enum_encoding attribute specifies an arbitrary user encoding for the
Enumeration Type fruit.

Example 8–25. Specifying an Arbitrary User Encoding for Enumerated Type
type fruit is (apple, orange, pear, mango);
attribute enum_encoding : string;
attribute enum_encoding of fruit : type is "11 01 10 00";

Altera Corporation 8–39
October 2007

Quartus II Synthesis Options

In this example, the enumeration literals are encoded as:

apple = "11"
orange = "01"
pear = "10"
mango = "00"

You may wish to specify an encoding style, rather than a manual user
encoding, especially when the Enumeration Type has a large number of
enumeration literals. The Quartus II software can implement
Enumeration Types with the different encoding styles shown in
Table 8–7.

Observe that in Example 8–25, the enum_encoding attribute manually
specified a gray encoding for the Enumeration Type fruit. This example
could be written more concisely by specifying the "gray" encoding style
instead of a manual encoding, as shown in Example 8–26.

Example 8–26. Specifying the “gray” Encoding Style or Enumeration Type
type fruit is (apple, orange, pear, mango);
attribute enum_encoding : string;
attribute enum_encoding of fruit : type is "gray";

Table 8–7. enum_encoding Attribute Values

Attribute Value Description

"default" Use an encoding based on the number of enumeration literals
in the Enumeration Type. If there are fewer than five literals,
use the "sequential" encoding. If there are more than
five but fewer than 50 literals, use a "one-hot" encoding.
Otherwise, use a "gray" encoding.

"sequential" Use a binary encoding in which the first enumeration literal in
the Enumeration Type has encoding 0, the second 1, and so
on.

"gray" Use an encoding in which the encodings for adjacent
enumeration literals differ by exactly one bit. An N-bit gray
code can represent 2N values.

"johnson" Use an encoding similar to a gray code. An N-bit Johnson
code can represent at most 2N states but requires less logic
than a gray encoding.

"one-hot" The default encoding style requiring N bits, where N is the
number of enumeration literals in the Enumeration Type.

8–40 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Safe State Machines

The Safe State Machine option and corresponding syn_encoding
attribute value safe specify that the software should insert extra logic to
detect an illegal state and force the state machine’s transition to the reset
state.

It is possible for a finite state machine to enter an illegal state—meaning
the state registers contain a value that does not correspond to any defined
state. By default, the behavior of the state machine that enters an illegal
state is undefined. However, you can set the syn_encoding attribute to
safe or use the Safe State Machine logic option if you want the state
machine to recover deterministically from an illegal state. Use this option
if you have asynchronous inputs to your state machine. The most
common cause of this situation is a state machine that has control inputs
that come from another clock domain, such as the control logic for a
clock-crossing FIFO, because the state machine must have inputs from
another clock domain. An alternative is to add synchronizer registers to
the inputs.

It is important to note that the safe state machine value does not use any
user-defined default logic from your HDL code that corresponds to
unreachable states. Verilog HDL and VHDL allow you to explicitly
specify a behavior for all states in the state machine, including
unreachable states. However, synthesis tools detect if state machine logic
is unreachable and minimize or remove the logic. Any flag signals or logic
used in the design to indicate such an illegal state are also removed. If the
state machine is implemented as safe, the recovery logic forces its
transition from an illegal state to the reset state.

The Safe State Machine option can be set globally, or on individual state
machines. To set this option, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select Analysis & Synthesis Settings. The
Analysis & Synthesis Settings page appears.

3. Click More Settings. The More Analysis & Synthesis Settings
dialog box appears.

4. In the Existing option settings list, select Safe State Machine.

5. Under Option, in the Setting list, select On.

6. Click OK.

Altera Corporation 8–41
October 2007

Quartus II Synthesis Options

7. Click OK to close the Settings dialog box.

You can also use the Assignment Editor to turn on the Safe State Machine
option for specific state machines.

You can set the syn_encoding safe attribute on a state machine in
HDL, as shown in Example 8–27, 8–28, and 8–29.

Example 8–27. Verilog HDL Example of a Safe State Machine Attribute
reg [2:0] my_fsm /* synthesis syn_encoding = "safe" */;

Example 8–28. Verilog-2001 Example of a Safe State Machine Attribute
(* syn_encoding = "safe" *) reg [2:0] my_fsm;

Example 8–29. VHDL Example of a Safe State Machine Attribute
ATTRIBUTE syn_encoding OF my_fsm : TYPE IS "safe";

If you are also specifying an encoding style (as described in “Manually
Specifying State Assignments Using the syn_encoding Attribute” on
page 8–35), separate the encoding style value in the quotation marks with
the safe value with a comma, as follows: "safe, one-hot" or "safe,
gray".

Safe state machine implementation can result in a noticeable area increase
for the design. Therefore, Altera recommends that you set this option
only on the critical state machines in the design where the safe mode is
required, such as a state machine that uses inputs from asynchronous
clock domains. You can also reduce the necessity of this option by
correctly synchronizing inputs coming from other clock domains.

Note that if the safe state machine assignment is made on an instance
that is not recognized as a state machine, or an entity that contains a state
machine, the software takes no action. You must restructure the code so
that the instance is recognized and properly inferred as a state machine.

f For guidelines to ensure that your state machine is inferred correctly,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the
Quartus II Handbook.

8–42 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Power-Up Level

This logic option causes a register (flipflop) to power up with the
specified logic level, either High (1) or Low (0). Registers in the device
core hardware power up to 0 in all Altera devices. For the register to
power up with a logic level High specified using this option, the
Compiler performs an optimization referred to as NOT-gate push back on
the register. NOT-gate push back adds an inverter to the input and the
output of the register so that the reset and power-up conditions will
appear to be high and the device operates as expected. The register itself
still powers up low, but the register output is inverted so the signal
arriving at all destinations is high. This option is available for all Altera
devices supported by the Quartus II software except MAX® 3000A and
MAX 7000S devices.

The Power-Up Level option supports wildcard characters, and you can
apply this option to any register, registered logic cell WYSIWYG
primitive, or to a design entity containing registers if you want to set the
power level for all registers in the design entity. If this option is assigned
to a registered logic cell WYSIWYG primitive, such as an atom primitive
from a third-party synthesis tool, you must turn on the Perform
WYSIWYG Primitive Resynthesis logic option for it to take effect. You
can also apply the option to a pin with the logic configurations described
in the following list:

■ If this option is turned on for an input pin, the option is transferred
automatically to the register that is driven by the pin if the following
conditions are present:
● There is no logic, other than inversion, between the pin and the

register
● The input pin drives the data input of the register
● The input pin does not fan-out to any other logic

■ If this option is turned on for an output or bidirectional pin, it is
transferred automatically to the register that feeds the pin, if the
following conditions are present:
● There is no logic, other than inversion, between the register and

the pin
● The register does not fan-out to any other logic

Inferred Power-Up Levels

Quartus II integrated synthesis reads default values for registered signals
defined in Verilog HDL and VHDL code, and converts the default values
into Power-Up Level settings. The software also synthesizes variables
that are assigned values in Verilog HDL initial blocks into power-up

Altera Corporation 8–43
October 2007

Quartus II Synthesis Options

conditions. Synthesis of these default and initial constructs enables the
design’s synthesized behavior to match, as closely as possible, the
power-up state of the HDL code during a functional simulation.

For example, the following register declarations all set a power-up level
of VCC or a logic value "1":

signal q : std_logic = '1'; -- power-up to VCC

reg q = 1'b1; // power-up to VCC

reg q;
initial begin q = 1'b1; end // power-up to VCC

f For more information about NOT gate push-back, the power-up states for
Altera devices, and how the power-up level is affected by set and reset
control signals, refer to Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook.

Power-Up Don’t Care

This logic option allows the compiler to optimize registers in the design
which do not have a defined power-up condition. This option is turned
on by default.

For example, your design may have a register with its D input tied to VCC,
and with no clear signal or other secondary signals. If this option is
enabled, the compiler can choose for the register to power up to VCC.
Therefore, the output of the register is always VCC. The compiler can
remove the register and connect its output to VCC. If you turn this option
off or if you set a Power-Up Level assignment of low for this register, the
register transitions from GND to VCC when the design starts up on the
first clock signal. Thus, the register is not stuck at VCC and cannot be
removed. Similarly, if the register has a clear signal, it will not be removed
because after the clear is asserted, the register will again transition to
GND and back to VCC.

If the Compiler performs a Power-Up Don’t Care optimization that
allows it to remove a register, it issues a message indicating it is doing so.

This project-wide option does not apply to registers that have the
Power-Up Level logic option set to either High or Low.

8–44 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Remove Duplicate Registers

If you turn on this logic option, the Compiler removes registers that are
identical to another register. If two registers generate the same logic, the
Compiler removes the second one, and the first one fans out to the second
one’s destinations. Also, if the deleted register has different logic option
assignments, the Compiler ignores them. This option is turned on by
default.

Typically, you should use this option only if you want to prevent the
Compiler from removing duplicate registers. That is, you should use this
option only with the Off setting. You can apply this option to an
individual register or a design entity that contains registers.

Remove Redundant Logic Cells

This logic option removes redundant LCELL primitives or WYSIWYG
cells. The option is off by default to preserve logic cells that have been
used intentionally. If you turn on this option, the Compiler optimizes a
circuit for area and speed. You can set this option globally or apply it to
individual nodes and entities. If you turn on the option at the global level,
you can use the keep attribute or Implement as Output of Logic Cell
logic option to preserve specific wire signals or nodes (refer to “Keep
Combinational Node/Implement as Output of Logic Cell” on page 8–47).

Preserve Registers

This attribute and logic option directs the Compiler not to minimize or
remove a specified register during synthesis optimizations or register
netlist optimizations. Optimizations can eliminate redundant registers
and registers with constant drivers; this option prevents a register from
being reduced to a constant or merged with a duplicate register. This
option can preserve a register so you can observe it during simulation or
with the SignalTap II logic analyzer. Additionally, it can preserve registers
if you are creating a preliminary version of the design in which secondary
signals are not specified. You can also use the attribute to preserve a
duplicate of an I/O register so that one copy can be placed in an I/O cell
and the second can be placed in the core. By default, the software may
remove one of the two duplicate registers. In this case, the preserve
attribute can be added to both registers to prevent this.

1 This option cannot preserve registers that have no fan-out. To
prevent the removal of registers with no fan-out, refer to
“Noprune Synthesis Attribute/Preserve Fan-out Free Register
Node” on page 8–46.

Altera Corporation 8–45
October 2007

Quartus II Synthesis Options

The Preserve Registers option prevents a register from being
inferred as a state machine.

You can set the Preserve Registers logic option in the Quartus II GUI or
you can set the preserve attribute in your HDL code, as shown in
Example 8–30, 8–31, and 8–32. In these examples, the my_reg register is
preserved.

1 In addition to preserve, the Quartus II software supports the
syn_preserve attribute name for compatibility with other
synthesis tools.

Example 8–30. Verilog HDL Example of a syn_preserve Attribute
reg my_reg /* synthesis syn_preserve = 1 */;

Example 8–31. Verilog-2001 Example of a syn_preserve Attribute
(* syn_preserve = 1 *) reg my_reg;

1 The " = 1" after the "preserve" in Example 8–30 and 8–31 is
optional, because the assignment uses a default value of 1 when
it is specified.

Example 8–32. VHDL Example of a preserve Attribute
signal my_reg : stdlogic;
attribute preserve : boolean;
attribute preserve of my_reg : signal is true;

Disable Register Merging/Don’t Merge Register

This logic option and attribute prevents the specified register from being
merged with other registers, and prevents other registers from being
merged with the specified register. When applied to a design entity, it
applies to all registers in the entity.

You can use this option to instruct the Compiler to correctly use your
timing constraints for the register during synthesis. For example, if the
register has a multicycle constraint, this option prevents the Compiler
from merging other registers into the specified register, avoiding
unintended timing effects and functional differences.

8–46 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

This option differs from the Preserve Register option because it does not
prevent a register with constant drivers or a redundant register from
being removed. In addition, this option prevents other registers from
merging with the specified register.

You can set the Disable Register Merging logic option in the Quartus II
GUI, or you can set the dont_merge attribute in your HDL code, as
shown in Example 8–33, 8–34, and 8–35. In these examples, the my_reg
register is prevented from merges.

Example 8–33. Verilog HDL Example of a dont_merge Attribute
reg my_reg /* synthesis dont_merge */;

Example 8–34. Verilog-2001 Example of a dont_merge Attribute
(* dont_merge *) reg my_reg;

Example 8–35. VHDL Example of a dont_merge Attribute
signal my_reg : stdlogic;
attribute dont_merge : boolean;
attribute dont_merge of my_reg : signal is true;

Noprune Synthesis Attribute/Preserve Fan-out Free Register
Node

This synthesis attribute and corresponding logic option direct the
Compiler to preserve a fan-out-free register through the entire
compilation flow. This is different from the Preserve Registers option,
which prevents a register from being reduced to a constant or merged
with a duplicate register. Standard synthesis optimizations remove nodes
that do not directly or indirectly feed a top-level output pin. This option
can retain a register so you can observe it in the Simulator or the
SignalTap II logic analyzer. Additionally, it can retain registers if you are
creating a preliminary version of the design in which the registers’
fan-out logic is not specified. This option is supported for inferred
registers in the following device families: Arria GX, Stratix series,
Cyclone series, and MAX II.

You can set the Preserve Fan-out Free Register Node logic option in the
Quartus II GUI, or you can set the noprune attribute in your HDL code,
as shown in Example 8–36, 8–37, and 8–38. In these examples, the my_reg
register is preserved.

Altera Corporation 8–47
October 2007

Quartus II Synthesis Options

1 You must use the noprune attribute instead of the logic option
if the register has no immediate fan-out in its module or entity.
If you do not use the synthesis attribute, registers with no
fan-out are removed (or “pruned”) during analysis and
elaboration before the logic synthesis stage applies any logic
options. If the register has no fan-out in the full design, but has
fan-out within its module or entity, you can use the logic option
to retain the register through compilation.

The attribute name syn_noprune is supported for
compatibility with other synthesis tools.

Example 8–36. Verilog HDL Example of a syn_noprune Attribute
reg my_reg /* synthesis syn_noprune */;

Example 8–37. Verilog-2001 Example of a noprune Attribute
(* noprune *) reg my_reg;

Example 8–38. VHDL Example of a noprune Attribute
signal my_reg : stdlogic;
attribute noprune: boolean;
attribute noprune of my_reg : signal is true;

Keep Combinational Node/Implement as Output of Logic Cell

This synthesis attribute and corresponding logic option direct the
Compiler to keep a wire or combinational node through logic synthesis
minimizations and netlist optimizations. A wire that has a keep attribute
or a node that has the Implement as Output of Logic Cell logic option
applied becomes the output of a logic cell in the final synthesis netlist, and
the name of the logic cell will be the same as the name of the wire or node.
You can use this directive to make combinational nodes visible to the
SignalTap II logic analyzer.

1 The option cannot keep nodes that have no fan-out. Node names
cannot be maintained for wires with tri-state drivers, or if the
signal feeds a top-level pin of the same name (in this case the
node name is changed to a name such as <net name>~buf0).

You can set the Implement as Output of Logic Cell logic option in the
Quartus II GUI, or you can set the keep attribute in your HDL code, as
shown in Example 8–39, 8–40, and 8–41. In these examples, the Compiler
maintains the node name my_wire.

8–48 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1 In addition to keep, the Quartus II software supports the
syn_keep attribute name for compatibility with other synthesis
tools.

Example 8–39. Verilog HDL Example of a keep Attribute
wire my_wire /* synthesis keep = 1 */;

Example 8–40. Verilog-2001 Example of a keep Attribute
(* keep = 1 *) wire my_wire;

Example 8–41. VHDL Example of a syn_keep Attribute
signal my_wire: bit;
attribute syn_keep: boolean;
attribute syn_keep of my_wire: signal is true;

Don't Retime, Disabling Synthesis Netlist Optimizations

This attribute disables synthesis retiming optimizations on the specified
register. When applied to a design entity, it applies to all registers in the
entity.

You can use this option to turn off retiming optimizations and prevent
node name changes so that the Compiler can correctly use your timing
constraints for the register.

You can set the Netlist Optimizations logic option to Never Allow in the
Quartus II GUI to disable retiming along with other synthesis netlist
optimizations, or you can set the dont_retime attribute in your HDL
code, as shown in Example 8–42 and 8–43. In these examples, the my_reg
register is prevented from being retimed.

Example 8–42. Verilog HDL Example of a dont_retime Attribute
reg my_reg /* synthesis dont_retime */;

Example 8–43. Verilog-2001 Example of a dont_retime Attribute
(* dont_retime *) reg my_reg;

Altera Corporation 8–49
October 2007

Quartus II Synthesis Options

Example 8–44. VHDL Example of a dont_retime Attribute
signal my_reg : std_logic;
attribute dont_retime : boolean;
attribute dont_retime of my_reg : signal is true;

1 For compatibility with third-party synthesis tools, Quartus II
integrated synthesis also supports the attribute
syn_allow_retiming. To disable retiming, set
syn_allow_retiming to 0 (Verilog) or false (VHDL). This
attribute does not have any effect when set to 1 or true.

Don't Replicate, Disabling Synthesis Netlist Optimizations

This attribute disables synthesis replication optimizations on the
specified register. When applied to a design entity, it applies to all
registers in the entity.

You can use this option to turn off register replication (or duplication)
optimizations so that the Compiler can use your timing constraints for the
register.

You can set the Netlist Optimizations logic option to Never Allow in the
Quartus II GUI to disable replication along with other synthesis netlist
optimizations, or you can set the dont_replicate attribute in your
HDL code, as shown in Example 8–45 and 8–46. In these examples, the
my_reg register is prevented from being replicated.

Example 8–45. Verilog HDL Example of a dont_replicate Attribute
reg my_reg /* synthesis dont_replicate */;

Example 8–46. Verilog-2001 Example of a dont_replicate Attribute
(* dont_replicate *) reg my_reg;

Example 8–47. VHDL Example of a dont_replicate Attribute
signal my_reg : std_logic;
attribute dont_replicate : boolean;
attribute dont_replicate of my_reg : signal is true;

8–50 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1 For compatibility with third-party synthesis tools, Quartus II
integrated synthesis also supports the attribute
syn_replicate. To disable replication, set syn_replicate
to 0 (Verilog) or false (VHDL). This attribute does not have
any effect when set to 1 or true.

Maximum Fan-Out

This attribute and logic option directs the Compiler to control the number
of destinations fed by a node. The Compiler duplicates a node and splits
its fan-out until the individual fan-out of each copy falls below the
maximum fan-out restriction. You can apply this option to a register or a
logic cell buffer, or to a design entity that contains these elements. You can
use this option to reduce the load of critical signals, which can improve
performance. You can use the option to instruct the Compiler to duplicate
(or replicate) a register that feeds nodes in different locations on the target
device. Duplicating the register may allow the Fitter to place these new
registers closer to their destination logic, minimizing routing delay.

This option is available for all devices supported in the Quartus II
software except MAX 3000, MAX 7000, FLEX 10K®, ACEX® 1K, and
Mercury™ devices. To turn off the option for a given node if the option is
set at a higher level of the design hierarchy, in the Netlist Optimizations
logic option, select Never Allow. If not disabled by the Netlist
Optimizations option, the maximum fan-out constraint is honored as
long as the following conditions are met:

■ The node is not part of a cascade, carry, or register cascade chain
■ The node does not feed itself
■ The node feeds other logic cells, DSP blocks, RAM blocks, and/or

pins through data, address, clock enable, etc, but not through any
asynchronous control ports (such as asynchronous clear)

The software does not create duplicate nodes in these cases either because
there is no clear way to duplicate the node, or, to avoid the possible
situation that small differences in timing could produce functional
differences in the implementation (in the third condition above where
asynchronous control signals are involved). If the constraint cannot be
applied because one of these conditions is not met, the Quartus II
software issues a message indicating that it ignored maximum fan-out
assignment. To instruct the software not to check the node’s destinations
for possible problems like the third condition, you can set the Netlist
Optimizations logic option to Always Allow for a given node.

Altera Corporation 8–51
October 2007

Quartus II Synthesis Options

1 If you have enabled any of the Quartus II netlist optimizations
that affect registers, add the preserve attribute to any registers
to which you have set a maxfan attribute. The preserve
attribute ensures that the registers are not affected by any of the
netlist optimization algorithms, such as register retiming.

f For details about netlist optimizations, refer to the Netlist Optimization
and Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

You can set the Maximum Fan-Out logic option in the Quartus II GUI,
and this option supports wildcard characters. You can also set the
maxfan attribute in your HDL code, as shown in Example 8–48, 8–49,
and 8–50. In these examples, the Compiler duplicates the clk_gen
register, so its fan-out is not greater than 50.

1 In addition to maxfan, the Quartus II software supports the
syn_maxfan attribute name for compatibility with other
synthesis tools.

Example 8–48. Verilog HDL Example of a syn_maxfan Attribute
reg clk_gen /* synthesis syn_maxfan = 50 */;

Example 8–49. Verilog-2001 Example of a maxfan Attribute
(* maxfan = 50 *) reg clk_gen;

Example 8–50. VHDL Example of a maxfan Attribute
signal clk_gen : stdlogic;
attribute maxfan : signal ;
attribute maxfan of clk_gen : signal is 50;

Controlling Clock Enable Signals with Auto Clock Enable
Replacement and direct_enable

The Auto Clock Enable Replacement logic option allows the software to
find logic that feeds a register and move the logic to the register’s clock
enable input port. The option is on by default. You can set this option to
Off for individual registers or design entities to solve fitting or
performance issues with designs that have many clock enables. Turning
the option off prevents the software from using the register’s clock enable
port, and the software implements the clock enable functionality using
multiplexers in logic cells.

8–52 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

If specific logic is not automatically moved to a clock enable input with
the Auto Clock Enable Replacement logic option, you can instruct the
software to use a direct clock enable signal. Applying the
direct_enable attribute to a specific signal instructs the software to
use the clock enable port of a register to implement the signal. The
attribute ensures that the clock enable port is driven directly by the signal,
and the signal is not optimized or combined with any other logic.

Example 8–51, 8–52, and 8–53 show how to set this attribute to ensure that
the signal is preserved and used directly as a clock enable.

1 In addition to direct_enable, the Quartus II software
supports the syn_direct_enable attribute name for
compatibility with other synthesis tools.

Example 8–51. Verilog HDL Example of a direct_enable attribute
wire my_enable /* synthesis direct_enable = 1 */ ;

Example 8–52. Verilog-2001 Example of a syn_direct_enable attribute
(* syn_direct_enable *) wire my_enable;

Example 8–53. VHDL Example of a direct_enable attribute
attribute direct_enable: boolean;
attribute direct_enable of my_enable: signal is true;

Megafunction Inference Control

The Quartus II Compiler automatically recognizes certain types of HDL
code and infers the appropriate megafunction. The software uses the
Altera megafunction code when compiling your design, even when you
do not specifically instantiate the megafunction. The software infers
megafunctions to take advantage of logic that is optimized for Altera
devices. The area and performance of such logic may be better than the
results obtained by inferring generic logic from the same HDL code.

Additionally, you must use megafunctions to access certain
architecture-specific features, such as RAM, digital signal processing
(DSP) blocks, and shift registers, that generally provide improved
performance compared with basic logic cells.

f For details about coding style recommendations when targeting
megafunctions in Altera devices, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

Altera Corporation 8–53
October 2007

Quartus II Synthesis Options

The Quartus II software provides options to control the inference of
certain types of megafunctions, as described in the following subsections.

Multiply-Accumulators and Multiply-Adders

Use the Auto DSP Block Replacement logic option to control DSP block
inference for multiply-accumulations and multiply-adders. This option is
turned on by default. To disable inference, turn off this option for your
whole project on the Analysis & Synthesis Settings page of the Settings
dialog box, or disable the option for a specific block with the Assignment
Editor.

1 Any registers that the software maps to the altmult_accum and
altmult_add megafunctions and places in DSP blocks are not
available in the Simulator because their node names do not exist
after synthesis.

Shift Registers

Use the Auto Shift Register Replacement logic option to control shift
register inference. This option is turned on by default. To disable
inference, turn off this option for your whole project on the Analysis &
Synthesis Settings page of the Settings dialog box, or for a specific block
with the Assignment Editor. The software may not infer small shift
registers because small shift registers typically do not benefit from
implementation in dedicated memory. However, you can use the Allow
Any Shift Register Size for Recognition logic option to instruct
synthesis to infer a shift register even when its size is considered too
small.

1 The registers that the software maps to the altshift_taps
megafunction and places in RAM are not available in the
Simulator because their node names do not exist after synthesis.

The Auto Shift Register Replacement logic option is turned off
automatically when a formal verification tool is selected in the
EDA Tool Settings. The software issues a warning and lists shift
registers that would have been inferred if no formal verification
tool was selected in the compilation report. To allow the use of a
megafunction for the shift register in the formal verification
flow, you can either instantiate a shift register explicitly using
the MegaWizard® Plug-in Manager or black box the shift
register in a separate entity/module.

8–54 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

RAM and ROM

Use the Auto RAM Replacement and Auto ROM Replacement logic
options to control RAM and ROM inference, respectively. These options
are turned on by default. To disable inference, turn off the appropriate
option for your whole project on the Analysis & Synthesis Settings page
of the Settings dialog box, or disable the option for a specific block with
the Assignment Editor.

1 Although inferred shift registers are implemented in RAM
blocks, you cannot turn off the Auto RAM replacement option to
disable shift register replacement. Use the Auto Shift Register
Replacement option (refer to “Shift Registers”).

The software may not infer very small RAM or ROM blocks because very
small memory blocks can typically be implemented more efficiently by
using the registers in the logic. However, you can use the Allow Any
RAM Size for Recognition and Allow Any ROM Size for Recognition
logic options to instruct synthesis to infer a memory block even when its
size is considered too small.

1 The Auto ROM Replacement logic option is automatically
turned off when a formal verification tool is selected in the EDA
Tool Settings page. A warning is issued and a report panel lists
ROMs that would have been inferred if no formal verification
tool was selected. To allow the use of a megafunction for the
shift register in the formal verification flow, you can either
instantiate a ROM explicitly using the MegaWizard Plug-In
Manager or create a black box for the ROM in a separate
entity/module.

Although formal verification tools do not support inferred RAM blocks,
because of the importance of inferring RAM in many designs, the Auto
RAM Replacement logic option remains on when a formal verification
tool is selected in the EDA Tool Settings page. The Quartus II software
automatically black boxes any module or entity that contains a RAM
block that is inferred. The software issues a warning and lists the
black box that is created in the compilation report. This block box allows
formal verification tools to proceed; however, the entire module or entity
containing the RAM cannot be verified in the tool. Altera recommends
that you explicitly instantiate RAM blocks in separate modules or entities
so that as much logic as possible can be verified by the formal verification
tool.

Altera Corporation 8–55
October 2007

Quartus II Synthesis Options

RAM to Logic Cell Conversion

The Auto RAM to Logic Cell Conversion option allows the Quartus II
integrated synthesis to convert RAM blocks that are small in size to logic
cells if the logic cell implementation is deemed to give better quality of
results. Only single-port or simple-dual port RAMs with no initialization
files can be converted to logic cells. This option is off by default. You can
set this option globally or apply it to individual RAM nodes.

For FLEX 10K, APEX, Arria GX, and the Stratix series of devices, the
software uses the following rules to determine whether a RAM should be
placed in logic cells or a dedicated RAM block:

■ If the number of words is less than 16, use a RAM block if the total
number of bits is greater than or equal to 64.

■ If the number of words is greater than or equal to 16, use a RAM
block if the total number of bits is greater than or equal to 32.

■ Otherwise, implement the RAM in logic cells.

For the Cyclone series of devices, the software uses the following rules:

■ If the number of words is greater than or equal to 64, use a RAM
block.

■ If the number of words is greater than or equal to 16 and less than 64,
use a RAM block if the total number of bits is greater than or equal to
128.

■ Otherwise, implement the RAM in logic cells.

RAM Style and ROM Style—for Inferred Memory

These attributes specify the implementation for an inferred RAM or ROM
block. You can specify the type of TriMatrix™ embedded memory block
to be used, or specify the use of standard logic cells (LEs or ALMs). The
attributes are supported only for device families with TriMatrix
embedded memory blocks.

The ramstyle and romstyle attributes take a single string value. The
values "M512", "M4K", "M-RAM", "MLAB", "M9K", and "M144K" (as
applicable for the target device family) indicate the type of memory block
to use for the inferred RAM or ROM. If you set the attribute to a block
type that does not exist in the target device family, the software generates
a warning and ignores the assignment. The value logic indicates that
the RAM or ROM should be implemented in regular logic rather than
dedicated memory blocks. You can set the attribute on a module or entity,
in which case it specifies the default implementation style for all inferred
memory blocks in the immediate hierarchy. You can also set the attribute

8–56 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

on a specific signal (VHDL) or variable (Verilog HDL) declaration, in
which case it specifies the preferred implementation style for that specific
memory, overriding the default implementation style.

1 If you specify a value of logic, the memory still appears as a
RAM or ROM block in the RTL Viewer, but it is converted to
regular logic during a later synthesis step.

In addition to ramstyle and romstyle, the Quartus II
software supports the syn_ramstyle attribute name for
compatibility with other synthesis tools.

Example 8–54, 8–55, and 8–56 specify that all memory in the module or
entity my_memory_blocks should be implemented using a specific type
of block.

Example 8–54. Verilog-1995 Example of Applying a romstyle Attribute to a Module Declaration
module my_memory_blocks (...) /* synthesis romstyle = "M4K" */

Example 8–55. Verilog-2001 Example of Applying a ramstyle Attribute to a Module Declaration
 (* ramstyle = "M512" *) module my_memory_blocks (...);

Example 8–56. VHDL Example of Applying a romstyle Attribute to an Architecture
architecture rtl of my_ my_memory_blocks is
attribute romstyle : string;
attribute romstyle of rtl : architecture is "M-RAM";
begin

Example 8–57, 8–58, and 8–59 specify that the inferred memory my_ram
or my_rom should be implemented using regular logic instead of a
TriMatrix memory block.

Example 8–57. Verilog-1995 Example of Applying a syn_ramstyle Attribute to a Variable Declaration
reg [0:7] my_ram[0:63] /* synthesis syn_ramstyle = "logic" */;

Example 8–58. Verilog-2001 Example of Applying a romstyle Attribute to a Variable Declaration
(* romstyle = "logic" *) reg [0:7] my_rom[0:63];

Altera Corporation 8–57
October 2007

Quartus II Synthesis Options

Example 8–59. VHDL Example of Applying a ramstyle Attribute to a Signal Declaration
type memory_t is array (0 to 63) of std_logic_vector (0 to 7);
signal my_ram : memory_t;
attribute ramstyle : string;
attribute ramstyle of my_ram : signal is "logic";

Turning Off Add Pass-Through Logic to Inferred RAMs/
no_rw_check Attribute Setting

Setting the no_rw_check value for the ramstyle attribute, or turning
off the corresponding global logic option Add Pass-Through Logic to
Inferred RAMs indicates that your design does not depend on the
behavior of the inferred RAM when there are reads and writes to the same
address in the same clock cycle. If you specify the attribute or turn off the
logic option, the Quartus II software can choose a read-during-write
behavior instead of using the read-during-write behavior of your HDL
source code.

In some cases, an inferred RAM must be mapped into regular logic cells
because it has a read-during-write behavior that is not supported by the
TriMatrix memory blocks in your target device. In other cases, the
Quartus II software must insert extra logic to mimic read-during-write
behavior of the HDL source, increasing the area of your design and
potentially reducing its performance. In these cases, you can use the
attribute to specify that the software can implement the RAM directly in
a TriMatrix memory block without using logic. You can also use the
attribute to prevent a warning message for dual-clock RAMs in the case
that the inferred behavior in the device does not exactly match the
read-during-write conditions described in the HDL code.

f For more information about recommended styles for inferring RAM and
some of the issues involved with different read-during-write conditions,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the
Quartus II Handbook.

To set the Add Pass-Through Logic to Inferred RAMs logic option
through the Quartus II GUI, click More Settings on the Analysis &
Synthesis Settings page of the Settings dialog box. Example 8–60 and
8–61 use two addresses and normally require extra logic after the RAM to
ensure that the read-during-write conditions in the device match the
HDL code. If you don’t require a defined read-during-write condition in
your design, this extra logic is not required. With the no_rw_check
attribute, Quartus II integrated synthesis won’t generate the extra logic.

8–58 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 8–60. Verilog HDL Inferred RAM Using no_rw_check Attribute
module ram_infer (q, wa, ra, d, we, clk);

output [7:0] q;
input [7:0] d;
input [6:0] wa;
input [6:0] ra;
input we, clk;
reg [6:0] read_add;
(* ramstyle = "no_rw_check" *) reg [7:0] mem [127:0];
always @ (posedge clk) begin

if (we)
mem[wa] <= d;

read_add <= ra;
end
assign q = mem[read_add];

endmodule

Example 8–61. VHDL Inferred RAM Using no_rw_check Attribute
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

);
END ram;

ARCHITECTURE rtl OF ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
ATTRIBUTE ramstyle : string;
ATTRIBUTE ramstyle of ram_block : signal is "no_rw_check";
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;

END IF;
END PROCESS;
q <= ram_block(read_address_reg);

END rtl;

Altera Corporation 8–59
October 2007

Quartus II Synthesis Options

RAM Initialization File—for Inferred Memory

The ram_init_file attribute specifies the initial contents of an inferred
memory in the form of a Memory Initialization File (.mif). The attribute
takes a string value containing the name of the RAM initialization file.

Example 8–62. Verilog-1995 Example of Applying a ram_init_file Attribute
reg [7:0] mem[0:255] /* synthesis ram_init_file
= " my_init_file.mif" */;

Example 8–63. Verilog-2001 Example of Applying a ram_init_file Attribute
(* ram_init_file = "my_init_file.mif" *) reg [7:0] mem[0:255];

Example 8–64. VHDL Example of Applying a ram_init_file Attribute
type mem_t is array(0 to 255) of unsigned(7 downto 0);
signal ram : mem_t;
attribute ram_init_file : string;
attribute ram_init_file of ram :
signal is "my_init_file.mif";

1 In VHDL, you can also initialize the contents of an inferred
memory by specifying a default value for the corresponding
signal. In Verilog HDL, you can use an initial block to specify the
memory contents. Quartus II integrated synthesis automatically
converts the default value into a MIF for the inferred RAM.

Multiplier Style—for Inferred Multipliers

The multstyle attribute specifies the implementation style for
multiplication operations (*) in your HDL source code. You can use this
attribute to specify whether you prefer the Compiler to implement a
multiplication operation in general logic or dedicated hardware, if
available in the target device.

The multstyle attribute takes a string value of "logic" or "dsp",
indicating a preferred implementation in logic or in dedicated hardware,
respectively. In Verilog HDL, apply the attribute to a module declaration,
a variable declaration, or a specific binary expression containing the
* operator. In VHDL, apply the synthesis attribute to a signal, variable,
entity, or architecture.

8–60 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1 Specifying a multstyle of "dsp" does not guarantee that the
Quartus II software can implement a multiplication in dedicated
DSP hardware. The final implementation depends on several
things, including the availability of dedicated hardware in the
target device, the size of the operands, and whether or not one
or both operands are constant.

In addition to multstyle, the Quartus II software supports the
syn_multstyle attribute name for compatibility with other
synthesis tools.

When applied to a Verilog HDL module declaration, the attribute
specifies the default implementation style for all instances of the
* operator in the module. For example, in the following code examples,
the multstyle attribute directs the Quartus II software to implement all
multiplications inside module my_module in dedicated multiplication
hardware.

Example 8–65. Verilog-1995 Example of Applying a multstyle Attribute to a Module Declaration
module my_module (...) /* synthesis multstyle = "dsp" */;

Example 8–66. Verilog-2001 Example of Applying a multstyle Attribute to a Module Declaration
(* multstyle = "dsp" *) module my_module(...);

When applied to a Verilog HDL variable declaration, the attribute
specifies the implementation style to be used for a multiplication operator
whose result is directly assigned to the variable. It overrides the
multstyle attribute associated with the enclosing module, if present. In
Example 8–67 and 8–68, the multstyle attribute applied to variable
result directs the Quartus II software to implement a * b in general
logic rather than dedicated hardware.

Example 8–67. Verilog-2001 Example of Applying a multstyle Attribute to a Variable Declaration
wire [8:0] a, b;
(* multstyle = "logic" *) wire [17:0] result;
assign result = a * b; //Multiplication must be

//directly assigned to result

Example 8–68. Verilog-1995 Example of Applying a multstyle Attribute to a Variable Declaration
wire [8:0] a, b;
wire [17:0] result /* synthesis multstyle = "logic" */;
assign result = a * b; //Multiplication must be

//directly assigned to result

Altera Corporation 8–61
October 2007

Quartus II Synthesis Options

When applied directly to a binary expression containing the * operator,
the attribute specifies the implementation style for that specific operator
alone and overrides any multstyle attribute associated with the target
variable or enclosing module. In Example 8–69, the multstyle attribute
indicates that a * b should be implemented in dedicated hardware.

Example 8–69. Verilog-2001 Example of Applying a multstyle Attribute to a Binary Expression
wire [8:0] a, b;
wire [17:0] result;
assign result = a * (* multstyle = "dsp" *) b;

1 You cannot use Verilog-1995 attribute syntax to apply the
multstyle attribute to a binary expression.

When applied to a VHDL entity or architecture, the attribute specifies the
default implementation style for all instances of the * operator in the
entity or architecture. In Example 8–70, the multstyle attribute directs
the Quartus II software to use dedicated hardware, if possible, for all
multiplications inside architecture rtl of entity my_entity.

Example 8–70. VHDL Example of Applying a multstyle Attribute to an Architecture
architecture rtl of my_entity is

attribute multstyle : string;
attribute multstyle of rtl : architecture is "dsp";

begin

When applied to a VHDL signal or variable, the attribute specifies the
implementation style to be used for all instances of the * operator whose
result is directly assigned to the signal or variable. It overrides the
multstyle attribute associated with the enclosing entity or architecture,
if present. In Example 8–71, the multstyle attribute associated with
signal result directs the Quartus II software to implement a * b in
general logic rather than dedicated hardware.

Example 8–71. VHDL Example of Applying a multstyle Attribute to a Signal or Variable
signal a, b : unsigned(8 downto 0);
signal result : unsigned(17 downto 0);

attribute multstyle : string;
attribute multstyle of result : signal is "logic";
result <= a * b;

8–62 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Full Case

A Verilog HDL case statement is considered full when its case items cover
all possible binary values of the case expression or when a default case
statement is present. A full_case attribute attached to a case statement
header that is not full forces the unspecified states to be treated as a “don’t
care” value. VHDL case statements must be full, so the attribute does not
apply to VHDL.

f Using this attribute on a case statement that is not full avoids the latch
inference problems discussed in the Design Recommendations for Altera
Devices and the Quartus II Design Assistant chapter in volume 1 of the
Quartus II Handbook.

1 Latches have limited support in formal verification tools. It is
important to ensure that you do not infer latches
unintentionally, for example, through an incomplete case
statement when using formal verification. Formal verification
tools do support the full_case synthesis attribute (with
limited support for attribute syntax, as described in “Synthesis
Attributes” on page 8–26).

When you are using the full_case attribute, there is a potential cause
for a simulation mismatch between Verilog HDL functional and
post-Quartus II simulation because unknown case statement cases may
still function like latches during functional simulation. For example, a
simulation mismatch may occur with the code in Example 8–72 when
sel is 2'b11 because a functional HDL simulation output behaves like a
latch while the Quartus II simulation output behaves like “don’t care.”

1 Altera recommends making the case statement “full” in your
regular HDL code, instead of using the full_case attribute.

The case statement in Example 8–72 is not full because not all binary
values for sel are specified. Because the full_case attribute is used,
synthesis treats the output as “don’t care” when the sel input is 2'b11.

Altera Corporation 8–63
October 2007

Quartus II Synthesis Options

Example 8–72. Verilog HDL Example of a full_case Attribute
module full_case (a, sel, y);

input [3:0] a;
input [1:0] sel;
output y;
reg y;
always @ (a or sel)
case (sel) // synthesis full_case

2'b00: y=a[0];
2'b01: y=a[1];
2'b10: y=a[2];
endcase

endmodule

Verilog-2001 syntax also accepts the statements in Example 8–73 in the
case header instead of the comment form shown in Example 8–72.

Example 8–73. Verilog-2001 Syntax for the full_case Attribute
(* full_case *) case (sel)

Parallel Case

The parallel_case attribute indicates that a Verilog HDL case
statement should be considered parallel; that is, only one case item can be
matched at a time. Case items in Verilog HDL case statements may
overlap. To resolve multiple matching case items, the Verilog HDL
language defines a priority relationship among case items in which the
case statement always executes the first case item that matches the case
expression value. By default, the Quartus II software implements the
extra logic required to satisfy this priority relationship.

Attaching a parallel_case attribute to a case statement’s header
allows the Quartus II software to consider its case items as inherently
parallel; that is, at most one case item matches the case expression value.
Parallel case items reduce the complexity of the generated logic.

In VHDL, the individual choices in a case statement may not overlap, so
they are always parallel and this attribute does not apply.

Use this attribute only when the case statement is truly parallel. If you
use the attribute in any other situation, the generated logic will not match
the functional simulation behavior of the Verilog HDL.

8–64 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1 Altera recommends that you avoid using the parallel_case
attribute, due to the possibility of introducing mismatches
between Verilog HDL functional and post-Quartus II
simulation.

If you specify the supported Verilog HDL version as
SystemVerilog-2005 for your design, you can use the
SystemVerilog keyword unique to achieve the same result as
the parallel_case directive without causing simulation
mismatches.

The following example shows a casez statement with overlapping case
items. In functional HDL simulation, the three case items have a priority
order that depends on the bits in sel. For example, sel[2] takes priority
over sel[1], which takes priority over sel[0]. However, the
synthesized design may simulate differently because the
parallel_case attribute eliminates this priority order. If more than one
bit of sel is high, more than one output (a, b, or c) is high as well, a
situation that cannot occur in functional HDL simulation.

Example 8–74. Verilog HDL Example of a parallel_case Attribute
module parallel_case (sel, a, b, c);

input [2:0] sel;
output a, b, c;
reg a, b, c;
always @ (sel)
begin

{a, b, c} = 3'b0;
casez (sel) // synthesis parallel_case

3'b1??: a = 1'b1;
3'b?1?: b = 1'b1;
3'b??1: c = 1'b1;

endcase
end

endmodule

Verilog-2001 syntax also accepts the statements as shown in
Example 8–75 in the case (or casez) header instead of the comment
form, as shown in Example 8–74.

Example 8–75. Verilog-2001 Syntax
(* parallel_case *) casez (sel)

Altera Corporation 8–65
October 2007

Quartus II Synthesis Options

Translate Off and On / Synthesis Off and On

The translate_off and translate_on synthesis directives indicate
whether the Quartus II software or a third-party synthesis tool should
compile a portion of HDL code that is not relevant for synthesis. The
translate_off directive marks the beginning of code that the
synthesis tool should ignore; the translate_on directive indicates that
synthesis should resume. You can also use the synthesis_on and
synthesis_off directives as a synonym for translate on and off.

A common use of these directives is to indicate a portion of code that is
intended for simulation only. The synthesis tool reads synthesis-specific
directives and processes them during synthesis; however, third-party
simulation tools read the directives as comments and ignore them.
Example 8–76 and Example 8–77 show these directives.

Example 8–76. Verilog HDL Example of Translate Off and On
// synthesis translate_off
parameter tpd = 2; // Delay for simulation
#tpd;
// synthesis translate_on

Example 8–77. VHDL Example of Translate Off and On
-- synthesis translate_off
use std.textio.all;
-- synthesis translate_on

If you wish to ignore a portion of code in Quartus II integrated synthesis
only, you can use the Altera-specific attribute keyword altera. For
example, use the // altera translate_off and
// altera translate_on directives to direct Quartus II integrated
synthesis to ignore a portion of code that is intended only for other
synthesis tools.

Ignore translate_off and synthesis_off Directives

The Ignore translate_off and synthesis_off directives logic option
directs Quartus II integrated synthesis to ignore the translate_off
and synthesis_off directives described in the previous section. This
allows you to compile code that was previously intended to be ignored by
third-party synthesis tools, for example, megafunction declarations that
were treated as black boxes in other tools but can be compiled in the
Quartus II software. To set the Ignore translate_off and synthesis_off
directives logic option, click More Settings on the Analysis & Synthesis
Settings page of the Settings dialog box.

8–66 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Read Comments as HDL

The read_comments_as_HDL synthesis directive indicates that the
Quartus II software should compile a portion of HDL code that is
commented out. This directive allows you to comment out portions of
HDL source code that are not relevant for simulation, while instructing
the Quartus II software to read and synthesize that same source code.
Setting the read_comments_as_HDL directive to on marks the
beginning of commented code that the synthesis tool should read; setting
the read_comments_as_HDL directive to off indicates the end of the
code.

1 You can use this directive with translate_off and
translate_on to create one HDL source file that includes both
a megafunction instantiation for synthesis and a behavioral
description for simulation.

Because formal verification tools do not recognize the
read_comments_as_HDL directive, it is not supported when
you are using formal verification.

In Example 8–78 and 8–79, the commented code enclosed by
read_comments_as_HDL is visible to the Quartus II Compiler and is
synthesized.

1 Because synthesis directives are case-sensitive in Verilog HDL,
you must match the case of the directive, as shown in the
following examples.

Example 8–78. Verilog HDL Example of Read Comments as HDL
// synthesis read_comments_as_HDL on
// my_rom lpm_rom (.address (address),
// .data (data));
// synthesis read_comments_as_HDL off

Example 8–79. VHDL Example of Read Comments as HDL
-- synthesis read_comments_as_HDL on
-- my_rom : entity lpm_rom
-- port map (
-- address => address,
-- data => data,);
-- synthesis read_comments_as_HDL off

Altera Corporation 8–67
October 2007

Quartus II Synthesis Options

Use I/O Flipflops

This attribute directs the Quartus II software to implement input, output,
and output enable flipflops (or registers) in I/O cells that have fast, direct
connections to an I/O pin, when possible. Applying the useioff
synthesis attribute can improve I/O performance by minimizing setup,
clock-to-output, and clock-to-output enable times. This synthesis
attribute is supported using the Fast Input Register, Fast Output
Register, and Fast Output Enable Register logic options that can also be
set in the Assignment Editor.

f For more information about which device families support fast input,
output, and output enable registers, refer to the device family data sheet,
device handbook, or the Quartus II Help.

The useioff synthesis attribute takes a Boolean value and can only be
applied to the port declarations of a top-level Verilog HDL module or
VHDL entity (it is ignored if applied elsewhere). Setting the value to 1
(Verilog HDL) or TRUE (VHDL) instructs the Quartus II software to pack
registers into I/O cells. Setting the value to 0 (Verilog HDL) or FALSE
(VHDL) prevents register packing into I/O cells.

In Example 8–80 and 8–81, the useioff synthesis attribute directs the
Quartus II software to implement the registers a_reg, b_reg, and
o_reg in the I/O cells corresponding to the ports a, b, and o, respectively.

Example 8–80. Verilog HDL Example of the useioff Attribute
module top_level(clk, a, b, o);

 input clk;
input [1:0] a, b /* synthesis useioff = 1 */;
output [2:0] o /* synthesis useioff = 1 */;
reg [1:0] a_reg, b_reg;
reg [2:0] o_reg;
always @ (posedge clk)
begin

a_reg <= a;
b_reg <= b;
o_reg <= a_reg + b_reg;

end
assign o = o_reg;

endmodule

Verilog-2001 syntax also accepts the type of statements shown in
Example 8–81 and 8–82 instead of the comment form shown in
Example 8–80.

8–68 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 8–81. Verilog-2001 Syntax for the useioff Attribute
(* useioff = 1 *) input [1:0] a, b;
(* useioff = 1 *) output [2:0] o;

Example 8–82. VHDL Example of the useioff Attribute
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity useioff_example is

port (
clk : in std_logic;
a, b : in unsigned(1 downto 0);
o : out unsigned(1 downto 0));

attribute useioff : boolean;
attribute useioff of a : signal is true;
attribute useioff of b : signal is true;
attribute useioff of o : signal is true;

end useioff_example;
architecture rtl of useioff_example is

signal o_reg, a_reg, b_reg : unsigned(1 downto 0);
begin

process(clk)
begin

if (clk = '1' AND clk'event) then
a_reg <= a;
b_reg <= b;
o_reg <= a_reg + b_reg;

end if;
end process;
 o <= o_reg;
end rtl;

Specifying Pin Locations with chip_pin

This attribute enables you to assign pin locations in your HDL source. The
attribute can be used only on the ports of the top-level entity or module
in the design, and cannot be used to assign pin locations from entities at
lower levels of the design hierarchy. You may assign pins only to
single-bit or one-dimensional bus ports in your design.

For single-bit ports, the value of the chip_pin attribute is the name of
the pin on the target device, as specified by the device’s pin table.

Altera Corporation 8–69
October 2007

Quartus II Synthesis Options

1 In addition to chip_pin, the Quartus II software supports the
altera_chip_pin_lc attribute name for compatibility with
other synthesis tools. When using this attribute in other
synthesis tools, some older device families require an “@”
symbol in front of each pin assignment. In the Quartus II
software, the “@” is optional.

Example 8–83, 8–84, and 8–85 show different ways of assigning input pin
my_pin1 to Pin C1 and my_pin2 to Pin 4 on a different target device.

Example 8–83. Verilog-1995 Examples of Applying Chip Pin to a Single Pin
input my_pin1 /* synthesis chip_pin = "C1" */;
input my_pin2 /* synthesis altera_chip_pin_lc = "@4" */;

Example 8–84. Verilog-2001 Example of Applying Chip Pin to a Single Pin
(* chip_pin = "C1" *) input my_pin1;
(* altera_chip_pin_lc = "@4" *) input my_pin2;

Example 8–85. VHDL Example of Applying Chip Pin to a Single Pin
entity my_entity is
 port(my_pin1: in std_logic; my_pin2: in std_logic;…);
end my_entity;
attribute chip_pin : string;
attribute altera_chip_pin_lc : string;
attribute chip_pin of my_pin1 : signal is "C1";
attribute altera_chip_pin_lc of my_pin2 : signal is "@4"

For bus I/O ports, the value of the chip pin attribute is a
comma-delimited list of pin assignments. The order in which you declare
the port’s range determines the mapping of assignments to individual
bits in the port. To leave a particular bit unassigned, simply leave its
corresponding pin assignment blank.

Example 8–86 assigns my_pin[2] to Pin_4, my_pin[1] to Pin_5, and
my_pin[0] to Pin_6.

Example 8–86. Verilog-1995 Example of Applying Chip Pin to a Bus of Pins
input [2:0] my_pin /* synthesis chip_pin = "4, 5, 6" */;

Example 8–87 reverses the order of the signals in the bus, assigning
my_pin[0] to Pin_4 and my_pin[2] to Pin_6 but leaves my_pin[1]
unassigned.

8–70 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 8–87. Verilog-1995 Example of Applying Chip Pin to Part of a Bus
input [0:2] my_pin /* synthesis chip_pin = "4, ,6" */;

Example 8–88 assigns my_pin[2] to Pin 4 and my_pin[0] to Pin 6, but
leaves my_pin[1] unassigned.

Example 8–88. VHDL Example of Applying Chip Pin to Part of a Bus of Pins
entity my_entity is
 port(my_pin: in std_logic_vector(2 downto 0);…);
end my_entity;

attribute chip_pin of my_pin: signal is "4, , 6";

Using altera_attribute to Set Quartus II Logic Options

This attribute enables you to apply Quartus II options and assignments to
an object in your HDL source code. You can set this attribute on an entity,
architecture, instance, register, RAM block, or I/O pin. You cannot set it
on an arbitrary combinational node such as a net. With
altera_attribute, you can control synthesis options from your HDL
source even when the options lack a specific HDL synthesis attribute
(such as many of the logic options presented earlier in this chapter). You
can also use this attribute to pass entity-level settings and assignments to
phases of the Compiler flow beyond Analysis and Synthesis, such as
Fitting.

Assignments or settings made through the Quartus II user interface, the
Quartus II Settings File (.qsf) or the Tcl interface take precedence over
assignments or settings made with the altera_attribute synthesis
attribute in your HDL code.

The syntax for setting this attribute in HDL is the same as the syntax for
other synthesis attributes, as shown in “Synthesis Attributes” on
page 8–26.

The attribute value is a single string containing a list of Quartus II
Settings File variable assignments separated by semicolons, as shown in
the following example:

-name <variable_1> <value_1>;-name <variable_2> <value_2>[;…]

Altera Corporation 8–71
October 2007

Quartus II Synthesis Options

If the Quartus II option or assignment includes a target, source, and/or
section tag, use the following syntax for each Quartus II Settings File
variable assignment:

-name <variable> <value>
-from <source> -to <target> -section_id <section>

The syntax for the full attribute value, including the optional target,
source, and section tags for two different Quartus II Settings File
assignments is shown in the following example:

" -name <variable_1> <value_1> [-from <source_1>] [-to
<target_1>] [-section_id <section_1>]; -name <variable_2>
<value_2> [-from <source_2>] [-to <target_2>] [-section_id
<section_2>] "

If a variable’s assigned value is a string of text, you must use escaped
quotes around the value in Verilog HDL, or double-quotes in VHDL, as
in the following examples (using non-existent variable and value terms):

Verilog HDL

"VARIABLE_NAME \"STRING_VALUE\""

VHDL

"VARIABLE_NAME ""STRING_VALUE"""

To find the Quartus II Settings File variable name or value corresponding
to a specific Quartus II option or assignment, you can make the option
setting or assignment in the Quartus II user interface and then note the
changes in the QSF. You can also refer to the Quartus II Settings File
Reference Manual, which documents all variable names.

Example 8–89, 8–90, and 8–91 use altera_attribute to set the
power-up level of an inferred register. Note that for inferred instances,
you cannot apply the attribute to the instance directly, so you should
apply the attribute to one of the instance’s output nets. The Quartus II
software moves the attribute to the inferred instance automatically.

Example 8–89. Verilog-1995 Example of Applying Altera Attribute to an Instance
reg my_reg /* synthesis altera_attribute = "-name POWER_UP_LEVEL HIGH" */;

8–72 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 8–90. Verilog-2001 Example of Applying Altera Attribute to an Instance
(* altera_attribute = "-name POWER_UP_LEVEL HIGH" *) reg my_reg;

Example 8–91. VHDL Example of Applying Altera Attribute to an Instance
signal my_reg : std_logic;
attribute altera_attribute : string;
attribute altera_attribute of my_reg: signal is "-name POWER_UP_LEVEL
HIGH";

Example 8–92, 8–93, and 8–94 use the altera_attribute to disable the
Auto Shift Register Replacement synthesis option for an entity. To apply
the Altera Attribute to a VHDL entity, you must set the attribute on its
architecture rather than on the entity itself.

Example 8–92. Verilog-1995 Example of Applying Altera Attribute to an Entity
module my_entity(…) /* synthesis altera_attribute = "-name
AUTO_SHIFT_REGISTER_RECOGNITION OFF" */;

Example 8–93. Verilog-2001 Example of Applying Altera Attribute to an Entity
(* altera_attribute = "-name AUTO_SHIFT_REGISTER_RECOGNITION OFF" *)
module my_entity(…) ;

Example 8–94. VHDL Example of Applying Altera Attribute to an Entity
entity my_entity is
-- Declare generics and ports
end my_entity;
architecture rtl of my_entity is
 attribute altera_attribute : string;
 -- Attribute set on architecture, not entity
 attribute altera_attribute of rtl: architecture is "-name
AUTO_SHIFT_REGISTER_RECOGNITION OFF";
begin
 -- The architecture body
end rtl;

You can also use altera_attribute for more complex assignments
involving more than one instance. In Example 8–95, 8–96, and 8–97, the
altera_attribute is used to cut all timing paths from reg1 to reg2,
equivalent to this Tcl or QSF command:

set_instance_assignment -name CUT ON -from reg1 -to reg2

Altera Corporation 8–73
October 2007

Analyzing Synthesis Results

Example 8–95. Verilog-1995 Example of Applying Altera Attribute with -to
reg reg2;
reg reg1 /* synthesis altera_attribute = "-name CUT ON -to reg2" */;

Example 8–96. Verilog-2001 Example of Applying Altera Attribute with -to
reg reg2;
(* altera_attribute = "-name CUT ON -to reg2" *) reg reg1;

Example 8–97. VHDL Example of Applying Altera Attribute with -to
signal reg1, reg2 : std_logic;
attribute altera_attribute: string;
attribute altera_attribute of reg1 : signal is "-name CUT ON -to reg2";

You may specify either the -to option or the -from option in a single
altera_attribute; integrated synthesis automatically sets the
remaining option to the target of the altera_attribute. You may also
specify wildcards for either option. For example, if you specify “*” for the
-to option instead of reg2 in these examples, the Quartus II software
cuts all timing paths from reg1 to every other register in this design
entity.

The altera_attribute can be used only for entity-level settings, and
the assignments (including wildcards) apply only to the current entity.

Analyzing
Synthesis
Results

After you have performed synthesis, you can check your synthesis results
in the Analysis and Synthesis Section of the Compilation Report and the
Project Navigator.

Analysis and Synthesis Section of the Compilation Report

The Compilation Report, which provides a summary of results for the
project, appears after a successful compilation, or you can choose it from
the Processing menu. After Analysis and Synthesis, before the Fitter
begins, the Summary information provides a summary of utilization
based on synthesis data, before Fitter optimizations have occurred.
Synthesis-specific information is listed in the Analysis & Synthesis
section.

There are various report sections under Analysis and Synthesis, including
a list of the source files read for the project, the resource utilization by
entity after synthesis, and information about state machines, latches,
optimization results, and parameter settings.

8–74 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

f For more information about each report section, refer to the Quartus II
Help.

Project Navigator

The Hierarchy tab of the Project Navigator provides a summary of
resource information about the entities in the project. After Analysis and
Synthesis, before the Fitter begins, the Project Navigator provides a
summary of utilization based on synthesis data, before Fitter
optimizations have occurred.

If you hold your mouse pointer over one of the entities in the Hierarchy
tab, a tooltip appears that shows parameter information for each instance.

Analyzing and
Controlling
Synthesis
Messages

This section provides information about the messages generated during
synthesis, and how you can control which messages appear during
compilation.

Quartus II Messages

The messages that appear during Analysis and Synthesis describe many
of the optimizations that the software performs during the synthesis
stage, and provide information about how the design is interpreted. You
should always check the messages to analyze Critical Warnings and
Warnings, because these messages may relate to important design
problems. It is also useful to read the information messages Info and Extra
Info to get more information about how the software processes your
design.

The Info, Extra Info, Warning, Critical Warning, and Error tabs display
messages grouped by type.

You can right-click on a message in the Messages window and get help on
the message, locate the source of the message in your design, and manage
messages.

You can use message suppression to reduce the number of messages
listed after a compilation by preventing individual messages and entire
categories of messages from being displayed. For example, if you review
a particular message and determine that it is not caused by something in
your design that should be changed or fixed, you can suppress the
message so it is not displayed during subsequent compilations. This
saves time because you see only new messages during subsequent
compilations.

Altera Corporation 8–75
October 2007

Analyzing and Controlling Synthesis Messages

You can right-click on an individual message in the Messages window
and choose commands in the Suppress submenu entry. Alternately, you
can open the Message Suppression Manager. To do so, right-click in the
Messages window and from the Suppress submenu item, click Message
Suppression Manager.

f For more information about messages and suppressing them, refer to the
Managing Quartus II Projects chapter in volume 2 of the Quartus II
Handbook.

VHDL and Verilog HDL Messages

The Quartus II software issues a variety of messages when it is analyzing
and elaborating the Verilog HDL and VHDL files in your design. These
HDL messages are a subset of all Quartus II messages that help you
identify potential problems early in the design process.

HDL messages fall into the following three categories:

■ Info message—Lists a property of your design.
■ Warning message—Indicates a potential problem in your design.

Potential problems come from a variety of sources, including typos,
inappropriate design practices, or the functional limitations of your
target device. Though HDL warning messages do not always
identify actual problems, you should always investigate code that
generates an HDL warning. Otherwise, the synthesized behavior of
your design might not match your original intent or its simulated
behavior.

■ Error message—Indicates an actual problem with your design. Your
HDL code may be invalid due to a syntax or semantic error, or it may
not be synthesizable as written. Consult the Help associated with
any HDL error messages for assistance in removing the error from
your design.

In Example 8–98, the sensitivity list contains multiple copies of the
variable i. While the Verilog HDL language does not prohibit duplicate
entries in a sensitivity list, it is clear that this design has a typo: Variable
j should be listed on the sensitivity list to avoid a possible
simulation/synthesis mismatch.

Example 8–98. Generating an HDL Warning Message
//dup.v
module dup(input i, input j, output reg o);
always @ (i or i)

o = i & j;
endmodule

8–76 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

When processing this HDL code, the Quartus II software generates the
following warning message:

Warning: (10276) Verilog HDL sensitivity list warning
at dup.v(2): sensitivity list contains multiple
entries for "i".

In Verilog HDL, variable names are case-sensitive, so the variables
my_reg and MY_REG in Example 8–99 are two different variables.
However, declaring variables whose names only differ in case may
confuse some users, especially those users who use VHDL, where
variables are not case-sensitive.

Example 8–99. Generating HDL Info Messages
// namecase.v
module namecase (input i, output o);

reg my_reg;
reg MY_REG;
assign o = i;

endmodule

When processing this HDL code, the Quartus II software generates the
following informational message:

Info: (10281) Verilog HDL information at
namecase.v(3): variable name "MY_REG" and variable
name "my_reg" should not differ only in case.

In addition, the Quartus II software generates additional HDL info
messages to inform you that neither my_reg or MY_REG are used in this
small design:

Info: (10035) Verilog HDL or VHDL information at
namecase.v(3): object "my_reg" declared but not used
Info: (10035) Verilog HDL or VHDL information at
namecase.v(4): object "MY_REG" declared but not used

The Quartus II software allows you to control how many HDL messages
you see during the analysis and elaboration of your design files. You can
set the HDL Message Level to enable or disable groups of HDL messages,
or you can enable or disable specific messages, as described in the
following sections.

For more information about synthesis directives and their syntax, refer to
“Synthesis Directives” on page 8–29.

Altera Corporation 8–77
October 2007

Analyzing and Controlling Synthesis Messages

Setting the HDL Message Level

The HDL Message Level specifies the types of messages that the
Quartus II software displays when it is analyzing and elaborating your
design files. Table 8–8 details the information about the HDL message
levels.

You should address all issues reported at the Level1 setting. The default
HDL message level is Level2.

To set the HDL Message Level in the user interface, on the Assignments
menu, click Settings; under Category, click Analysis & Synthesis
Settings. Set the HDL Message Level.

You can override this default setting in a source file with the
message_level synthesis directive, which takes the values level1,
level2, and level3, as shown in Example 8–100 and 8–101.

Example 8–100. Verilog HDL Examples of message_level Directive
// altera message_level level1

or
/* altera message_level level3 */

Example 8–101. VHDL Example of message_level Directive
-- altera message_level level2

Table 8–8. HDL Info Message Level

Level Purpose Description

Level1 Displays high-severity
messages only

If you want to see only those HDL messages that identify likely problems with
your design, select Level1. When Level1 is selected, the Quartus II software
issues a message only if there is a high probability that it points to an actual
problem with your design.

Level2 Displays high-severity
and medium-severity
messages

If you want to see additional HDL messages that identify possible problems
with your design, select Level2. This is the default setting.

Level3 Displays all messages,
including low-severity
messages

If you want to see all HDL info and warning messages, select Level3. This
level includes extra “LINT” messages that suggest changes to improve the
style of your HDL code or make it easier to understand.

8–78 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

A message_level synthesis directive remains effective until the end of
a file or until the next message_level directive. In VHDL, you can use
the message_level synthesis directive to set the HDL Message Level
for entities and architectures, but not for other design units. An HDL
Message Level for an entity applies to its architectures, unless overridden
by another message_level directive. In Verilog HDL, you can use the
message_level directive to set the HDL Message Level for a module.

Enabling or Disabling Specific HDL Messages by Module/Entity

You can enable or disable a specific HDL info or warning message with
its Message ID, which is displayed in parentheses at the beginning of the
message. Enabling or disabling a specific message overrides its HDL
Message Level. This method is different from the message suppression in
the Messages window because you can use this method to disable
messages for a specific module or entity. This method applies only the
HDL messages, and if you disable a message with this method, the
message is listed as a Suppressed message in the Quartus II GUI.

To disable specific HDL messages in the GUI, on the Assignments menu,
click Settings. Select Analysis & Synthesis Settings and click the
Advanced button next to the HDL Message Level setting. In the
Advanced Message Settings dialog box, add the Message IDs you wish
to enable or disable.

To enable or disable specific HDL messages in your HDL, use the
message_on and message_off synthesis directives. Both directives
take a space-separated list of Message IDs. You can enable or disable
messages with these synthesis directives immediately before Verilog
HDL modules, VHDL entities, or VHDL architectures. You cannot enable
or disable a message in the middle of an HDL construct.

A message enabled or disabled via a message_on or message_off
synthesis directive overrides its HDL Message Level or any
message_level synthesis directive. The message will remain disabled
until the end of the source file or until its status is changed by another
message_on or message_off directive.

Example 8–102. Verilog HDL message_off Directive for Message with ID 10000
// altera message_off 10000

or
/* altera message_off 10000 */

Example 8–103. VHDL message_off Directive for Message with ID 10000
-- altera message_off 10000

Altera Corporation 8–79
October 2007

Node-Naming Conventions in Quartus II Integrated Synthesis

Node-Naming
Conventions in
Quartus II
Integrated
Synthesis

Being able to find the logic node names after synthesis can be useful
during verification or while debugging a design. This section provides an
overview of the conventions used by the Quartus II software when it
names the nodes created from your HDL design. The section focuses on
the conventions for Verilog HDL and VHDL code, but AHDL and BDFs
are discussed when appropriate.

Whenever possible, as described in this section, Quartus II integrated
synthesis uses wire or signal names from your source code to name nodes
such as LEs or ALMs. Some nodes, such as registers, have predictable
names that typically do not change when a design is resynthesized,
although certain optimizations can affect register names. The names of
other nodes, particularly LEs or ALMs that contain only combinational
logic, can change due to logic optimizations that the software performs.

This section discusses the following topics:

■ “Hierarchical Node-Naming Conventions” on page 8–79
■ “Node-Naming Conventions for Registers (DFF or D Flipflop

Atoms)” on page 8–80
■ “Register Changes During Synthesis” on page 8–81
■ “Preserving Register Names” on page 8–84
■ “Node-Naming Conventions for Combinational Logic Cells” on

page 8–84
■ “Preserving Combinational Logic Names” on page 8–86

Hierarchical Node-Naming Conventions

To make each name in the design unique, the Quartus II software adds
the hierarchy path to the beginning of each name. The “|” separator is
used to indicate a level of hierarchy. For each instance in the hierarchy, the
software adds the entity name and the instance name of that entity, using
the “:” separator between each entity name and its instance name. For
example, if a design instantiates entity A with the name my_A_inst, the
hierarchy path of that entity would be A:my_A_inst. The full name of
any node is obtained by starting with the hierarchical instance path;
followed by a “|”, and ending with the node name inside that entity,
using the following convention:

<entity 0>:<instance_name 0>|<entity 1>:
<instance_name 1>|...|<instance_name n>

For example, if entity A contains a register (DFF atom) called my_dff, its
full hierarchy name would be A:my_A_inst|my_dff.

8–80 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

On the Compilation Process Settings page of the Settings dialog box,
click More Settings and turn off Display entity name for node name to
instruct the Compiler to generate node names that do not contain the
name for each level of the hierarchy. With this option off, the node names
use the following convention:

<instance_name 0>|<instance_name 1>|...|<instance_name n>

Node-Naming Conventions for Registers (DFF or D Flipflop
Atoms)

In Verilog HDL and VHDL, inferred registers are named after the reg or
signal connected to the output.

Example 8–104 is a description of a register in Verilog HDL that creates a
DFF primitive called my_dff_out:

Example 8–104. Verilog HDL Register
wire dff_in, my_dff_out, clk;

always @ (posedge clk)
 my_dff_out <= dff_in;

Similarly, Example 8–105 is a description of a register in VHDL that
creates a DFF primitive called my_dff_out.

Example 8–105. VHDL Register
signal dff_in, my_dff_out, clk;
process (clk)
 begin
 if (rising_edge(clk)) then
 my_dff_out <= dff_in;
 end if;
end process;

In AHDL designs, DFF registers are declared explicitly rather than
inferred, so the software uses the user-declared name for the register.

For schematic designs using BDF, all elements are given a name when
they are instantiated in the design, so the software uses the user-defined
name for the register or DFF.

In the special case that a wire or signal (such as my_dff_out in the
preceding examples) is also an output pin of your top-level design, the
Quartus II software cannot use that name for the register (for example,

Altera Corporation 8–81
October 2007

Node-Naming Conventions in Quartus II Integrated Synthesis

cannot use my_dff_out) because the software requires that all logic and
I/O cells have unique names. In this case, the Quartus II integrated
synthesis appends ~reg0 to the register name.

For example, the Verilog HDL code in Example 8–106 produces a register
called q~reg0:

Example 8–106. Verilog HDL Register Feeding Output Pin
module my_dff (input clk, input d, output q);
 always @ (posedge clk)
 q <= d;
endmodule

This situation occurs only for registers driving top-level pins. If a register
drives a port of a lower level of the hierarchy, the port is removed during
hierarchy flattening and the register retains its original name, in this
case, q.

Register Changes During Synthesis

On some occasions, you may not be able to find registers that you expect
to see in the synthesis netlist. Registers may be removed by logic
optimization, or their names may be changed due to synthesis
optimization. Common optimizations include inference of a state
machine, counter, adder-subtractor, or shift register from registers and
surrounding logic. Other common register changes occur when registers
are packed into dedicated hardware on the FPGA, such as a DSP block or
a RAM block.

This section describes the following factors that can affect register names:

■ “Synthesis and Fitting Optimizations” on page 8–82
■ “State Machines” on page 8–83
■ “Inferred Adder-Subtractors, Shift Registers, Memory, and DSP

Functions” on page 8–83
■ “Packed Input and Output Registers of RAM and DSP Blocks” on

page 8–83
■ “Preserving Register Names” on page 8–84
■ “Preserving Combinational Logic Names” on page 8–86

8–82 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Synthesis and Fitting Optimizations

Registers may be removed by synthesis logic optimization if they are not
connected to inputs or outputs in the design, or if the logic can be
simplified due to constant signal values. Register names may also be
changed due to synthesis optimizations, such as when duplicate registers
are merged together to reduce resource utilization.

NOT-gate push back optimizations may affect registers that use preset
signals. This type of optimization can impact your timing assignments
when registers are used as clock dividers. If this situation occurs in your
design, change the clock settings to work on the new register name.

Synthesis netlist optimizations often change node names because
registers may be combined or duplicated to optimize the design.

f For more information about the type of optimizations performed by
synthesis netlist optimizations, refer to the Netlist Optimization and
Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

The Quartus II Compilation Report provides a list of registers that are
removed during synthesis optimizations, and a brief reason for the
removal. In the Analysis & Synthesis folder, open Optimization Results,
and then open Register Statistics, and click on the Registers Removed
During Synthesis report, and the Removed Registers Triggering
Further Register Optimizations report. The second report contains a list
of registers that are the cause of other registers being removed in the
design. It provides a brief reason for the removal, and a list of registers
that were removed due to the removal of the initial register.

Synthesis creates synonyms for registers duplicated with the Maximum
Fan-Out option (or maxfan attribute). Therefore, timing assignment
applied to nodes that are duplicated with this option are applied to the
new nodes as well.

The Quartus II Fitter can also change node names after synthesis (for
example, when the Fitter uses register packing to pack a register into an
I/O element, or when logic is modified by physical synthesis). The Fitter
creates synonyms for duplicated registers so that timing analysis can use
the existing node name when applying assignments.

You can instruct the Quartus II software to preserve certain nodes
throughout compilation so that you can use them for verification or
making assignments. For more information, refer to “Preserving Register
Names” on page 8–84.

Altera Corporation 8–83
October 2007

Node-Naming Conventions in Quartus II Integrated Synthesis

State Machines

If a state machine is inferred from your HDL code, the registers that
represent the states are mapped into a new set of registers that implement
the state machine. Most commonly, the software converts the state
machine into a one-hot form where each state is represented by one
register. In this case, for Verilog HDL or VHDL designs, the registers are
named according to the name of the state register and the states, where
possible.

For example, consider a Verilog HDL state machine where the states are
parameter state0 = 1, state1 = 2, state2 = 3, and where the
state machine register is declared as reg [1:0] my_fsm. In this
example, the three one-hot state registers are named my_fsm.state0,
my_fsm.state1, and my_fsm.state2.

In AHDL, state machines are explicitly specified with a machine name.
State machine registers are given synthesized names based on the state
machine name but not the state names. For example, if a state machine is
called my_fsm and has four state bits, they may be synthesized with
names such as my_fsm~12, my_fsm~13, my_fsm~14, and my_fsm~15.

Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions

The Quartus II software infers megafunctions from Verilog HDL and
VHDL code for logic that forms adder-subtractors, shift registers, RAM,
ROM, and arithmetic functions that can be placed in DSP blocks.

f For information about inferring megafunctions, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Because adder-subtractors are part of a megafunction instead of generic
logic, the combinational logic exists in the design with different names.
For shift registers, memory, and DSP functions, the registers and logic are
typically implemented inside the dedicated RAM or DSP blocks in the
device. Thus, the registers are not visible as separate LEs or ALMs.

Packed Input and Output Registers of RAM and DSP Blocks

Registers can be packed into the input registers and output registers of
RAM and DSP blocks, so that they are not visible as separate registers in
LEs or ALMs.

f For information about packing registers into RAM and DSP
megafunctions, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook.

8–84 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Preserving Register Names

You may want to preserve certain register names for verification or
debugging, or to ensure that timing assignments are applied correctly.
Quartus II integrated synthesis preserves certain nodes automatically if
they are likely to be used in a timing constraint.

Use the preserve attribute to instruct the Compiler not to minimize or
remove a specified register during synthesis optimizations or register
netlist optimizations. Refer to “Preserve Registers” on page 8–44 for
details.

Use the noprune attribute to preserve a fan-out-free register through the
entire compilation flow. Refer to “Noprune Synthesis Attribute/Preserve
Fan-out Free Register Node” on page 8–46 for details.

Use synthesis attribute syn_dont_merge to make sure registers are not
merged with other registers, and other registers are not merged with it.
Refer to “Disable Register Merging/Don’t Merge Register” on page 8–45
for details.

Node-Naming Conventions for Combinational Logic Cells

Whenever possible for Verilog HDL, VHDL, and AHDL code, the
Quartus II software uses wire names that are the targets of assignments,
but may change the node names due to synthesis optimizations.

For example, consider the Verilog HDL code in Example 8–107.
Quartus II integrated synthesis uses the names c, d, e, and f for the
combinational logic cells that are produced.

Example 8–107. Naming Nodes for Combinational Logic Cells in Verilog HDL
wire c;
reg d, e, f;

assign c = a | b;
always @ (a or b)
 d = a & b;
always @ (a or b) begin : my_label
 e = a ^ b;
end

always @ (a or b)
 f = ~(a | b);

Altera Corporation 8–85
October 2007

Node-Naming Conventions in Quartus II Integrated Synthesis

For schematic designs using BDF, all elements are given a name when
they are instantiated in the design and the software uses the user-defined
name when possible.

1 Node naming conventions for schematic buses in the Quartus II
software version 7.2 and later are different than the
MAX+PLUS II software and older versions of the Quartus II
software. In most cases, the Quartus II software uses the
appropriate naming convention for the design source file. For
designs created using the Quartus II software version 7.1 or
earlier, it uses the MAX+PLUS II naming convention. For
designs created in the Quartus II software version 7.2 and later,
it uses the Quartus II naming convention that matches the
behavior of standard HDLs. In some cases, however, a design
may contain files created in various versions. To set an
assignment for a particular instance in the Assignment Editor,
enter the instance name in the To field, choose Block Design
Naming from the Assignment Name list, and set the value to
MaxPlusII or QuartusII.

If logic cells, such as those created in Example 8–107, are packed with
registers in device architectures such as the Stratix and Cyclone device
families, those names may not appear in the netlist after fitting. In other
devices, such as newer families in the Stratix and Cyclone series device
families, the register and combinational nodes are kept separate
throughout the compilation, so these names are more often maintained
through fitting.

When logic optimizations occur during synthesis, it is not always
possible to retain the initial names as described. In some cases,
synthesized names will be used, which are the wire names with a tilde (~)
and a number appended. For example, if a complex expression is
assigned to a wire w and that expression generates several logic cells,
those cells may have names such as w, w~1, w~2, and so on. Sometimes the
original wire name w is removed, and an arbitrary name such as rtl~123
is created. It is a goal of Quartus II integrated synthesis to retain user
names whenever possible. Any node name ending with ~<number> is a
name created during synthesis, which may change if the design is
changed and re-synthesized. Knowing these naming conventions can
help you understand your post-synthesis results and make it easier to
debug your design or make assignments.

The software maintains combinational clock logic by making sure nodes
that are likely to be a clock don’t get changed during synthesis. The
software also maintains (or “protects”) multiplexers in clock trees so that
the TimeQuest Timing Analyzer has information about which paths are
unate, to allow complete and correct analysis of combinational clocks.

8–86 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Multiplexers often occur in clock trees when the design selects between
different clocks. To help analysis of clock trees, the software ensures that
each multiplexer encountered in a clock tree is broken into 2:1
multiplexers, and each of those 2:1 multiplexers is mapped into one
look-up table (independent of the device family). This optimization
might result in a slight increase in area, and for some designs a decrease
in timing performance. You can turn off this multiplexer protection with
the option Clock MUX Protection under More Settings on the Analysis
& Synthesis page of the Settings dialog box. This option applies to
Arria GX devices, the Stratix and Cyclone series, and MAX II devices.

Preserving Combinational Logic Names

You may want to preserve certain combinational logic node names for
verification or debugging, or to ensure that timing assignments are
applied correctly.

Use the keep attribute to keep a wire name or combinational node name
through logic synthesis minimizations and netlist optimizations. Refer to
“Keep Combinational Node/Implement as Output of Logic Cell” on
page 8–47 for details.

For any internal node in your design clock network, use keep to protect
the name so that you can apply correct clock settings. Also, set the
attribute on combinational logic involved in cut assignments and
–through assignments.

1 Setting the keep attribute on combinational logic may increase
the area utilization and increase the delay of the final mapped
logic because it requires the insertion of extra combinational
logic. Use the attribute only when necessary.

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r
The Quartus II Scripting Reference Manual includes the same information
in PDF form.

Altera Corporation 8–87
October 2007

Scripting Support

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

You can specify many of the options described in this section either on an
instance, global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF Variable Name> <Value>

Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF Variable Name> <Value>\
-to <Instance Name>

Adding an HDL File to a Project and Setting the HDL Version

Use the following Tcl assignments to add an HDL or schematic entry
design file to your project:

set_global_assignment –name VERILOG_FILE <file name>.<v|sv>
set_global_assignment –name SYSTEMVERILOG_FILE <file name>.sv
set_global_assignment –name VHDL_FILE <file name>.<vhd|vhdl>
set_global_assignment -name AHDL_FILE <file name>.tdf
set_global_assignment -name BDF_FILE <file name>.bdf

1 You can use any file extension for design files, as long as you
specify the correct language when adding the design file. For
example, you can use .h for Verilog header files.

To specify the Verilog HDL or VHDL version, use the following option at
the end of the VERILOG_FILE or VHDL_FILE command:

–HDL_VERSION <language version>

The variable <language version> takes one of the following values:

■ VERILOG_1995
■ VERILOG_2001
■ SYSTEMVERILOG_2005
■ VHDL87
■ VHDL93

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

8–88 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

For example, to add a Verilog HDL file called my_file that is written in
Verilog-1995, use the following command:

set_global_assignment –name VERILOG_FILE my_file.v –HDL_VERSION VERILOG_1995

Quartus II Synthesis Options

Table 8–9 lists the Quartus II Settings File variable names and applicable
values for the settings discussed in this chapter. The Quartus II Settings
File variable name is used in the Tcl assignment to make the setting along
with the appropriate value. The Type column indicates whether the
setting is supported as a Global setting, or an Instance setting, or both.

Table 8–9. Quartus II Synthesis Options (Part 1 of 2)

Setting Name Quartus II Settings File Variable Values Type

Allow Any RAM Size
for Recognition

ALLOW_ANY_RAM_SIZE_FOR_RECOGNITION ON, OFF Global,
Instance

Allow Any ROM
Size for Recognition

ALLOW_ANY_ROM_SIZE_FOR_RECOGNITION ON, OFF Global,
Instance

Allow Any Shift
Register Size for
Recognition

ALLOW_ANY_SHIFT_REGISTER_SIZE_FOR_
RECOGNITION

ON, OFF Global,
Instance

Auto DSP Block
Replacement

AUTO_DSP_RECOGNITION ON, OFF Global,
Instance

Auto RAM
Replacement

AUTO_RAM_RECOGNITION ON, OFF Global,
Instance

Auto ROM
Replacement

AUTO_ROM_RECOGNITION ON, OFF Global,
Instance

Auto Shift-Register
Replacement

AUTO_SHIFT_REGISTER_RECOGNITION ON, OFF Global,
Instance

Block Design
Naming

BLOCK_DESIGN_NAMING AUTO,
MAXPLUSII,
QUARTUSII

Global,
Instance

Fast Input Register FAST_INPUT_REGISTER ON, OFF Instance

Fast Output Enable
Register

FAST_OUTPUT_ENABLE_REGISTER ON, OFF Instance

Fast Output
Register

FAST_OUTPUT_REGISTER ON, OFF Instance

Implement as
Output of Logic Cell

IMPLEMENT_AS_OUTPUT_OF_LOGIC_CELL ON, OFF Instance

Disable Register
Merging

DONT_MERGE_REGISTER ON, OFF Instance

Altera Corporation 8–89
October 2007

Scripting Support

Assigning a Pin

Use the following Tcl command to assign a signal to a pin or device
location.

set_location_assignment -to <signal name> <location>

For example,
set_location_assignment -to data_input Pin_A3

Maximum Fan-Out MAX_FANOUT <Maximum Fan-Out
Value>

Instance

Optimization
Technique

<device family>_OPTIMIZATION_TECHNIQUE Area, Speed,
Balanced

Global,
Instance

PowerPlay Power
Optimization

OPTIMIZE_POWER_DURING_SYNTHESIS "NORMAL
COMPILATION",
"EXTRA EFFORT",
OFF

Global,
Instance

Power-Up Don’t
Care

ALLOW_POWER_UP_DONT_CARE ON, OFF Global

Power-Up Level POWER_UP_LEVEL HIGH, LOW Instance

Preserve Registers PRESERVE_REGISTER ON, OFF Instance

Remove Duplicate
Logic

REMOVE_DUPLICATE_LOGIC ON, OFF Global,
Instance

Remove Duplicate
Registers

REMOVE_DUPLICATE_REGISTERS ON, OFF Global,
Instance

Remove Redundant
Logic Cells

REMOVE_REDUNDANT_LOGIC_CELLS ON, OFF Global

Restructure
Multiplexers

MUX_RESTRUCTURE On, Off, Auto Global,
Instance

Speed Optimization
Technique for Clock
Domains

SYNTH_CRITICAL_CLOCK ON, OFF Instance

State Machine
Processing

STATE_MACHINE_PROCESSING AUTO, "MINIMAL
BITS", "ONE HOT",
"USER-ENCODED"

Global,
Instance

Table 8–9. Quartus II Synthesis Options (Part 2 of 2)

Setting Name Quartus II Settings File Variable Values Type

8–90 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Valid locations are pin location names. Some device families also support
edge and I/O bank locations. Edge locations are EDGE_BOTTOM,
EDGE_LEFT, EDGE_TOP, and EDGE_RIGHT. I/O bank locations include
IOBANK_1 to IOBANK_n, where n is the number of I/O banks in a
particular device.

Creating Design Partitions for Incremental Compilation

To create a partition, use the following command:

set_instance_assignment -name PARTITION_HIERARCHY \
<file name> -to <destination> -section_id <partition name>

The <destination> should be the entity’s short hierarchy path. A short
hierarchy path is the full hierarchy path without the top-level name, for
example: "ram:ram_unit|altsyncram:altsyncram_component"
(with quotation marks). For the top-level partition, you can use the
pipe (|) symbol to represent the top-level entity.

For more information about hierarchical naming conventions, refer to
“Node-Naming Conventions in Quartus II Integrated Synthesis” on
page 8–79.

The <partition name> is the user-designated partition name, which must
be unique and less than 1024 characters long. The name can consist only
of alpha-numeric characters, as well as pipe (|), colon (:), and
underscore (_) characters. Altera recommends enclosing the name in
double quotation marks (" ").

The <file name> is the name used for internally generated netlists files
during incremental compilation. Netlists are named automatically by the
Quartus II software based on the instance name if you create the partition
in the user interface. If you are using Tcl to create your partitions, you
must assign a custom file name that is unique across all partitions. For the
top-level partition, the specified file name is ignored, and you can use any
dummy value. To ensure the names are safe and platform independent,
file names must be unique regardless of case. For example, if a partition
uses the file name my_file, no other partition can use the file name
MY_FILE. For simplicity, Altera recommends that you base each file
name on the corresponding instance name for the partition.

The software stores all netlists in the db compilation database directory.

Altera Corporation 8–91
October 2007

Conclusion

Conclusion The Quartus II software includes complete Verilog HDL and VHDL
language support, as well as support for Altera-specific languages,
making it an easy-to-use, standalone solution for Altera designs. You can
use the synthesis options available in the software to help you improve
your synthesis results, giving you more control over the way your design
is synthesized. Use Quartus II reports and messages to analyze your
compilation results.

Referenced
Documents

This chapter references the following documents:

■ Assignment Editor chapter in volume 2 of the Quartus II Handbook
■ Command-Line Scripting chapter in volume 2 of the Quartus II

Handbook
■ Designing With Low-Level Primitives User Guide
■ Design Recommendations for Altera Devices and the Quartus II Design

Assistant chapter in volume 1 of the Quartus II Handbook
■ Introduction to the Quartus II Software
■ Managing Quartus II Projects chapter in volume 2 of the Quartus II

Handbook
■ Netlist Optimization and Physical Synthesis chapter in volume 2 of the

Quartus II Handbook
■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II

Handbook
■ Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Quartus II Scripting Reference Manual
■ Quartus II Settings File Reference Manual
■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II

Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

8–92 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Document
Revision History

Table 8–10 shows the revision history for this chapter.

Table 8–10. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

● Added three new constructs to “SystemVerilog
Support” on page 8–7

● Added new section “State Machine Editor” on
page 8–13

● Renamed section as “Analyzing and Controlling
Synthesis Messages” on page 8–74 and added section
“Quartus II Messages” on page 8–74

● Other minor changes and text additions

Updated for Quartus II
software version 7.2.

May 2007
v7.1.0

● Updated language constraints supported in
“SystemVerilog Support” on page 8–7

● Updated “Incremental Synthesis and Incremental
Compilation” on page 8–23

● Removed Preserve Hierarchical Boundary section and
replaced it with updated section “Partitions for
Preserving Hierarchical Boundaries” on page 8–23

● Updated “Synthesis Attributes” on page 8–26
● Added “Disable Register Merging/Don’t Merge

Register” on page 8–45
● Added “Don't Retime, Disabling Synthesis Netlist

Optimizations” on page 8–48
● Added “Don't Replicate, Disabling Synthesis Netlist

Optimizations” on page 8–49
● Updated and added more description to “Node-Naming

Conventions in Quartus II Integrated Synthesis” on
page 8–79

● Added “Preserving Register Names” on page 8–84
● Added “Preserving Combinational Logic Names” on

page 8–86
● Updated “Adding an HDL File to a Project and Setting

the HDL Version” on page 8–88
● Updated Table 8–9 on page 8–89 to match the new

chapter content
● Added “Referenced Documents” on page 8–92
● Added Arria GX devices where appropriate

Updates made for new
attributes, options, and
language support in the
Quartus II software version 7.1
and Arria GX devices.

March 2007
v7.0.0

Updated date and revision for the Quartus II software
version 7.0.

—

Altera Corporation 8–93
October 2007

Document Revision History

November 2006
v6.1.0

● Added information on how to set the HDL version in
“Verilog HDL Support” on page 8–5 and “VHDL
Support” on page 8–10

● Updated the list of supported constructs in
“SystemVerilog Support” on page 8–7

● Added “Initial Constructs and Memory System Tasks”
on page 8–8

● Added “Design Libraries” on page 8–13 to include
information on libraries and duplicate entity names in all
languages

● Added “Using Parameters/Generics” on page 8–18
● Reorganized the options in the Quartus II Synthesis

Options section
● Added information about reset status to “State Machine

Processing” on page 8–33
● Added “Safe State Machines” on page 8–36
● Removed section on obsoleted logic option Remove

Duplicate Logic
● Added “Controlling Clock Enable Signals with Auto

Clock Enable Replacement & syn_direct_enable” on
page 8–46

● Added “RAM to Logic Cell Conversion” on page 8–49
● Added “Turning off Add Pass-Through Logic to Inferred

RAMs/ no_rw_check” on page 8–51
● Added synthesis_off and on directives to “Translate Off

and On / Synthesis Off and On” on page 8–59 and
“Ignore translate_off and synthesis_off Directives” on
page 8–60

● Updated options to include Stratix III in the Stratix series
of devices as required

This chapter has been updated
to include information about
additional functionality and
support for integrated
synthesis. The updates made
to this chapter describe new
and/or enhanced features to
language support, incremental
synthesis, and many of the
Quartus II synthesis options.

May 2006
v6.0.0

Updated for the Quartus II software version 6.0.0:
● Added language support.
● Added Quartus II Synthesis options.
● Added information on setting other Quartus II options in

HDL source code.

—

December 2005
v5.1.1

Minor typographic update. —

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.
● Chapter 7 was formerly Chapter 8 in version 5.0.

—

May 2005
v5.0.0

● Chapter 8 was formerly Chapter 6 in version 4.2.
● Updated information.
● Updated figures.
● Restructured information.
● Renamed sections.
● New functionality for the Quartus II software 5.0.

—

December 2004
v3.0

● Chapter 7 was formerly Chapter 8 in version 4.1.
● Added documentation of incremental synthesis feature
● New functionality for the Quartus II software version 4.2

—

8–94 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

June 2004
v2.0

● Updates to tables, figures.
● New functionality for the Quartus II software version

4.1.

—

Feb. 2004
v1.0

Initial release. —

Altera Corporation 9–1
October 2007

9. Mentor Graphics
LeonardoSpectrum Support

Introduction As programmable logic devices (PLDs) become more complex and
require increased performance, advanced synthesis has become an
important part of the design flow. Combining HDL coding techniques,
Mentor Graphics LeonardoSpectrum™ software constraints, and
Quartus® II options provide the performance increase needed for today’s
system-on-a-programmable-chip (SOPC) designs.

The LeonardoSpectrum software is a mature synthesis tool supporting
legacy devices and many current devices. The LeonardoSpectrum
software version 2007a supports the Stratix® III, Stratix II, Stratix,
Stratix GX, Cyclone™ II, Cyclone, MAX® II, MAX series, APEX™ series,
FLEX® series, and ACEX® series device families. Altera® recommends
using the advanced Precision Synthesis software for new designs in new
device families.

f For more information about Precision RTL Synthesis, refer to the Mentor
Graphics Precision RTL Synthesis Support chapter in volume 1 of the
Quartus II Handbook.

This chapter documents key design methodologies and techniques for
achieving better performance in Altera devices using the
LeonardoSpectrum and Quartus II design flow.

1 This chapter assumes that you have set up, licensed, and are
familiar with the LeonardoSpectrum software.

f To obtain and license the LeonardoSpectrum software, refer to the
Mentor Graphics website at www.mentor.com. For information about
installing the LeonardoSpectrum software and setting up your working
environment, refer to the LeonardoSpectrum Installation Guide and the
LeonardoSpectrum User's Manual.

QII51010-7.2.0

9–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Design Flow Following are the basic steps in a LeonardoSpectrum-Quartus II design
flow:

1. Create Verilog HDL or VHDL design files in the LeonardoSpectrum
software or a text editor.

2. Import the Verilog HDL or VHDL design files into the
LeonardoSpectrum software for synthesis.

3. Select a target device and add timing constraints and compiler
directives to help optimize the design during synthesis.

4. Synthesize the project in the LeonardoSpectrum software.

5. Create a Quartus II project and import the technology-specific EDIF
Input File (.edf) netlist and the Tcl Script File (.tcl) generated by the
LeonardoSpectrum software into the Quartus II software for
placement and routing, and for performance evaluation.

6. After obtaining place-and-route results that meet your needs,
configure or program the Altera device.

Figure 9–1 shows the recommended design flow using the
LeonardoSpectrum and Quartus II software.

If your area and timing requirements are satisfied, use the programming
files generated from the Quartus II software to program or configure the
Altera device. As shown in Figure 9–1, if the area or timing requirements
are not met, change the constraints in the LeonardoSpectrum software
and re-run the synthesis. Repeat the process until the area and timing
requirements are met. You can also use other Quartus II software options
and techniques to meet the area and timing requirements.

Altera Corporation 9–3
October 2007

Design Flow

Figure 9–1. Recommended Design Flow Using LeonardoSpectrum and Quartus II Software

The LeonardoSpectrum software supports both VHDL and Verilog HDL
source files. With the appropriate license, it also supports mixed
synthesis, allowing a combination of VHDL and Verilog HDL source

No

Functional/RTL
Simulation

Yes

Timing & Area
Requirements

Satisfied?

Gate-Level Timing
Simulation

Post-Synthesis
Simulation Files

(.vho/.vo)

Forward Annotated
Timing Constraints
(.tcl/.acf)

Technology-
Specific Netlist

(.edf)

Gate-Level
Functional
Simulation

Post Place-and-Route
Simulation File

(.vho/.vo)

Configuration/
Programming
Files (.sof/.pof)

LeonardoSpectrum Software

Quartus II Software

Constraints
& Settings

Constraints
& Settings

Program/Configure Device

Verilog
HDL
(.v)

VHDL
(.vhd)

9–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

files. After synthesis, the LeonardoSpectrum software produces several
intermediate and output files. Table 9–1 lists these file extensions with a
short description of each file.

1 Altera recommends that you do not use project directory names
that include spaces. Some file operations in the
LeonardoSpectrum software do not work correctly if the path
name contains spaces.

Specify timing constraints and compiler directives for the design in the
LeonardoSpectrum software, or in a constraint file (.ctr). Many of these
constraints are forward-annotated in the Tcl file for use by the Quartus II
software.

The LeonardoInsight™ Schematic Viewer is an add-on graphical tool for
schematic views of the technology-independent RTL netlist (.xdb) and
the technology-specific gate-level results. You can use the Schematic
Viewer to visually analyze and debug the design. It also supports cross
probing between the RTL and gate-level schematics, the design browser,
and the source code in the HDLInventor™ text editor.

Table 9–1. LeonardoSpectrum Intermediate and Output Files

File
Extension(s) File Description

.xdb Technology-independent register transfer level (RTL) netlist file that can only be read by the
LeonardoSpectrum software.

.edf Technology-specific output netlist in electronic design interchange format (EDIF).

.acf/.tcl (1) Forward-annotated constraint file containing constraints and assignments.

Note to Table 9–1:
(1) An assignment and configuration (.acf) file is created only for ACEX 1K, FLEX series, and MAX series devices. The

assignment and configuration file is generated for backward compatibility with the MAX+PLUS® II software. A
Tcl Script File (.tcl) is generated for the Quartus II software which also contains Tcl commands to create a
Quartus II project.

Altera Corporation 9–5
October 2007

Optimization Strategies

Optimization
Strategies

You can configure most general settings in the Quick Setup tab in the
LeonardoSpectrum user interface. Other Flow tabs provide additional
options, and some Flow tabs include multiple Power tabs (at the bottom
of the screen) with still more options. Advanced optimization options in
the LeonardoSpectrum software include timing-driven synthesis,
encoding style, resource sharing, and mapping I/O registers.

Timing-Driven Synthesis

The LeonardoSpectrum software supports timing-driven synthesis
through user-assigned timing constraints to optimize the performance of
the design. Setting constraints in the LeonardoSpectrum software are
straightforward. Constraints such as clock frequency can be specified
globally or for individual clock signals. The following sections describe
how to set the various types of timing constraints in the
LeonardoSpectrum software.

The timing constraints described in the “Global Power Tab” section are
set in the Constraints Flow tab. In this tab, there are Power tabs at the
bottom, such as Global and Clock, for setting various constraints.

Global Power Tab

The Global tab is the default Power tab in the Constraints Flow tab.
Specify the global clock frequency here. The Clock Frequency on the
Quick Setup tab is equivalent to the Registers to Registers delay setting.
You can also specify the following: Input Ports to Registers, Registers to
Output Ports, and Inputs to Outputs delays that correspond to global
tSU, tCO, and tPD requirements, respectively, in the Quartus II software.
The timing diagram on this tab reflects the settings you have made.

Clock Power Tab

You can set various constraints for each clock in your design. First, select
the clock name in the Clock(s) window. The clock names appear after the
design is read from the Input Flow tab. Configure settings for that
particular clock and click Apply. If necessary, you can also set the Duty
Cycle to a value other than the default 50%. The timing diagram shows
these settings.

If a clock has an Offset from the main clock, which is considered to be
time “0”, this constraint corresponds to the
OFFSET_FROM_BASE_CLOCK setting in the Quartus II software.

9–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

You can specify the pin number for the clock input pin in the
Pin Location field. This pin number is passed to the Quartus II software
for place-and-route, but does not affect synthesis in the
LeonardoSpectrum software.

Input and Output Power Tabs

Configure settings for individual input or output pins in the Input and
Output tabs. First, select a name in the Input Ports or Output Ports
window. The names appear after the design is read from the Input Flow
tab. Then make the setting for that pin as described below.

The Arrival Time setting indicates that the input signal arrives a specified
time after the rising clock edge (time “0”). This setting constrains the path
from the pin to the first register by including the arrival time in the total
delay, and corresponds to the EXTERNAL_INPUT_DELAY assignment in
the Quartus II software.

The Required Time setting indicates the maximum delay after time “0”
that the output signal should arrive at the output pin. This setting directly
constrains the register to output delay, and corresponds with the
EXTERNAL_OUTPUT_DELAY assignment in the Quartus II software.

Specify the pin number for the I/O pin in the Pin Location field. This pin
number is passed to the Quartus II software for place-and-route, but does
not affect synthesis in the LeonardoSpectrum software.

Other Constraints

The following sections describe other constraints that can be set with the
LeonardoSpectrum user interface.

Encoding Style

The LeonardoSpectrum software encodes state machines during the
synthesis process. To improve performance when coding state machines,
separate state machine logic from all arithmetic functions and data paths.
Once encoded, a design cannot be re-encoded later in the optimization
process. You must follow a particular VHDL or Verilog HDL coding style
for the LeonardoSpectrum software to identify the state machine.

Altera Corporation 9–7
October 2007

Optimization Strategies

Table 9–2 shows the state machine encoding styles supported by the
LeonardoSpectrum software.

The Encoding Style setting is created in the Input Flow tab. It instructs
the software to use a particular state machine encoding style for all state
machines. The default Auto selection implements binary or one-hot
encoding, depending on the size of enumerated types in the state
machine.

f To ensure proper recognition and improve performance when coding
state machines, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook for design guidelines.

Resource Sharing

You can also enable the Resource Sharing setting in the Input Flow tab.
This setting allows optimization to reduce device resources. You should
generally leave this setting turned on.

Mapping I/O Registers

The Map I/O Registers option is located in the Technology Flow tab. The
Map I/O Registers option applies to Altera FPGAs containing I/O cells
(IOCs) or I/O elements (IOE). If the option is turned on, input or output
registers are moved into the device’s I/O cells for faster setup or
clock-to-output times.

Table 9–2. State Machine Encoding Styles in the LeonardoSpectrum Software

Style Description

Binary Generates state machines with the fewest possible flipflops. Binary state machines are useful for
area-critical designs when timing is not the primary concern.

Gray Generates state machines where only one flipflop changes during each transition. Gray-encoded
state machines tend to be glitchless.

One-hot Generates state machines containing one flipflop for each state. One-hot state machines provide
the best performance and shortest clock-to-output delays. However, one-hot implementations
are usually larger than binary implementations.

Random Generates state machines using random state machine encoding. Only use random state
machine encoding when no other implementation achieves the desired results.

Auto (default) Implements binary or one-hot encoding, depending on the size of enumerated types in the state
machine.

9–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Timing Analysis
with the
Leonardo-
Spectrum
Software

The LeonardoSpectrum software reports successful synthesis with an
information message in the Transcript or Information window.
Estimated device usage and timing results are reported in the Device
Utilization section of this window. Figure 9–2 shows an example of a
LeonardoSpectrum compilation report.

Figure 9–2. LeonardoSpectrum Compilation Report

The LeonardoSpectrum software estimates the timing results based on
timing models. The LeonardoSpectrum software has no information
about how the design is placed and routed in the Quartus II software, so
it cannot report accurate routing delays. Additionally, if the design
includes any black-boxed Altera-specific functions, the
LeonardoSpectrum software does not report timing information for these
functions.

Final timing results are generated by the Quartus II software and are
reported separately in the Transcript or Information window if the Run
Integrated Place and Route option is turned on. Refer to “Integration
with the Quartus II Software” on page 9–10 for more information.

Altera Corporation 9–9
October 2007

Exporting Designs Using NativeLink Integration

Exporting
Designs Using
NativeLink
Integration

You can use NativeLink® integration to integrate the LeonardoSpectrum
software and the Quartus II software with a single GUI for both the
synthesis and place-and-route operations. NativeLink integration allows
you to run the Quartus II software from within the LeonardoSpectrum
software GUI, or to run the LeonardoSpectrum software from within the
Quartus II software GUI for device families supported in the Quartus II
software.

Generating Netlist Files

The LeonardoSpectrum software generates an EDIF netlist file readable
as an input file in the Quartus II software for place-and-route. Select the
EDIF file option name in the Output Flow tab. The EDIF netlist is also
generated if the Auto option is turned on in the Output Flow tab.

Including Design Files for Black-Boxed Modules

If the design has black-boxed megafunctions, be sure to include the
MegaWizard® Plug-In Manager-generated custom megafunction
variation design file in the Quartus II project directory, or add it to the list
of project files for place-and-route.

Passing Constraints with Scripts

The LeonardoSpectrum software can write out a Tcl file called
<project name>.tcl. This file contains commands to create a Quartus II
project along with constraints and other assignments. To output a Tcl
script, turn on the Write Vendor Constraint Files option in the Output
Flow tab.

To create and compile a Quartus II project using the Tcl file generated
from the LeonardoSpectrum software, perform the following steps in the
Quartus II software:

1. Place the EDIF netlist files and Tcl scripts in the same directory.

2. On the View menu, point to Utility, and click Tcl Console to open
the Quartus II Tcl Console.

3. Type source <path>/<project name>.tcl r, at a Tcl Console
command prompt.

4. On the File menu, click Open Project to open the new project. On
the Processing menu, click Start Compilation.

9–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Integration with the Quartus II Software

The Place And Route section in the Quick Setup tab allows you to
launch the Quartus II software from within the LeonardoSpectrum
software. Turn on the Run Integrated Place and Route option to start the
compilation using the Quartus II software to show the fitting and
performance results. You can also run the place-and-route software by
turning on the Run Quartus option on the Physical Flow tab and clicking
Run PR.

To use integrated place-and-route software, on the Options menu, point
to Place and Route Path and click Tools, and specify the location of the
Quartus II software executable file (browse to <Quartus II software
installation directory>/bin).

Guidelines for
Altera
Megafunctions
and LPM
Functions

Altera provides parameterizable megafunctions ranging from simple
arithmetic units, such as adders and counters, to advanced phase-locked
loop (PLL) blocks, multipliers, and memory structures. These functions
are performance-optimized for Altera devices. Megafunctions include
the library of parameterized modules (LPM), device-specific
megafunctions such as PLLs, LVDS, and digital signal processing (DSP)
blocks, intellectual property (IP) available as Altera
MegaCore® functions, and IP available through the Altera Megafunction
Partners Program (AMPPsm).

1 Some IP cores require that you synthesize them in the
LeonardoSpectrum software. Refer to the user guide for the
specific IP.

There are two methods for handling megafunctions in the
LeonardoSpectrum software: inference and instantiation.

The LeonardoSpectrum software supports inferring some of the Altera
megafunctions, such as multipliers, DSP functions, and RAM and ROM
blocks. The LeonardoSpectrum software supports all Altera
megafunctions through instantiation.

Instantiating Altera Megafunctions

There are two methods of instantiating Altera megafunctions in the
LeonardoSpectrum software. The first and least common method is to
directly instantiate the megafunction in the Verilog HDL or VHDL code.
The second method, to maintain target technology awareness, is to use
the MegaWizard Plug-In Manager in the Quartus II software to setup and
parameterize a megafunction variation. The megafunction wizard creates
a wrapper file that instantiates the megafunction. The advantage of using
the megafunction wizard in place of the instantiation method is the

Altera Corporation 9–11
October 2007

Guidelines for Altera Megafunctions and LPM Functions

megafunction wizard properly sets all the parameters and you do not
need the library support required in the direct instantiation method. This
is referred to as the black box methodology.

1 Altera recommends using the megafunction wizard to ensure
that the ports and parameters are set correctly.

f When directly instantiating megafunctions, see the Quartus II Help for a
list of the ports and parameters.

Inferring Altera Memory Elements

The LeonardoSpectrum software can infer memory blocks from
Verilog HDL or VHDL code. When the LeonardoSpectrum software
detects a RAM or ROM from the style of the RTL code at a
technology-independent level, it then maps the element to a generic
module in the RTL database. During the technology-mapping phase of
synthesis, the LeonardoSpectrum software maps the generic module to
the most optimal primitive memory cells, or Altera megafunction, for the
target Altera technology.

f For more information about inferring RAM and ROM megafunctions,
including examples of VHDL and Verilog HDL code, see the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook.

Inferring RAM
The LeonardoSpectrum software supports RAM inference for various
device families. The restrictions for the LeonardoSpectrum software to
successfully infer RAM in a design are listed below:

■ The write process must be synchronous
■ The read process can be asynchronous or synchronous depending on

the target Altera architecture
■ Resets on the memory are not supported

Table 9–3 shows a summary of the minimum memory sizes and
minimum address widths for inferring RAM in various device families.

To disable RAM inference, set the extract_ram and infer_ram
variables to “false.” On the Tools menu, click Variable Editor to enter the
value “false” when synthesizing in the user interface with the Advanced
Flow tabs, or add the commands set extract_ram false and set
infer_ram false to your synthesis script.

9–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Inferring ROM
You can implement ROM behavior in HDL source code with CASE
statements or specify the ROM as a table. The LeonardoSpectrum
software infers both synchronous and asynchronous ROM depending on
the target Altera device. For example, memory for the Stratix series
devices must be synchronous to be inferred.

To disable ROM inference, set the extract_rom variable to “false.” To
enter the value “false” when synthesizing in the user interface with the
Advanced Flow tabs, on the Tools menu, click Variable Editor, or add the
commands set extract_rom false to your synthesis script.

Inferring Multipliers and DSP Functions

Some Altera devices include dedicated DSP blocks optimized for DSP
applications. The following Altera megafunctions are used with DSP
block modes:

■ lpm_mult
■ altmult_accum
■ altmult_add

You can instantiate these megafunctions in the design or have the
LeonardoSpectrum software infer the appropriate megafunction by
recognizing a multiplier, multiplier-accumulator (MAC), or
multiplier-adder in the design. The Quartus II software maps the
functions to the DSP blocks in the device during place-and-route.

f For more information about inferring multipliers and DSP functions,
including examples of VHDL and Verilog HDL code, refer to the
Recommended HDL Coding Styles chapter in volume 1 of The Quartus II
Handbook.

Table 9–3. Inferring RAM Summary

Stratix Series and Cyclone
Series

APEX Series, Excalibur and
Mercury

FLEX 10KE and
ACEX 1K

RAM primitive altsyncram altdpram altdpram

Minimum RAM size 2 bits 64 bits 128 bits

Minimum address width 1 bit 4 bits 5 bits

Altera Corporation 9–13
October 2007

Guidelines for Altera Megafunctions and LPM Functions

Simple Multipliers

The lpm_mult megafunction implements the DSP block in the simple
multiplier mode. The following functionality is supported in this mode:

■ The DSP block includes registers for the input and output stages, and
an intermediate pipeline stage

■ Signed and unsigned arithmetic is supported

Multiplier Accumulators

The altmult_accum megafunction implements the DSP block in the
multiply-accumulator mode. The following functionality is supported in
this mode:

■ The DSP block includes registers for the input and output stages, and
an intermediate pipeline stage

■ The output registers are required for the accumulator
■ The input and pipeline registers are optional
■ Signed and unsigned arithmetic is supported

1 If the design requires input registers to be used as shift registers,
use the black-boxing method to instantiate the
altmult_accum megafunction.

Multiplier Adders

The LeonardoSpectrum software can infer multiplier adders and map
them to either the two-multiplier adder mode or the four-multiplier
adder mode of the DSP blocks. The LeonardoSpectrum software maps
the HDL code to the correct altmult_add function.

The following functionality is supported in these modes:

■ The DSP block includes registers for the input and output stages and
an intermediate pipeline stage

■ Signed and unsigned arithmetic is supported, but support for the
Verilog HDL “signed” construct is limited

Controlling DSP Block Inference

In devices that include dedicated DSP blocks, multipliers,
multiply-accumulators, and multiply-adders can be implemented either
in DSP blocks or in logic. You can control this implementation through
attribute settings in the LeonardoSpectrum software.

9–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

As shown in Table 9–4, attribute settings in the LeonardoSpectrum
software control the implementation of the multipliers in DSP blocks or
logic at the signal block (or module), and project level.

Global Attribute

You can set the global attribute extract_mac to control the
implementation of multipliers in DSP blocks for the entire project. You
can set this attribute using the script interface. The script command is:

set extract_mac <value>

Module Level Attributes

You can control the implementation of multipliers inside a module or
component by setting attributes in the Verilog HDL source code. The
attribute used is extract_mac. Setting this attribute for a module affects
only the multipliers inside that module. The command is:

//synthesis attribute <module name> extract_mac <value>

Table 9–4. Attribute Settings for DSP Blocks in the LeonardoSpectrum Software Note (1)

Level Attribute Name Value Description

Global extract_mac (2) TRUE All multipliers in the project mapped to DSP blocks.

FALSE All multipliers in the project mapped to logic.

Module extract_mac (3) TRUE Multipliers inside the specified module mapped to DSP blocks.

FALSE Multipliers inside the specified module mapped to logic.

Signal dedicated_mult ON LPM inferred and multipliers implemented in DSP block.

OFF LPM inferred, but multipliers implemented in logic by the Quartus II
software.

LCELL LPM not inferred, and multipliers implemented in logic by the
LeonardoSpectrum software.

AUTO LPM inferred, but the Quartus II software automatically maps the
multipliers to either logic or DSP blocks based on the Quartus II
software place-and-route.

Notes to Table 9–4:
(1) The extract_mac attribute takes precedence over the dedicated_mult attribute.
(2) For devices with DSP blocks, the extract_mac attribute is set to “true” by default for the entire project.
(3) For devices with DSP blocks, the extract_mac attribute is set to “true” by default for all modules.

Altera Corporation 9–15
October 2007

Guidelines for Altera Megafunctions and LPM Functions

The Verilog HDL and VHDL codes samples shown in Examples 9–1
and 9–2 show how to use the extract_mac attribute.

Example 9–1. Using Module Level Attributes in Verilog HDL Code
module mult_add (dataa, datab, datac, datad, result);
//synthesis attribute mult_add extract_mac FALSE
// Port Declaration
input [15:0] dataa;
input [15:0] datab;
input [15:0] datac;
input [15:0] datad;

output [32:0] result;

// Wire Declaration
wire [31:0] mult0_result;
wire [31:0] mult1_result;

// Implementation
// Each of these can go into one of the 4 mults in a
// DSP block
assign mult0_result = dataa * `signed datab;
//synthesis attribute mult0_result preserve_signal TRUE

assign mult1_result = datac * datad;

// This adder can go into the one-level adder in a DSP
// block
assign result = (mult0_result + mult1_result);

endmodule

9–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 9–2. Using Module Level Attributes in VHDL Code
library ieee ;
USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

entity mult_acc is
 generic (size : integer := 4) ;
 port (
 a: in std_logic_vector (size-1 downto 0) ;
 b: in std_logic_vector (size-1 downto 0) ;
 clk : in std_logic;

accum_out: inout std_logic_vector (2*size downto 0)
) ;
 attribute extract_mac : boolean;
 attribute extract_mac of mult_acc : entity is FALSE;
end mult_acc;

architecture synthesis of mult_acc is
 signal a_int, b_int : signed (size-1 downto 0);
 signal pdt_int : signed (2*size-1 downto 0);
 signal adder_out : signed (2*size downto 0);

begin
 a_int <= signed (a);
 b_int <= signed (b);
 pdt_int <= a_int * b_int;
 adder_out <= pdt_int + signed(accum_out);
 process (clk)
 begin
 if (clk'event and clk = '1') then
 accum_out <= std_logic_vector (adder_out);
 end if;
 end process;
end synthesis ;

Signal Level Attributes

You can control the implementation of individual lpm_mult multipliers
by using the dedicated_mult attribute as shown below:

//synthesis attribute <signal_name> dedicated_mult <value>

1 The dedicated_mult attribute is only applicable to signals or
wires; it is not applicable to registers.

Altera Corporation 9–17
October 2007

Guidelines for Altera Megafunctions and LPM Functions

Table 9–5 shows the supported values for the dedicated_mult
attribute.

1 Some signals for which the dedicated_mult attribute is set
may get synthesized away by the LeonardoSpectrum software
due to design optimization. In such cases, if you want to force
the implementation, the signal is preserved from being
synthesized away by setting the preserve_signal attribute
to “true.”

The extract_mac attribute must be set to “false” for the
module or project level when using the dedicated_mult
attribute.

Examples 9–3 and 9–4 are samples of Verilog HDL and VHDL codes,
respectively, using the dedicated_mult attribute.

Table 9–5. Values for the dedicated_mult Attribute

Value Description

ON LPM inferred and multipliers implemented in DSP block.

OFF LPM inferred and multipliers synthesized, implemented in logic, and optimized by the Quartus II
software. (1)

LCELL LPM not inferred and multipliers synthesized, implemented in logic, and optimized by the
LeonardoSpectrum software. (1)

AUTO LPM inferred but the Quartus II software maps the multipliers automatically to either the DSP block or
logic based on resource availability.

Note to Table 9–5:
(1) Although both dedicated_mult=OFF and dedicated_mult=LCELLS result in logic implementations, the optimized

results in these two cases may differ.

9–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 9–3. Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code
module mult (AX, AY, BX, BY, m, n, o, p);
input [7:0] AX, AY, BX, BY;
output [15:0] m, n, o, p;
wire [15:0] m_i = AX * AY; // synthesis attribute m_i dedicated_mult ON
// synthesis attribute m_i preserve_signal TRUE
//Note that the preserve_signal attribute prevents
// signal m_i from getting synthesized away
wire [15:0] n_i = BX * BY; // synthesis attribute n_i dedicated_mult OFF
wire [15:0] o_i = AX * BY; // synthesis attribute o_i dedicated_mult AUTO
wire [15:0] p_i = BX * AY; // synthesis attribute p_i dedicated_mult LCELL
// since n_i , o_i , p_i signals are not preserved,
// they may be synthesized away based on the design
assign m = m_i;
assign n = n_i;
assign o = o_i;
assign p = p_i;
endmodule

Example 9–4. Signal Attributes for Controlling DSP Block Inference in VHDL Code
library ieee ;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_signed.all;

ENTITY mult is
PORT(AX,AY,BX,BY: IN

std_logic_vector (17 DOWNTO 0);
m,n,o,p: OUT

std_logic_vector (35 DOWNTO 0));
attribute dedicated_mult: string;
attribute preserve_signal : boolean
END mult;
ARCHITECTURE struct of mult is

signal m_i, n_i, o_i, p_i : unsigned (35 downto 0);
attribute dedicated_mult of m_i:signal is "ON";
attribute dedicated_mult of n_i:signal is "OFF";
attribute dedicated_mult of o_i:signal is "AUTO";
attribute dedicated_mult of p_i:signal is "LCELL";

begin

m_i <= unsigned (AX) * unsigned (AY);
n_i <= unsigned (BX) * unsigned (BY);
o_i <= unsigned (AX) * unsigned (BY);
p_i <= unsigned (BX) * unsigned (AY);

m <= std_logic_vector(m_i);
n <= std_logic_vector(n_i);
o <= std_logic_vector(o_i);
p <= std_logic_vector(p_i);
end struct;

Altera Corporation 9–19
October 2007

Block-Based Design with the Quartus II Software

Guidelines for Using DSP Blocks

In addition to the guidelines mentioned earlier in this section, use the
following guidelines while designing with DSP blocks in the
LeonardoSpectrum software:

■ To access all the control signals for the DSP block, such as sign A,
sign B, and dynamic addnsub, use the black-boxing technique.

■ While performing signed operations, ensure that the specified data
width of the output port matches the data width of the expected
result. Otherwise, the sign bit may be lost or data may be incorrect
because the sign is not extended.
For example, if the data widths of input A and B are width_a and
width_b, respectively, then the maximum data width of the result
can be (width_a + width_b +2) for the four-multipliers adder
mode. Thus, the data width of the output port should be less than or
equal to (width_a + width_b +2).

■ While using the accumulator, the data width of the output port
should be equal to or greater than (width_a + width_b). The
maximum width of the accumulator can be
(width_a + width_b + 16). Accumulators wider than this are
implemented in logic.

■ If the design uses more multipliers than are available in a particular
device, you may get a no fit error in the Quartus II software. In such
cases, use the attribute settings in the LeonardoSpectrum software to
control the mapping of multipliers in your design to DSP blocks or
logic.

Block-Based
Design with the
Quartus II
Software

The incremental compilation and LogicLockTM block-based design flows
enable users to design, optimize, and lock down a design one section at a
time. You can independently create and implement each logic module
into a hierarchical or team-based design. With this method, you can
preserve the performance of each module during system integration and
have more control over placement of your design. To maximize the
benefits of the incremental compilation or LogicLock design
methodology in the Quartus II software, you can partition a new design
into a hierarchy of netlist files during synthesis in the LeonardoSpectrum
software.

The LeonardoSpectrum software allows you to create different netlist
files for different sections of a design hierarchy. Different netlist files
mean that each section is independent of the others. When synthesizing
the entire project, only portions of a design that have been updated have
to be re-synthesized when you compile the design. You can make
changes, optimize, and re-synthesize your section of a design without
affecting other sections.

9–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

f For more information about incremental compilation, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design
chapter in volume 1 of the Quartus II Handbook. For more information
about the LogicLock feature, refer to the LogicLock Design Methodology
chapter in volume 2 of the Quartus II Handbook.

Hierarchy and Design Considerations

You must plan your design’s structure and partitioning carefully to use
incremental compilation and LogicLock features effectively. Optimal
hierarchical design practices include partitioning the blocks at functional
boundaries, registering the boundaries of each block, minimizing the I/O
between each block, separating timing-critical blocks, and keeping the
critical path within one hierarchical block.

f For more recommendations for hierarchical design partitioning, refer to
the Design Recommendations for Altera Devices chapter in volume 1 of the
Quartus II Handbook.

To ensure the proper functioning of the synthesis tool, you can apply the
LogicLock option in the LeonardoSpectrum software only to modules,
entities, or netlist files. In addition, each module or entity should have its
own design file. If two different modules are in the same design file but
are defined as being part of different regions, it is difficult to maintain
incremental synthesis since both regions would have to be recompiled
when you change one of the modules or entities.

If you use boundary tri-states in a lower-level block, the
LeonardoSpectrum software pushes (or “bubbles”) the tri-states through
the hierarchy to the top-level to take advantage of the tri-state drivers on
the output pins of the Altera device. Because bubbling tri-states requires
optimizing through hierarchies, lower-level tri-states are not supported
with a block-level design methodology. You should use tri-state drivers
only at the external output pins of the device and in the top-level block in
the hierarchy.

If the hierarchy is flattened during synthesis, logic is optimized across
boundaries, preventing you from making LogicLock assignments to the
flattened blocks. Altera recommends preserving the hierarchy when
compiling the design. In the Optimize command of your script, use the
Hierarchy Preserve command or in the user interface select Preserve in
the Hierarchy section on the Optimize Flow tab.

Altera Corporation 9–21
October 2007

Block-Based Design with the Quartus II Software

If you are compiling your design with a script, you can use an alternative
method for preventing optimization across boundaries. In this case, use
the Auto hierarchy setting and set the auto_dissolve attribute to false
on the instances or views that you want to preserve (that is, the modules
with LogicLock assignments) using the following syntax:

set_attribute -name auto_dissolve -value false
.work.<block1>.INTERFACE

This alternative method flattens your design according to the
auto_dissolve limits, but does not optimize across boundaries where
you apply the attribute as described.

f For more details on LeonardoSpectrum attributes and hierarchy levels,
refer to the LeonardoSpectrum documentation in the Help menu.

Creating a Design with Multiple EDIF Files

The first stage of a hierarchical design flow is to generate multiple EDIF
files, enabling you to take advantage of the incremental compilation
flows in the Quartus II software. If the whole design is in one EDIF file,
changes in one block affect other blocks because of possible node name
changes. You can generate multiple EDIF files either by using the
LogicLock option in the LeonardoSpectrum software, or by manually
black boxing each block that you want to be part of a LogicLock region.

Once you have created multiple EDIF files using one of these methods,
you must create the appropriate Quartus II project(s) to place-and-route
the design.

Generating Multiple EDIF Files Using the LogicLock Option

This section describes how to generate multiple EDIF files using the
LogicLock option in the LeonardoSpectrum software. When synthesizing
a top-level design that includes LogicLock regions, use the following
general steps:

1. Read in the Verilog HDL or VHDL source files.

2. Add LogicLock constraints.

3. Optimize and write output netlist files, or choose Run Flow.

9–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

To set the correct constraints and compile the design, use the following
steps in the LeonardoSpectrum software:

1. Switch to the Advanced Flow tab instead of the Quick Setup tab
(Tools menu).

2. Set the target technology and speed grade for the device on the
Technology Flow tab.

3. Open the input source files on the Input Flow tab.

4. Click Read on the Input Flow tab to read the source files but not
begin optimization.

5. Select the Module Power tab located at the bottom of the
Constraints Flow tab.

6. Click on a module to be placed in a LogicLock region in the
Modules section.

7. Turn on the LogicLock option.

8. Type the desired LogicLock region name in the text field under the
LogicLock option.

9. Click Apply.

10. Repeat steps 6-9 for any other modules that you want to place in
LogicLock regions.

1 In some cases, you are prompted to save your LogicLock and
other non-global constraints in a Constraints File (.ctr) when you
click anywhere off the Constraints Flow tab. The default name
is <project name>.ctr. This file is added to your Input file list, and
must be manually included later if you recreate the project.

The command written into the LeonardoSpectrum Information
or Transcript Window is the Tcl command that gets written into
the CTR file. The format of the “path” for the module specified
in the command should be work.<module>.INTERFACE. To
ensure that you don’t see an optimized version of the module,
do not perform a Run Flow on the Quick Setup tab prior to
setting LogicLock constraints. Always use the Read command,
as described in step 4.

11. Continue making any other settings as required on the Constraints
tab.

Altera Corporation 9–23
October 2007

Block-Based Design with the Quartus II Software

12. Select Preserve in the Hierarchy section on the Optimize tab to
ensure that the hierarchy names are not flattened during
optimization.

13. Continue making any other settings as required on the Optimize
tab.

14. Run your synthesis flow using each Flow tab, or click Run Flow.

Synthesis creates an EDIF file for each module that has a LogicLock
assignment in the Constraints Flow tab. You can now use these files with
the incremental compilation flows in the Quartus II software.

1 You might occasionally see multiple EDIF files and LogicLock
commands for the same module. An “unfolded” version of a
module is created when you instantiate a module more than
once and the boundary conditions of the instances are different.
For example, if you apply a constant to one instance of the block,
it might be optimized to eliminate unneeded logic. In this case,
the LeonardoSpectrum software must create a separate module
for each instantiation (unfolding). If this unfolding occurs, you
see more than one EDIF file, and each EDIF file has a LogicLock
assignment to the same LogicLock region. When you import the
EDIF files to the Quartus II software, the EDIF files created from
the module are placed in different LogicLock regions. Any
optimizations performed in the Quartus II software using the
LogicLock methodology must be performed separately for each
EDIF netlist.

Creating a Quartus II Project for Multiple EDIF Files Including LogicLock
Regions

The LeonardoSpectrum software creates Tcl files that provide the
Quartus II software with the appropriate LogicLock assignments,
creating a region for each EDIF file along with the information to set up a
Quartus II project.

The Tcl file contains the commands shown in Example 9–5 for each
LogicLock region. This example is for module taps where the name
taps_region was typed as the LogicLock region name in the
Constraints Flow tab in the LeonardoSpectrum software.

9–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 9–5. Tcl File for Module Taps with taps_region as LogicLock Region Name
project add_assignment {taps} {taps_region} {} {}

{LL_AUTO_SIZE} {ON}
project add_assignment {taps} {taps_region} {} {}

{LL_STATE} {FLOATING}
project add_assignment {taps} {taps_region} {} {}

{LL_MEMBER_OF} {taps_region}

These commands create a LogicLock region with Auto-Size and
Floating-Origin properties. This flexible LogicLock region allows the
Quartus II Compiler to select the size and location of the region.

f For more information about Tcl commands, refer to the TCL Scripting
chapter in volume 2 of the Quartus II Handbook.

You can use the following methods to import the EDIF file and
corresponding Tcl file into the Quartus II software:

■ Use the Tcl file that is created for each EDIF file by the
LeonardoSpectrum software. This method allows you to generate
multiple Quartus II projects, one for each block in the design. Each
designer in the project can optimize their block separately in the
Quartus II software and preserve their results. Altera recommends
this method for bottom-up incremental and hierarchical design
methodologies because it allows each block in the design to be
treated separately. Each block can be brought into one top-level
project with the import function.

or

■ Use the <top-level project>.tcl file that contains the assignments for all
blocks in the project. This method allows the top-level designer to
import all the blocks into one Quartus II project. You can optimize all
modules in the project at once in a top-down design flow. If
additional optimization is required for individual blocks, each
designer can use their EDIF file to create a separate project at that
time. You would then have to add new assignments to the top-level
project using the import function.

In both methods, you can use the following steps to create the Quartus II
project, import the appropriate LogicLock assignments, and compile the
design:

1. Place the EDIF and Tcl files in the same directory.

2. On the View menu, point to Utility Windows and click Tcl Console
to open the Quartus II Tcl Console.

Altera Corporation 9–25
October 2007

Block-Based Design with the Quartus II Software

3. Type source <path>/<project name>.tcl r.

4. To open the new completed project, on the File menu, click Open
Project. Browse to and select the project name, and click Open.

f For more information about importing design using incremental
compilation, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.
For more information about importing LogicLock assignments, see the
LogicLock Design Methodology chapter in volume 2 of the Quartus II
Handbook.

Generating Multiple EDIF Files Using Black Boxes

This section describes how to manually generate multiple EDIF files
using the black-boxing technique. The manual flow, described below,
was supported in older versions of the LeonardoSpectrum software. The
manual flow is discussed here because some designers want more control
over the project for each submodule.

To create multiple EDIF files in the LeonardoSpectrum software, create a
separate project for each module and top-level design that you want to
maintain as a separate EDIF file. Implement black-box instantiations of
lower-level modules in your top-level project.

When synthesizing the projects for the lower-level modules and the
top-level design, use the following general guidelines.

For lower-level modules:

■ Turn off Map IO Registers for the target technology on the
Technology Flow tab.

■ Read the HDL files for the modules. Modules may include black-box
instantiations of lower-level modules that are also maintained as
separate EDIF files.

■ Add constraints.
■ Turn off Add I/O Pads on the Optimize Flow tab.

For the top-level design:

■ Turn on Map IO Registers if you want to implement input and/or
output registers in the IOEs for the target technology on the
Technology Flow tab.

■ Read the HDL files for the top-level design.
● Black-box lower-level modules in the top-level design

■ Add constraints (clock settings should be made at this time).

9–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

The following sections describe examples of black-box modules in a
block-based and team-based design flow.

In Figure 9–3, the top-level design A is assigned to one engineer
(designer 1), while two-engineers work on the lower levels of the design.
Designer 2 works on B and its submodules D and E, while designer 3
works on C and its submodule F.

Figure 9–3. Block-Based and Team-Based Design Example

One netlist is created for the top-level module A, another netlist is created
for B and its submodules D and E, while another netlist is created for C
and its submodule F. To create multiple EDIF files, perform the following
steps:

1. Generate an EDIF file for module C. Use C.v and F.v as the source
files.

2. Generate an EDIF file for module B. Use B.v, D.v, and E.v as the
source files.

3. Generate a top-level EDIF file A.v for module A. Ensure that your
black-box modules B and C were optimized separately in steps
1 and 2.

D

Designer 1

F

Designer 2 Designer 3

E

A

CB

Altera Corporation 9–27
October 2007

Block-Based Design with the Quartus II Software

Black Boxing in Verilog HDL

Any design block that is not defined in the project, or included in the list
of files to be read for a project, is treated as a black box by the software. In
Verilog HDL, you must also provide an empty module declaration for the
module that you plan to treat as a black box.

Example 9–6 shows an example of the A.v top-level file. If any of your
lower-level files also contain a black-boxed lower-level file in the next
level of hierarchy, follow the same procedure.

Example 9–6. Verilog HDL Top-Level File Black-Boxing Example
module A (data_in,clk,e,ld,data_out);

input data_in, clk, e, ld;
output [15:0] data_out;

reg [15:0] cnt_out;
reg [15:0] reg_a_out;

B U1 (.data_in (data_in),.clk (clk), .e(e), .ld (ld),
.data_out(cnt_out));

C U2 (.d(cnt_out), .clk (clk), .e(e), .q (reg_out));
// Any other code in A.v goes here.

endmodule

// Empty Module Declarations of Sub-Blocks B and C follow here.
// These module declarations (including ports) are required for blackboxing.

module B (data_in,e,ld,data_out);
input data_in, clk, e, ld;
output [15:0] data_out;

endmodule

module C (d,clk,e,q);
input d, clk, e;
output [15:0] q;

endmodule

1 Previous versions of the LeonardoSpectrum software required
an attribute statement //exemplar attribute U1 NOOPT
TRUE, which instructs the software to treat the instance U1 as a
black box. This attribute is no longer required, although it is still
supported in the software.

9–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Black Boxing in VHDL

Any design block that is not defined in the project, or included in the list
of files to be read for a project, is treated as a black box by the software. In
VHDL, you need a component declaration for the black box which is
normal for any other block in the design.

Example 9–7 shows an example of the A.vhd top-level file. If any of your
lower-level files also contain a black-boxed lower-level file in the next
level of hierarchy, follow the same procedure.

Altera Corporation 9–29
October 2007

Block-Based Design with the Quartus II Software

Example 9–7. VHDL Top-Level File Black-Boxing Example
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY A IS

PORT (data_in : IN INTEGER RANGE 0 TO 15;
clk : IN STD_LOGIC;
e : IN STD_LOGIC;
ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15

);
END A;

ARCHITECTURE a_arch OF A IS

COMPONENT B PORT(
data_in : IN INTEGER RANGE 0 TO 15;
clk : IN STD_LOGIC;
e : IN STD_LOGIC;
ld : IN STD_LOGIC;

data_out : OUT INTEGER RANGE 0 TO 15
);
END COMPONENT;

COMPONENT C PORT(
d : IN INTEGER RANGE 0 TO 15;
clk : IN STD_LOGIC;
e : IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15

);
END COMPONENT;

-- Other component declarations in A.vhd go here

signal cnt_out : INTEGER RANGE 0 TO 15;
signal reg_a_out : INTEGER RANGE 0 TO 15;
BEGIN
CNT : C
PORT MAP (

data_in => data_in,
clk => clk,
e => e,
ld => ld,
data_out => cnt_out

);

REG_A : D
PORT MAP (

d => cnt_out,
clk => clk,
e => e,
q => reg_a_out

);

-- Any other code in A.vhd goes here

END a_arch;

9–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1 Previous versions of the LeonardoSpectrum software required
the attribute statement noopt of C: component is TRUE,
which instructed the software to treat the component C as a
black box. This attribute is no longer required, although it is still
supported in the software.

After you have completed the steps outlined in this section, you have a
different EDIF netlist file for each block of code. You can now use these
files for incremental compilation flows in the Quartus II software.

Creating a Quartus II Project for Multiple EDIF Files

The LeonardoSpectrum software creates a Tcl file for each EDIF file,
which provides the Quartus II software with the information to set up a
project.

As in the previous section, there are two different methods for bringing
each EDIF and corresponding Tcl file into the Quartus II software:

■ Use the Tcl file that is created for each EDIF file by the
LeonardoSpectrum software. This method generates multiple
Quartus II projects, one for each block in the design. Each designer in
the project can optimize their block separately in the Quartus II
software and preserve their results. Designers should create a
LogicLock region for each block; the top-level designer should then
import all the blocks and assignments into the top-level project.
Altera recommends this method for bottom-up incremental and
hierarchical design methodology because it allows each block in the
design to be treated separately; each block can be imported into one
top-level project.

or

■ Use the <top-level project>.tcl file that contains the information to set
up the top-level project. This method allows the top-level designer to
create LogicLock regions for each block and bring all the blocks into
one Quartus II project. Designers can optimize all modules in the
project at once in a top-down design flow. If additional optimization
is required for individual blocks, each designer can take their EDIF
file and create a separate Quartus II project at that time. New
assignments would then have to be added to the top-level project
manually or through the import function.

Altera Corporation 9–31
October 2007

Block-Based Design with the Quartus II Software

f For more information about importing designs using incremental
compilation, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.
For more information about importing LogicLock regions, refer to the
LogicLock Design Methodology chapter in the volume 2 of the Quartus II
Handbook.

In both methods, you can use the following steps to create the Quartus II
project and compile the design:

1. Place the EDIF and Tcl files in the same directory.

2. On the View menu, point to Utility Windows and click Tcl Console.
The Quartus II Tcl Console is shown.

3. At a Tcl prompt, type source <path>/<project name>.tcl r.

4. On the File menu, click Open Project. In the New Project window,
browse to and select the project name. Click Open.

5. To create LogicLock assignments, on the Assignments menu, click
LogicLock Regions Window.

6. On the Processing menu, click Start Compilation.

Incremental Synthesis Flow

If you make changes to one or more submodules, you can manually
create new projects in the LeonardoSpectrum software to generate a new
EDIF netlist file when there are changes to the source files. Alternatively,
you can use incremental synthesis to generate a new netlist for the
changed submodule(s). To perform incremental synthesis in the
LeonardoSpectrum software, use the script described in this section to
reoptimize and generate a new EDIF netlist for only the affected modules
using the LeonardoSpectrum top-level project. This method applies only
when you are using the LogicLock option in the LeonardoSpectrum
software.

Modifications Required for the LogicLock_Incremental.tcl Script File

There are three sets of entries in the file that must be modified before
beginning incremental synthesis. The variables in the Tcl file are
surrounded by angle brackets (< >).

1. Add the list of source files that are included in the project. You can
enter the full path to the file or just the file name if the files are
located in the working directory.

9–32 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

2. Indicate which modules in the design have changed. These modules
are the EDIF files that are regenerated by the LeonardoSpectrum
software. These modules contain a LogicLock assignment in the
original compilation.

1 Obtain the LeonardoSpectrum software path for each
module by looking at the CTR file that contains the
LogicLock assignments from the original project. Each
LogicLock assignment is applied to a particular module in
the design.

3. Enter the target device family using the appropriate device
keyword. The device keyword is written into the Transcript or
Information window when you select a target Technology and click
Load Library or Apply on the Technology Flow tab in the graphical
user interface.

Example 9–8 shows the LogicLock_Incremental.tcl file for the
incremental synthesis flow. You must modify the Tcl file before you can
use it for your project.

Altera Corporation 9–33
October 2007

Block-Based Design with the Quartus II Software

Example 9–8. LogicLock_Interface.tcl Script File for Incremental Synthesis
##
LogicLock Incremental Synthesis Flow
##

You must indicate which modules have changed (based on the source files
that have changed) and provide the complete path to each module

You must also specify the list of design files and the target Altera
technology being used

Read the design source files.
read <list of design files separated by spaces (such as block1.v block2.v)>

Get the list of modified modules in bottom-up "depth first search" order
where the lower-level blocks are listed first (these should be modules
that had LogicLock assignments and separate EDIF netlist files in the
first pass and had their source code modified)

set list_of_modified_modules {.work.<block2>.INTERFACE .work.<block1>.INTERFACE}

foreach module $list_of_modified_modules {
set err_rc [regexp {\.(.*)\.(.*)\.(.*)} $module unused lib module_name arch]
present_design $module

Run optimization, preserving hierarchy. You must specify a technology.
optimize -ta <technology> -hierarchy preserve

Ensure that the lower-level module is not optimized again when
optimizing higher-level modules.
dont_touch $module

}

foreach module $list_of_modified_modules {
set err_rc [regexp {\.(.*)\.(.*)\.(.*)} $module unused lib module_name arch]
present_design $module
undont_touch $module
auto_write $module_name.edf
Ensure that the lower-level module is not written out in the EDIF file
of the higher-level module.
noopt $module

}

Running the Tcl Script File in LeonardoSpectrum

Once you have modified the Tcl script, as described in the “Modifications
Required for the LogicLock_Incremental.tcl Script File” on page 9–31,
you can compile your design using the script.

9–34 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

You can run the script in batch mode at the command line prompt using
the following command:

spectrum -file <Tcl_file> r
To run the script from the interface, on the File menu, click Run Script,
then browse to your Tcl file and click Open.

The LogicLock incremental design flow uses module-based design to
help you preserve performance of modules and have control over
placement. By tagging the modules that require separate EDIF files, you
can make multiple EDIF files for use with the Quartus II software from a
single LeonardoSpectrum software project.

Conclusion Advanced synthesis is an important part of the design flow. Taking
advantage of the Mentor Graphics LeonardoSpectrum software and the
Quartus II design flow allows you to control how your design files are
prepared for the Quartus II place-and-route process, as well as to
improve performance and optimize a design for use with Altera devices.
The methodologies outlined in this chapter can help optimize a design to
achieve performance goals and save design time.

Referenced
Documents

This chapter references the following documents:

■ Design Recommendations for Altera Devices chapter in volume 1 of the
Quartus II Handbookk

■ LeonardoSpectrum Installation Guide and the LeonardoSpectrum User’s
Manual.

■ LogicLock Design Methodology chapter in volume 2 of the Quartus II
Handbook

■ Mentor Graphics Precision RTL Synthesis Support chapter in volume 1
of the Quartus II Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook

■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook

■ TCL Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.mentor.com/
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52009.pdf

Altera Corporation 9–35
October 2007

Document Revision History

Document
Revision History

Table 9–6 shows the revision history of this chapter.

Table 9–6. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

● Stratix III device added.
● Reorganized “Referenced Documents” on page 9–34.

Version updated for
2007.

May 2007
v7.1.0

● Updated LeonardoSpectrum software version to 2006b
● Added “Referenced Documents” on page 9–34.

—

November 2006
v6.1.0

Added document revision history to chapter. —

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0. —

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.
● Chapter 10 was formerly chapter 11 in version 5.0.

—

May 2005
v5.0.0

Chapter 11 was formerly chapter 9 in version 4.2. —

December 2004
v2.1.0

● Chapter 10 was formerly Chapter 11 in version 4.1.
● Updated information.
● New functionality in Quartus II software version 4.2.
● Updated tables and figures.

—

June 2004
v2.0.0

● Updates to tables, and figures.
● New functionality for Quartus II software version 4.1.

—

Feb. 2004
v1.0.0

Initial release. —

9–36 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Altera Corporation 10–1
October 2007

10. Mentor Graphics
Precision RTL

Synthesis Support

Introduction As programmable logic device (PLD) designs become more complex and
require increased performance, advanced synthesis has become an
important part of the design flow. When integrated into the Quartus II®
design flow, Mentor Graphics® Precision RTL Synthesis can be used to
improve performance results for Altera® devices.

This chapter documents support for the Mentor Graphics Precision RTL
Synthesis software in the Quartus II software design flow, as well as key
design methodologies and techniques for improving your results for
Altera devices.

The topics discussed in this chapter include:

■ “Design Flow” on page 10–2
■ “Creating a Project and Compiling the Design” on page 10–6
■ “Mapping the Precision Synthesis Design” on page 10–7
■ “Synthesizing the Design and Evaluating the Results” on page 10–13
■ “Exporting Designs to the Quartus II Software Using NativeLink

Integration” on page 10–14
■ “Megafunctions and Architecture-Specific Features” on page 10–23
■ “Incremental Compilation and Block-Based Design” on page 10–32

This chapter assumes that you have installed and licensed the Precision
RTL Synthesis software and the Quartus II software.

f To obtain and license the Precision RTL Synthesis software, refer to the
Mentor Graphics web site at www.mentor.com. To install and run the
Precision RTL Synthesis software and to set up your work environment,
refer to the Precision RTL Synthesis User’s Manual in the Precision
Manuals Bookcase in the Help menu.

QII51011-7.2.0

http://www.mentor.com

10–2 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Device Family
Support

The following list shows the Altera device families supported by the
Mentor Graphics Precision RTL Synthesis software version 2007a when
used with the Quartus II software version 7.2:

■ Arria™ GX
■ Cyclone® III
■ Stratix® III
■ Stratix II, Stratix II GX, Hardcopy® II
■ Stratix, Stratix GX, HardCopy Stratix
■ Cyclone II
■ Cyclone
■ MAX® 3000A, MAX 7000, MAX 7000AE, MAX 7000B, MAX 7000E,

MAX 7000S, MAX II
■ ACEX® 1K
■ APEX™ 20K, APEX 20KC, APEX 20KE, APEX II
■ FLEX® 10K, FLEX 10KA, FLEX 10KB, FLEX 10KE, FLEX 6K

The Precision software also supports the following legacy devices that are
supported in the Quartus II software (as applicable to the specific license
requested at the support section of www.altera.com).

■ Excalibur™ ARM®

■ Mercury™

In addition, the Precision software supports the following legacy devices
that are supported in the Altera MAX+PLUS II software only:

■ MAX 9000
■ FLEX 8000

Design Flow The basic steps in a Quartus II design flow using the Precision RTL
Synthesis software includes:

1. Create Verilog HDL or VHDL design files in the Quartus II design
software, the Precision RTL Synthesis software, or with a text editor.

2. Create a project in the Precision RTL Synthesis software that
contains the HDL files for your design, select your target device,
and set global constraints.

3. Compile the project in the Precision RTL Synthesis software.

4. Add specific timing constraints, optimization attributes, and
compiler directives to optimize the design during synthesis.

http://www.altera.com

Altera Corporation 10–3
October 2007

Design Flow

1 For best results, Mentor Graphics recommends specifying
constraints that are as close as possible to actual operating
requirements. Properly setting clock and I/O constraints,
assigning clock domains, and indicating false and
multicycle paths guide the synthesis algorithms more
accurately toward a suitable solution in the shortest
synthesis time.

5. Synthesize the project in the Precision RTL Synthesis software. With
the design analysis capabilities and cross-probing of Precision RTL
Synthesis software, you can identify and improve circuit area and
performance issues using pre-layout timing estimates.

6. Create a Quartus II project and import the technology-specific EDIF
(.edf) netlist, the Quartus II design constraints file (.sdc) in Synopsys
Design Constraints (SDC) format (TimeQuest constraints if a
Stratix III, Arria GX, or Cyclone III device is selected), and the tool
command language (.tcl) file generated by the Precision RTL
Synthesis software into the Quartus II software for placement and
routing, and for performance evaluation using actual post-layout
timing data.

7. After obtaining place-and-route results that meet your needs,
configure or program the Altera device.

These steps are described in detail throughout this chapter. Figure 10–1
shows the Quartus II design flow using Precision RTL Synthesis as
described in the above steps.

10–4 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Figure 10–1. Design Flow Using the Precision RTL Synthesis Software and Quartus II Software

Notes to Figure 10–1:
(1) If a device other than Stratix III, Arria GX, or Cyclone III is selected, two .tcl files are generated. One file acts as a

Quartus II Project Configuration file, while the other file contains timing constraints for the Classic Timing
Analyzer. If a Stratix III, Arria GX, or Cyclone III device is selected, only the Quartus II Project Configuration .tcl
file is generated.

(2) This file is generated automatically only if a Stratix III, Arria GX, or Cyclone III device is selected.

Functional/RTL
Simulation

VHDL Verilog HDL

Constraints &
Settings

Constraints &
Settings

Precision RTL Synthesis

Gate-Level
Functional
Simulation

Gate-Level Timing
Simulation

Timing & Area
Requirements

Satisfied?

Forward-Annotated Project
Configurations & Timing Constraints
(.tcl/.acf) (1)

Technology-
Specific Netlist

(.edf)

Post-Synthesis
Simulation Files

(.vho/.vo)

Post Place-and-Route
Simulation File

(.vho/.vo)

Configuration/Programming Files
(.sof/.pof)

Yes

No

Program/Configure Device

Start Start

Quartus II Software

Quartus II Timing Constraints
 in SDC format (.sdc) (2)

Altera Corporation 10–5
October 2007

Design Flow

If your area or timing requirements are not met, you can change the
constraints and resynthesize the design in the Precision RTL Synthesis
software, or you can change constraints to optimize the design during
place-and-route in the Quartus II software. Repeat the process until the
area and timing requirements are met (Figure 10–1).

You can use other options and techniques in the Quartus II software to
meet area and timing requirements. One such option is the WYSIWYG
Primitive Resynthesis option, which can perform optimizations on your
EDIF netlist in the Quartus II software.

f For information about netlist optimizations, refer to the Netlist
Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II
Handbook. For more recommendations about how to optimize your
design, refer to the Area and Timing Optimization chapter in volume 2 of
the Quartus II Handbook.

While simulation and analysis can be performed at various points in the
design process, final timing analysis should be performed after
placement and routing is complete.

During the synthesis process, the Precision RTL Synthesis software
produces several intermediate and output files. Table 10–1 lists these files
with a short description of each file type.

10–6 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Creating a
Project and
Compiling the
Design

After creating your design files, create a project in the Precision RTL
Synthesis software that contains the basic settings for compiling the
design.

Creating a Project

Set up your design files as follows:

1. In the Precision RTL Synthesis software, click the New Project icon
in the Design Bar on the left side of the GUI.

2. Set the Project Name and the Project Folder. The implementation
name of the design corresponds to this project name.

Table 10–1. Precision RTL Synthesis Software Intermediate and Output Files

File Extension(s) File Description

.psp Precision RTL Synthesis Software Project File

.xdb Mentor Graphics Design Database File

.rep (1) Synthesis Area and Timing Report File

.edf Technology-specific netlist in electronic design interchange format (EDIF)

.acf/.tcl (2) Forward-annotated constraints file containing constraints and assignments

.sdc (3) Quartus II timing constraints file in Synopsys Design Constraints format

Notes to Table 10–1:
(1) The timing report file includes performance estimates that are based on pre-place-and-route information. Use the

fMAX reported by the Quartus II software after place-and-route for accurate post-place-and-route timing
information. The area report file includes post-synthesis device resource utilization statistics that may differ from
the resource usage after place-and-route due to black-boxes or further optimizations performed during placement
and routing. Use the device utilization reported by the Quartus II software after place-and-route for final resource
utilization results. See “Synthesizing the Design and Evaluating the Results” on page 10–13 for details.

(2) An Assignment and Configuration File (.acf) file is created only for ACEX 1K, FLEX 10K, FLEX 10KA, FLEX 6000,
FLEX 8000, MAX 7000, MAX 9000, and MAX 3000 devices. The Assignment and Configuration File is generated
for backward compatibility with the MAX+PLUS® II software. Two .tcl files are generated, depending on the
device selected: <project name>.tcl and <project name>_pnr_constraints.tcl. The <project name>.tcl file is generated
regardless of device selected. It acts as the Quartus II Project Configuration file and is used to make basic project
assignments and to create and compile a Quartus II project for your EDIF netlist. If an Stratix III, Arria GX, or
Cyclone III device is selected, this file contains the command required to use the TimeQuest Timing Analyzer
instead of the Classic Timing Analyzer. The <project name>_pnr_constraints.tcl file is generated automatically only
if a device other than Stratix III, Arria GX, or Cyclone III is selected. It contains timing constraints called by <project
name>.tcl to perform placement and routing.

(3) This file is generated automatically only if a Stratix III, Arria GX, or Cyclone III device is selected, and has the
naming convention <project name>_pnr_constraints.sdc

Altera Corporation 10–7
October 2007

Mapping the Precision Synthesis Design

3. Add input files to the project with the Add Input Files icon in the
Design Bar. Precision RTL Synthesis software automatically detects
the top-level module/entity of the design. It uses the top-level
module/entity to name the current implementation directory, logs,
reports, and netlist files.

4. In the Design Bar, click the Setup Design icon.

5. To specify a target device family, expand the Altera entry, and
choose the target device and speed grade.

6. If desired, set a global design frequency and/or default input and
output delays. This constrains all clock paths and all I/O pins in
your design. Modify the settings for individual paths or pins that do
not require such a setting.

To generate additional netlist files (for example, an HDL netlist for
simulation), on the Tools menu, point to Set Options and Output and
select the desired output format. The Precision RTL Synthesis software
generates a separate file for each selected type of file: EDIF, Verilog HDL,
and VHDL.

Compiling the Design

To compile the design into a technology-independent implementation,
on the Design Bar, click the Compile icon.

Mapping the
Precision
Synthesis
Design

In the next steps, you set constraints and map the design to
technology-specific cells. The Precision RTL Synthesis software maps the
design by default to the fastest possible implementation that meets your
timing constraints. To accomplish this, you must specify timing
requirements for the automatically determined clock sources. With this
information, the Precision RTL Synthesis software performs static timing
analysis to determine the location of the critical timing paths. The
Precision RTL Synthesis software achieves the best results for your design
when you set as many realistic constraints as possible. Be sure to set
constraints for timing, mapping, false paths, multicycle paths, and others
that control the structure of the implemented design.

Mentor Graphics recommends creating a Synopsys Design Constraint file
(.sdc) and adding this file to the Constraint Files section of the Project
Files list. You can create this file with a text editor, by issuing command
line constraint parameters, or using the Precision RTL Synthesis software
to generate one automatically for you on the first synthesis run. To create
a constraint file with the user interface, set constraints on design objects
(such as clocks, design blocks, or pins) in the Design Hierarchy browser.

10–8 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

By default, the Precision RTL Synthesis software saves all timing
constraints and attributes in two files: precision_rtl.sdc and
precision_tech.sdc. The precision_rtl.sdc file contains constraints set on
the RTL-level database (after compilation) and the precision_tech.sdc file
contains constraints set on the gate-level database (after synthesis)
located in the current implementation directory.

You can also enter constraints at the command line. After adding
constraints at the command line, update the .sdc file with the update
constraint file command.

1 You can add constraints that change infrequently directly to the
HDL source files with HDL attributes or pragmas.

f For more details and examples, refer to the Attributes chapter in the
Precision Synthesis Reference Manual in the Precision Manual Bookcase in
the Help menu.

Setting Timing Constraints

Timing constraints, based on the industry-standard Synopsys Design
Constraint file format, help the Precision RTL Synthesis software to
deliver optimal results. Missing timing constraints can result in
incomplete timing analysis and may prevent timing errors from being
detected. Precision RTL Synthesis software provides constraint analysis
prior to synthesis to ensure that designs are fully and accurately
constrained. If a device other than Stratix III, Arria GX, or Cyclone III is
selected, all timing constraints are forward-annotated to the Quartus II
software using Tcl scripts for the Quartus II Classic Timing Analyzer. If a
Stratix III, Arria GX, or Cyclone III device is selected,
<project name>_pnr_constraints.sdc is generated that contains timing
constraints in SDC format. So, instead of using the Classic Timing
Analyzer, the Quartus II software uses the TimeQuest Timing Analyzer
for timing analysis.

1 Because the Synopsys Design Constraint file format requires
that timing constraints must be set relative to defined clocks,
you must specify your clock constraints before applying any
other timing constraints.

You also can use multicycle path and false path assignments to relax
requirements or exclude nodes from timing requirements. Doing so can
improve area utilization and allow the software optimizations to focus on
the most critical parts of the design.

Altera Corporation 10–9
October 2007

Mapping the Precision Synthesis Design

f For details about the syntax of Synopsys Design Constraint commands,
refer to the Precision RTL Synthesis Users Manual and the Precision
Synthesis Reference Manual available in the Precision Manual Bookcase in
the Help menu.

Setting Mapping Constraints

Mapping constraints affect how your design is mapped into the target
Altera device. You can set mapping constraints in the user interface, in
HDL code, or with the set_attribute command in the constraint file.

Assigning Pin Numbers and I/O Settings

The Precision RTL Synthesis software supports assigning device pin
numbers, I/O standards, drive strengths, and slew-rate settings to
top-level ports of the design. You can set these timing constraints with the
set_attribute command, the GUI, or by specifying synthesis attributes in
your HDL code. These constraints are written into the Tcl file that is read
by the Quartus II software during place-and-route and do not affect
synthesis.

You can use the set_attribute command in the Synopsys Design
Constraint file to specify pin number constraints, I/O standards, drive
strengths, and slow slew-rate settings. Table 10–2 outlines the format to
use for entries in the Synopsys Design Constraint file.

You can also specify these options in the GUI. To specify a pin number or
other I/O setting in the Precision RTL Synthesis GUI, follow these steps:

1. After compiling the design, expand the Ports entry in the Design
Hierarchy Browser.

2. Under Ports, expand the Inputs or Outputs entry.

Table 10–2. Constraint File Settings

Constraint Entry Format for Synopsys Design Constraint File

Pin number set_attribute -name PIN_NUMBER -value "<pin number>" -port <port name>

I/O standard set_attribute -name IOSTANDARD -value "<I/O Standard>" -port <port name>

Drive
strength

set_attribute -name DRIVE -value "<drive strength in mA>" -port <port name>

Slew rate set_attribute -name SLEW -value "TRUE | FALSE" -port <port name>

10–10 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

1 You also can assign I/O settings by right-clicking the pin in
the Schematic Viewer.

3. Right-click the desired pin name and select the Set Input
Constraints option under Inputs or Set Output Constraints option
under Outputs.

4. Enter the desired pin number on the Altera device in the Pin
Number box (Port Constraints dialog box).

5. Select the I/O standard from the IO_STANDARD list.

6. For output pins, you can also select a drive strength setting and slew
rate setting using the DRIVE and SLOWSLEW lists.

You also can use synthesis attributes or pragmas in your HDL code to
make these assignments. Example 10–1 and Example 10–2 show code
samples that makes a pin assignment in your HDL code.

Example 10–1. Verilog HDL Pin Assignment
//pragma attribute clk pin_number P10;

Example 10–2. VHDL Pin Assignment
attribute pin_number : string
attribute pin_number of clk : signal is “P10”;

You can use the same syntax to assign the I/O standard using the
attribute IOSTANDARD, drive strength using the attribute DRIVE, and
slew rate using the attribute SLEW.

1 For more details about attributes and how to set these attributes
in your HDL code, refer to the Precision Synthesis Reference
Manual. To access this manual, in the Synplify software, click
Help and select Open Manuals Bookcase.

Assigning I/O Registers

The Precision RTL Synthesis software performs timing-driven I/O
register mapping by default. It moves registers into an I/O element (IOE)
when it does not negatively impact the register-to-register performance
of your design, based on the timing constraints.

Altera Corporation 10–11
October 2007

Mapping the Precision Synthesis Design

You can force a register to the device’s IOE using the Complex I/O
constraint. This option does not apply if you turn off I/O pad insertion.
Refer to “Disabling I/O Pad Insertion” on page 10–11 for more
information.

To force an I/O register into the device’s IOE using the GUI, follow these
steps:

1. After compiling the design, expand the Ports entry in the Design
Hierarchy browser.

2. Under Ports, expand the Inputs or Outputs entry, as desired.

3. Under Inputs or Outputs, right-click the desired pin name, point to
Map Input Register to IO or Map Output Register to IO for input
or output respectively, and click True.

1 You also can make the assignment by right-clicking on the pin
in the Schematic Viewer.

For the Stratix and Cyclone series, and MAX II device families, the
Precision RTL Synthesis software can move an internal register to an I/O
register without any restrictions on design hierarchy.

For more mature devices, the Precision RTL Synthesis software can move
an internal register to an I/O register only when the register exists in the
top level of the hierarchy. If the register is buried in the hierarchy, you
must flatten the hierarchy so that the buried registers are moved to the
top level of the design.

Disabling I/O Pad Insertion

The Precision RTL Synthesis software assigns I/O pad atoms (device
primitives used to represent the I/O pins and I/O registers) to all ports in
the top level of a design by default. In certain situations, you may not
want the software to add I/O pads to all I/O pins in the design. The
Quartus II software can compile a design without I/O pads; however,
including I/O pads provides the Precision RTL Synthesis software with
the most information about the top-level pins in the design.

10–12 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Preventing the Precision RTL Synthesis Software from Adding I/O Pads

If you are compiling a subdesign as a separate project, I/O pins cannot be
primary inputs or outputs of the device and therefore should not have an
I/O pad associated with them. To prevent the Precision RTL Synthesis
software from adding I/O pads, perform the following steps:

1. On the Tools menu, click Set Options.

2. On the Optimization page of the Options dialog box, turn off Add
IO Pads, then click Apply.

This procedure adds the following command to the project file:

setup_design -addio=false

Preventing the Precision RTL Synthesis Software from Adding an I/O Pad
on an Individual Pin

To prevent I/O pad insertion on an individual pin when you are using a
black box, such as Double Data Rate (DDR) or a Phase-Locked Loop
(PLL), at the external ports of the design, follow these steps:

1. After compiling the design, in the Design Hierarchy browser,
expand the Ports entry by clicking the + icon.

2. Under Ports, expand the Inputs or Outputs entry.

3. Under Inputs or Outputs, right-click the desired pin name and click
Set Input Constraints.

4. In the Port Constraints dialog box for the selected pin name, turn
off Insert Pad.

1 You also can make the assignment by right-clicking on the pin
in the Schematic Viewer or by attaching the nopad attribute to
the port in the HDL source code.

Controlling Fan-Out on Data Nets

Fan-out is defined as the number of nodes driven by an instance or
top-level port. High fan-out nets can have significant delays which can
result in an unroutable net. On a critical path, high fan-out nets can cause
larger delay in a single net segment which can result in the timing
constraints not being met. To prevent this behavior, each device family
has a global fan-out value set in the Precision RTL Synthesis software

Altera Corporation 10–13
October 2007

Synthesizing the Design and Evaluating the Results

library. In addition, the Quartus II software automatically routes high
fan-out signals on global routing lines in the Altera device whenever
possible.

To eliminate routability and timing issues associated with high fan-out
nets, the Precision RTL Synthesis software also allows you to override the
library default value on a global or individual net basis. You can override
the library value by setting a max_fanout attribute on the net.

Synthesizing the
Design and
Evaluating the
Results

To synthesize the design for the target device, click on the Synthesize
icon in the Precision RTL Synthesis Design Bar. During synthesis, the
Precision RTL Synthesis software optimizes the compiled design, then
writes out netlists and reports to the implementation subdirectory of your
working directory after the implementation is saved, using the naming
convention:

<project name>_impl_<number>

After synthesis is complete, you can evaluate the results in terms of area
and timing. The Precision RTL Synthesis User’s Manual on the
Mentor Graphics web site describes different results that can be
evaluated in the software.

There are several schematic viewers available in the Precision RTL
Synthesis software: RTL schematic, Technology-mapped schematic, and
Critical Path schematic. These analysis tools allow you to quickly and
easily isolate the source of timing or area issues, and to make additional
constraint or code changes to optimize the design.

Obtaining Accurate Logic Utilization and Timing Analysis
Reports

Historically, designers have relied on post-synthesis logic utilization and
timing reports to determine how much logic their design requires, how
big a device they need, and how fast the design will run. However,
today’s FPGA devices provide a wide variety of advanced features in
addition to basic registers and look-up tables (LUTs). The Quartus II
software has advanced algorithms to take advantage of these features, as
well as optimization techniques to both increase performance and reduce
the amount of logic required for a given design. In addition, designs may
contain black boxes and functions that take advantage of specific device
features. Because of these advances, synthesis tool reports provide
post-synthesis area and timing estimates, but the place-and-route
software should be used to obtain final logic utilization and timing
reports.

10–14 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Exporting
Designs to the
Quartus II
Software Using
NativeLink
Integration

The NativeLink feature in the Quartus II software facilitates the seamless
transfer of information between the Quartus II software and EDA tools,
which allows you to run other EDA design entry/synthesis, simulation,
and timing analysis tools automatically from within the Quartus II
software.

After a design is synthesized in the Precision RTL Synthesis software, the
technology-mapped design is written to the current implementation
directory as an EDIF netlist file, along with a Quartus II Project
Configuration File and a place-and-route constraints file. You can use the
Project Configuration script, <project name>.tcl, to create and compile a
Quartus II project for your EDIF netlist. This script makes basic project
assignments, such as assigning the target device specified in the Precision
RTL Synthesis software. For the Quartus II Timing Analyzer, the Project
Configuration script calls the place-and-route constraints script,
<project name>_pnr_constraints.tcl, to make your timing constraints. If
you select an Arria GX, Stratix III, or Cyclone III device, the constraints
are written in SDC format to the <project name>_pnr_constraints.sdc file
by default and is used by the Fitter and the TimeQuest Timing Analyzer
in the Quartus II software.

If you want to use the Quartus II TimeQuest Timing Analyzer, use the
following Precision command before compilation:

setup_design -timequest_sdc

With this command, a file named <project name>_pnr_constraints.sdc is
generated after the synthesize command. You can also use the following
command to generate the SDC constraint file but not set up the entire
project to use TimeQuest:

report_constraints -timequest

The report_constraints - timequest command also generates
the file <project_name>_pnr_constraints.sdc

Running the Quartus II Software from within the Precision RTL
Software

Precision RTL Synthesis software also has a built-in place-and-route
environment that allows you to run the Quartus II Fitter and view the
results in the Precision RTL Synthesis GUI. This feature is useful when
performing an initial compilation of your design to view
post-place-and-route timing and device utilization results, but not all the
advanced Quartus II options that control the compilation process are
available.

Altera Corporation 10–15
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

After you specify an Altera device as the target, set the options for the
Quartus II software. On the Tools menu, click Set Options. On the
Integrated Place and Route page (under Quartus II Modular), specify the
path to the Quartus II executables in the Path to Quartus II installation tree
box.

To automate the place-and-route process, click the Run Quartus II icon in
the Quartus II Modular window of the Precision RTL Synthesis Toolbar.
The Quartus II software uses the current implementation directory as the
Quartus II project directory and runs a full compilation in the background
(that is, no user interface appears).

Two primary Precision RTL Synthesis software commands control the
place-and-route process. Place-and-route options are set by the
setup_place_and_route command. The process is started with the
place_and_route command.

Precision RTL Synthesis software versions 2004a and later support using
individual Quartus II executables, such as analysis and synthesis
(quartus_map), Fitter (quartus_fit), and the Classic Timing Analyzer
(quartus_tan) or the TimeQuest Timing Analyzer (quartus_sta) (only for
software version 2006a and later), for improved runtime and memory
utilization during place and route. This flow is referred to as the Quartus II
Modular flow option in Precision RTL Synthesis software and is compatible
with Quartus II software versions beginning with version 4.0. By default, the
Precision RTL Synthesis software generates this Quartus II Project
Configuration File (Tcl file) for Arria GX, Stratix series, MAX II, and
Cyclone series device families. When you use this flow, all timing constraints
that you set during synthesis are exported to the Quartus II place-and-route
constraints file <project name>_pnr_constraints.tcl, or
<project name>_pnr_constraints.sdc, depending on which Quartus II timing
analyzer the Precision RTL Synthesis software is targeting.

For other device families, the Precision RTL Synthesis software uses the
Quartus II flow option, which enables the Quartus II compilation flow that
existed in Precision RTL Synthesis software versions earlier than 2004a. The
Quartus II Project Configuration File (Tcl file) is written when using the
Quartus II flow option that includes supported timing constraints that you
specified during synthesis. This Tcl file is compatible with all versions of the
Quartus II software; however, the format and timing constraints do not take
full advantage of the features in the Quartus II software introduced with
version 4.0.

To force the use of a particular flow when it is not the default for a certain
device family, use the following command to set up the integrated
place-and-route flow:

10–16 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

setup_place_and_route -flow "<Altera Place-and-Route flow>"

Depending on the device family, you can use one of the following flow
options in the command above:

■ Quartus II Modular
■ Quartus II
■ MAX+PLUS II

For example, for the Stratix II or MAX II device families (which were not
supported in Quartus II software versions earlier than 4.0), you can use
only the Quartus II Modular flow. For the Stratix device family, you can
use either the Quartus II Modular or Quartus II flows. The FLEX 8000
device family, which is not supported in the Quartus II software, is
supported only by the MAX+PLUS II flow.

After the design is compiled in the Quartus II software from within the
Precision RTL Synthesis software, you can invoke the Quartus II GUI
manually and then open the project using the generated Quartus II
project file. You can view reports, run analysis tools, specify options, and
run the various processing flows available in the Quartus II software.

Running the Quartus II Software Manually Using the Precision
RTL Synthesis-Generated Tcl Script

You can use the Quartus II software separately from the Precision RTL
Synthesis software. To run the Tcl script generated by the Precision RTL
Synthesis software to set up your project and start a full compilation,
perform the following steps:

1. Ensure the EDIF, Tcl files, and SDC file (if using the TimeQuest
Timing Analyzer) are located in the same directory (by default, the
files should be located in the implementation directory).

2. In the Quartus II software, on the View menu, point to Utility
Windows and click Tcl Console.

3. At the Tcl Console command prompt, type the command:

source <path>/<project name>.tcl r
4. On the File menu, click Open Project. Browse to the project name,

and click Open.

5. Compile the project in the Quartus II software.

Altera Corporation 10–17
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

Using Quartus II Software to Launch the Precision RTL Synthesis
Software

Using NativeLink integration, you can set up the Quartus II software to
run the Precision RTL Synthesis software. This feature allows you to use
the Precision RTL Synthesis software to synthesize a design as part of a
normal compilation.

f For detailed information about using NativeLink integration with the
Precision RTL Synthesis software, go to Specifying EDA Tool Settings in
the Quartus II Help index.

Passing Constraints to the Quartus II Software

The place-and-route constraints script forward-annotates timing
constraints that you made in the Precision RTL Synthesis software. This
integration allows you to enter these constraints once in the Precision
RTL Synthesis software, and then pass them automatically to the
Quartus II software.

1 All of the constraints you set in the Precision software are
mapped to the Quartus II software. For same constraint you set
in the Precision software, there may be a different command
mapped to the Quartus II software, depending on whether you
are using the TimeQuest Timing Analyzer or the Classic Timing
Analyzer.

f Refer to the introductory text in the section Exporting Designs to the
Quartus II Software Using NativeLink Integration on page 10–14 for
information on how to ensure Precision targets the TimeQuest Timing
Analyzer.

The following constraints are translated by the Precision RTL Synthesis
software and are applicable to the Classic Timing Analyzer and the
TimeQuest Timing Analyzer:

■ create_clock
■ set_input_delay
■ set_output_delay
■ set_max_delay
■ set_min_delay
■ set_false_path
■ set_multicycle_path

10–18 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

create_clock

You can specify a clock in the Precision RTL Synthesis software, as shown
in Example 10–3.

Example 10–3. Specifying a Clock using create_clock
create_clock -name <clock_name> -period <period in ns> -waveform {<edge_list>}
-domain <ClockDomain> <pin>

The period is specified in units of nanoseconds (ns). If no clock domain is
specified, the clock belongs to a default clock domain main. All clocks in
the same clock domain are treated as synchronous (related) clocks. If no
<clock_name> is provided, the default name virtual_default is used.
The <edge_list> sets the rise and fall edges of the clock signal over an
entire clock period. The first value in the list is a rising transition, typically
the first rising transition after time zero. The waveform can contain any
even number of alternating edges, and the edges listed should alternate
between rising and falling. The position of any edge can be equal to or
greater than zero but must be equal to or less than the clock period.

If -waveform <edge_list> is not specified, and -period <period_value>
is specified, the default waveform has a rising edge of 0.0 and a falling
edge of <period_value>/2.

The Precision RTL Synthesis software passes the clock definitions to the
Quartus II software with the create_base_clock command in the
place-and-route constraints file for the Classic Timing Analyzer. For the
TimeQuest Timing Analyzer, the clock constraint is mapped to the
TimeQuest create_clock setting in the Quartus II software.

The following list describes some differences in the clock properties
supported by the Precision RTL Synthesis software and the Quartus II
software:

■ The Quartus II software supports only clock waveforms with two
edges in a clock cycle. If the Precision RTL Synthesis software finds
a multi-edge clock, it issues an error message when you synthesize
your design in Precision RTL Synthesis software. This applies to both
the Quartus II TimeQuest Timing Analyzer and the Quartus II
Classic Timing Analyzer.

■ Clocks in the same clock -domain are annotated with the
create_relative_clock command to create related clocks for
the Quartus II Classic Timing Analyzer.

■ The Quartus II Classic Timing Analyzer assumes the first clock edge
to be at time 0.0. If the Precision RTL Synthesis software waveform
has a first transition at a time different than time zero (0.0), the

Altera Corporation 10–19
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

Precision RTL Synthesis software creates a base clock without any
target, then uses this to create a relative clock with an offset set to the
first clock edge.

set_input_delay

This port-specific input delay constraint is specified in the Precision RTL
Synthesis software, as shown in Example 10–4.

Example 10–4. Specifying set_input_delay
set_input_delay {<delay_value> <port_pin_list>} -clock <clock_name> -rise
-fall -add_delay

This constraint is mapped to the set_input_delay setting in the
Quartus II software.

When the reference clock <clock_name> is not specified, all clocks are
assumed to be the reference clocks for this assignment. The input pin
name for the assignment can be an input pin name of a time group. The
software can use the option clock_fall to specify delay relative to the
falling edge of the clock.

1 Although the Precision RTL Synthesis software allows you to set
input delays on pins inside the design, these constraints are not
sent to the Quartus II software, and a message is displayed.

set_output_delay

This port-specific output delay constraint is specified in the Precision RTL
Synthesis software, as shown in Example 10–5.

Example 10–5. Using the set_output_delay Constraint
set_output_delay {<delay_value> <port_pin_list>} -clock <clock_name> -rise -fall
-add_delay

This constraint is mapped to the set_output_delay setting in the
Quartus II software.

When the reference clock <clock_name> is not specified, all clocks are
assumed to be the reference clocks for this assignment. The output pin
name for the assignment can be an output pin name of a time group.

10–20 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

1 Although the Precision RTL Synthesis software allows you to set
output delays on pins inside the design, these constraints are not
sent to the Quartus II software.

set_max_delay

The total delay for a point-to-point timing path constraint is specified in
the Precision RTL Synthesis software, as shown in Example 10–6.

Example 10–6. Using the set_max_delay Constraint
set_max_delay -from {<from_node_list>} -to {<to_node_list>} <delay_value>

This command specifies that the maximum required delay for any start
point in <from_node_list> to any endpoint in <to_node_list> must be less
than <delay_value>. Typically, this command is used to override the
default setup constraint for any path with a specific maximum time value
for the path.

The node lists can contain a collection of clocks, registers, ports, pins, or
cells. The -from, and -to parameters specify the source (start point),
and the destination (endpoint) of the timing path respectively. The source
list (<from_node_list>) cannot include output ports, and the destination
list (<to_node_list>) cannot include input ports. If you include more than
one node on a list, you must enclose the nodes in quotes or in '{ }' braces.

If you specify a clock in the source list, you must specify a clock in the
destination list. Applying set_max_delay between clocks applies the
exception from all registers or ports driven by the source clock to all
registers or ports driven by the destination clock. Applying exceptions
between clocks is more efficient than applying them for specific node to
node, or node to clock paths. If you want to specify pin names in the list,
the source must be a clock pin, and the destination must be any non-clock
input pin to a register. Assignments from clock pins, or to and from cells,
apply to all registers in the cell or for those driven by the clock pin.

set_min_delay

The minimum delay for a point-to-point timing path constraint is
specified in the Precision RTL Synthesis software, as shown in
Example 10–7.

Example 10–7. Using the set_min_delay Constraint
set_min_delay -from {<from_node_list>} -to {<to_node_list>} <delay_value>

Altera Corporation 10–21
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

This command specifies that the minimum required delay for any start
point in <from_node_list> to any endpoint in <to_node_list> must be
greater than <delay_value>. Typically, you use this command to override
the default setup constraint for any path with a specific minimum time
value for the path.

The node lists can contain a collection of clocks, registers, ports, pins, or
cells. The -from, and -to specify the source (start point), and the
destination (endpoint) of the timing path respectively. The source list
(<from_node_list>) cannot include output ports, and the destination list
(<to_node_list>) cannot include input ports. If you include more than one
node to a list, you must enclose the nodes in quotes or in '{ }' braces.

If you specify a clock in the source list, you must specify a clock in the
destination list. Applying set_min_delay between clocks applies the
exception from all registers or ports driven by the source clock to all
registers or ports driven by the destination clock. Applying exceptions
between clocks is more efficient than applying them for specific node to
node, or node to clock paths. If you want to specify pin names in the list,
the source must be a clock pin, and the destination must be any non-clock
input pin to a register. Assignments from clock pins, or to and from cells,
apply to all registers in the cell or for those driven by the clock pin.

set_false_path

The false path constraint is specified in the Precision RTL Synthesis
software, as shown in Example 10–8.

Example 10–8. Using the set_false_path Constraint
set_false_path -to <to_node_list> -from <from_node_list> -reset_path

The node lists can be a list of clocks, ports, instances, and pins. Multiple
elements in the list can be represented using wildcards such as “*” and
“?.”

In place-and-route Tcl constraints file, this setting in the Precision RTL
Synthesis software is mapped to a set_timing_cut_assignment
setting for the Classic Timing Analyzer. For the TimeQuest Timing
Analyzer, this constraint is mapped to the set_false_path setting.

The node lists for this assignment represents top-level ports and/or nets
connected to instances (end points of timing assignments).

The Quartus II software supports setup, hold, rise, or fall options
for this assignment only if you are using the TimeQuest Timing Analyzer.

10–22 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

The Quartus II Classic Timing Analyzer does not support false paths with
the through path specification. Any setting in the Precision RTL
Synthesis software with a through specification can be mapped to a
setting in the Quartus II software only if you use the TimeQuest Timing
Analyzer.

For the Classic Timing Analyzer, if you use the from or to option
without using both options, the Precision RTL Synthesis command is
converted to a Quartus II command using wildcards. Table 10–3 lists
these set_false_path constraints in the Precision RTL Synthesis
software and the Quartus II software equivalent when the Classic Timing
Analyzer is used.

set_multicycle_path

This multi-cycle path constraint is specified in the Precision RTL
Synthesis software, as shown in Example 10–9.

Example 10–9. Using the set_multicycle_path Constraint
set_multicycle_path <multiplier_value> [-start] [-end] -to <to_node_list> -from
<from_node_list> -reset_path

The node lists can contain clocks, ports, instances, and pins. Multiple
elements in the list can be represented using wildcards such as “*” and
“?.” Paths without multicycle path definitions are identical to paths with
multipliers of 1. To add one additional cycle to the datapath, use a
multiplier value of 2. The option start is to indicate that source clock
cycles should be considered for the multiplier. The option end is to
indicate that destination clock cycles should be considered for the
multiplier. The default is to reference the end clock.

In the place-and-route Tcl constraints file, this setting in the Precision RTL
Synthesis software is mapped to a set_multicycle_assignment
setting for the Classic Timing Analyzer. For TimeQuest Timing Analyzer,
this constraint is mapped to the set_multicycle_path setting.

Table 10–3. set_false_path Constraints with the Classic Timing Analyzer

Precision RTL Synthesis Assignment Quartus II Equivalent

set_false_path -from <from_node_list> set_timing_cut_assignment -to {*} -from <node_list>

set_false_path -to <to_node_list> set_timing_cut_assignmet -to <node_list> -from {*}

Altera Corporation 10–23
October 2007

Megafunctions and Architecture-Specific Features

The node lists represent top-level ports and/or nets connected to
instances (end points of timing assignments). The node lists can contain
wildcards (such as ‘*’); the Quartus II software automatically expands all
wildcards.

For the Classic Timing Analyzer, if you use the from or to option
without using both options, the Precision RTL Synthesis command is
converted to a Quartus II command using wildcards. Table 10–4 lists the
set_multicycle_path constraints in the Precision RTL Synthesis
software and the Quartus II software equivalent, when the Classic
Timing Analyzer is used.

The Quartus II software supports the rise or fall options on this
assignment only if you use the TimeQuest Timing Analyzer.

The Quartus II Classic Timing Analyzer does not support multicycle path
with a through path specification. Any setting in Precision RTL
Synthesis software with a -through specification can be mapped to a
setting in the Quartus II software only if you use the TimeQuest Timing
Analyzer.

Megafunctions
and
Architecture-
Specific
Features

Altera provides parameterizable megafunctions including LPM,
device-specific Altera megafunctions, intellectual property (IP) available
as Altera MegaCore functions, and IP available through the Altera
Megafunction Partners Program (AMPPSM). You can use megafunctions
by instantiating them in your HDL code or inferring them from generic
HDL code.

f For more details about specific Altera megafunctions, refer to the
Quartus II Help. For more information about IP functions, consult the
appropriate IP documentation.

To instantiate a megafunction in your HDL code, you can use the
MegaWizard® Plug-In Manager to parameterize the function or you can
instantiate the function using the port and parameter definition. The

Table 10–4. set_multicycle_path Constraints for the Classic Timing Analyzer

Precision RTL Synthesis Assignment Quartus II Equivalent

set_multicycle_path -from
<from_node_list> <value>

set_multicycle_assignment -to {*} -from
<node_list> <value>

set_multicycle_path -to <to_node_list>
<value>

set_multicycle_assignmet -to <node_list> -
from {*} <value>

10–24 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

MegaWizard Plug-In Manager provides a graphical interface for
customizing and parameterizing any available megafunction for the
design. “Instantiating Altera Megafunctions Using the MegaWizard
Plug-In Manager” on page 10–24 describes the MegaWizard flow with
the Precision RTL Synthesis software.

The Precision RTL Synthesis software automatically recognizes certain
types of HDL code and infers the appropriate megafunction when a
megafunction will provide optimal results. The Precision RTL Synthesis
software also provides options to control inference of certain types of
megafunctions, as described in “Inferring Altera Megafunctions from
HDL Code” on page 10–25.

f For a detailed information about instantiating versus inferring
megafunctions, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook. This chapter also provides details
about using the MegaWizard Plug-In Manager in the Quartus II
software and explains the files generated by the wizard. In addition, the
chapter provides coding style recommendations and examples for
inferring megafunctions in Altera devices.

Instantiating Altera Megafunctions Using the MegaWizard
Plug-In Manager

When you use the MegaWizard Plug-In Manager to set up and
parameterize a megafunction and to create a custom megafunction
variation, the MegaWizard creates either a VHDL or Verilog HDL
wrapper file.

Instantiating the MegaWizard Plug-In Manager-generated wrapper file is
referred to as a black-box methodology because the megafunction is
treated as a black box in the Precision RTL Synthesis software.

1 Beginning with Quartus II software version 7.1, there is an
option in the MegaWizard Plug-In Manager to create a netlist
for area and timing estimation instead of a wrapper file. This
option is not currently supported with the Precision RTL
Synthesis software, therefore you must use the megafunction
wrapper file as described in this section.

Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for
Black-Box Megafunction Instantiation
The MegaWizard Plug-In Manager generates a Verilog HDL instantiation
template file <output file>_inst.v and a hollow-body black-box module
declaration <output file>_bb.v for use in your Precision RTL Synthesis
design. The instantiation template file helps to instantiate the
megafunction variation wrapper file, <output file>.v, in your top-level

Altera Corporation 10–25
October 2007

Megafunctions and Architecture-Specific Features

design. Add the hollow-body black-box module declaration
<output file>_bb.v to your Precision RTL Synthesis project to describe the
port connections of the black box.

Including the megafunction variation wrapper file <output file>.v in your
Precision RTL Synthesis project is optional, but you must add it to your
Quartus II project along with your Precision RTL synthesis-generated
EDIF netlist. Alternately, you can include the file in your Precision project
and then right-click on the file in the input file list, and select Properties.
In the input file properties dialog box, turn on Exclude file from
Compile Phase and click OK. When this option is on, the Precision RTL
Synthesis software does not compile this file and the tool makes a copy of
the file in the appropriate directory so that the Quartus II software can
compile the design during placement and routing.

Using MegaWizard Plug-In Manager-Generated VHDL Files for
Black-Box Megafunction Instantiation
The MegaWizard Plug-In Manager generates a VHDL Component
declaration file <output file>.cmp and a VHDL Instantiation template file
<output file>_inst.vhd for use in your Precision RTL Synthesis design.
These files can help you instantiate the megafunction variation wrapper
file, <output file>.vhd, in your top-level design.

Including the megafunction variation wrapper file, <output file>.vhd, in
your Precision RTL synthesis project is optional, but you must add it to
your Quartus II project with your Precision RTL synthesis-generated
EDIF netlist. Alternately, you can include the file in your Precision project
and then right-click on the file in the input file list, and select Properties.
In the input file properties dialog box, turn on Exclude file from
Compile Phase and click OK. When this option is on, the Precision RTL
Synthesis software does not compile this file and the tool makes a copy of
the file in the appropriate directory so that the Quartus II software can
compile the design during placement and routing.

Inferring Altera Megafunctions from HDL Code

The Precision RTL Synthesis software automatically recognizes certain
types of HDL code and maps arithmetic and relational operators, and
memory (RAM and ROM), to efficient technology-specific
implementations. This allows for the use of technology-specific resources
to implement these structures by inferring the appropriate Altera
megafunction when a megafunction will provide optimal results. In some
cases, the Precision RTL Synthesis software has options that you can use
to disable or control inference.

10–26 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

f For coding style recommendations and examples for inferring
megafunctions in Altera devices, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook, and the Precision
Synthesis Style Guide in the Precision RTL Synthesis Manuals Bookcase in
the Help menu.

Multipliers

The Precision RTL Synthesis software detects multipliers in HDL code
and maps them directly to device atoms to implement the multiplier in
the appropriate type of logic. The Precision RTL Synthesis software also
allows you to control the device resources that are used to implement
individual multipliers, as described in the following section.

Controlling DSP Block Inference for Multipliers
By default, the Precision RTL Synthesis software uses DSP blocks
available in the Stratix series of devices to implement multipliers. The
default setting is AUTO, to allow Precision RTL Synthesis software the
flexibility to choose between logic look-up tables (LUTs) and DSP blocks,
depending on the size of the multiplier. You can use the Precision RTL
Synthesis GUI or HDL attributes to direct the mapping to only logic
elements or to only DSP blocks. The options for multiplier mapping in the
Precision RTL Synthesis software are shown in Table 10–5.

Table 10–5. Options for dedicated_mult Parameter to Control Multiplier Implementation in Precision RTL
Synthesis

Value Description

ON Use only DSP blocks to implement multipliers, regardless of the size of the multiplier.

OFF Use only logic (LUTs) to implement multipliers.

AUTO Use logic (LUTs) and DSP blocks to implement multipliers depending on the size of the
multipliers.

Altera Corporation 10–27
October 2007

Megafunctions and Architecture-Specific Features

Using the GUI

To set the Use Dedicated Multiplier option in the Precision RTL Synthesis
GUI, perform the following steps:

1. Compile the design.

2. In the Design Hierarchy browser, right-click the operator for the
desired multiplier and click Use Dedicated Multiplier.

Using Attributes

To control the implementation of a multiplier in your HDL code, use the
dedicated_mult attribute with the appropriate value from Table 10–5 on
page 10–26, as shown in Example 10–10 and Example 10–11.

Example 10–10. Setting the dedicated_mult Attribute in Verilog HDL
//synthesis attribute <signal name> dedicated_mult <value>

Example 10–11. Setting the dedicated_mult Attribute in VHDL
ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE dedicated_mult OF <signal name>: SIGNAL IS <value>;

The dedicated_mult attribute can be applied to signals and wires; it
does not work when applied to a register. This attribute can be applied only
to simple multiplier code, such as a = b * c.

Some signals for which the dedicated_mult attribute is set may be
synthesized away by the Precision RTL Synthesis software because of
design optimization. In such cases, if you want to force the
implementation, you should preserve the signal by setting the
preserve_signal attribute to TRUE, as shown in Example 10–12 and
Example 10–13.

Example 10–12. Setting the preserve_signal Attribute in Verilog HDL
//synthesis attribute <signal name> preserve_signal TRUE

Example 10–13. Setting the preserve_signal Attribute in VHDL
ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE preserve_signal OF <signal name>: SIGNAL IS TRUE;

10–28 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Example 10–14 and Example 10–15 are examples in Verilog HDL and
VHDL of using the dedicated_mult attribute to implement the given
multiplier in regular logic in the Quartus II software.

Example 10–14. Verilog HDL Multiplier Implemented in Logic
module unsigned_mult (result, a, b);

output [15:0] result;
input [7:0] a;
input [7:0] b;
assign result = a * b; //synthesis attribute result dedicated_mult OFF

endmodule

Example 10–15. VHDL Multiplier Implemented in Logic
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY unsigned_mult IS
PORT(

a: IN std_logic_vector (7 DOWNTO 0);
b: IN std_logic_vector (7 DOWNTO 0);
result: OUT std_logic_vector (15 DOWNTO 0));

ATTRIBUTE dedicated_mult: STRING;
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
SIGNAL a_int, b_int: UNSIGNED (7 downto 0);
SIGNAL pdt_int: UNSIGNED (15 downto 0);

ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
BEGIN

a_int <= UNSIGNED (a);
b_int <= UNSIGNED (b);
pdt_int <= a_int * b_int;
result <= std_logic_vector(pdt_int);

END rtl;

Multiplier-Accumulators and Multiplier-Adders

The Precision RTL Synthesis software detects multiply-accumulators or
multiply-adders in HDL code and infers an altmult_accum or
altmult_add megafunction so that the logic can be placed in DSP
blocks, or maps directly to device atoms to implement the multiplier in
the appropriate type of logic.

Altera Corporation 10–29
October 2007

Megafunctions and Architecture-Specific Features

1 The Precision RTL Synthesis software supports inference for
these functions only if the target device family has dedicated
DSP blocks.

The Precision RTL Synthesis software also allows you to control the
device resources used to implement multiply-accumulators or
multiply-adders in your project or in a particular module. Refer to the
“Controlling DSP Block Inference” on page 10–29 section for more
information.

f For more information about DSP blocks in Altera devices, refer to the
appropriate Altera device family handbook and device-specific
documentation. For details about which functions a given DSP block can
implement, refer to the DSP Solutions Center on the Altera web site at
www.altera.com.

f For more information about inferring Multiply-Accumulator and
Multiply-Adder megafunctions in HDL code, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook, and
the Precision Synthesis Style Guide in the Precision RTL Synthesis Manuals
Bookcase in the Help menu.

Controlling DSP Block Inference

By default, the Precision RTL Synthesis software infers the altmult_add
or altmult_accum megafunction as appropriate for your design. These
megafunctions allow the Quartus II software the flexibility to choose
regular logic or DSP blocks depending on the device utilization and the
size of the function.

You can use the extract_mac attribute to prevent the inference of an
altmult_add or altmult_accum megafunction in a certain module or
entity. The options for this attribute are shown in Table 10–6.

Table 10–6. Options for extract_mac Attribute Controlling DSP Implementation

Value Description

TRUE The altmult_add or altmult_accum megafunction is inferred

FALSE The altmult_add or altmult_accum megafunction is not inferred

http://www.altera.com
http://www.altera.com
http://www.altera.com

10–30 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

To control inference, use the extract_mac attribute with the
appropriate value from Table 10–6 on page 10–29 in your HDL code, as
shown in Example 10–16 and Example 10–17.

Example 10–16. Setting the extract_mac Attribute in Verilog HDL
//synthesis attribute <module name> extract_mac <value>

Example 10–17. Setting the extract_mac Attribute in VHDL
ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF <entity name>: ENTITY IS <value>;

To control the implementation of the multiplier portion of a
multiply-accumulator or multiply-adder, you must use the
dedicated_mult attribute as described in “Controlling DSP Block
Inference” on page 10–29 (see this section for syntax details).

Example 10–18 and Example 10–19 use the extract_mac,
dedicated_mult, and preserve_signal attributes (in Verilog HDL
and VHDL) to implement the given DSP function in logic in the
Quartus II software.

Altera Corporation 10–31
October 2007

Megafunctions and Architecture-Specific Features

Example 10–18. Using extract_mac, dedicated_mult and preserve_signal in Verilog HDL
module unsig_altmult_accum1 (dataout, dataa, datab, clk, aclr, clken);

input [7:0] dataa, datab;
input clk, aclr, clken;
output [31:0] dataout;

reg [31:0] dataout;
wire [15:0] multa;
wire [31:0] adder_out;

assign multa = dataa * datab;

//synthesis attribute multa preserve_signal TRUE
//synthesis attribute multa dedicated_mult OFF
assign adder_out = multa + dataout;

always @ (posedge clk or posedge aclr)
begin

if (aclr)
dataout <= 0;

else if (clken)
dataout <= adder_out;

end

//synthesis attribute unsig_altmult_accum1 extract_mac FALSE
endmodule

Example 10–19. Using extract_mac, dedicated_mult, and preserve_signal in VHDL
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;

ENTITY signedmult_add IS
PORT(

a, b, c, d: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

);
ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF signedmult_add: ENTITY IS FALSE;

END signedmult_add;

ARCHITECTURE rtl OF signedmult_add IS
SIGNAL a_int, b_int, c_int, d_int : signed (7 DOWNTO 0);
SIGNAL pdt_int, pdt2_int : signed (15 DOWNTO 0);
SIGNAL result_int: signed (15 DOWNTO 0);

10–32 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

ATTRIBUTE preserve_signal OF pdt_int: SIGNAL IS TRUE;
ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
ATTRIBUTE preserve_signal OF pdt2_int: SIGNAL IS TRUE;
ATTRIBUTE dedicated_mult OF pdt2_int: SIGNAL IS "OFF";

BEGIN
a_int <= signed (a);
b_int <= signed (b);
c_int <= signed (c);
d_int <= signed (d);
pdt_int <= a_int * b_int;
pdt2_int <= c_int * d_int;
result_int <= pdt_int + pdt2_int;
result <= STD_LOGIC_VECTOR(result_int);

END rtl;

RAM and ROM

The Precision RTL Synthesis software detects memory structures in HDL
code and converts them to an operator that infers an altsyncram or
lpm_ram_dp megafunction, depending on the device family. The
software then places these functions in memory blocks.

The software supports inference for these functions only if the target
device family has dedicated memory blocks.

f For more information about inferring RAM and ROM megafunctions in
HDL code, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook, and the Precision Synthesis Style
Guide in the Precision RTL Synthesis Manuals Bookcase in the Help
menu.

Incremental
Compilation and
Block-Based
Design

As designs become more complex and designers work in teams, a
block-based hierarchical or incremental design flow is often an effective
design approach. In an incremental compilation flow, you can make
changes to a part of the design while maintaining the placement and
performance of unchanged parts of the design. Design iterations can be
made dramatically faster by focusing new compilations on particular
design partitions and merging results with the results of previous
compilations of other partitions. In a bottom-up or team-based approach,
you can perform optimization on individual blocks and then integrate
them into a final design and optimize it at the top level.

Using the Precision RTL Synthesis software, you can create different
netlist files for different partitions of a design hierarchy. This makes each
partition independent of the others for either a top-down or a bottom-up
incremental compilation flow. In either case, only the portions of a design

Altera Corporation 10–33
October 2007

Incremental Compilation and Block-Based Design

that have been updated must be recompiled during design iterations.
You can make changes and resynthesize one partition in a design to
create a new netlist without affecting the synthesis results or fitting of
other partitions. The following steps show the general top-down
compilation flow when using these features of the Quartus II software:

1. Create Verilog HDL or VHDL design files as you do in the regular
design flow.

2. Determine which hierarchical blocks you want to treat as separate
partitions in your design.

3. Create a project with multiple implementations (or create multiple
projects) in the Precision RTL Synthesis software, one for each
partition in the design.

4. Disable I/O pad insertion in the implementations for lower-level
partitions.

5. Compile and synthesize each implementation or each project in the
Precision RTL Synthesis software, and make constraints as in the
regular design flow.

6. Import the EDIF netlist and the Tcl file for each partition into the
Quartus II software and set up the Quartus II project(s) to use
incremental compilation.

7. Compile your design in the Quartus II software and preserve the
compilation results using the post-fit netlist type.

8. When you make design or synthesis optimization changes to part of
your design, resynthesize only the changed partition to generate the
new EDIF netlist and Tcl file. Do not resynthesize the
implementations or projects for the unchanged partitions.

9. Import the new EDIF netlist and Tcl file into the Quartus II software
and recompile the design in the Quartus II software using
incremental compilation.

f For more information about creating partitions and using the
incremental compilation in the Quartus II software, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

10–34 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Hierarchy and Design Considerations

To ensure the proper functioning of the synthesis flow, you can create
separate partitions only for modules, entities, or existing netlist files. In
addition, each module or entity must have its own design file. If two
different modules are in the same design file but are defined as being part
of different partitions, you cannot maintain incremental synthesis
because both regions must be recompiled when you change one of the
modules.

Altera recommends that you register all inputs and outputs of each
partition. This makes logic synchronous and avoids any delay penalty on
signals that cross partition boundaries.

If you use boundary tri-states in a lower level block, the Precision RTL
Synthesis software pushes the tri-states through the hierarchy to the top
level to make use of the tri-state drivers on output pins of Altera devices.
Because pushing tri-states requires optimizing through hierarchies, lower
level tri-states are not supported with a block-based compilation
methodology. You should use tri-state drivers only at the external output
pins of the device and in the top-level block in the hierarchy.

f For more tips on design partitioning, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook.

Creating a Design with Separate Netlist Files

The first step in a hierarchical or incremental design flow is to ensure that
different parts of your design do not affect each other. Ensure that you
have separate netlists for each partition in your design so that you can
take advantage of the incremental compilation design flow in the
Quartus II software. If the whole design is in one netlist file, changes in
one partition affect other partitions because of possible node name
changes when you resynthesize the design.

You can create different implementations for each partition in your
Precision RTL project, which allows you to switch between partitions
without leaving the current project file, or you can create a separate
project for each partition if you need separate projects for a bottom-up or
team-based design flow.

Create a separate implementation or a separate project for each lower
level module and for the top-level design that you want to maintain as a
separate EDIF netlist file. Implement black-box instantiations of lower
level modules in your top-level implementation or project.

Altera Corporation 10–35
October 2007

Incremental Compilation and Block-Based Design

f For more information about managing implementations and projects,
refer to the Precision RTL Synthesis User’s Manual in the Precision
Manuals Bookcase in the Help menu.

When synthesizing the implementations for lower level modules,
perform these steps:

1. On the Tools menu, turn off Add IO Pads on the Optimization
page under Set Options.

2. Read the HDL files for the modules.

1 Modules may include black-box instantiations of lower level
modules that are also maintained as separate EDIF files.

3. Add constraints for all partitions in the design.

When synthesizing the top-level design implementation, perform these
steps:

1. Read the HDL files for top-level designs.

2. Create black boxes for lower level modules in the top-level design.

3. Add constraints.

1 In a top-down incremental compilation flow, constraints made
on lower level modules are not passed to the Quartus II
software. Ensure that appropriate constraints are made in the
top-level Precision RTL Synthesis project, or in the Quartus II
project.

The following sections describe an example of implementing black boxes
to create separate EDIF netlists. Figure 10–2 shows an example of a design
hierarchy separated into various partitions.

10–36 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Figure 10–2. Partitions in a Hierarchical Design

In Figure 10–2, the top-level partition contains the top-level block in the
design (block A) and the logic that is not defined as part of another
partition. In this example, the partition for top-level block A also includes
the logic in the C subblock. Because block F is contained in its own
partition, it is not treated as part of the top-level partition A. Another
separate partition, B, contains the logic in blocks B, D, and E. In a
team-based design, different engineers may work on the logic in different
partitions. One netlist is created for the top-level module A and its
submodule C, another netlist is created for B and its submodules D and
E, while a third netlist is created for F. To create multiple EDIF netlist files
for this design, follow these steps:

1. Generate an EDIF file for module B. Use B.v/.vhd, D.v/.vhd, and
E.v/.vhd as the source files.

2. Generate an EDIF file for module F. Use F.v/.vhd as the source file.

3. Generate a top-level EDIF file for module A. Use A.v/.vhd and
C.v/.vhd as the source files. Ensure that you create black boxes for
modules B and F, which were optimized separately in the previous
steps.

Altera Corporation 10–37
October 2007

Incremental Compilation and Block-Based Design

Creating Black Boxes in Verilog HDL

Any design block that is not defined in the project or included in the list
of files to be read for a project is treated as a black box by the software. In
Verilog HDL, you must provide an empty module declaration for any
module that is treated as a black box.

A black-box example for top-level file A.v follows. Use this same
procedure for any lower level files, which also contain a black box for any
module beneath the current level of hierarchy.

Example 10–20. Verilog HDL Black Box for Top-Level File A.v
module A (data_in, clk, e, ld, data_out);

input data_in, clk, e, ld;
output [15:0] data_out;

wire [15:0] cnt_out;

B U1 (.data_in (data_in),.clk(clk), .ld (ld),.data_out(cnt_out));
F U2 (.d(cnt_out), .clk(clk), .e(e), .q(data_out));

// Any other code in A.v goes here.
endmodule

// Empty Module Declarations of Sub-Blocks B and F follow here.
// These module declarations (including ports) are required for black
// boxes.

module B (data_in, clk, ld, data_out);
input data_in, clk, ld;
output [15:0] data_out;

endmodule

module F (d, clk, e, q);
input [15:0] d;
input clk, e;
output [15:0] q;

endmodule

Creating Black Boxes in VHDL

Any design block that is not defined in the project or included in the list
of files to be read for a project is treated as a black box by the software. In
VHDL, you need a component declaration for the black box just like any
other block in the design.

10–38 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

A black box for the top-level file A.vhd is shown in the following
example. Follow this same procedure for any lower level files that also
contain a black box or for any block beneath the current level of hierarchy.

Example 10–21. VHDL Black Box for Top-Level File A.vhd
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY A IS
PORT (data_in : IN INTEGER RANGE 0 TO 15;

clk, e, ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15);

END A;

ARCHITECTURE a_arch OF A IS
COMPONENT B PORT(

data_in : IN INTEGER RANGE 0 TO 15;
clk, ld : IN STD_LOGIC;
d_out : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;

COMPONENT F PORT(
d : IN INTEGER RANGE 0 TO 15;
clk, e: IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;

-- Other component declarations in A.vhd go here

signal cnt_out : INTEGER RANGE 0 TO 15;

BEGIN
U1 : B
PORT MAP (

data_in => data_in,
clk => clk,
ld => ld,
d_out => cnt_out);

U2 : F
PORT MAP (

d => cnt_out,
clk => clk,
e => e,
q => data_out);

-- Any other code in A.vhd goes here

END a_arch;

Altera Corporation 10–39
October 2007

Incremental Compilation and Block-Based Design

After you complete the steps outlined in this section, you have different
EDIF netlist files for each partition of the design. These files are ready for
use in the incremental compilation or LogicLock design methodologies in
the Quartus II software.

Creating Quartus II Projects for Multiple EDIF Files

The Precision RTL Synthesis software creates a Tcl file for each EDIF file,
and provides the Quartus II software with the appropriate constraints
and information to set up a project. For details about using the Tcl script
generated by the Precision RTL software to set up your Quartus II project
and to pass your top-level constraints, refer to “Running the Quartus II
Software Manually Using the Precision RTL Synthesis-Generated Tcl
Script” on page 10–16.

Depending on your design methodology, you can create one Quartus II
project for all EDIF netlists (a top-down flow), or a separate Quartus II
project for each EDIF netlist (a bottom-up flow). In a top-down
compilation design flow, you create design partition assignments and
floorplan location assignments for each partition in the design within a
single Quartus II project. This methodology provides the best quality of
results and performance preservation during incremental changes to
your design. You may need to use a bottom-up design flow when each
partition must be optimized separately, such as in certain team-based
design flows.

To perform a bottom-up compilation in the Quartus II software, create
separate Quartus II projects and import each design partition into a
top-level design using the incremental compilation export and import
features to maintain placement results. Alternately, you can use the
LogicLock design methodology to import each lower-level partition and
maintain placement results.

The following sections describe how to create the Quartus II projects for
these two design flows.

10–40 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Creating a Single Quartus II Project for a Top-Down Incremental
Compilation Flow

Use the <top-level project>.tcl file generated for the top-level partition to
create your Quartus II project and import all the netlists into this one
Quartus II project for an incremental compilation flow. You can optimize
all partitions within the single Quartus II project and take advantage of
the performance preservation and compilation time reduction that
incremental compilation provides. Figure 10–3 shows the design flow for
the example design in Figure 10–2 on page 10–36.

All the constraints from the top-level implementation are passed to the
Quartus II software in the top-level Tcl file, but any constraints made only
in the lower level implementations within the Precision RTL Synthesis
software are not forward-annotated. Enter these constraints manually in
your Quartus II project.

Figure 10–3. Design Flow Using Multiple EDIF Files with One Quartus II
Project

Altera Corporation 10–41
October 2007

Conclusion

Creating Multiple Quartus II Projects for a Bottom-Up Flow

Use the Tcl files generated by the Precision RTL Synthesis software for
each Precision RTL Synthesis software implementation or project to
generate multiple Quartus II projects, one for each partition in the design.
Each designer in the project can optimize their block separately in the
Quartus II software and export the placement of their blocks using the
incremental compilation or LogicLock design methodology. Designers
should create a LogicLock region for each block; the top-level designer
should then import all the blocks and assignments into the top-level
project. Figures 10–4 shows the design flow for the example design in
Figure 10–2 on page 10–36.

Figure 10–4. Design Flow: Using Multiple EDIF Files with Multiple Quartus II Projects

Conclusion Advanced synthesis is an important part of the design flow. The Mentor
Graphics Precision RTL Synthesis software and Quartus II design flow
allows you to control how to prepare your design files for the Quartus II
place-and-route process. This allows you to improve performance and
optimize a design for use with Altera devices. Several of the
methodologies outlined in this chapter can help you optimize a design to
achieve performance goals and decrease design time.

Quartus II Project Quartus II Project

a.edf

b.edf f.edf

Quartus II Project

Use a.tcl to import
Precision RTL synthesis
software assignments.

Use f.tcl to import
Precision RTL synthesis
software assignments.

Use b.tcl to import
Precision RTL synthesis

software assignments.

10–42 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Referenced
Documents

This chapter references the following documents:

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of
the Quartus II Handbook

■ Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook

■ Netlist Optimizations and Physical Synthesis chapter in volume 2 of the
Quartus II Handbook

■ Precision RTL Synthesis User’s Manual in the Precision Manuals
Bookcase in the Help menu

■ Precision Synthesis Style Guide in the Precision RTL Synthesis
Manuals Bookcase in the Help menu

■ Precision Synthesis Reference Manual in the Precision Manuals
Bookcase in the Help menu

■ Specifying EDA Tool Settings in the Quartus II Help index
■ Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II

Handbook

Document
Revision History

Table 10–7 shows the revision history for this chapter.

Table 10–7. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October, 2007
v7.2.0

● Added Arria GX to the list of supported
devices

● Added set_max_delay constraint
● Added set_min_delay constraint

Updated document based on the
Quartus II software version 7.2

May 2007
v7.1.0

● Minor updates for the Quartus II software
version 7.1.

● Add “Referenced Documents” section

—

March 2007
v7.0.0

● Chapter 10 was formally Chapter 9 in
version 6.0.

● Added SDC support for Stratix III and
Cyclone III devices

Added information regarding SDC for
Stratix III and Cyclone III; updated
information about in Precision RTL
Synthesis software and its
compatibility with the Quartus II
software.

May 2006
v6.0.0

Minor updates for the Quartus II software
version 6.0. —

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Altera Corporation 10–43
October 2007

Document Revision History

October 2005
v5.1.0

● Updated for the Quartus II software
version 5.1.

● Chapter 9 was formerly Chapter 10 in
version 5.0.

—

May 2005
v5.0.0

Chapter 10 was formerly chapter 8 in version
4.2.

—

December 2004
v2.1

● Chapter 9 was formerly Chapter 10 in
version 4.1.

● Updates to tables and figures.
● New functionality for Quartus II software

version 4.2.

—

June 2004
v2.0

● Updates to tables and figures.
● New functionality for Quartus II software

version 4.1.
—

February 2004
v1.0

Initial release.
—

Table 10–7. Document Revision History (Continued)

Date and Document
Version Changes Made Summary of Changes

10–44 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Altera Corporation 11–1
October 2007 Preliminary

11. Synopsys Design
Compiler FPGA Support

Introduction Programmable logic device (PLD) designs have reached the complexity
and performance requirements of ASIC designs. As a result, advanced
synthesis has taken on a more important role in the design process. This
chapter documents the usage and design flow of the Synopsys Design
Compiler FPGA (DC FPGA) synthesis software with Altera® devices and
Quartus® II software. DC FPGA supports Stratix® II, Stratix, Stratix GX,
Cyclone® II, and Cyclone devices.

This chapter assumes that you have set up and licensed the DC FPGA
software and Altera Quartus II software.

This chapter is primarily intended for ASIC designers experienced with
the Design Compiler (DC) software who are now developing PLD
designs, and experienced PLD designers who would like an introduction
to the Synopsys DC FPGA software.

f To obtain the DC FPGA software, libraries, and instructions on general
product usage, go to the Synopsys website at
http://solvnet.synopsys.com/retrieve/012889.html

The following areas are covered in this chapter:

■ General design flow with the DC FPGA software and the Quartus II
software

■ Initialization procedure using the .synopsys_dc.setup file for
targeting Altera devices

■ Using Altera megafunctions with the DC FPGA software
■ Reading design files into the DC FPGA software
■ Applying synthesis and timing constraints
■ Reporting and saving design information
■ Exporting designs to the Quartus II software

QII51014-7.2.0

11–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Design Flow
Using the
DC FPGA
Software and the
Quartus II
Software

A high-level overview of the recommended design flow for using the
DC FPGA software with the Quartus II software is shown in Figure 11–1.

Figure 11–1. Design Flow Using the DC FPGA Software and the Quartus II
Software

Functional or
RTL Simulation

Constraints
& Settings

Constraints
& Settings

Quartus II
Software

Synopsys DC FPGA
Software

Technology-Specific
Netlist
(.vqm)

Forward Annotated
Timing Constraints
(.tcl)

Configuration/
Programming Files
(.sof/.pof)

No

Yes

Timing
& Area

Requirements
Satisfied?

Verilog
HDL
(.v)

VHDL
(.vhd)

Configure/Program Device

Altera Corporation 11–3
October 2007 Preliminary

Setup of the DC FPGA Software Environment for Altera Device Families

Setup of the
DC FPGA
Software
Environment for
Altera Device
Families

Altera recommends that you organize your project directory with several
subdirectories. A recommended project hierarchy is shown in
Figure 11–2.

Figure 11–2. Project Hierarchy

To use the DC FPGA software to synthesize HDL designs for use with the
Quartus II software, the required settings should be included in your
.synopsys_dc.setup initialization file. This file is used to define global
variables and direct the DC FPGA software to the proper libraries used
for synthesis, as well as set internal assignments for synthesizing designs
for Altera devices.

The .synopsys_dc.setup file can reside in any one of three locations and
be read by the DC FPGA software. The DC FPGA software automatically
reads the .synopsys_dc.setup file at startup in the following order of
precedence:

1. Current directory where you run the DC FPGA software shell.

2. Home directory.

3. The DC FPGA software installation directory.

The DC FPGA software has vendor-specific setup files for each of the
Altera logic families in the installation directory. These vendor-specific
setup files are found where you have installed the libraries
(<dcfpga_rootdir>/libraries/fpga/altera) and are named in the form
synopsys_dc_<logic family>.setup. For example, if you want to use the
default setup for synthesizing an Altera Stratix device, you must link to
or copy the synopsys_dc_stratix.setup to your home or current directory
and rename the file .synopsys_dc.setup.

Synopsys recommends using the vendor-specific setup files provided
with each release of the DC FPGA software to ensure that you have all the
correct settings and obtain the best quality results.

11–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example 11–1 contains the recommended synthesis settings for the
Stratix II device architecture.

Example 11–1. Recommended Synthesis Settings for Stratix II Device Architecture
Setup file for Altera Stratixii
TCL style setup file but will work for original DC shell as well
Need to define the root location of the libraries by chaning the variable
$dcfpga_lib_path

set dcfpga_lib_path "<dcfpga_rootdir>/libraries/fpga/altera"

set search_path ". $dcfpga_lib_path $dcfpga_lib_path/STRATIXII $search_path"
set target_library "stratixii.db"
set synthetic_library "tmg.sldb altera_mf.sldb lpm.sldb"
set link_library "* stratixii.db tmg.sldb altera_mf.sldb lpm.sldb stratixii_mf.sldb"

set_fpga_defaults altera_stratixii

After generating your .synopsys_dc.setup file, run the DC FPGA
software in either the Tcl shell or in the Design Compiler software shell
without Tcl support. Run the DC FPGA software shell at a command
prompt by typing fpga_shell-t or fpga_shell -tcl for the Tcl
shell version of the DC FPGA software. Run the non-Tcl version of the
DC FPGA software with the fpga_shell command. Altera
recommends using the Tcl shell for all of your synthesis work.

If you have created a Tcl synthesis script for use in the DC FPGA software
and wish to run it immediately at startup, you can start the DC FPGA
software shell and run the script with the command shown in the
example below:

fpga_shell-t -f <path>/<script filename>.tcl r
Otherwise, you can run your scripts at any time at the fpga_shell-t>
prompt with the source command. An example is shown below:

source <path>/<script filename>.tcl r

Altera Corporation 11–5
October 2007 Preliminary

Megafunctions and Architecture-Specific Features

Megafunctions
and
Architecture-
Specific
Features

Altera provides parameterized megafunctions including library of
parameterized modules (LPMs), device-specific Altera megafunctions,
intellectual property (IP) available as Altera MegaCore® functions, and IP
available through the Altera Megafunction Partners Program (AMPP).
You can use megafunctions by instantiating them in your HDL code, or
by inferring them from your HDL code during synthesis in the DC FPGA
software.

f For more details on specific Altera megafunctions, refer to the Quartus II
Help.

The DC FPGA software automatically recognizes certain types of HDL
code and infers the appropriate megafunction when a megafunction
provides optimal results. The DC FPGA software also provides options to
control inference of certain types of megafunctions, as described in the
section “Instantiating Altera Megafunctions Using the MegaWizard
Plug-In Manager” on page 11–6.

f For a detailed discussion about instantiating versus inferring
megafunctions, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook. This chapter also provides details
about using the MegaWizard® Plug-In Manager in the Quartus II
software and explains the files generated by the wizard. In addition, the
chapter provides coding style recommendations and examples for
inferring megafunctions in Altera devices.

If you instantiate a megafunction in your HDL code, you can use the
MegaWizard Plug-In Manager to parameterize the function, or you can
instantiate the function using the port and parameter definition. The
MegaWizard Plug-In Manager provides a graphical interface in the
Quartus II software for customizing and parameterizing megafunctions.
“Instantiating Altera Megafunctions Using the MegaWizard Plug-In
Manager” on page 11–6 describes the MegaWizard Plug-In Manager flow
with the DC FPGA synthesis software.

11–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Instantiating
Altera
Megafunctions
Using the
MegaWizard
Plug-In Manager

When you use the MegaWizard Plug-In Manager to set up and
parameterize a megafunction, the MegaWizard Plug-In Manager creates
a VHDL or Verilog HDL wrapper file that instantiates the megafunction
(a black box methodology). The MegaWizard can also generate a fully
elaborated netlist that is read by EDA synthesis tools, such as the DC
FPGA (a clear box methodology). Both clear box and black box
methodologies are described in the following sections.

Clear Box Methodology

You can use the MegaWizard Plug-In Manager to generate a fully
synthesizeable netlist. This flow is referred to as a clear box methodology
because starting in V-2005.06, the DC FPGA software can look into the
megafunction file. The clear box feature enables the synthesis tool to
report more accurate timing estimates and resource utilization, while
taking a better advantage of timing driven optimization than a black box
methodology.

This clear box feature is enabled by turning on the Generate clear box
netlist file instead of a default wrapper file (for use with supported
EDA synthesis tools only) option in the MegaWizard Plug-In Manager
for certain megafunctions. DC FPGA supports clear box megafunctions
for altmult_add, almult_accum, altsyncram and
altshift_taps. If the option does not appear, then clear box models
are not supported for the selected megafunction.

1 The library declarations in the MegaWizard generated VHDL
output files need to be manually commented out to work
properly with the DC FPGA.

Reading Megafunction Wizard-Generated Synthesizable Clear Box Netlist
Files for Megafunction Instantiation

The DC FPGA software analyzes and elaborates the Megafunction
Wizard-generated Verilog HDL <output file>.v or VHDL <output file>.vhd
netlist that contains the parameters needed by the Quartus II software to
properly configure and instantiate your megafunction. Analyze the clear
box netlist files along with the rest of the RTL files during synthesis in DC
FPGA. The resulting netlist contains all the primitives that are part of the
clear box netlist. There is no need to put the clear box netlist file in your
Quartus II project along with your DC FPGA generated netlist file.

Altera Corporation 11–7
October 2007 Preliminary

Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager

Using the clear box Megafunction Wizard-generated netlist files provides
the DC FPGA software an understanding of their timing arcs and
resource usage. The DC FPGA software uses timing information to
optimize the surrounding circuits and resource data to better manage the
overall resource usage for the whole design. The DC FPGA software takes
the clear box netlist timing and area data into account when reporting the
timing and resource utilization for the device.

Advanced Clear Box Support for the Direct-Instantiated or Inferred Clear
Box Megafunctions

The DC FPGA provides advanced clear box support that enables a clear
box implementation for the direct-instantiated or inferred megafunctions
in your design. This methodology allows the DC FPGA to obtain the most
accurate interface timing and area data for the megafunctions. Therefore,
synthesis optimization is more effective, and timing and area reports are
more accurate.

The following describes the setup and usage model for this advanced
clear box support.

Design Compiler FPGA Setup
The advanced clear box flow will be enabled in the DC FPGA only when
the clearbox.sldb synthetic library is added to the synthetic_library
variable. For example:

set synthetic_library [concat clearbox.sldb $synthetic_library]
set link_library [concat clearbox.sldb $link_library]

Specify the path to the clear box loader (executable) in one of the
following ways:

■ Set the synlib_cbx_exec_path variable to the absolute path of
the clear box loader before the compile command:

set synlib_cbx_exec_path <Quartus II installation directory
/bin/clearbox>

■ Set the UNIX environment variable CLEARBOX_EXEC_PATH to the
absolute path of the clear box loader. For example:

setenv CLEARBOX_EXEC_PATH <Quartus II installation
directory /bin/clearbox>

By default, the advance clear box flow is turned off. To enable the clear
box advanced flow, add the following to your DC FPGA script. Set it
before the compile command:

set fpga_altera_clearbox_for_user_cells true

11–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

UNIX Environment Setting
For the DC FPGA to work with the clear box loader, the following setting
is necessary for the LD_LIBRARY_PATH environment variable. Assume
the QuartusII_Path used below is set to the Quartus II installation
directory.

On a Linux platform:

setenv LD_LIBRARY_PATH QuartusII_Path/linux:$LD_LIBRARY_PATH

On a Solaris platform:

setenv LD_LIBRARY_PATH QuartusII_Path/solaris:$LD_LIBRARY_PATH

Error Message
The only error message that you might encounter when trying to enable
the advanced clear box flow is: DCFPGA_UEGI-1

The DC FPGA reports this error when one of the following situations
occurs:

■ It cannot find the clear box loader path. For example, the defined
path is incorrect.

■ The Loader is not found in the specified path.
■ The Loader specified is not executable.

Sample Design Compiler FPGA Clear Box Setup Script
The TCL script shown in Example 11–2 is a DC FPGA clear box setup
script. Use it before compiling the design in DC FPGA.

Example 11–2. Sample Clear Box Setup Script
set QuartusII_Path /tools/altera/qii51
set_unix_variable CLEARBOX_EXEC_PATH $QuartusII_Path/bin/clearbox
set old_llp [get_unix_variable LD_LIBRARY_PATH]
set platform [sh uname]

if { $platform == "Linux" } {
 set_unix_variable LD_LIBRARY_PATH $QuartusII_Path/linux: old_llp
} else {
 # Assume, if not linux, it is solaris
 set_unix_variable LD_LIBRARY_PATH $QuartusII_Path/solaris: old_llp

set synthetic_library [concat clearbox.sldb $synthetic_library]
set link_library [concat clearbox.sldb $link_library]

set fpga_altera_clearbox_for_user_cells true

Altera Corporation 11–9
October 2007 Preliminary

Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager

Black Box Methodology

Using the MegaWizard Plug-In Manager-generated wrapper file is
referred to as a black box methodology because the megafunction is
treated as a black box in the DCFPGA software. The black box wrapper
file is generated by default in the MegaWizard Plug-In Manager and is
available for all megafunctions. The black box methodology does not
allow the synthesis tool any visibility into the function module and
therefore, does not take full advantage of the synthesis tool’s timing
driven optimization.

There are two ways of instantiating Megafunction Wizard-generated
functions in your design hierarchy loaded in the DC FPGA software. You
can instantiate and compile the Verilog HDL or VHDL variation wrapper
file description of your megafunction in the DC FPGA software, or you
can instantiate a black box that just describes the ports of your
megafunction variation wrapper file.

1 The library declarations in the MegaWizard generated VHDL
output files need to be manually commented out to work
properly with the DC FPGA.

Reading Megafunction Wizard-generated Variation Wrapper Files

The DC FPGA software has the ability to analyze and elaborate the
Megafunction Wizard-generated Verilog HDL <output file>.v or VHDL
<output file>.vhd netlist that contains the parameters needed by the
Quartus II software to properly configure and instantiate your
megafunction. The DC FPGA software may take advantage of this
variation wrapper file during the optimization of your design to reduce
area utilization and improve path delays. DC FPGA also supports altpll
in a non-black box flow (that is, the DC FPGA can automatically derive
PLL output clocks when the user has specified only the PLL input clock).

Using the megafunction variation wrapper file <output file>.v or
<output file>.vhd in the DC FPGA software synthesis provides good
synthesis results for area estimates, but actual timing results are best
predicted after place-and-route inside the Quartus II software. However,
reading the megafunction variation wrapper allows the DC FPGA
software to provide better synthesis estimates over a black box
methodology.

11–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Using Megafunction Wizard-Generated Variation Wrapper Files in a Black
Box Methodology

Instantiating the megafunction wizard-generated wrapper file without
reading it in the DC FPGA software is referred to as a black box
methodology because the megafunction is treated as an unknown
container in the DC FPGA software.

The black box methodology does not allow synthesis software to have
any visibility into the module, thereby not taking full advantage of the
timing driven optimization of the DC FPGA software and preventing the
software from estimating logic resources for the black box design.

Using Megafunction Wizard-Generated Verilog HDL Files for Black
Box Megafunction Instantiation
By default, the MegaWizard Plug-In Manager generates the Verilog HDL
instantiation template file <output file>_inst.v and the black box module
declaration <output_file>_bb.v for use in your design in the DC FPGA
software. The instantiation template file helps to instantiate the
megafunction variation wrapper file, <output file>.v, in your top-level
design. Do not include the megafunction variation wrapper file in the
DC FPGA software project if you are following the black box
methodology. Instead, add the wrapper file and your generated Verilog
Quartus Mapping (.vqm) netlist in your Quartus II project. Add the
hollow body black box module declaration <output file>_bb.v to your
linked design files in the DC FPGA software to describe the port
connections of the black box.

Using Megafunction Wizard-Generated VHDL Files for Black Box
Megafunction Instantiation
By default, the MegaWizard Plug-In Manager generates a VHDL
component declaration file <output file>.cmp and a VHDL instantiation
template file <output file>_inst.vhd for use in your design. These files can
help you instantiate the megafunction variation wrapper file,
<output file>.vhd, in your top-level design. Do not include the
megafunction variation wrapper file in the DC FPGA software project.
Instead, add the wrapper file and your generated Verilog Quartus
Mapping netlist in your Quartus II project.

Altera Corporation 11–11
October 2007 Preliminary

Inferring Altera Megafunctions from HDL Code

1 The DC FPGA software supports direct instantiation of all LPMs
and megafunctions. For a complete list of all LPMs and
Megafunctions, refer to the following two files in your
Quartus II installation directory:

● <Quartus II installation directory>
/libraries/vhdl/lpm/lpm_pack.vhd

● <Quartus II installation directory>
/libraries/vhdl/altera_mf/altera_mf_components.vhd

DC FPGA supports direct instantiation of LPMs and megafunctions only.
These macro functions include all Altera IP cores and all components
listed in:

<Quartus II installation directory>/libraries/vhdl/
altera_mf_components.vhd or stratixgx_mf_components.vhd.

The following example is the usage model using the mypll for direct
instantiation:

1. During synthesis in DC FPGA, analyze the variation file
mypll.[v|vhd] along with the rest of the RTL files.

2. During place-and-route in the Quartus II software, simply run the
self-contained Verilog Quartus Mapping File. You do not need to
put the variation file in the Verilog Quartus Mapping directory.

The benefit of using the direct instantiation method is that the DC FPGA
is able to utilize the available clock enable pins of the LPMs and
megafunctions during the automatic gated-clock conversion process.

Inferring Altera
Megafunctions
from HDL Code

The DC FPGA software automatically recognizes certain types of HDL
code, and maps digital signal processing (DSP) functions and memory
(RAM and ROM) to efficient, technology-specific implementations. This
allows the use of technology-specific resources to implement these
structures by inferring the appropriate Altera megafunction when it
provides optimal results.

f For coding style recommendations and examples for inferring
megafunctions in Altera devices, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

Depending on the coding style, if you do not adhere to these
recommended HDL coding style guidelines, it is possible that the
DC FPGA software and Quartus II software will not take advantage of
the high performance DSP blocks and RAMs, and may instead

11–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

implement your logic using regular logic elements (LEs). This causes
your logic to consume more area in your device and may adversely affect
your design performance. Altera device families do not all share the same
resources, so your HDL coding style may cause your logic to be
implemented differently in each family. For example, Stratix devices
contain dedicated DSP blocks which Cyclone devices lack. In a Cyclone
device, multipliers are implemented in LEs.

Example 11–3 shows Verilog HDL code that infers a two-port RAM that
can be synthesized into an M512 RAM block of a Stratix device.

Example 11–3. Verilog HDL Code Inferring a Two-Port RAM
module example_ram (clk, we, rd_addr, wr_addr, data_in, data_out);
input clk, we;
input [15:0] data_in;
output [15:0] data_out;
input [7:0] rd_addr;
input [7:0] wr_addr;
reg [15:0] ram_data [7:0];
reg [15:0] data_out_reg;
always @ (posedge clk)
begin
if (we)
 ram_data[wr_addr] <= data_in;
data_out_reg <= ram_data[rd_addr];
end
assign data_out = data_out_reg;
endmodule

One of the strengths of the DC FPGA software is its gated clock
conversion feature. Inferring megafunctions in HDL takes advantage of
this feature. For gated clocks or clock enables designed outside of LPMs,
Altera-specific megafunctions, and registers, the DC FPGA software
merges the gated clock functions into these design elements using
dedicated clock enable functionality during synthesis. The DC FPGA
software reconfigures the megafunction block or register to synthesize
the clock enable control logic. This can save area in your design and
improve your design performance by reducing the gated clock path delay
and the amount of logic used to implement the design. An illustration of
this kind of gated clock optimization is shown in Figure 11–3.

Altera Corporation 11–13
October 2007 Preliminary

Reading Design Files into the DC FPGA Software

Figure 11–3. Gated Clock Optimization

The DC FPGA software does not perform gated clock optimization on
instantiated black box megafunctions or on instantiated megafunction
variation wrapper file. The DC FPGA software performs gated clock
optimization only on synthesizable inferred megafunctions.

Reading Design
Files into the
DC FPGA
Software

The process of reading design files into the DC FPGA software is a
two-step process where the DC FPGA software analyzes your HDL
design for syntax errors, then elaborates the specified design. The
elaboration process finds analyzed designs and instantiates them in the
elaborated design’s hierarchy. You must identify which supported
language the files are written in when reading designs into the DC FPGA
software. The supported HDL languages are listed in Table 11–1.

Table 11–1. Supported Design File Formats

Format Description Keyword Extension

Verilog HDL (Synopsys Presto HDL) Verilog hardware description language verilog .v

VHDL VHSIC hardware description language vhdl .vhd

.db Synopsys internal database format (1) db .db

EDIF Electronic design interchange format edif .edf

Note to Table 11–1:
(1) The Design Compiler DB format file requires additional license keys.

11–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

To set most of the required synthesis settings to generate an optimal
netlist, use the following command:

set_fpga_defaults <architecture_name>

For example:

set_fpga_defaults altera_stratixii

Use the following commands to analyze and elaborate HDL designs in
the DC FPGA software:

analyze -f <verilog|vhdl> <design file> r
elaborate <design name> r
Once a design is analyzed, it is stored in a Synopsys library format file in
your working directory for reuse. You need to re-analyze the design only
when you change the source HDL file. Elaboration is performed after you
have analyzed all of the subdesigns below your current design.

Another way to read your design is by using the read_file command.
This can be used to read in gate-level netlists that are already mapped to
a specific technology. The read_file command performs analysis and
elaboration on Verilog HDL and VHDL designs that are written in
register transfer level (RTL) format. The difference between the
read_file command and the analyze and elaborate combination is that
the read_file command elaborates every design read, which is
unnecessary. Only the top-level design must be elaborated. The
read_file command is useful if you have a previously synthesized
block of logic that you want to re-use in your design.

To use the read_file command for a specific language, type the
following command:

read_file -f <verilog|vhdl|db|edif> <design file> r
You can also read files in specific languages using the read_verilog,
read_vhdl, read_db, and read_edif commands.

Once you have read all of your design files, specify the design you want
to focus your work on with the current_design command. This is
usually the top module or entity in your design that you wish to compile
up to. To use this command, type the following:

current_design <design name> r

Altera Corporation 11–15
October 2007 Preliminary

Selecting a Target Device

You then need to build your design from all of the analyzed HDL files
with the link command. To use this command, type the following:

link r
After linking your designs successfully in the DC FPGA software, you
should specify the constraints you are applying to your design. In the
DC FPGA software, you have the capability of loading multiple levels of
hierarchy and synthesizing specific blocks in a bottom-up synthesis
methodology, or you can synthesize the entire design from the top-level
module in a top-down synthesis methodology.

You can switch the current focus of the DC FPGA software between the
designs loaded by using the current_design command. This changes
your current focus onto the design specified, and all subsequent
constraints and commands will apply to that design.

If you have read Quartus II megafunction wizard-generated designs or
third-party IP into the DC FPGA software, you can instruct the DC FPGA
software not to synthesize the IP. Use the set_dont_touch constraint
and apply it to each module of your design that you do not want
synthesized. To use this command, type the following:

set_dont_touch <design name> r
Using the set_dont_touch command can be helpful in a bottom-up
synthesis methodology, where you optimize designs at the lower levels
of your hierarchy first and do not allow the DC FPGA software to
resynthesize them later during the top-level integration. However,
depending on the design’s HDL coding, you might want to allow
top-level resynthesis to get further area reduction and improved path
delays. For best results, Altera recommends following the top-down
synthesis methodology and not using the set_dont_touch command
on lower level designs.

Selecting a
Target Device

If you do not select an Altera device, the DC FPGA software, by default,
synthesizes for the fastest speed grade of the logic family library that is
loaded in your .synopsys_dc.setup file. If you are targeting a specific
device of an Altera family, you must have the correct library linked, then
specify the device for synthesis with the set_fpga_target_device
command. To use this command, type the following:

set_fpga_target_device <device name> r

11–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

You can have the DC FPGA software produce a list of all available
devices in the linked library by adding the -show_all option to the
set_fpga_target_device command. An example of this list of
devices for the Stratix II library is shown in Example 11–4.

Example 11–4. List of Available Devices in the Linked Library Using the -show_all Option
Loading db file '/dc_fpga/libraries/fpga/altera/STRATIXII/stratixii.db'

 Valid device names are:

Part Pins FFs Speed Grades
--
AUTO * 0 0 FASTEST
EP2S15F484 484 12480 C4
EP2S15F672 672 12480 C4
EP2S30F484 484 27104 C4
EP2S30F672 672 27104 C4
EP2S60F484 484 48352 C4
EP2S60F672 672 48352 C4
EP2S60F1020 1020 48352 C4
EP2S90F1020 1020 72768 C4
EP2S90F1508 1508 72768 C4
EP2S130F1020 1020 106032 C4
EP2S130F1508 1508 106032 C4
EP2S180F1020 1020 143520 C4
EP2S180F1508 1508 143520 C4

 * Default part

For example, if you want to target the C4 speed grade device of the
Stratix II EP2S60F672 device, apply the following constraint:

set_fpga_target_device EP2S60F672C4

Timing and
Synthesis
Constraints

You must create timing and synthesis constraints for your design for the
DC FPGA software to optimize your design performance. The timing
constraints specify your desired clocks and their characteristics, input
and output delays, and timing exceptions such as false paths and multi-
cycle paths. The synthesis constraints define the device, the type of I/O
buffers that should be used for top-level ports, and the maximum register
fan-out threshold before buffer insertion is performed. Synopsys Design
Constraints (SDCs) are Tcl-format commands that are widely used in
many EDA software applications. The DC FPGA software supports the
same SDC commands that the full version of the Design Compiler
software supports. However, certain constraints that are used in ASIC
synthesis are not applicable to programmable logic synthesis, so the
DC FPGA software ignores them.

Altera Corporation 11–17
October 2007 Preliminary

Timing and Synthesis Constraints

The DC FPGA software supports the following constraints:

■ create_clock
■ set_max_delay
■ set_propagated_clock
■ set_input_delay
■ set_output_delay
■ set_multicycle_path
■ set_false_path
■ set_disable_timing
■ set_fpga_resource_limit
■ set_register_max_fanout
■ set_max_fanout
■ set_fpga_target_device

f For the syntax and full usage of these commands, refer to the Synopsys
DC FPGA User Guide.

1 For synthesis with the DC FPGA software, minimum timing
analysis is not necessary, as it primarily looks at setup timing
optimization to achieve the fastest clock frequency for your
design. Altera recommends adding additional minimum timing
constraints to your design inside the Quartus II software.

The DC FPGA forward annotates all the clock, timing exceptions, and
I/O delay constraints to Quartus II when the write_par_constraint
command is used in the DC FPGA. For more information about this
command, refer to “Exporting Designs to the Quartus II Software” on
page 11–22. Since the Quartus II software does not support the through
option for the timing exception constraints, the DC FPGA does not
forward annotate constraints that use the through option.

In the DC FPGA software, timing constraints applied to inferred RAM,
ROM, shift registers, and DSP MAC functions are obeyed. However,
these constraints are not forward-annotated to the Quartus II software
because these functions are inferred to Altera megafunctions. The
Quartus II software does not support timing constraints applied to
megafunctions. The workaround is to run the Verilog Quartus
Mapping/EDIF netlist through analysis and synthesis in the Quartus II
software (quartus_map). All megafunctions expand to atom primitives.
These atom primitives can be processed by the Quartus II software. You
can then apply constraints to the internal atoms of the megafunctions.

The timing reports generated from the DC FPGA software are
preliminary estimates of the path delays in your design, and accurate
timing is reported only after place-and-route is performed with the
Quartus II software.

11–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The DC FPGA software also performs cross-hierarchical boundary
optimization. Altera recommends running this command before a
compilation:

ungroup -small 500 r
This allows the DC FPGA software to potentially improve area reduction
and performance improvement by ungrouping smaller blocks of logic in
your design hierarchy and combining functions.

Compilation and
Synthesis

After applying timing and synthesis constraints, you can begin the
compilation and synthesis process. The compile command runs this
process within the DC FPGA software. To run a compilation, at the shell
prompt type:

compile r
The compilation process performs two kinds of optimization:

■ Architectural optimization focuses on the HDL description and
performs high-level synthesis tasks such as sharing resources and
sub-expressions, selecting Synopsys Design Ware implementations,
and re-ordering operators.

■ Gate-level optimization works on the generic netlist created by logic
synthesis and works to improve the mapping efficiency to save area
and improve performance by minimizing path delays.

Compilation can be done using a top-down synthesis methodology or a
bottom-up synthesis methodology. The top-down synthesis
methodology involves a single compilation of your entire design with the
focus on the top module or entity of your design. The bottom-up
synthesis methodology involves incremental compilation of major blocks
in your design hierarchy and top-level integration and optimization.
Either methodology can be applied when synthesizing for Altera devices.
For best results, Altera recommends following the top-down synthesis
methodology.

An example synthesis script that reads the design, applies timing
constraints, reports results, saves the synthesized netlist file in the Verilog
Quartus Mapping File format, and creates the Tcl scripts to work with the

Altera Corporation 11–19
October 2007 Preliminary

Compilation and Synthesis

Quartus II software is shown in Example 11–5. It uses the command
write_fpga, which is described in “write_fpga Command” on
page 11–22.

Example 11–5. Sample Synthesis Script
Setup output directories
set outdir ./design
file delete -force $outdir
file mkdir $outdir
set rptdir ./report
file delete -force $rptdir
file mkdir $rptdir
Enable Presto compiler for VHDL design files
set hdlin_enable_presto_for_vhdl TRUE
Setup libraries
define_design_lib work-path .$outdir/work
file mkdir $outdir/work
analyze -format verilog ./source/mult_box.v
analyze -format verilog ./source/mult_ram.v
analyze -format verilog ./source/top_module.v
elaborate top_module
link
current_design top_module
create_clock -period 5 [get_ports clk]
set_input_delay -max 2 -clock clk [get_ports {data_in_* mode_in}]
set_input_delay -min 0.5 -clock clk [get_ports {data_in_* mode_in}]
set_output_delay -max 2 -clock clk [get_ports {data_out ram_data_out_port}]
set_output_delay -min 0.5 -clock clk [get_ports {data_out ram_data_out_port}]
set_false_path -from [get_ports reset]
ungroup -small 500
compile
report_timing > $rptdir/top_module.log
report_fpga > $rptdir/top_module_fpga.log
write_fpga $outdir
quit

11–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Reporting
Design
Information

After compilation is complete, the DC FPGA software reports
information about your design. You can specify which kinds of reports
you want generated with the reporting commands shown in Table 11–2.

f For more information about the usage of these commands, refer to the
Synopsys DC FPGA User Guide.

Table 11–2. Reporting Commands

Object Command Description

Design report_design Reports design characteristics

report_area Reports design size and object counts

report_hierarchy Reports design hierarchy

report_resources Reports resource implementations

report_fpga Reports FPGA resource utilization statistics for the
design

Instances report_cell Displays information about instances

References report_reference Displays information about references

Ports report_port Displays information about ports

report_bus Displays information about bused ports

Nets report_net Reports net characteristics

report_bus Reports bused net characteristics

Clocks report_clock Displays information about clocks

Timing report_timing Checks the timing of the design

report_constraint Checks the design constraints

check_timing Checks for unconstrained timing paths and clock-gating
logic

report_design Shows operating conditions, timing ranges, internal input
and output, and disabled timing arcs

report_port Shows unconstrained input and output ports and port
loading

report_timing_requirements Shows all timing exceptions set on the design

report_clock Checks the clock definition and clock skew information

derive_clocks Checks internal clock and unused registers

report_path_group Shows all timing path groups in the design

Cell
Attributes

get_cells Shows all cell instances that have a specific attribute

Altera Corporation 11–21
October 2007 Preliminary

Saving Synthesis Results

The DC FPGA software only provides preliminary estimates of your
design’s timing delays because the timing of your design cannot be
accurately predicted until the Quartus II software has placed and routed
your design.

Saving
Synthesis
Results

After synthesis, the technology-mapped design can be saved to a file in
one of the following four formats: Verilog HDL, VHDL, Synopsys
internal DB, or EDIF.

The Quartus II software accepts an EDIF netlist or Verilog Quartus
Mapping netlist synthesized from the DC FPGA software. The default
output netlist from the DC FPGA software is Verilog Quartus Mapping.
The Verilog Quartus Mapping File format follows a subset of Verilog
HDL rules. You can use the same Verilog Quartus Mapping netlist format
with the Quartus II software and formal verification.

Use the write command to save your design work. The syntax for this
command is shown in Example 11–6.

Example 11–6. Syntax Using the write Command
write -format <verilog|db|edif> -output <file name> <design list>
[-hierarchy] r

The -hierarchy option causes the DC FPGA software to write all the
designs within the hierarchy of the current design. The DC FPGA default
flow to interface with Quartus II software uses the Verilog Quartus
Mapping netlist.

To generate a Verilog Quartus Mapping netlist, set the required settings
using the commands shown in Example 11–7.

Example 11–7. Generating a Verilog Quartus Mapping Netlist
define_name_rules ALTERA -remove_internal_net_bus
change_names -rules ALTERA -hier
change_names –rules verilog –hier
write -format verilog -hier -o <design_top>.vqm

The Synopsys internal DB format is useful when you have synthesized
your design and want to reuse it later in the DC FPGA software. The DB
file contains your constraints and synthesized design netlist, and loads
into the DC FPGA software faster than Verilog HDL or VHDL designs.

11–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

You can also write out your design constraints in Tcl format for export to
the Quartus II software with the write_par_constraint command or
by using the write_fpga command. These commands are explained in
“Exporting Designs to the Quartus II Software”.

Exporting
Designs to the
Quartus II
Software

The DC FPGA software can create two Tcl scripts that start the Quartus II
software, create your initial design project, apply the exported timing
constraints, and compile your design in the Quartus II software.

You can generate the two Tcl scripts by using write and
write_par_constraint command together, or by using the
write_fpga command alone.

write_fpga Command

The recommended method to export all of the place-and-route files from
the DC FPGA software is to use the write_fpga command. This
command is used after the compile. Example 11–8 shows how the
write_fpga command is used.

Example 11–8. Using the write_fpga Command after Compile
compile
write_fpga <outputdir>

The write _fpga command will do the following in one step:

Example 11–9. Using the write_fpga Command to Generate All Files
write -hier -f db -o $outputdir/top_module.db
write –hier –f edif –o $outputdir/top_module.edf
define_name_rules ALTERA -remove_internal_net_bus
change_names -rules ALTERA -hier
change_names –rules verilog –hier
write -format verilog -hier -o <design_top>.vqm
write_par_constraint $outputdir/top_module_quartus_setup.tcl

When you use the write_fpga command, it generates all files in the
current work directory or in the directory you specify (entering an output
directory is optional) and generates the output files based on the current
design file name.

Altera Corporation 11–23
October 2007 Preliminary

Using Tcl Scripts with Quartus II Software

write and write_par_constraint Commands

The write command is used to generate a post synthesis netlist for
place-and-route and formal verification. You should use a Verilog
Quartus Mapping formatting netlist to work with the Quartus II
software, beginning with the DC FPGA software, version 2005.09.
Example 11–10 uses the write and write_par_constraint commands to
generate the Verilog Quartus Mapping File and Tcl scripts:

Example 11–10. Using the write and write_par_constraint Commands
define_name_rules ALTERA -remove_internal_net_bus
change_names -rules ALTERA -hier
change_names –rules verilog –hier
write -format verilog -hier -o <design_top>.vqm

Tcl scripts that start the Quartus II software and forward annotate the
timing constraints can be generated using the write_par_constraint
command.

write_par_constraint <user-specified file name>.tcl r
This command generates both Tcl scripts in one operation. The first Tcl
script has the name you specify in the write_par_constraint
command. This script creates and compiles your Quartus II project. The
second script is automatically generated and named
<top_module>_const.tcl by default and contains your exported timing
constraints from the DC FPGA software. This constraint file is sourced by
the <user-specified file name>.tcl script and applies the timing constraints
used in the DC FPGA software to your project in the Quartus II software.

For example, if your design is called dma_controller, and you run the
command, write_par_constraint run_quartus.tcl, the
DC FPGA software produces two Tcl scripts called run_quartus.tcl
and dma_controller_const.tcl.

Using Tcl Scripts
with Quartus II
Software

To use this Tcl script in the Quartus II Tcl shell, type the following
command at a command prompt:

quartus_sh -t <user-specified file name>.tcl r
To run this Tcl script in the Quartus II software GUI, type the following
command at the Quartus II Tcl console prompt:

source <user-specified file name>.tcl r

11–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The ability to run scripts in the Tcl console is useful when performing an
initial compilation of your design to view post place-and-route timing
and device utilization results, but the advanced Quartus II options that
control the compilation process are not available.

To create a Quartus II project without performing compilation
automatically, remove these lines from the script:

load_package flow
execute_flow -compile

Example 11–11. An Example Script
##
Generated by DC FPGA X-2005.09 on Wed Aug 10 04:20:01 2005
#
Description: This TCL script is generated by DC FPGA using
write_par_constraint command. It is used to create a new Quartus
II project, specify timing constraint assignments in Quartus II,
and run quartus_map, quartus_fit, quartus_tan, & quartus_asm.
#
Usage: To execute this TCL script in batch mode: quartus_sh -t turboTop.tcl
To execute this TCL script in Quartus II GUI: source turboTop.tcl
#
#
#************ WARNING ********** WARNING ***************************
#
Please ensure the P&R netlist name is represented correctly in this tcl file.
You may need to change the file_name variable to match your actual netlist
name.
#
##

Set the file_name and project_name variable
set file_name turboTop.vqm
set project_name turboTop

Close the project if open
if [is_project_open] {
 project_close
}

Create a new project
project_new -overwrite -family STRATIXII -part EP2S30F484C3 $project_name

Make global assignments
set_global_assignment -name TOP_LEVEL_ENTITY $project_name

##
if you are using Verilog P&R netlist, please comment out EDIF assignment
and uncomment the VERILOG assignment below.

#set_global_assignment -name EDIF_FILE $file_name
set_global_assignment -name VQM_FILE $file_name
##

Altera Corporation 11–25
October 2007 Preliminary

Place and Route with the Quartus II Software

set_global_assignment -name ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON
#set_global_assignment -name ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP OFF
set_global_assignment -name EDA_DESIGN_ENTRY_SYNTHESIS_TOOL -value "Design Compiler FPGA"
set_global_assignment -name EDA_INPUT_VCC_NAME -value VDD -section_id
eda_design_synthesis
set_global_assignment -name EDA_INPUT_GND_NAME -value GND -section_id
eda_design_synthesis
set_global_assignment -name EDA_LMF_FILE -value dc_fpga.lmf -section_id
eda_design_synthesis
set_global_assignment -name VERILOG_LMF_FILE dc_fpga.lmf
set_global_assignment -name FITTER_EFFORT "STANDARD FIT"

Source in the design timing constraint file
source $project_name_cons.tcl

The following runs quartus_map, quartus_fit, quartus_tan, & quartus_asm
load_package flow
execute_flow -compile
project_close

After synthesis in the DC FPGA software, the technology-mapped design
is written to the current project directory as an Verilog Quartus Mapping
netlist file. The project configuration script (<user-specified file name>.tcl)
is used to create and compile a Quartus II project containing your Verilog
Quartus Mapping netlist. The example script makes basic project
assignments such as assigning the target device as specified in the
DC FPGA software. The project configuration script calls the place-and-
route constraints script to make your timing constraints. The place-and-
route constraints script (<top module>_const.tcl) forward-annotates the
timing constraints that you made in the DC FPGA software, including
false path assignments, multi-cycle assignments, timing groups, and
related clocks. This integration means that you need to enter these
constraints only once, in the DC FPGA software, and they are passed
automatically to the Quartus II software.

Place and Route
with the
Quartus II
Software

After you have created your Quartus II project and successfully loaded
your Verilog Quartus Mapping netlist into the Quartus II project, you can
use the Quartus II software to perform place-and-route. The Synopsys
DC FPGA software uses only worst case timing delays and constraints,
and does not optimize minimum timing requirements. Altera
recommends that you add minimum timing constraints and perform
minimum timing analysis in the Quartus II software.

f For more information about these advance features, area optimization,
and timing closure, refer to the Quartus II Handbook.

11–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

You can use the Quartus II software to obtain accurate prediction of
post-conversion fMAX performance and power consumption
characteristics when migrating from a high-density FPGA to a
cost-optimized, high-volume structured ASIC such as a HardCopy
Stratix device.

The Quartus II software place-and-route algorithms can use register
packing, register retiming, automatic logic duplication, and what-you-
see-is-what-you-get (WYSIWYG) primitive re-synthesis technologies to
increase logic utilization in your device and to deliver superior fMAX
performance at extremely high logic utilization.

f For more information, refer to the Quartus II Support for HardCopy Series
Devices chapter in volume 1 of the Quartus II Handbook.

Formality
Software
Support

Beginning with version 4.2, the Quartus II software interfaces with the
Formality software from Synopsys. Formality software verifies logic
equivalency between the RTL and DC FPGA post-synthesis netlist, and
between the DC FPGA post-synthesis netlist and the Quartus II
post-place-and-route netlist. A synthesized verilog netlist generated by
the DC FPGA is required to use with formality flow. Formality supports
Stratix II, Stratix and Stratix GX device families.

f For more information about how to set the required synthesis settings to
generate a valid formal verification netlist and to use the Formality
software for equivalence checking, refer to the Synopsys Formality
Support chapter in volume 3 of the Quartus II Handbook.

Conclusion Large FPGA designs require advanced synthesis of their HDL code.
Taking advantage of the Synopsys DC FPGA software and the Quartus II
software allows you to develop high-performance designs while
occupying as little programmable logic resources as possible. The
DC FPGA software and Quartus II software combination is an excellent
solution for the high density designs using Altera FPGA devices.

Referenced
Documents

This chapter references the following documents:

■ Quartus II Support for HardCopy Series Devices chapter in volume 1 of
the Quartus II Handbook

■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook

■ Synopsys DC FPGA User Guide
■ Synopsys Formality Support chapter in volume 3 of the Quartus II

Handbook

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53015.pdf
www.synopsys.com

Altera Corporation 11–27
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 11–3 shows the revision history for this chapter.

Table 11–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 11–26. Updated for the
Quartus II software

version 7.2.

May 2007
v7.1.0

Added Referenced Documents. —

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

Added revision history to the chapter. —

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0. —

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.
● Chapter 11 was formerly chapter 13 in version 5.0.

—

May 2005
v5.0.0

Chapter 13 was formerly chapter 11 in version 4.2. —

December 2004
v1.1

● Chapter 12 was formerly Chapter 13 in version 4.1.
● Updated information.
● New functionary for Quartus II software version 4.2.
● Moved figure 12-3 within the chapter.

—

June 2004
v1.0

Initial release. —

11–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Altera Corporation 12–1
October 2007

12. Analyzing Designs with
Quartus II Netlist Viewers

Introduction As FPGA designs grow in size and complexity, the ability to analyze how
your synthesis tool interprets your design becomes critical. Often, with
today’s advanced designs, several design engineers are involved in
coding and synthesizing different design blocks, making it difficult to
analyze and debug the design. The Quartus® II RTL Viewer, State
Machine Viewer, and Technology Map Viewer provide powerful ways to
view your initial and fully mapped synthesis results during the
debugging, optimization, or constraint entry process.

The first section in this chapter, “When to Use Viewers: Analyzing Design
Problems”, describes examples of using the viewers to analyze your
design at various stages of the design cycle. The sections following this
provide an introduction to the Quartus II design flow using the netlist
viewers, an overview of each viewer, and an explanation of the user
interface. These sections describe the following tasks:

■ How to navigate and filter schematics
■ How to probe to and from other windows within the Quartus II

software
■ How to view a timing path from the Timing Analyzer report

This chapter contains the following sections regarding the netlist viewers:

■ “Introduction to the User Interface” on page 12–7
■ “Navigating the Schematic View” on page 12–21
■ “Filtering in the Schematic View” on page 12–34
■ “Probing to Source Design File and Other Quartus II Windows” on

page 12–42
■ “Probing to the Viewers from Other Quartus II Windows” on

page 12–44
■ “Viewing a Timing Path” on page 12–45
■ “Other Features in the Schematic Viewer” on page 12–47

The final section, “Debugging HDL Code with the State Machine
Viewer”, provides a detailed example that uses the viewer to analyze a
design and quickly resolve a design problem.

QII51013-7.2.0

12–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

When to Use
Viewers:
Analyzing
Design
Problems

You can use the netlist viewers to analyze your design to determine how
it was interpreted by the Quartus II software. This section provides
simple examples of how to use the RTL viewers, State Machine, and
Technology Map Viewers to analyze problems encountered in the design
process.

The following sections contain information about how the netlist viewers
display your design:

■ “Quartus II Design Flow with Netlist Viewers”
■ “RTL Viewer Overview”
■ “State Machine Viewer Overview”
■ “Technology Map Viewer Overview”

Using the RTL Viewer is a good way to view your initial synthesis results
to determine whether you have created the desired logic, and that the
logic and connections have been interpreted correctly by the software.
You can use the RTL Viewer and the State Machine Viewer to visually
check your design before simulation or other verification processes.
Catching design errors at this early stage of the design process can save
you valuable time.

If you see unexpected behavior during verification, you can use the RTL
Viewer to trace through the netlist and ensure that the connections and
the logic in your design are as expected. You can also use the State
Machine Viewer to view state machine transitions and transition
equations. Viewing the design can help you find and analyze the source
of design problems. If your design looks correct in the RTL Viewer, you
know to focus your analysis on later stages of the design process and
investigate potential timing violations or issues in the verification flow
itself.

You can use the Technology Map Viewer to look at the results at the end
of synthesis and technology mapping by running the viewer after
performing Analysis and Synthesis. If you have compiled your design
through the Fitter stage, you can view your post-mapping netlist in the
Technology Map Viewer (Post-Mapping), and your post-fitting netlist in
the Technology Map Viewer. If you perform only Analysis and Synthesis,
both viewers display the same post-mapping netlist.

In addition, you can use the RTL Viewer or Technology Map Viewer to
locate the source of a particular signal, which can help you debug your
design. Use the navigation techniques described in this chapter to search
easily through the design. You can trace back from a point of interest to
find the source of the signal and ensure the connections are as expected.

Altera Corporation 12–3
October 2007

Quartus II Design Flow with Netlist Viewers

You can also use the Technology Map Viewer to help you locate
post-synthesis nodes in your netlist and make assignments when
optimizing your design. This functionality is useful, for example, when
making a multicycle clock timing assignment between two registers in
your design. Start at an I/O port and trace forward or backward through
the design and through levels of hierarchy to find nodes that interest you,
or locate a specific register by visually inspecting the schematic.

The RTL Viewer, State Machine Viewer, and Technology Map Viewer can
be used in many other ways throughout the design, debugging, and
optimization stages. Viewing the design netlist is a powerful way to
analyze design problems. This chapter shows how you can use the
various features of the netlist viewers to increase your productivity when
analyzing a design.

Quartus II
Design Flow
with Netlist
Viewers

The first time you open one of the netlist viewers after compiling the
design, a preprocessor stage runs automatically before the viewer opens.
If you close the viewer and open it again later without recompiling the
design, the viewer opens immediately without performing the
preprocessing stage. Figure 12–1 shows how the netlist viewers fit into
the basic Quartus II design flow.

Figure 12–1. Quartus II Design Flow Including the RTL Viewer and Technology Map Viewer

12–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Each viewer requires that your design has been compiled with the
minimum compilation stage listed below before the viewer can run the
preprocessor and open the design.

■ To open the RTL Viewer or State Machine Viewer, you must first
perform Analysis and Elaboration.

■ To open the Technology Map Viewer or the Technology Map Viewer
(Post-Mapping), you must first perform Analysis and Synthesis.

1 If you open one of the viewers without first compiling the
design with the appropriate minimum compilation stage, the
viewer does not appear. Instead, the Quartus II software issues
an error message instructing you to run the necessary
compilation stage and restart the viewer.

Both viewers display the results of the last successful compilation.
Therefore, if you make a design change that causes an error during
Analysis and Elaboration, you cannot view the netlist for the new design
files, but you can still see the results from the last successfully compiled
version of the design files. If you receive an error during compilation and
you have not yet successfully run the appropriate compilation stage for
your project, the viewer cannot be displayed; in this case, the Quartus II
software issues an error message when you try to open the viewer.

1 If the viewer window is open when you start a new compilation,
the viewer closes automatically. You must open the viewer
again to view the new design netlist after compilation completes
successfully.

RTL Viewer
Overview

The Quartus II RTL Viewer allows you to view a register transfer level
(RTL) graphical representation of your Quartus II integrated synthesis
results or your third-party netlist file within the Quartus II software.

You can view results after Analysis and Elaboration when your design
uses any supported Quartus II design entry method, including
Verilog HDL Design Files (.v), SystemVerilog Design Files (.sv), VHDL
Design Files (.vhd), AHDL Text Design Files (.tdf), schematic Block
Design Files (.bdf), or schematic Graphic Design Files (.gdf) imported
from the MAX+PLUS® II software. You can also view the hierarchy of
atom primitives (such as device logic cells and I/O ports) when your
design uses a synthesis tool to generate a Verilog Quartus Mapping File
(.vqm) or Electronic Design Interchange Format (.edf) netlist file. Refer to
Figure 12–1 for a flow diagram.

Altera Corporation 12–5
October 2007

RTL Viewer Overview

The Quartus II RTL Viewer displays a schematic view of the design
netlist after analysis and elaboration or netlist extraction is performed by
the Quartus II software, but before technology mapping and any
synthesis or fitter optimization algorithms occur. This view is not the final
design structure because optimizations have not yet occurred. This view
most closely represents your original source design. If you synthesized
your design using the Quartus II integrated synthesis, this view shows
how the Quartus II software interpreted your design files. If you are
using a third-party synthesis tool, this view shows the netlist written by
your synthesis tool.

When displaying your design, the RTL Viewer optimizes the netlist to
maximize readability in the following ways:

■ Logic with no fan-out (its outputs are unconnected) and logic with
no fan-in (its inputs are unconnected) are removed from the display.

■ Default connections such as VCC and GND are not shown.
■ Pins, nets, wires, module ports, and certain logic are grouped into

buses where appropriate.
■ Constant bus connections are grouped.
■ Values are displayed in hexadecimal format.
■ NOT gates are converted to bubble inversion symbols in the

schematic.
■ Chains of equivalent combinational gates are merged into a single

gate. For example, a 2-input AND gate feeding a 2-input AND gate is
converted to a single 3-input AND gate.

■ State machine logic is converted into a state diagram, state transition
table, and state encoding table, which are displayed in the State
Machine Viewer.

To run the RTL Viewer for a Quartus II project, first analyze the design to
generate an RTL netlist. To analyze the design and generate an RTL
netlist, on the Processing menu, point to Start and click Start Analysis &
Elaboration. You can also perform a full compilation on any process that
includes the initial Analysis and Elaboration stage of the Quartus II
compilation flow.

To run the viewer, on the Tools menu, point to Netlist Viewers and click
RTL Viewer, or select RTL Viewer from the Applications toolbar.

1 By default, the Applications toolbar does not display in the
Quartus II user interface. To add the toolbar, on the Tools menu,
click Customize. On the Customize dialog box, click the
Toolbars tab under Toolbars, and turn on Applications. Click
Close.

12–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

You can set the RTL Viewer preprocessing to run during a full
compilation, which means you can launch the RTL Viewer after Analysis
and Synthesis has completed, but while the Fitter is still running. In this
case, you do not have to wait for the Fitter to finish before viewing the
schematic. This technique is useful for a large design that requires a
substantial amount of time in the place-and-route stage.

To set the RTL Viewer preprocessing to run during compilation, on the
Assignments menu, click Settings. In the Category list, select
Compilation Process Settings and turn on Run RTL Viewer
preprocessing during compilation. By default, this option is turned off.

State Machine
Viewer Overview

The State Machine Viewer presents a high-level view of finite state
machines in your design. The State Machine Viewer provides a graphical
representation of the states and their related transitions, as well as a state
transition table that displays the condition equation for each of the state
transitions, and encoding information for each state.

To run the State Machine Viewer, on the Tools menu, point to Netlist
Viewers and click State Machine Viewer. To open the State Machine
Viewer for a particular state machine, double-click the state machine
instance in the RTL Viewer, or right-click the state machine instance, and
click Hierarchy Down.

Technology Map
Viewer Overview

The Quartus II Technology Map Viewer provides a technology-specific,
graphical representation of your design after Analysis and Synthesis or
after the Fitter has mapped your design into the target device. The
Technology Map Viewer shows the hierarchy of atom primitives (such as
device logic cells and I/O ports) in your design. For supported families,
you can also view the internal registers and look-up tables (LUTs) inside
logic cells (LCELLs) and registers in I/O atom primitives. Refer to
“Viewing Contents of Atom Primitives in the Technology Map Viewer”
on page 12–22 for details.

1 Where possible, the port names of each hierarchy are
maintained throughout synthesis. However, port names may
change or be removed from the design. For example, if a port is
unconnected or driven by GND or VCC, it is removed during
synthesis. When a port name is changed, the port is assigned a
related user logic name in the design, or a generic port name
such as IN1 or OUT1.

You can view your Quartus II technology-mapped results after synthesis,
fitting, or timing analysis. To run the Technology Map Viewer for a
Quartus II project, on the Processing menu, point to Start and click Start
Analysis & Synthesis to synthesize and map the design to the target

Altera Corporation 12–7
October 2007

Introduction to the User Interface

technology. At this stage, the Technology Map Viewer shows the same
post-mapping netlist as does the Technology Map Viewer
(Post-Mapping). You can also perform a full compilation, or any process
that includes the synthesis stage in the compilation flow.

If you have completed the Fitter stage, the Technology Map Viewer
shows the changes made to your netlist by the Fitter, such as physical
synthesis optimizations, while the Technology Map Viewer
(Post-Mapping) shows the post-mapping netlist. If you have completed
the Timing Analysis stage, you can locate timing paths from the Timing
Analyzer report in the Technology Map Viewer (refer to “Viewing a
Timing Path” on page 12–45 for details). Refer to Figure 12–1 on
page 12–3 for a flow diagram.

To run the Technology Map Viewer, on the Tools menu, point to Netlist
Viewers and click Technology Map Viewer, or select Technology Map
Viewer from the Applications toolbar.

To run the Technology Map Viewer (Post-Mapping), on the Tools menu,
point to Netlist Viewers and click Technology Map Viewer
(Post-Mapping).

Introduction to
the User
Interface

The RTL Viewer window and Technology Map Viewer window each
consist of two main parts: the schematic view and the hierarchy list.
Figure 12–2 shows the RTL Viewer window and indicates these two parts.
Both viewers also contain a toolbar that gives you tools to use in the
schematic view.

You can have only one RTL Viewer, one Technology Map Viewer, and
one State Machine Viewer window open at a time, although each window
can show multiple pages. The window for each viewer has characteristics
similar to other “child” windows in the Quartus II software; it can be
resized and moved, minimized or maximized, tiled or cascaded, and
moved in front of or behind other windows.

You can detach the window and move it outside the Quartus II main
interface. To detach a window, click the Detach Window icon on the
toolbar, or, on the Window menu, click Detach Window. To attach the
detached window back to the Quartus II main interface, click the Attach
Window icon on the toolbar, or, on the Window menu, click Attach
Window.

12–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–2. RTL Viewer Window and RTL Toolbar

Schematic View

The schematic view is shown on the right side of the RTL Viewer and
Technology Map Viewer. It contains a schematic representing the design
logic in the netlist. This view is the main screen for viewing your
gate-level netlist in the RTL Viewer and your technology-mapped netlist
in the Technology Map Viewer.

Schematic Symbols

The symbols for nodes in the schematic represent elements of your design
netlist. These elements include input and output ports, registers, logic
gates, Altera® primitives, high-level operators, and hierarchical instances.

Figure 12–3 shows an example of an RTL Viewer schematic for a 3-bit
synchronous loadable counter. Example 12–1 shows the Verilog HDL
code that produced this schematic. This example includes multiplexers
and a group of registers (Table 12–1 on page 12–10) in a bus along with an
ADDER operator (Table 12–3 on page 12–13) inferred by the counting
function in the HDL code.

The schematic in Figure 12–3 displays wire connections between nodes
with a thin black line, and bus connections with a thick black line.

Altera Corporation 12–9
October 2007

Introduction to the User Interface

Figure 12–3. Example Schematic Diagram in the RTL Viewer

Example 12–1. Code Sample for Counter Schematic Shown in Figure 12–3
module counter (input [2:0] data, input clk, input load, output [2:0] result);

reg [2:0] result_reg;
always @ (posedge clk)

if (load)
result_reg <= data;

else
result_reg <= result_reg + 1;

assign result = result_reg;
endmodule

Figure 12–4 shows a portion of the corresponding Technology Map
Viewer schematic with a compiled design that targets a Stratix® device.
In this schematic, you can see the LCELL (logic cell) device-specific
primitives that represent the counter function, labeled with their
post-synthesis node names. The REGOUT port represents the output of the
register in the LCELL, and the COMBOUT port represents the output of the
combinational logic in the LUT of the LCELL. The hexadecimal number
in parentheses below each LCELL primitive represents the LUT mask,
which is a hexadecimal representation of the logic function of the LCELL.

12–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–4. Example Schematic Diagram in the Technology Map Viewer

Table 12–1 lists and describes the primitives and basic symbols that you
can display in the schematic view of the RTL Viewer and Technology Map
Viewer. Table 12–3 on page 12–13 lists and describes the additional higher
level operator symbols used in the RTL Viewer schematic view.

1 The logic gates and operator primitives appear only in the RTL
Viewer. Logic in the Technology Map Viewer is represented by
atom primitives such as registers and LCELLs.

Table 12–1. Symbols in the Schematic View (Part 1 of 3)

Symbol Description

I/O Ports An input, output, or bidirectional port in the current level of hierarchy. A device input,
output, or bidirectional pin when viewing the top-level hierarchy. The symbol can
represent a bus. Only one wire is connected to the bidirectional symbol, representing
both the input and the output paths.

Input symbols appear on the left-most side of the schematic. Output and bidirectional
symbols appear on the right-most side of the schematic.

I/O Connectors An input or output connector, representing a net that comes from another page of the
same hierarchy (refer to “Partitioning the Schematic into Pages” on page 12–28). To
go to the page that contains the source or the destination, right-click on the net and
choose the page from the menu (refer to “Following Nets Across Schematic Pages”
on page 12–29).

Hierarchy Port Connector A connector representing a port relationship between two different hierarchies. A
connector indicates that a path passes through a port connector in a different level
of hierarchy.

Altera Corporation 12–11
October 2007

Introduction to the User Interface

OR, AND, XOR Gates An OR, AND, or XOR gate primitive (the number of ports can vary). A small circle
(bubble symbol) on an input or output port indicates the port is inverted.

MUX A multiplexer (MUX) primitive with a selector port that selects between port 0 and
port 1. A MUX with more than two inputs is displayed as an operator (refer to
“Operator Symbols in the RTL Viewer Schematic View” on page 12–13).

BUFFER A buffer primitive. The figure shows the tri-state buffer, with an inverted output enable
port. Other buffers without an enable port include LCELL, SOFT, CARRY, and
GLOBAL. The NOT gate and EXP expander buffers use this symbol without an enable
port and with an inverted output port.

CARRY_SUM A CARRY_SUM buffer primitive with the following ports:
● SI – SUM IN
● SO – SUM OUT
● CI – CARRY IN
● CO – CARRY OUT

LATCH A latch primitive with the following ports:
● D – data input
● ENA – enable input
● Q – data output
● PRE – preset
● CLR – clear

DFFE/DFFEA/DFFAES A DFFE (data flipflop with enable) primitive, with the same ports as a latch and a
clock trigger. The other flipflop primitives are similar:
● DFFEA (data flipflop with enable and asynchronous load) primitive with additional

ALOAD asynchronous load and ADATA data signals
● DFFEAS (data flipflop with enable and both synchronous and asynchronous

load), which has ASDATA as the secondary data port

Atom Primitive Primitives are low-level nodes that cannot be expanded to any lower hierarchy. The
symbol displays the port names, the primitive type, and its name. The blue shading
indicates an atom primitive in the Technology Map Viewer that allows you to view the
internal details of the primitive. Refer to “Viewing Contents of Atom Primitives in the
Technology Map Viewer” on page 12–22 for details.

Table 12–1. Symbols in the Schematic View (Part 2 of 3)

Symbol Description

12–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Other Primitive Any primitive that does not fall into the categories above. Primitives are low-level
nodes that cannot be expanded to any lower hierarchy. The symbol displays the port
names, the primitive or operator type, and its name.

The figure shows an LCELL WYSIWYG primitive, with DATAA to DATAD and
COMBOUT port connections. This type of LCELL primitive would be found in the
Technology Map Viewer for technology-specific atom primitives when the contents
of the atom primitive cannot be viewed. The RTL Viewer contains similar primitives
if the source design was a VQM or EDIF netlist.

Instance An instance in the design that does not correspond to a primitive or operator
(generally a user-defined hierarchy block), indicated by the double outline and green
shading. The symbol displays the instance name.

To open the schematic for the lower level hierarchy, right-click and choose the
appropriate command (refer to “Traversing and Viewing the Design Hierarchy” on
page 12–21).

Encrypted Instance A user-defined encrypted instance in the design, indicated by the double outline and
gray shading. The symbol displays the instance name. You cannot open the
schematic for the lower level hierarchy, because the source design is encrypted.

State Machine Instance A finite state machine instance in the design, indicated by the double outline and
yellow shading. Double-clicking this instance opens the State Machine Viewer. Refer
to “State Machine Viewer” on page 12–18 for more details.

RAM A synchronous memory instance with registered inputs and optionally registered
outputs, indicated by purple shading. The symbol shows the device family and the
type of TriMatrix memory block. This figure shows a true dual-port memory block in
a Stratix M-RAM block.

Logic Cloud A logic cloud is a group of combinational logic, indicated by a cloud symbol. Refer to
“Grouping Combinational Logic into Logic Clouds” on page 12–32 for more details.

Table 12–1. Symbols in the Schematic View (Part 3 of 3)

Symbol Description

Altera Corporation 12–13
October 2007

Introduction to the User Interface

Table 12–2 lists and describes the symbol used only in the State Machine
Viewer.

Table 12–3 lists and describes the additional higher level operator
symbols used in the RTL Viewer schematic view.

Table 12–2. Symbol Available Only in the State Machine Viewer

Symbol Description

State Node The node representing a state in a finite state machine. State transitions are indicated with
arcs between state nodes. The double circle border indicates the state connects to logic
outside the state machine, while a single circle border indicates the state node does not
feed outside logic.

Table 12–3. Operator Symbols in the RTL Viewer Schematic View (Part 1 of 2)

Symbol Description

An adder operator:
OUT = A + B

A multiplier operator:
OUT = A × B

A divider operator:
OUT = A / B

A left shift operator:
OUT = (A << COUNT)

12–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

A right shift operator:
OUT = (A >> COUNT)

A modulo operator:
OUT = (A % B)

A less than comparator:
OUT = (A <= B : A > B)

A multiplexer:
OUT = DATA [SEL]
The data range size is 2sel range size

A selector:
A multiplexer with one-hot select input and more than two input signals

A binary number decoder:
OUT = (binary_number (IN) == x)
for x = 0 to x = 2(n+1) - 1

Table 12–3. Operator Symbols in the RTL Viewer Schematic View (Part 2 of 2)

Symbol Description

Altera Corporation 12–15
October 2007

Introduction to the User Interface

Selecting an Item in the Schematic View

To select an item in the schematic view, ensure that the Selection Tool is
enabled in the viewer toolbar (this tool is enabled by default). Click on an
item in the schematic view to highlight it in red.

Select multiple items by pressing the Shift or Ctrl key while selecting with
your mouse. You can also select all nodes in a region by selecting a
rectangular box area with your mouse cursor when the Selection Tool is
enabled. To select nodes in a box, move your mouse to one corner of the
area you want to select, click the mouse button, and drag the mouse to the
opposite corner of the box, then release the mouse button. By default,
creating a box like this highlights and selects all nodes in the selected area
(instances, primitives, and pins), but not the nets. The Viewer Options
dialog box provides an option to select nets. To include nets, right-click in
the schematic and click Viewer Options. In the Net Selection section,
turn on the Select entire net when segment is selected option.

Items selected in the schematic view are automatically selected in the
hierarchy list (refer to the “Hierarchy List” on page 12–16). The list
expands automatically if required to show the selected entry. However,
the list does not collapse automatically when entries are not being used
or are deselected.

When you select a hierarchy box, node, or port in the schematic view, the
item is highlighted in red but none of the connecting nets are highlighted.
When you select a net (wire or bus) in the schematic view, all connected
nets are highlighted in red. The selected nets are highlighted across all
hierarchy levels and pages. Net selection can be useful when navigating
a netlist because you see the net highlighted when you traverse between
hierarchy levels or pages.

In some cases, when you select a net that connects to nets in other levels
of the hierarchy, these connected nets also are highlighted in the current
hierarchy. If you prefer that these nets not be highlighted, use the Viewer
Options dialog box option to highlight a net only if the net is in the
current hierarchy. Right-click in the schematic and click Viewer Options.
In the Net Selection section, turn on the Limit selections to current
hierarchy option.

Moving and Panning in the Schematic View

When the schematic view page is larger than the portion currently
displayed, you can use the scroll bars at the bottom and right side of the
schematic view to see other areas of the page.

12–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

You can also use the Hand Tool to “grab” the schematic page and drag it
in any direction. Enable the Hand Tool with the toolbar button. Click and
drag to move around the schematic view without using the scroll bars.

In addition to the scroll bars and Hand Tool, you can use the
middle-mouse/wheel button to move and pan in the schematic view.
Click the middle-mouse/wheel button once to enable the feature. Move
the mouse or scroll the wheel to move around the schematic view. Click
the middle-mouse/wheel button again to turn the feature off.

Hierarchy List

The hierarchy list is displayed on the left side of the viewer window. The
hierarchy list displays the entire netlist in a tree format based on the
hierarchical levels of the design. Within each level, similar elements are
grouped into sub-categories. Using the hierarchy list, you can traverse
through the design hierarchy to view the logic schematic for each level.
You can also select an element in the hierarchy list to be highlighted in the
schematic view.

1 Nodes inside atom primitives are not listed in the hierarchy list.

Altera Corporation 12–17
October 2007

Introduction to the User Interface

For each module in the design hierarchy, the hierarchy list displays the
applicable elements listed in Table 12–4. Click the + icon to expand an
element.

Selecting an Item in the Hierarchy List

When you click any item in the hierarchy list, the viewer performs the
following actions:

■ Searches for the item in the currently viewed pages, and displays the
page containing the selected item in the schematic view if it is not
currently displayed. (If you are currently viewing a filtered netlist,
for example, the relevant page within the filtered netlist is
displayed.)

■ If the selected item is not found in the currently viewed pages, the
entire design netlist is searched, and the item is displayed in a default
view.

■ Highlights the selected item in red in the schematic view.

When you double-click an instance in the hierarchy list, the viewer
displays the underlying implementation of the instance.

Table 12–4. Hierarchy List Elements

Elements Description

Instances Modules or instances in the design that can be expanded to lower hierarchy levels.

State Machines State machine instances in the design that can be viewed in the State Machine Viewer.

Primitives Low-level nodes that cannot be expanded to any lower hierarchy level. These include:
● Registers and gates that you can view in the RTL Viewer when using Quartus II integrated

synthesis
● Logic cell atoms in the Technology Map Viewer or in the RTL Viewer when using a VQM

or EDIF from third-party synthesis software
In the Technology Map Viewer, you can view the internal implementation of certain atom
primitives, but you can not traverse into a lower level of hierarchy.

Pins The I/O ports in the current level of hierarchy.
● Pins are device I/O pins when viewing the top hierarchy level, and are I/O ports of the

design when viewing the lower levels.
● When a pin represents a bus or an array of pins, expand the pin entry in the list view to see

individual pin names.

Nets Nets or wires connecting the nodes. When a net represents a bus or array of nets, expand the
net entry in the tree to see individual net names.

Logic Clouds A group of related combinational logics of a particular source. You can automatically or
manually group combinational logics or ungroup logic clouds in your design.

12–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

You can select multiple items by pressing the Shift or Ctrl key while
selecting with your mouse. When you right-click an item in the hierarchy
list, you can navigate in the schematic view using the Filter and Locate
commands. Refer to “Filtering in the Schematic View” on page 12–34 and
“Probing to Source Design File and Other Quartus II Windows” on
page 12–42 for more information.

State Machine Viewer

The State Machine Viewer displays a graphical representation of the state
machines in your design. You can open the State Machine Viewer in any
of the following ways:

■ On the Tools menu, point to Netlist Viewers, and click State
Machine Viewer

■ Double-click on a state machine instance in the RTL Viewer
■ Right-click on a state machine instance in the RTL Viewer, and click

Hierarchy Down
■ Select a state machine instance in the RTL Viewer, and on the Project

menu, point to Hierarchy and click Down

Figure 12–5 shows an example of the State Machine Viewer for a simple
state machine. The State Machine toolbar on the left side of the viewer
provides tools you can use in the state diagram view.

Altera Corporation 12–19
October 2007

Introduction to the User Interface

Figure 12–5. State Machine in the State Machine Viewer

State Diagram View

The state diagram view is shown at the top of the State Machine Viewer
window. It contains a diagram of the states and state transitions.

The nodes that represent each state are arranged horizontally in the state
diagram view with the initial state (the state node that receives the reset
signal) in the left-most position. Nodes that connect to logic outside of the
state machine instance are represented by a double circle. The state
transition is represented by an arc with an arrow pointing in the direction
of the transition.

When you select a node in the state diagram view, if you turn on the
Highlight Fan-in or Highlight Fan-out command from the View menu
or the State Machine Viewer toolbar, the respective fan-in or fan-out
transitions from the node are highlighted in red.

12–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1 An encrypted block with a state machine displays encoding
information in the state encoding table, but does not display a
state transition diagram or table.

State Transition Table

The state transition table on the Transitions tab at the bottom of the State
Machine Viewer window displays the condition equation for each state
transition. Each transition (each arc in the state diagram view) is
represented by a row in the table. The table has the following three
columns:

■ Source State—the name of the source state for the transition
■ Destination State—the name of the destination state for the

transition
■ Condition—the condition equation that causes the transition from

source state to destination state

To see all of the transitions to and from each state name, click the
appropriate column heading to sort on that column.

The text in each column is left-aligned by default; to change the alignment
and more easily see the relevant part of the text, right-click in the column
and click Align Right. To change back to left alignment, click Align Left.

You can click in any cell in the table to select it. To select all cells,
right-click in the cell and click Select All; or, on the Edit menu, click
Select All. To copy selected cells to the clipboard, right-click the cells and
click Copy Table; or, on the Edit menu, point to Copy and click Copy
Table. You can paste the table into any text editor as tab-separated
columns.

State Encoding Table

The state encoding table on the Encoding tab at the bottom of the State
Machine Viewer window displays the encoding information for each
state transition.

To view state encoding information in the State Machine Viewer, you
must have synthesized your design using Start Analysis & Synthesis. If
you have only elaborated your design using Start Analysis &
Elaboration, the encoding information is not displayed.

Altera Corporation 12–21
October 2007

Navigating the Schematic View

Selecting an Item in the State Machine Viewer

You can select and highlight each state node and transition in the State
Machine Viewer. To select a state transition, click the arc that represents
the transition.

When you select a state node, transition arc, or both in the state diagram
view, the matching state node and equation conditions in the state
transition table are highlighted. Conversely, when you select a state node,
equation condition, or both in the state transition table, the corresponding
state node and transition arc are highlighted in the state diagram view.

Switching Between State Machines

A design may contain multiple state machines. To choose which state
machine to view, use the State Machine selection box located at the top
of the State Machine Viewer. Click in the drop-down box and select the
desired state machine.

Navigating the
Schematic View

The previous sections provided an overview of the user interface for each
netlist viewer, and how to select an item in each viewer. This section
describes methods to navigate through the pages and hierarchy levels in
the schematic view of the RTL Viewer and Technology Map Viewer.

Traversing and Viewing the Design Hierarchy

You can open different hierarchy levels in the schematic view using the
hierarchy list (refer to “Hierarchy List” on page 12–16), or the Hierarchy
Up and Hierarchy Down commands in the schematic view.

Use the Hierarchy Down command to go down into, or expand an
instance’s hierarchy, and open a lower level schematic showing the
internal logic of the instance. Use the Hierarchy Up command to go up in
hierarchy, or collapse a lower level hierarchy, and open the parent higher
level hierarchy. When the Selection Tool is selected, the appropriate
option is available when your mouse pointer is located over an area of the
schematic view that has a corresponding lower or higher level hierarchy.

The mouse pointer changes as it moves over different areas of the
schematic to indicate whether you can move up, down, or both up and
down in the hierarchy (Figure 12–6). To open the next hierarchy level,
right-click in that area of the schematic, and click Hierarchy Down or
Hierarchy Up, as appropriate, or double-click in that area of the
schematic.

12–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–6. Mouse Pointers Indicate How to Traverse Hierarchy

Flattening the Design Hierarchy

You can flatten the design hierarchy to view the design without
hierarchical boundaries. To flatten the hierarchy from the current level
and all the lower level hierarchies of the current design hierarchy,
right-click in the schematic and click Flatten Netlist. To flatten the entire
design, choose Flatten Netlist from the top-level schematic of the design.

Viewing the Contents of a Design Hierarchy within the Current Schematic

You can use the Display Content and Hide Content commands to show
or hide a lower hierarchy level for a specific instance within the schematic
for the current hierarchy level.

To display the lower hierarchy netlist of an instance on the same
schematic as the remaining logic in the currently viewed netlist,
right-click the selected instance and click Display Content.

To hide all of the lower hierarchy logic of a hierarchy box into a closed
instance, right-click the selected instance and click Hide Content.

Viewing Contents of Atom Primitives in the Technology Map
Viewer

In the Technology Map Viewer, you can view the contents of certain
device atom primitives to see their underlying implementation details.
For logic cell (LCELL) atoms in the Stratix and Cyclone® series of devices
and in MAX® II devices, you can view the LUTs, registers, and logic gates.
For I/O atoms in the Stratix and Cyclone series of devices, and
HardCopy® II devices, you can view the registers and logic gates.

In addition, you can view the implementation of RAM and DSP blocks in
certain devices. You can view the implementation of RAM blocks in the
Stratix and Cyclone series of devices. You can view the implementation
of DSP blocks only in the Stratix series of devices.

Altera Corporation 12–23
October 2007

Navigating the Schematic View

If you can view the contents of an atom instance, it is blue in the schematic
view (Figure 12–7).

Figure 12–7. Instance That Can Be Expanded to View Internal Contents

To view the contents of one or more atom primitive instances, select the
desired atom instances. Right-click a selected instance and click Display
Content. You can also double-click on the desired atom instance to view
the contents. Figure 12–8 shows an expanded version of the instance in
Figure 12–7.

Figure 12–8. Internal Contents of the Atom Instance in Figure 12–7.

To hide the contents (and revert to the compact format), select and
right-click the atom instance(s), and click Hide Content.

1 In the schematic view, the internal details within an atom
instance can not be selected as individual nodes. Any mouse
action on any of the internal details is treated as a mouse action
on the atom instance.

12–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Viewing the Properties of Instances and Primitives

You can view the properties of an instance or a primitive using the
Properties dialog box. To view the properties of an instance or a primitive
in the RTL Viewer or the Technology Map Viewer, right-click the node
and click Properties.

The Properties dialog box contains the following information about the
selected node:

■ The parameter values of an instance.
■ The active level of the port (for example, active high or active low).

An active low port is denoted with an exclamation mark “!”.
■ The port’s constant value (for example, VCC or GND). Table 12–5

describes the possible value of a port.

In the look-up-table (LUT) of a logic cell (LCELL), the Properties dialog
box contains the following additional information:

■ The schematic of the LCELL.
■ The Truth Table representation of the LCELL.
■ The Karnaugh map representation of the LCELL.

Viewing LUT Representations in the Technology Map Viewer

You can view different representations of an LUT by right-clicking on the
selected LUT, and selecting Properties. This feature is only applicable for
the Stratix and Cyclone series of devices, and in MAX II devices. There
are three tabs in the Properties dialog box, which you can choose from to
view the LUT representations. The Schematic tab (see Figure 12–9) shows
you the equivalent gate representations of the LUT. The Truth Table tab
(see Figure 12–10) shows the truth table representations, and the
Karnaugh Map tab (see Figure 12–11) shows the Karnaugh map
representations of the LUT. The Karnaugh map supports up to 6 input
LUTs. For details on the Ports tab, see “Viewing the Properties of
Instances and Primitives”.

Table 12–5. Possible Port Values

Value Description

VCC The port is not connected and has VCC value (tied to VCC)

GND The port is not connected and has GND value (tied to GND)

-- The port is connected and has value (other than VCC or GND)

Unconnected The port is not connected and has no value (hanging)

Altera Corporation 12–25
October 2007

Navigating the Schematic View

Figure 12–9. Schematic Tab

Figure 12–10. Truth Table Tab

12–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–11. Karnaugh Map Tab

Zooming and Magnification

You can control the magnification of your schematic with the View menu,
the Zoom Tool in the toolbar, or the Ctrl key and mouse wheel button, as
described in this section.

The Fit in Window, Fit Selection in Window, Zoom In, Zoom Out, and
Zoom commands are available from the View menu, by right-clicking in
the schematic view and selecting Zoom, or from the Zoom toolbar. To
enable the zoom toolbar, on the Tools menu, click Customize. Click the
Toolbars tab and click Zoom to enable the toolbar.

By default, the viewer displays most pages sized to fit in the window. If
the schematic page is very large, the schematic is displayed at the
minimum zoom level, and the view is centered on the first node. Select
Zoom In to view the image at a larger size, and select Zoom Out to view
the image (when the entire image is not displayed) at a smaller size. The
Zoom command allows you to specify a magnification percentage (100%
is considered the normal size for the schematic symbols).

The Fit Selection in Window command zooms in on the selected nodes
in a schematic to fit within the window. Use the Selection Tool to select
one or more nodes (instances, primitives, pins, and nets), then select Fit
Selection in Window to enlarge the area covered by the selection. This

Altera Corporation 12–27
October 2007

Navigating the Schematic View

feature is helpful when you want to see a particular element in a large
schematic. After you select a node, you can easily zoom in to view the
particular node.

You can also use the Zoom Tool on the viewer toolbar to control
magnification in the schematic view. When you select the Zoom Tool in
the toolbar, clicking on the schematic zooms in and centers the view on
the location you clicked. Right-click on the schematic (or press the Shift
key or the Ctrl key and click) to zoom out and center the view on the
location you clicked. When you select the Zoom Tool, you can also zoom
in to a certain portion of the schematic by selecting a rectangular box area
with your mouse cursor. The schematic is enlarged to show the selected
area. To change the minimum and the maximum zoom level, on the Tools
menu, click Options. In the Options dialog box, in the Category list,
select Netlist Viewers, and set the desired minimum and maximum
zoom level.

By default, the viewers maintain the zoom level when filtering on the
schematic (refer to “Filtering in the Schematic View” on page 12–34). To
change the behavior so that the zoom level is always reset to “Fit in
Window,” on the Tools menu, click Options. In the Category list, select
Netlist Viewers, and turn off Maintain zoom level.

Schematic Debugging and Tracing Using the Bird's Eye View

Viewing the entire schematic can be useful when debugging and tracing
through a large netlist. The Quartus II software allows you to view the
entire schematic in a single window. The bird’s eye view is displayed in
a separate window that is linked directly to the netlist viewers. This
feature is available in the RTL, Technology Map, and Technology Map
(Post-Mapping) viewers.

The bird’s eye view shows the current area of interest. Select the desired
area by clicking and dragging the indicator or using the right-mouse
button to form a rectangular box around the desired area. You can also
click and drag the rectangular box to move around the schematic. To
open the bird’s eye view, on the View menu, click Bird’s Eye View, or
click on the Bird’s Eye View icon in the Viewer toolbar (Figure 12–12).

Figure 12–12. Bird’s Eye View Icon

Bird’s Eye
View icon

12–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Full Screen View

To set the viewer window to fill the whole screen, on the View menu,
click Full Screen, or click the Full Screen icon in the viewer toolbar, or
press Ctrl+Alt+Space. The keyboard shortcut toggles between the full
screen and standard screen views.

Partitioning the Schematic into Pages

For large design hierarchies, the RTL Viewer and Technology Map
Viewer partition your netlist into multiple pages in the schematic view.
To control how much of the design is visible on each page, on the Tools
menu, click Options. In the Category list, select Netlist Viewers, and set
the desired options under Display Settings.

The Nodes per page option specifies the number of nodes per partitioned
page. The default value is 50 nodes; the range is 1 to 1,000 nodes. The
Ports per page option specifies the number of ports (or pins) per
partitioned page. The default value is 1,000 ports (or pins); the range is 1
to 2,000 ports (or pins). The viewers partition your design into a new page
if either the node number or the port number exceeds the limit you have
specified. You may occasionally see the number of ports exceed the limit,
depending on the configuration of nodes on the page.

If the Display boundary around hierarchy levels option is turned on,
and the total number of nodes or ports within the hierarchy exceeds the
value of Nodes per page or Ports per page, the boundary is displayed as
a hierarchy port connector (refer to Table 12–1 on page 12–10). For more
information about the Display boundary around hierarchy levels
option, refer to “Filtering Across Hierarchies” on page 12–38.

When a hierarchy level is partitioned into multiple pages, the title bar for
the schematic window indicates which page is displayed and how many
total pages exist for this level of hierarchy (shown in the format:
Page <current page number> of <total number of pages>), as shown in
Figure 12–13.

Altera Corporation 12–29
October 2007

Navigating the Schematic View

Figure 12–13. RTL Viewer Title Bars Indicating Page Number Information

When you change the number of nodes or ports per page, the change
applies only to new pages that are shown or opened in the viewer. To
refresh the current page so that it displays the changed number of nodes
or ports, click the Refresh button in the toolbar.

Moving Between Schematic Pages

To move to another schematic page, on the View menu, click Previous
Page or Next Page, or click the Previous Page icon or the Next Page icon
in the viewer toolbar.

To go to a particular page of the schematic, on the Edit menu, click Go To,
or right-click in the schematic view, and click Go To. In the Page list,
select the desired page number. You can also go to a particular page by
selecting the desired page number from the drop down list on the top
right of the viewer window.

Moving Back and Forward Through Schematic Pages

To return to the previous view after changing the page view, click Back
on the View menu, or click the Back icon on the viewer toolbar. To go to
the next view, click Forward on the View menu, or click the Forward icon
on the viewer toolbar.

1 You can go Forward only if you have not made any changes to
the view since going Back. Use Back and Forward to switch
between page views. These commands do not undo an action
such as selecting a node.

Following Nets Across Schematic Pages

Input and output connectors indicate nodes that connect across pages of
the same hierarchy. Right-click on a connector to display a menu of
commands that trace the net through the pages of the hierarchy.

12–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1 After you right-click to follow a connector port, the viewer
opens a new page, which centers the view on the particular
source or destination net using the same zoom factor used by the
previous page. To trace a specific net to the new page of the
hierarchy, Altera recommends that you first select the desired
net, which highlights it in red, before you right-click to traverse
pages.

Input Connectors
Figure 12–14 shows an example of the menu that appears when you
right-click an input connector. The From command opens the page
containing the source of the signal. The Related commands, if applicable,
open the specified page containing another connection fed by the same
source.

Figure 12–14. Input Connector Right Button Pop-Up Menu

Output Connectors
Figure 12–15 shows an example of the menu that appears when you
right-click an output connector. The To command opens the specified
page that contains a destination of the signal.

Altera Corporation 12–31
October 2007

Customizing the Schematic Display in the RTL Viewer

Figure 12–15. Output Connector Right Button Pop-Up Menu

Go to Net Driver

To locate the source of a particular net in the schematic view, select the
net to highlight it, right-click the selected net, point to Go to Net Driver,
and click Current page, Current hierarchy, or Across hierarchies. Refer
to Table 12–6 for details.

The schematic view opens the correct page of the schematic if needed,
and adjusts the centering of the page so that you can see the net source.
The schematic shows the default page for the net driver. The view is an
unfiltered view, so no filtering results are kept.

Customizing the
Schematic
Display in the
RTL Viewer

You can customize the schematic display for better viewing and to speed
up your debugging process. The options that control the schematic
display are available in the Customize View tab of the RTL/Technology
Map Viewer Options dialog box. To open the dialog box, right-click in
the schematic and click Viewer Options. You can turn on the options to
remove fan-out free nodes, simplify logic, group or ungroup related
nodes, and group combinational logic into a logic cloud.

Table 12–6. Go to Net Driver Commands

Command Action

Current page Locates the source or driver on the current page of the schematic only.

Current hierarchy Locates the source within the current level of hierarchy, even if the source is located on
another page of the netlist schematic.

Across hierarchies Locates the source across hierarchies until the software reaches the source at the top
hierarchy level.

12–32 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

You can also customize the schematic view in the RTL Viewer by clicking
Options on the Tools menu, in the Category list expand Netlist Viewers,
and selecting RTL Viewer. Set the desired customization for your
schematic display.

1 When the settings are changed, the list of previously viewed
pages is cleared. The settings are revision-specific, so different
revisions could have different settings.

To remove fan-out free registers from your schematic display, turn on
Remove registers without fan-out. By default, this option is turned on.

To remove all single-input nodes and merge a chain of equivalent
combinational gates that have direct connections (without inversion in
between) into a single multiple-input gate, turn on Show simplified
logic. By default, this option is turned on.

To group all related nodes into a single node, turn on Group all related
nodes. This option is turned on by default. You can manually group or
ungroup any nodes by right-clicking the selected nodes in the schematic
and selecting Group Related Nodes to group, or Ungroup Selected
Nodes to ungroup.

Grouping Combinational Logic into Logic Clouds

You can automatically group all combinational logic nodes in your
design into logic clouds by clicking Options on the Tools menu, in the
Category list expand Netlist Viewers, and select RTL Viewer. In the RTL
Viewer page, turn on Group combinational logic in logic cloud. You can
also set this option by right-clicking in the schematic and click Viewer
Options. In the RTL/Technology Map Viewer Options dialog box, click
on the Customize View tab. In the Customize Groups section, turn on the
Group combinational logic in logic cloud option. Figure 12–16 and
Figure 12–17 show the schematic before and after the combinational logic
grouping operation.

Altera Corporation 12–33
October 2007

Customizing the Schematic Display in the RTL Viewer

Figure 12–16. Schematic Before Combinational Logic Grouping

Figure 12–17. Schematic After Combinational Logic Grouping

12–34 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

To manually group combinational logic nodes into a logic cloud,
right-click the selected node or input port, and select Group Source Logic
into Logic Cloud. To manually ungroup logic cloud, right-click on the
selected logic cloud and select Ungroup Source Logic from Logic Cloud.
You can also manually ungroup a logic cloud by double-clicking on the
selected logic cloud. These options are not available if the nodes cannot
be grouped.

Filtering in the
Schematic View

Filtering allows you to filter out nodes and nets in your netlist to view
only the logic that interests you.

Filter your netlist by selecting hierarchy boxes, nodes, ports of a node,
net, or states in a state machine that are part of the path you want to see.
The following filter commands are available:

■ Sources—Displays the sources of the selection
■ Destinations—Displays the destinations of the selection
■ Sources & Destinations—Displays both the sources and

destinations of the selection
■ Selected Nodes and Nets—Displays only the selected nodes and

nets with the connections between them
■ Between Selected Nodes—Displays nodes and connections in the

path between the selected nodes
■ Bus Index—Displays the sources or destinations for one or more

indices of an output or input bus port

Select a hierarchy box, node, port, net, or state node, right-click in the
window, point to Filter and click the appropriate filter command. The
viewer generates a new page showing the netlist that remains after
filtering.

When filtering in a state diagram in the State Machine Viewer, sources
and destinations refer to the previous and next transition states or paths
between transition states in the state diagram. The transition table and
encoding table also reflect the filtering.

You can go back to the netlist page before it was filtered using the Back
command, described in “Moving Back and Forward Through Schematic
Pages” on page 12–29.

1 When viewing a filtered netlist, clicking an item in the hierarchy
list causes the schematic view to display an unfiltered view of
the appropriate hierarchy level. You cannot use the hierarchy
list to select items or navigate in a filtered netlist.

Altera Corporation 12–35
October 2007

Filtering in the Schematic View

Filter Sources Command

To filter out all but the source of the selected item, right click the item,
point to Filter and click Sources. The selected object type determines
what is displayed, as outlined in Table 12–7, and shown in Figure 12–18
on page 12–36.

Filter Destinations Command

To filter out all but the destinations of the selected node or port as
outlined in Table 12–8, and shown in Figure 12–18 on page 12–36,
right-click the node or port, point to Filter, and click Destinations.

Table 12–7. Selected Objects Determine Filter Sources Display

Selected Object Result Shown in Filtered Page

Node or hierarchy box Shows all the sources of the node’s input ports. For an example, refer to
Figure 12–18 on page 12–36.

Net Shows the sources that feed the net.

Input port of a node Shows only the input source nodes that feed this port.

Output port of a node Shows only the selected node.

State node in a state machine Shows the states that feed the selected state (previous transition states).

Table 12–8. Selected Objects Determine Filter Destinations Display

Selected Object Result Shown in Filtered Page

Node or hierarchy box Shows all the destinations of the node’s output ports. For an example, refer
to Figure 12–18 on page 12–36.

Net Shows the destinations fed by the net.

Input port of a node Shows only the selected node.

Output port of a node Shows only the fan-out destination nodes fed by this port.

State node in a state machine Shows the states that are fed by the selected states (next transition states).

12–36 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Filter Sources and Destinations Command

The Sources & Destinations command is a combination of the Sources
and Destinations filtering commands, in which the filtered page shows
both the sources and the destinations of the selected item. To select this
option, right-click on the desired object, point to Filter, and click
Sources & Destinations. Refer to the example in Figure 12–18.

Figure 12–18. Sources, Destinations, and Sources and Destinations Filtering for inst4

Filter Between Selected Nodes Command

To show the nodes in the path between two or more selected nodes or
hierarchy boxes, right-click, point to Filter, and click Between Selected
Nodes. For this option, selecting a port of a node is the same as selecting
the node. For an example, refer to Figure 12–19.

Figure 12–19. Between Selected Nodes Filtering Between inst2 and inst3

inst2
inst4pin_name3

pin_name4

pin_name3

pin_name4
inst2OUT1

inst4OUT1
inst3OUT1

pin_name5 pin_name6
instOUT1

Sources & Destinations

Sources

Destinations

inst3

inst
pin_name

pin_name2

pin_name5

pin_name

pin_name2

inst2
inst4pin_name3

pin_name4

pin_name3

pin_name4
inst2OUT1

inst4OUT1
inst3OUT1

pin_name5 pin_name6
instOUT1

inst3

inst
pin_name

pin_name2

pin_name5

pin_name

pin_name2

Between Selected Nodes

Altera Corporation 12–37
October 2007

Filtering in the Schematic View

Filter Selected Nodes and Nets Command

To create a filtered page that shows only the selected nodes, nets, or both,
and, if applicable, the connections between the selected nodes, nets, or
both, right-click, point to Filter, and click Selected Nodes & Nets.
Figure 12–20 shows a schematic with several nodes selected.

Figure 12–20. Using Selected Nodes and Nets to Select Nodes

Figure 12–21 shows the schematic after filtering has been performed. If
you select a net, the filtered page shows the immediate sources and
destinations of the selected net.

Figure 12–21. Selected Nodes and Nets Filtering on Figure 12–20 Schematic

Filter Bus Index Command

To show the path related to a specific index of a bus input or output port
in the RTL Viewer, right-click the port, point to Filter, and click Bus
Index. The Select Bus Index dialog box allows you to select the indices of
interest.

Filter Command Processing

The options to control filtering are available in the Tracing section of the
RTL/Technology Map Viewer Options dialog box. Right-click in the
schematic, and click Viewer Options to open the dialog box.

12–38 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

For all the filtering commands, the viewer stops tracing through the
netlist to obtain the filtered netlist when it reaches one of the following
objects:

■ A pin
■ A specified number of filtering levels, counting from the selected

node or port; the default value is 3

1 Specify the Number of filtering levels in the Tracing
section of the RTL/Technology Map Viewer Options
dialog box. The default value is 3 to ensure optimal
processing time when performing filtering, but you can
specify a value from 1 to 100.

■ A register (optional; turned on by default)

1 Turn the Stop filtering at register option on or off in the
Tracing section of the RTL/Technology Map Viewer
Options dialog box. Right-click in the schematic and click
Viewer Options to open the dialog box.

By default, the filtered schematic shows all possible connections between
the nodes shown in the schematic. To remove the connections that are not
directly part of the path that was traced to generate a filtered netlist, turn
off the Shows all connections between nodes option in the Tracing
section of the RTL/Technology Map Viewer Options dialog box.

Filtering Across Hierarchies

The filtering commands display nodes in all hierarchies by default. When
the filtered path passes through levels of hierarchy on the same schematic
page, green hierarchy boxes group the logic and show the hierarchy
boundaries. A green rectangular symbol appears on the border that
represents the port relationship between two different hierarchies
(Figure 12–22 and Figure 12–23).

The RTL/Technology Map Viewer Options dialog box provides an
option to control filtering if you prefer to filter only within the current
hierarchy. Right-click in the schematic, and click Viewer Options. In the
Tracing section, turn off the Filter across hierarchy option.

To disable the box hierarchy display, on the Tools menu, click Options.
In the Category list, select Netlist Viewers and turn off Display
boundary around hierarchy levels.

Altera Corporation 12–39
October 2007

Filtering in the Schematic View

1 Netlists of the same hierarchy that are displayed over more than
one page are not grouped with a box. Filtering and expanding
on a blue atom primitive does not trace the underlying netlist
even when Filter across hierarchy is enabled.

Figures 12–22 and 12–23 show examples of filtering across hierarchical
boundaries. Figure 12–22 shows an example after the Sources filter has
been applied to an input port of the taps instance, where the input port
of the lower level hierarchical block connects directly to an input pin of
the design. The name of the instance is indicated within the green border
and appears as a tooltip when you move your mouse pointer over the
instance.

Figure 12–22. Filtering Across Hierarchical Boundaries, Small Example

12–40 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–23 shows a larger example after the Sources filter has been
applied to an input port of an instance, in which the source comes from
input pins that are fed through another level of hierarchy.

Figure 12–23. Filtering Across Hierarchical Boundaries, Large Example

Expanding a Filtered Netlist

After a netlist is filtered, some ports may have no connections displayed
because their connections are not part of the main path through the
netlist. Two expansion features, immediate expansion and the Expand
command, allow you to add the fan-in or fan-out signals of these ports to
the schematic display of a filtered netlist.

You can immediately expand any port whose connections are not
displayed. When you double-click that port in the filtered schematic, one
level of logic is expanded.

To expand more than one level of logic, right-click the port and click the
Expand command. This command expands logic from the selected port
by the amount specified in the Viewer Options. To set these options,
right-click in the schematic view, and click Viewer Options. In the
Expansion section, set the Number of expansion levels option to specify
the number of levels to expand (the default value is 3 and the range is
1 to 100 levels). You can also set the Stop expanding at register option
(which is turned on by default) to specify whether netlist expansion
should stop when a register is reached.

Altera Corporation 12–41
October 2007

Filtering in the Schematic View

You can select multiple nodes to expand when using the Expand
command. If you select ports that are located on multiple schematic
pages, only the ports on the currently viewed page appear in the
expanded schematic.

In the State Machine Viewer, the Expand command has the following
three options:

■ Sources—Displays the states that feed the selected states (previous
transition states)

■ Destinations—Displays the states that are fed by the selected states
(next transition states)

■ Sources & Destinations—Displays both the previous and next
transition states

The state transition table and state encoding table also reflect the changes
to the filtering.

The expansion feature works across hierarchical boundaries if the filtered
page containing the port to be expanded was generated with the Filter
across hierarchy option turned on (refer to “Filtering in the Schematic
View” on page 12–34 for details on this option). When viewing timing
paths in the Technology Map Viewer, the Expand command always
works across hierarchical boundaries because filtering across hierarchy is
always turned on for these schematics (refer to “Viewing a Timing Path”
on page 12–45 for details on these schematics).

Reducing a Filtered Netlist

In some cases, removing logic from a filtered schematic or state diagram
makes the schematic view easier to read or minimizes distracting logic
that you do not need to view in the schematic.

To reduce elements in the filtered schematic or state diagram view,
right-click the node or nodes you want to remove and click Reduce.

12–42 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Probing to
Source Design
File and Other
Quartus II
Windows

The RTL, Technology Map, and State Machine Viewers let you
cross-probe from the viewer to the source design file and to various other
windows within the Quartus II software. You can select one or more
hierarchy boxes, nodes, nets, state nodes, or state transition arcs that
interest you in the viewer and locate the corresponding items in another
applicable Quartus II software window. You then can view and make
changes or assignments in the appropriate editor or floorplan.

To locate an item from the viewer in another window, right-click the items
of interest in the schematic or state diagram view, point to Locate, and
click the appropriate command. The following commands are available:

■ Locate in Assignment Editor
■ Locate in Pin Planner
■ Locate in Timing Closure Floorplan
■ Locate in Chip Planner
■ Locate in Resource Property Editor
■ Locate in RTL Viewer
■ Locate in Technology Map Viewer
■ Locate in Design File

The options available for locating depend on the type of node and
whether it exists after placement and routing. If a command is enabled in
the menu, then it is available for the selected node. You can use the Locate
in Assignment Editor command for all nodes, but assignments may be
ignored during placement and routing if they are applied to nodes that do
not exist after synthesis.

The viewer automatically opens another window for the appropriate
editor or floorplan, and highlights the selected node or net in the newly
opened window. You can switch back to the viewer by selecting it in the
Window menu or by closing, minimizing, or moving the new window.

1 When probing to a logic cloud in the RTL Viewer, a message box
appears that prompts you to ungroup the logic cloud or allow it
to remain grouped.

Moving Selected Nodes to Other Quartus II Windows

You can drag selected nodes from the netlist viewers to the Text Editor,
Block Editor, Pin Planner, SignalTap® II, and Waveform Editor windows
within the Quartus II software. Whenever you see the drag-and-drop
pointer on the selected node in the netlist viewers, it means that the node
can be dragged to other child windows within the Quartus II software.

Altera Corporation 12–43
October 2007

Probing to Source Design File and Other Quartus II Windows

Figure 12–24 shows the drag-and-drop pointer and an example of
dragging a node from the RTL Viewer to the SignalTap II Logic Analyzer.

Figure 12–24. Dragging a Node to the SignalTap II Logic Analyzer

12–44 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Probing to the
Viewers from
Other Quartus II
Windows

You can cross-probe to the RTL Viewer and Technology Map Viewer from
other windows within the Quartus II software. You can select one or more
nodes or nets in another window and locate them in one of the viewers.

You can locate nodes between the RTL, State Machine, and Technology
Map Viewers, and you can locate nodes in the RTL Viewer or Technology
Map Viewer from the following Quartus II software windows:

■ Project Navigator
■ Timing Closure Floorplan
■ Chip Planner
■ Resource Property Editor
■ Node Finder
■ Assignment Editor
■ Messages Window
■ Compilation Report
■ TimeQuest Timing Analyzer (only supports the Technology Map

Viewer)

To locate elements in the viewer from another Quartus II window, select
the node or nodes in the appropriate window; for example, select an
entity in the Entity list on the Hierarchy tab in the Project Navigator, or
select nodes in the Timing Closure Floorplan, or select node names in the
From or To column in the Assignment Editor. Next, right-click the
selected object, point to Locate, and click Locate in RTL Viewer or Locate
in Technology Map Viewer. After you choose this command, the viewer
window opens, or is brought to the foreground if the viewer window is
already open.

1 The first time the window opens after a compilation, the
preprocessor stage runs before the viewer window opens.

The viewer shows the selected nodes and, if applicable, the connections
between the nodes. The display is similar to what you see if you
right-click the object, point to Filter, and click Selected Nodes & Nets
using Filter Across Hierarchy. If the nodes cannot be found in the viewer,
a message box displays the message: “Can’t find requested location.”

Altera Corporation 12–45
October 2007

Viewing a Timing Path

Viewing a
Timing Path

To see a visual representation of a timing path, you can cross-probe from
the Timing Analysis section of the Compilation Report with the Classic
Timing Analyzer, or from a report panel in the TimeQuest Timing
Analyzer.

To take advantage of this feature, you must first successfully complete a
full compilation of your design, including the timing analyzer stage. To
access the timing analyzer report that contains the timing results for your
design, on the Processing menu, click Compilation Report. On the left
side of the Compilation Report, select Timing Analyzer or TimeQuest
Timing Analyzer. When you select a detailed report, the timing
information is listed in a table format on the right side of the Compilation
Report; each row of the table represents a timing path in the design. You
can also view timing paths in TimeQuest report panels. To view a
particular timing path in the Technology Map Viewer or the RTL Viewer,
highlight the appropriate row in the table, right-click, point to Locate, and
click Locate in Technology Map Viewer or Locate in RTL Viewer.

In the Technology Map Viewer, the schematic page displays the nodes
along the timing path with a summary of the total delay. If you locate
from the Classic Timing Analyzer, the timing path also includes timing
data representing the interconnect (IC) and cell delays associated with
each node. The delay for each node is shown in the following format:
<post-synthesis node name> (<IC delay> ns, <cell delay> ns). When you
locate the timing path from the TimeQuest Timing Analyzer to the
Technology Map Viewer, the interconnect and cell delay associated with
each node is not displayed.

Figure 12–25 shows a portion of a Classic Timing Analyzer timing path
represented in the Technology Map Viewer. The total delay for the entire
path through several levels of logic (only three levels are shown in
Figure 12–25) is 7.159 ns. The delays are indicated for each level of logic.
For example, the IC delay to the first LCELL primitive is 0.383 ns and the
cell delay through the LCELL is 0.075 ns. When the timing path passes
through a level of hierarchy, green hierarchy boxes group the logic and
show the hierarchical boundaries. A green rectangular symbol on the
border indicates the path passes between two different hierarchies.

12–46 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–25. Timing Path Schematic in the Technology Map Viewer

In the RTL Viewer, the schematic page displays the nodes in the path(s)
between the source and destination registers with a summary of the total
delay.

The RTL Viewer netlist is based on an initial stage of synthesis, so the
post-fitting nodes may not exist in the RTL Viewer netlist. Therefore, the
internal delay numbers are not displayed in the RTL Viewer as they are
in the Technology Map Viewer, and the timing path may not be displayed
exactly as it appears in the timing analysis report. If multiple paths exist
between the source and destination registers, the RTL Viewer may
display more than just the timing path. There are also some cases in
which the path cannot be displayed, such as paths through state
machines, encrypted intellectual property (IP), or registers that are
created during the fitter process. In cases where the timing path
displayed in the RTL Viewer might not be the correct path, the compiler
issues messages.

Altera Corporation 12–47
October 2007

Other Features in the Schematic Viewer

Other Features
in the Schematic
Viewer

This section describes other features in the schematic view that enhance
usability and help you analyze your design.

Tooltips

A tooltip is displayed whenever the mouse pointer is held over an
element in the schematic. The tooltip contains useful information about a
node, net, logic cloud, input port, and output port. Table 12–9 lists the
information contained in the tooltip for each type of node.

The tooltip information for an instance (the first row in Table 12–9)
includes a list of the primitives found within that level of hierarchy, and
the number of each primitive contained in the current instance. The
number includes all hierarchical blocks below the current instance in the
hierarchy. This information lets you estimate the size and complexity of a
hierarchical block without navigating into the block.

The tooltip information for atom primitives in the Technology Map
Viewer (the second row of Table 12–9) shows the equation for the design
atom. The equations are an expanded version of the equations you can
view in the Equations window in the Timing Closure Floorplan.
Advanced users can use these equations to analyze the design
implementation in detail.

f For details on understanding equations, refer to the Quartus II Help.

To copy tooltips into the clipboard for use in other applications,
right-click the desired node or netlist, and click Copy Tooltip.

To turn off tooltips or change the duration of time that a tooltip is
displayed in the view, on the Tools menu, click Options. In the Category
list, select Netlist Viewers and set the desired options under Tooltip
settings.

The Show names in tooltip for option specifies the number of seconds to
display the names of assigned nodes and pins in a tooltip when the
pointer is over the assigned nodes and pins. Selecting Unlimited displays
the tooltip as long as the pointer remains over the node or pin. Selecting 0
turns off tooltips. The default value is 5 seconds.

The Delay showing tooltip for option specifies the number of seconds
you must hold the mouse pointer over assigned nodes and pins before the
tooltip displays the names of the assigned nodes and pins. Selecting 0
displays the tooltip immediately when the pointer is over an assigned
node or pin. Selecting Unlimited prevents tooltips from being displayed.
The default value is 1 second.

12–48 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Table 12–9. Tooltip Information (Part 1 of 2)

Description and Tooltip Format Example Tooltips

Instance
Format: <instance name>, <instance type>

<primitive type>, <number of primitives>...
<primitive type>, <number of primitives>

Atom Primitive
Format: <instance name>, <primitive name> (<LUT Mask Value>)

{(r | c <Register or Combinational equation>)}
...

An r (as in the first example) represents the equation for a register,
and a c (as in the second example) represents the equation for
combinational logic.

Primitive
Format:<primitive name>, <primitive type>

Pin
Format: <pin name>, <pin type>

Connector
Format: <connector name>

Net
Format: <net name>, fan-out = <number of fan-out signals>

Output Port
Format: fan-out = <number of fan-out signals>

Altera Corporation 12–49
October 2007

Other Features in the Schematic Viewer

Input Port

The information displayed depends on the type of source net. The
examples of the tooltips shown represent the following types of source
nets:

(1) Single net

(2) Individual nets, part of the same bus net

(3) Combination of different bus nets

(4) Constant inputs

(5) Combination of single net and constant input

(6) Bus net

Source from—refers to the source net name that connects to the input
port.

Destination Index—refers to the bit(s) at the destination input port to
which the source net is connected (not applicable for single nets).

State Machine Node
Format: <node name>

State Machine Transition Arc
This information is displayed when you hold your mouse over the
arrow on the arc representing the transition between two states.
Format: (<equation for transition between states>)

Table 12–9. Tooltip Information (Part 2 of 2)

Description and Tooltip Format Example Tooltips

(1)

(2)

(3)

(4)

(5)

(6)

12–50 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Radial Menu

This user interface feature provides a quick method to perform some
shortcut commands in the schematic view. The commands are listed in an
octagon-shaped menu, and you can perform the commands via mouse
stroke.

To launch the Radial menu, hold down the CTRL key and right-click the
mouse anywhere in the schematic view. The Radial menu appears with
the mouse cursor always at the center point. To trigger the desired
command, you can do either of the following:

■ While holding the CTRL key, click the desired region/command in
the Radial menu to execute the command.

■ While holding the CTRl key, right-click and hold the mouse button,
drag the pointer onto the desired command, and then release to
execute the command.

However, if you release the CTRL key while performing either of the
above actions, the Radial menu disappears, without executing the
command.

Altera Corporation 12–51
October 2007

Other Features in the Schematic Viewer

Figure 12–26 shows the radial menu in action.

Figure 12–26. Radial Menu

Customizing the Radial Menu

You can customize all eight commands in the Radial menu. To customize
the radial menu, you first need to launch the RTL Viewer or the
Technology Map Viewer. Then on the Tools menu, click Customize RTL
Viewer, Customize Technology Map Viewer, or Customize
Technology Map Viewer (Post-Mapping) and click on the Shortcut
Commands tab. The Buttons section of the dialog box shows a list of
Netlist Viewer commands that you can choose. You can click on a
command to see its description in the Description section. To make the
desired command appear on the radial menu, drag-and-drop the
command onto the Radial menu diagram in the Shortcut Commands
Popup section. Repeated commands are allowed in the radial menu.

12–52 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–27 shows the Shortcut Commands tab for customizing the
radial menu.

Figure 12–27. Shortcut Command Tab

Rollover

You can highlight an element and view its name in your schematic using
the rollover feature. When you place your mouse pointer over an object,
the object is highlighted and the name is displayed (Figure 12–28). This
feature is enabled by default in the netlist viewers. To turn off the Rollover
feature, on the Tools menu, click Options. In the Options dialog box, in
the Category list, select Netlist Viewers and turn off Enable Rollover.

Altera Corporation 12–53
October 2007

Other Features in the Schematic Viewer

Figure 12–28. Rollover in the RTL Viewer and Technology Map Viewer

Displaying Net Names

To see the names of all the nets displayed in your schematic, on the Tools
menu, click Options. In the Category list, select Netlist Viewers and turn
on Show Net Name under Display Settings. This option is disabled by
default. If you turn on this option, the schematic view refreshes
automatically to display the net names.

Displaying Node Names

In some designs, nodes have long names that overlap the ports of other
symbols in the schematic. To remove the node names from the schematic,
on the Tools menu, click Options. In the Category list, select Netlist
Viewers and turn off Show node name under Display Settings. This
option is turned on by default.

Find Command

To open the Find dialog box shown in Figure 12–29, on the Edit menu,
click Find, or click the Find icon in the viewer toolbar, or right-click in the
schematic view, and click Find.

12–54 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–29. Find Dialog Box

You can choose to search only instances (nodes) in the design, or to also
search pins and nets. By default, only instances are searched.

When you click Find, the viewer selects and highlights the first item
found, opens the appropriate page of the schematic, if necessary, and
centers the page so that the node is visible in the viewable area (but does
not zoom in to the node). To find the next matching node, click Find Next.
When the node that you search for is part of a logic cloud, the logic cloud
that contains the node is highlighted. A message box appears that
prompts you to ungroup the logic cloud or allow it to remain grouped.

You can use the options in the Advanced settings section to control the
scope of the results found during a search and how they are displayed in
the viewer. The default selection, Search entire design, searches for the
item in all design elements across the entire design. To search only in the
pages of the currently displayed netlist, such as a schematic showing
filtering results, choose Limit search to schematic view.

To display the results in a new page, select Search entire design and
display in search page. This command searches all design elements
across the entire design, and displays the results on a separate page
dedicated to search results. You can also append new search results to an
existing search page with the Append results to current search page
command. The appended items appear in the same relative position as
they do in the full schematic. You can use this method to find and select
two objects that are not on the same page and display them on the same
page after performing the Find command.

Altera Corporation 12–55
October 2007

Other Features in the Schematic Viewer

f Refer to “Finding Nodes in the RTL Viewer and Technology Map
Viewer” in the Quartus II Help for more details about using the Find
dialog box.

Exporting and Copying a Schematic Image

You can export the RTL Viewer or Technology Map Viewer schematic
view in JPEG File Interchange Format (.jpg) or Windows Bitmap (.bmp)
file format, which allows you to include the schematic in project
documentation or share it with other project members. To export the
schematic view, on the File menu, click Export. In the Export dialog box,
type a file name and location, and select the desired file type. The default
file name is based on the current instance name and the default file type
is JPEG Interchange Format (.jpg). However, for pages that use filtering,
expanding, or reducing operations, the default name is
Filter<number of export operation>.jpg. Nodes grouped as logic clouds are
not shown in the exported or copied schematic image.

You can copy the whole image or only a portion of the image. To copy the
full image, on the Edit menu, point to Copy and click Full Image. To copy
a portion of the image, on the Edit menu, point to Copy and click Partial
Image. The cursor changes to a plus sign to indicate that you can draw a
box shape. Drag the cursor around the portion of the schematic you want
to copy. When you release the mouse button, the partial image is copied
to the clipboard.

1 Occasionally, due to the design size and objects selected, an
image is too large to copy to the clipboard. In this case, the
Quartus II software displays an error message.

To export or copy a schematic that is too large to copy in one
piece, first split the design into multiple pages to export or to
copy smaller portions of the design. For information about how
to control how much of your design is shown on each schematic
page, refer to “Partitioning the Schematic into Pages” on
page 12–28. As an alterative, use the Partial Image feature to
copy a portion of the image.

The Copy feature is not available on UNIX platforms.

Printing

To print your schematic page, on the File menu, click Print. You can print
each schematic page onto one full page, or you can print the selected parts
of your schematic onto one page with the Selection option. Refer to
“Partitioning the Schematic into Pages” on page 12–28 to control how
much of your design is shown on each schematic page.

12–56 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1 Before printing, you can modify the page orientation. On the
File menu, click Page Setup. Change the page orientation from
Portrait to Landscape, or to the setting that best fits your design.
You can also adjust the page margins in the Page Setup dialog
box.

The hierarchy list in the viewers and the table view of the State
Machine Viewer cannot be printed. You can use the State
Machine Viewer Copy command to copy the table to a text
editor and print from the text editor.

Debugging HDL
Code with the
State Machine
Viewer

This section provides an example of using the State Machine Viewer to
help debug HDL code. This example shows how you can use the various
features in the netlist viewers to help solve design problems.

Simulation of State Machine Gives Unexpected Results

This section presents a design scenario in which you compiled your
design and performed a simulation in the Quartus II Simulator. The
simulation result is shown in Figure 12–30 and has unexpected undefined
states.

Figure 12–30. Simulation Result Showing Undefined States

To analyze the state machine design in the State Machine Viewer, follow
these steps:

1. Open the State Machine Viewer for the state machine of interest.
You can do this in any of the following ways:

Altera Corporation 12–57
October 2007

Debugging HDL Code with the State Machine Viewer

● On the Tools menu, point to Netlist Viewers and click State
Machine Viewer. In the State Machine selection box, choose the
state machine that you want to view.

● On the Tools menu, point to Netlist Viewers, and click RTL
Viewer. Browse to the hierarchy block that contains the state
machine definition and double-click the yellow state machine
instance to open the State Machine Viewer (Figure 12–31).You
can open the State Machine Viewer using either of two methods:

• In the schematic view, double-click an instance in the
hierarchy to open the lower level hierarchy. You can
traverse through the schematic hierarchy in this way to
open the schematic page that contains the state machine
(Figure 12–31).

Figure 12–31. State Machine Instance in RTL Viewer Schematic View

• In the hierarchy list, click the + symbol next to Instances to
open a list of the instances in that hierarchy level of the
design. You can traverse down the hierarchy tree in this
way to find the instance that contains the state machine.
Click on the name of the state machine in the State
Machines folder (Figure 12–32) to open the appropriate
schematic in the schematic view (Figure 12–31).

12–58 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–32. State Machine Instance in RTL Viewer Hierarchy List

The State Machine Viewer opens (Figure 12–33).

Figure 12–33. State Machine Viewer Showing Incorrect Transitions

2. You can analyze this state machine instance using the state machine
diagram, transition table, and encoding table. Clearly something is
wrong with the state machine because every state has a transition to
every other state. After inspecting the state machine behavior, you
determine that in this scenario, the designer forgot to create default
assignments for the next state (that is, next_state =
current_state if the conditions are not met).

Altera Corporation 12–59
October 2007

Debugging HDL Code with the State Machine Viewer

3. After fixing the error in the HDL code, recompile the design and
repeat steps 1-2 to view the new state machine diagram and
transition table (shown in Figure 12–34) and check that the state
transitions now occur correctly.

Figure 12–34. State Machine Viewer Showing Correct Transitions

4. Perform a new simulation, as shown in Figure 12–35, and verify that
the state machine now performs as expected.

Figure 12–35. Simulation Result Showing Correct States

12–60 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Conclusion The Quartus II RTL Viewer, State Machine Viewer, and Technology Map
Viewer allow you to explore and analyze your initial synthesis netlist,
post-synthesis netlist, or post-fitting and physical synthesis netlist. The
viewers provide a number of features in the hierarchy list and schematic
view to help you quickly trace through your netlist and find specific
hierarchies or nodes of interest. These capabilities can help you debug,
optimize, or constrain your design more efficiently to increase your
productivity.

Document
Revision History

Table 12–10 shows the revision history for this chapter.

Table 12–10. Document Revision History (Part 1 of 2)

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

No changes to content. Updated for Quartus II software
version 7.2.

May 2007
v7.1.0

● Renamed “Viewing the Properties of Instances and
Primitives” on page 12–24

● Added “Viewing LUT Representations in the
Technology Map Viewer” on page 12–24

● Renamed and updated “Customizing the Schematic
Display in the RTL Viewer” on page 12–31

● Added “Grouping Combinational Logic into Logic
Clouds” on page 12–32

● Added “Radial Menu” on page 12–50
● Updated Table 12–1
● Updated Table 12–4
● Updated Table 12–8
● Updated Figure 12–7
● Updated Figure 12–8

Chapter updated for Quartus II
version 7.1.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only.
No other changes made to chapter.

—

November 2006
v6.1.0

Chapter 13 was formerly Chapter 12 in version 6.0.0.
Updated for the Quartus II software version 6.1.0:
● Added information about the Technology Map

Viewer (Post-Mapping)
● Can run the RTL Viewer as part of compilation flow,

rather than wait for the Fitter to complete before
viewing the netlist

● Customized the schematic display for better viewing
and to speed up the debugging process

● Added support for Stratix III devices

With the addition of the Technology
Map Viewer (Post-Mapping), you
can view both the post-mapping
and post-fitting netlists at the same
time. Other changes also speed up
the debugging process.

Altera Corporation 12–61
October 2007

Document Revision History

May 2006
v6.0.0

● Name changed to Analyzing Designs with the
Quartus II Netlist Viewers.

● Updated for the Quartus II software version 6.0:
● Updated GUI information.

—

December 2005
v5.1.1

Updated for version 5.1, including viewing inside device
atoms, filter on bus index, display timing path in the RTL
Viewer, state machine access from Tools menu, locate
from state machines, and state encoding table.

—

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.
● Chapter 12 was formerly chapter 14 in version 5.0.

—

May 2005
v5.0.0

Chapter 14 was formerly chapter 12 in version 4.2. —

December 2004
v2.1

● Chapter 13 was formerly Chapter 14 in version 4.1.
● Updates to tables and figures.
● New functionality for Quartus II software version 4.2.

—

June 2004
v 2.0

● Updates to tables, and figures.
● New functionality for Quartus II software version 4.1.

—

February 2004
v1.0

Initial release. —

Table 12–10. Document Revision History (Part 2 of 2)

Date and
Document

Version
Changes Made Summary of Changes

12–62 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

	Quartus II Version 7.2 Handbook Volume 1: Design and Synthesis
	Contents
	Chapter Revision Dates
	About this Handbook
	How to Contact Altera
	Third-Party Software Product Information
	Typographic Conventions

	Section I. Design Flows
	1. Design Planning with the Quartus II Software
	Introduction
	Device and Programming/ Configuration Method Selection
	Device Selection
	Device Migration Planning
	Programming/Configuration Method Selection

	Early Planning Tools for Power and I/O
	Early Power Estimation
	Early Power Estimator File

	Early Pin Planning and I/O Analysis
	Creating a Top-Level Design File for I/O Analysis

	Selecting Third- Party EDA Tool Flows
	Synthesis Tools
	Simulation Tools
	Formal Verification Tools

	Planning for On-Chip Debugging Options
	Planning for an Incremental Compilation Flow
	Flat Compilation Flow with No Design Partitions
	Incremental Compilation with Design Partitions
	Top-Down Versus Bottom-Up Incremental Flows
	Top-Down Incremental Compilation Flow
	Bottom-Up and Team-Based Incremental Compilation Flow
	Mixed Incremental Compilation Flow

	Planning Design Partitions
	Creating a Design Floorplan

	Early Timing Estimation
	Conclusion
	Referenced Documents
	Document Revision History

	2. Quartus II Incremental Compilation for Hierarchical and Team-Based Design
	Introduction
	Choosing a Quartus II Compilation Flow
	Flat Compilation Flow with No Design Partitions
	Incremental Compilation Flow with Design Partitions
	Top-Down versus Bottom-Up Compilation Flows

	Quick Start Guide - Summary of Steps for an Incremental Compilation Flow
	Top-Down Incremental Compilation Flow
	Preparing a Design for Top-Down Incremental Compilation
	Compiling a Design Using Incremental Compilation

	Bottom-Up Incremental Compilation
	Preparing a Design for Bottom-Up Incremental Compilation
	Creating and Compiling Lower-Level Projects
	Exporting Lower-Level Projects
	Importing Lower-Level Projects into the Top-Level Project
	Performing an Incremental Compilation in the Top-Level Project

	Design Partitions
	Design Partition Assignments Compared to Physical Placement Assignments

	Creating Design Partitions
	Partition Name

	Setting the Netlist Type for Design Partitions
	Fitter Preservation Level
	Empty Partitions
	What Represents a Source Change for Incremental Compilation?
	Determining Which Partitions Will Be Recompiled
	Forcing Use of the Post-Fitting Netlist When a Source File has Changed

	Creating a Design Floorplan With LogicLock Location Assignments
	Taking Advantage of the Early Timing Estimator

	Exporting and Importing Partitions for Bottom-Up Design Flows
	Quartus II Exported Partition File (.qxp)
	Exporting a Lower-Level Partition to be Used in a Top-Level Project
	Exporting a Lower-Level Block within a Project
	Importing a Lower-Level Partition Into the Top-Level Project
	Importing Assignments and Advanced Import Settings
	Design Partition Properties after Importing
	Importing Design Partition Assignments Within the Subdesign
	Synopsys Design Constraint (SDC) Files for the Quartus II TimeQuest Timing Analyzer
	Importing LogicLock Assignments
	Importing Other Instance Assignments
	Importing Global Assignments
	Advanced Import Settings
	Allow Creation of New Assignments
	Promote Assignments to all Instances of the Imported Entity
	Assignment Conflict Resolution: LogicLock Regions
	Assignment Conflict Resolution: Other Assignments

	Generating Bottom-Up Design Partition Scripts for Project Management
	Project Creation
	Excluded Partitions
	Assignments from the Top-Level Design
	Virtual Pin Assignments
	Virtual Pin Timing and Location Assignments

	LogicLock Region Assignments
	Global Signal Promotion Assignments
	Makefile Generation

	Guidelines for Creating Good Design Partitions and LogicLock Regions
	Creating Good Design Partitions
	Partition Statistics Reports
	Resource Balancing
	RAM and DSP Blocks
	Global Routing Signals

	Timing Budgeting
	Methodology to Check Partition Quality during Partition Planning
	The Importance of Floorplan Location Assignments in Incremental Compilation
	Creating Good Floorplan Location Assignments
	Excluding Certain Device Elements (such as RAM or DSP Blocks) with Resource Exceptions

	Incremental Compilation Advisor
	Criteria for Successful Partition and Floorplan Schemes

	Recommended Design Flows and Compilation Application Examples
	Top-Down Incremental Design Flows
	Design Flow 1-Changing a Source File for One of Multiple Partitions in a Top-Down Compilation Flow
	Design Flow 2-Optimizing the Placement for One of Multiple Partitions in a Top-Down Compilation Flow
	Design Flow 3-Preserving One Critical Partition in a Multiple-Partition Design in a Top-Down Compilation Flow
	Design Flow 4-Placing All but One Critical Partition in a Multiple-Partition Design in a Top-Down Compilation Flow

	Bottom-Up Incremental Design Flows
	Design Flow 5-Implementing a Team-Based Bottom-Up Design Flow
	Resolving Assignment Conflicts During Import
	Importing a Partition to be Instantiated Multiple Times

	Design Flow 6-Performing Design Iteration in a Bottom-Up Design Flow
	Design Flow 7-Creating Hard-Wired Macros for IP Reuse

	Incremental Compilation Restrictions
	Using Incremental Synthesis Only Instead of Full Incremental Compilation
	Preserving Exact Timing Performance
	Using Incremental Compilation with Quartus II Archive Files
	Formal Verification Support
	OpenCore Plus MegaCore Functions in Bottom-Up Flows
	Importing Encrypted IP Cores in Bottom-Up Flows
	SignalProbe Pins and Engineering Change Management with the Chip Planner
	Linked Partitions Due to SignalProbe Pins or ECO Changes
	Exported Partitions

	SignalTap II Embedded Logic Analyzer in Bottom-Up Compilation Flows
	Logic Analyzer Interface in Bottom-Up Compilation Flows
	Migrating Projects with Design Partitions to Different Devices
	HardCopy Compilation Flows
	HardCopy APEX and HardCopy Stratix Devices
	HardCopy II Migration Flows
	HardCopy II Stand-Alone Compilations

	Assignments Made in HDL Source Code in Bottom-Up Flows
	Compilation Time with Physical Synthesis Optimizations
	Restrictions on Megafunction Partitions
	Routing Preservation in Bottom-Up Compilation Flows
	Bottom-Up Design Partition Script Limitations
	Synopsys Design Constraint (SDC) Files for the TimeQuest Timing Analyzer
	Wildcard Support in Bottom-Up Design Partition Scripts
	Derived Clocks and PLLs in Bottom-Up Design Partition Scripts
	Virtual Pin Timing Assignments in Bottom-Up Design Partition Scripts
	Top-Level Ports that Feed Multiple Lower-Level Pins in Bottom-Up Design Partition Scripts

	Register Packing and Partition Boundaries
	I/O Register Packing
	Examples of I/O Register Packing Across Partition Boundaries
	Example 1-Output Register in Partition Feeding Output Pin
	Example 2-Output Register in Partition Feeding Multiple Output Pins
	Example 3-Output Register, Output Enable Register and Tri-State Logic in Partition Feeding Output Pin
	Example 4-Output Register, Output Enable Register, or Both, in Partition Feeding Tri-State Output Pin
	Example 5-Bidirectional Logic in Partition Feeding Bidirectional Pin
	Example 6-Input Register in Partition Fed by Input Pin
	Example 8-Inverted Input Register in Partition Fed by Input Pin

	Scripting Support
	Generate Incremental Compilation Tcl Script Command
	Preparing a Design for Incremental Compilation
	Creating Design Partitions
	Setting Properties of Design Partitions
	Creating Good Floorplan Location Assignments-Excluding or Filtering Certain Device Elements (Such as RAM or DSP Blocks)
	Generating Bottom-Up Design Partition Scripts
	Command Line Support

	Exporting a Partition to be Used in a Top-Level Project
	Importing a Lower-Level Partition into the Top-Level Project
	Makefiles
	Recommended Design Flows and Compilation Application Examples
	Example 2-1. AB_project
	Design Flow 1-Changing a Source File for One of Multiple Partitions in a Top-Down Compilation Flow
	Design Flow 2-Optimizing the Placement for One of Multiple Partitions in a Top-Down Compilation Flow

	Conclusion
	Referenced Documents
	Document Revision History

	3. Quartus II Design Flow for MAX+PLUS II Users
	Introduction
	Chapter Overview
	Typical Design Flow
	Device Support
	Quartus II GUI Overview
	Project Navigator
	Node Finder
	Tcl Console
	Messages
	Status

	Setting Up MAX+PLUS II Look and Feel in Quartus II
	MAX+PLUS II Look and Feel
	Compiler Tool
	Analysis and Synthesis
	Partition Merge
	Fitter
	Assembler
	Timing Analyzer
	EDA Netlist Writer
	Design Assistant

	MAX+PLUS II Design Conversion
	Converting an Existing MAX+PLUS II Design
	Converting MAX+PLUS II Graphic Design Files
	Importing MAX+PLUS II Assignments

	Quartus II Design Flow
	Creating a New Project
	Design Entry
	Making Assignments
	Assignment Editor
	Timing Assignments

	Synthesis
	Functional Simulation
	Place and Route
	Timing Analysis
	Timing Closure Floorplan
	Timing Simulation
	Quartus II Simulator Tool
	EDA Timing Simulation

	Power Estimation
	Programming

	Conclusion
	Quick Menu Reference
	Quartus II Command Reference for MAX+PLUS II Users
	Referenced Documents
	Document Revision History

	4. Quartus II Support for HardCopy Series Devices
	Introduction
	HardCopy II Device Support
	HardCopy II Design Benefits
	Quartus II Features for HardCopy II Planning

	HardCopy II Development Flow
	Designing the Stratix II FPGA First
	Designing the HardCopy II Device First

	HardCopy II Device Resource Guide
	HardCopy II Companion Device Selection
	HardCopy II Recommended Settings in the Quartus II Software
	Limit DSP and RAM to HardCopy II Device Resources
	Enable Design Assistant to Run During Compile
	Timing Settings
	TimeQuest
	Setting Up the TimeQuest Timing Analyzer

	Constraints for Clock Effect Characteristics
	Quartus II Software Features Supported for HardCopy II Designs
	Physical Synthesis Optimization
	LogicLock™ Regions
	PowerPlay Power Analyzer
	Incremental Compilation
	Maximum Fanout Assignments

	Performing ECOs with Quartus II Engineering Change Management with the Chip Planner
	Migrating One-to-One Changes
	Migrating Changes that Must be Implemented Differently
	Changes that Cannot be Migrated

	Overall Migration Flow
	Preparing the Revisions
	Applying ECO Changes

	Formal Verification of Stratix II and HardCopy II Revisions
	HardCopy II Utilities Menu
	Companion Revisions
	Compiling the HardCopy II Companion Revision
	Comparing HardCopy II and Stratix II Companion Revisions
	Generate a HardCopy II Handoff Report
	Archive HardCopy II Handoff Files
	HardCopy II Advisor
	HardCopy II Floorplan View

	HardCopy Stratix Device Support
	Features
	HARDCOPY_FPGA _PROTOTYPE, HardCopy Stratix and Stratix Devices
	HardCopy Design Flow
	The Design Flow Steps of the One-Step Process
	Compile the Design for an FPGA
	Migrate the Compiled Project
	Close the Quartus FPGA Project
	Open the Quartus HardCopy Project
	Compile for HardCopy Stratix Device

	How to Design HardCopy Stratix Devices
	HardCopy Timing Optimization Wizard
	Tcl Support for HardCopy Migration

	Design Optimization and Performance Estimation
	Design Optimization
	Performance Estimation
	Buffer Insertion
	Placement Constraints

	Location Constraints
	LAB Assignments
	LogicLock Assignments
	Example 4-1. LogicLock Region Definition in the HARDCOPY_FPGA_PROTOTYPE Quartus II Settings File
	Example 4-2. LogicLock Region Definition in the Migrated HardCopy Stratix Quartus II Settings File

	Checking Designs for HardCopy Design Guidelines
	Altera-Recommended HDL Coding Guidelines
	Design Assistant
	Design Assistant Settings
	Running Design Assistant

	Reports and Summary

	Generating the HardCopy Design Database
	Static Timing Analysis
	Early Power Estimation
	HardCopy Stratix Early Power Estimation
	HardCopy APEX Early Power Estimation

	Tcl Support for HardCopy Stratix
	Targeting Designs to HardCopy APEX Devices
	Conclusion
	Referenced Documents
	Document Revision History

	Section II. Design Guidelines
	5. Design Recommendations for Altera Devices and the Quartus II Design Assistant
	Introduction
	Synchronous FPGA Design Practices
	Fundamentals of Synchronous Design
	Hazards of Asynchronous Design

	Design Guidelines
	Combinational Logic Structures
	Combinational Loops
	Latches
	Delay Chains
	Pulse Generators and Multivibrators

	Clocking Schemes
	Internally Generated Clocks
	Divided Clocks
	Ripple Counters
	Multiplexed Clocks
	Gated Clocks
	Synchronous Clock Enables
	Recommended Clock-Gating Methods

	Checking Design Violations Using the Design Assistant
	Quartus II Design Flow with the Design Assistant
	The Design Assistant Settings Page
	Message Severity Levels
	Design Assistant Rules
	Summary of Rules and IDs
	Design Should Not Contain Combinational Loops
	Register Output Should Not Drive Its Own Control Signal Directly or through Combinational Logic
	Design Should Not Contain Delay Chains
	Design Should Not Contain Ripple Clock Structures
	Pulses Should Not Be Implemented Asynchronously
	Multiple Pulses Should Not Be Generated in the Design
	Design Should Not Contain SR Latches
	Design Should Not Contain Latches
	Combinational Logic Should Not Directly Drive Write Enable Signal of Asynchronous RAM
	Design Should Not Contain Asynchronous Memory
	Gated Clocks Should Be Implemented According to Altera Standard Scheme
	Logic Cell Should Not Be Used to Generate Inverted Clock
	Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock Ports to Effectively Save Power: <n>
	Clock Signal Source Should Drive Only Input Clock Ports
	Clock Signal Should Be a Global Signal
	Clock Signal Source Should Not Drive Registers that Are Triggered by Different Clock Edges
	Combinational Logic Used as a Reset Signal Should Be Synchronized
	External Reset Should Be Synchronized Using Two Cascaded Registers
	External Reset Should Be Synchronized Correctly
	Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock Domains Should Be Synchronized Correctly
	Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock Domains Should Be Synchronized
	Output Enable and Input of the Same Tri-state Nodes Should Not Be Driven by the Same Signal Source
	Synchronous Port and Asynchronous Port of the Same Register Should Not Be Driven by the Same Signal Source
	More Than One Asynchronous Signal Source of the Same Register Should Not Be Driven by the Same Source
	Clock Port and Any Other Signal Port of the Same Register Should Not Be Driven by the Same Signal Source
	Nodes with More Than Specified Number of Fan-outs: <n>
	Top Nodes with Highest Fan-out: <n>
	Data Bits Are Not Synchronized When Transferred between Asynchronous Clock Domains
	Multiple Data Bits Transferred Across Asynchronous Clock Domains Are Synchronized, But Not All Bits May Be Aligned in the Receiving Clock Domain
	Data Bits Are Not Correctly Synchronized When Transferred Between Asynchronous Clock Domains
	Only One VREF Pin Should Be Assigned to HardCopy Test Pin in an I/O Bank
	A PLL Drives Multiple Clock Network Types
	Data Bits Are Not Synchronized When Transferred to the State Machine of Asynchronous Clock Domains
	No Reset Signal Defined to Initialize the State Machine
	State Machine Should Not Contain Unreachable State
	State Machine Should Not Contain a Deadlock State
	State Machine Should Not Contain a Dead Transition

	Enabling and Disabling Design Assistant Rules
	Using the Assignment Editor
	Using Verilog HDL
	Using VHDL
	Using TCL Commands

	Viewing Design Assistant Results
	Summary Report
	Settings Report
	Detailed Results Report
	Messages Report
	HardCopy Test Pins Report
	Rule Suppression Assignments Report
	Ignored Design Assistant Assignments Report

	Targeting Clock and Register-Control Architectural Features
	Clock Network Resources
	Reset Resources
	Register Control Signals

	Conclusion
	Referenced Documents
	Document Revision History

	6. Recommended HDL Coding Styles
	Introduction
	Quartus II Language Templates
	Using Altera Megafunctions
	Instantiating Altera Megafunctions in HDL Code
	Instantiating Megafunctions Using the MegaWizard Plug-In Manager
	Creating a Netlist File for Other Synthesis Tools
	Instantiating Megafunctions Using the Port and Parameter Definition

	Inferring Multiplier and DSP Functions from HDL Code
	Multipliers-Inferring the lpm_mult Megafunction from HDL Code
	Example 6-1. Verilog HDL Unsigned Multiplier
	Example 6-2. Verilog HDL Signed Multiplier with Input and Output Registers (Pipelining = 2)
	Example 6-3. VHDL Unsigned Multiplier with Input and Output Registers (Pipelining = 2)
	Example 6-4. VHDL Signed Multiplier

	Multiply-Accumulators and Multiply-Adders-Inferring altmult_accum and altmult_add Megafunctions from HDL Code
	Example 6-5. Verilog HDL Unsigned Multiply-Accumulator with Input, Output and Pipeline Registers (Latency = 3)
	Example 6-6. Verilog HDL Signed Multiply-Adder (Latency = 0)
	Example 6-7. VHDL Unsigned Multiply-Adder with Input, Output and Pipeline Registers (Latency = 3)
	Example 6-8. VHDL Signed Multiply-Accumulator with Input, Output and Pipeline Registers (Latency = 3)

	Inferring Memory Functions from HDL Code
	RAM Functions-Inferring altsyncram and altdpram Megafunctions from HDL Code
	Use Synchronous Memory Blocks
	Avoid Unsupported Reset Conditions
	Example 6-9. Verilog RAM with Reset Signal that Clears RAM Contents: Not Supported in Device Architecture
	Example 6-10. Verilog RAM with Reset Signal that Affects RAM: Not Supported in Device Architecture
	Check Read-During-Write Behavior
	Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior
	Example 6-11. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data Read-During- Write Behavior
	Example 6-12. VHDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data Read-During-Write Behavior
	Single-Clock Synchronous RAM with New Data Read-During-Write Behavior
	Example 6-13. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with New Data Read-During- Write Behavior
	Example 6-14. VHDL Single-Clock Simple Dual-Port Synchronous RAM with New Data Read-During-Write Behavior
	Simple Dual-Port, Dual-Clock Synchronous RAM
	Example 6-15. Verilog HDL Simple Dual-Port, Dual-Clock Synchronous RAM
	Example 6-16. VHDL Simple Dual-Port, Dual-Clock Synchronous RAM
	True Dual-Port Synchronous RAM
	Example 6-17. Verilog HDL True Dual-Port RAM with Single Clock
	Example 6-18. VHDL True Dual-Port RAM with Single Clock
	Specifying Initial Memory Contents at Power-Up
	Example 6-19. Verilog HDL RAM with Initialized Contents
	Example 6-20. Verilog HDL RAM Initialized with the readmemb Command
	Example 6-21. VHDL RAM with Initialized Contents

	ROM Functions-Inferring altsyncram and lpm_rom Megafunctions from HDL Code
	Example 6-22. Verilog HDL Synchronous ROM
	Example 6-23. VHDL Synchronous ROM

	Shift Registers-Inferring the altshift_taps Megafunction from HDL Code
	Simple Shift Register
	Example 6-24. Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register
	Example 6-25. VHDL Single-Bit Wide, 64-Bit Long Shift Register
	Shift Register with Evenly Spaced Taps
	Example 6-26. Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps
	Example 6-27. VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

	Coding Guidelines for Registers and Latches
	Register Power-Up Values in Altera Devices
	Example 6-28. Verilog Register with Reset and High Power-Up Value
	Example 6-29. VHDL Register with Reset and High Power-Up Level

	Secondary Register Control Signals Such as Clear and Clock Enable
	Example 6-30. Verilog HDL D-Type Flipflop (Register) with ena, aclr and aload Control Signals
	Example 6-31. VHDL D-Type Flipflop (Register) with ena, aclr and aload Control Signals
	Example 6-32. Verilog HDL sload and sclr Control Signals
	Example 6-33. VHDL sload and sclr Control Signals

	Latches
	Unintentional Latch Generation
	Example 6-34. VHDL Code Preventing Unintentional Latch Creation
	Inferring Latches Correctly
	Example 6-35. Verilog HDL Set-Reset Latch
	Example 6-36. VHDL Data Type Latch

	General Coding Guidelines
	Tri-State Signals
	Example 6-37. Verilog HDL Tri-State Signal
	Example 6-38. VHDL Tri-State Signal

	Adder Trees
	Architectures with 4-Input LUTs in Logic Elements
	Example 6-39. Verilog HDL Pipelined Binary Tree
	Architectures with 6-Input LUTs in Adaptive Logic Modules
	Example 6-40. Verilog HDL Pipelined Ternary Tree

	State Machines
	Verilog HDL State Machines
	Verilog HDL State Machine Coding Example

	Example 6-41. Verilog-2001 State Machine
	SystemVerilog State Machine Coding Example

	Example 6-42. SystemVerilog State Machine Using Enumerated Types
	VHDL State Machines
	VHDL State Machine Coding Example

	Example 6-43. VHDL State Machine

	Multiplexers
	Quartus II Software Option for Multiplexer Restructuring
	Multiplexer Types
	Binary Multiplexers

	Example 6-44. Verilog HDL Binary-Encoded Multiplexers
	Selector Multiplexers

	Example 6-45. Verilog HDL One-Hot-Encoded Case Statement
	Priority Multiplexers

	Example 6-46. VHDL IF Statement Implying Priority
	Default or Others Case Assignment
	Implicit Defaults
	Example 6-47. VHDL IF Statement with Implicit Defaults
	Example 6-48. VHDL IF Statement with Default Conditions Explicitly Specified
	Degenerate Multiplexers
	Example 6-49. VHDL CASE Statement Describing a Degenerate Multiplexer
	Example 6-50. VHDL Recoder Design for Degenerate Binary Multiplexer
	Example 6-51. VHDL 4:1 Binary Multiplexer Design
	Buses of Multiplexers

	Cyclic Redundancy Check Functions
	If Performance is Important, Optimize for Speed
	Use Separate CRC Blocks Instead of Cascaded Stages
	Use Separate CRC Blocks Instead of Allowing Blocks to Merge
	Take Advantage of Latency if Available
	Save Power by Disabling CRC Blocks When Not in Use
	Use the Device Synchronous Load (sload) Signal to Initialize

	Comparators
	Counters

	Designing with Low-Level Primitives
	Conclusion
	Referenced Documents
	Document Revision History

	Section III. Synthesis
	7. Synplicity Synplify and Synplify Pro Support
	Introduction
	Altera Device Family Support
	Design Flow
	Output Netlist File Name and Result Format

	Synplify Optimization Strategies
	Implementations in Synplify Pro
	Timing-Driven Synthesis Settings
	Clock Frequencies
	Multiple Clock Domains
	Input/Output Delays
	Multicycle Paths
	False Paths

	FSM Compiler
	Example 7-1. VHDL Code for syn_encoding
	FSM Explorer in Synplify Pro

	Optimization Attributes and Options
	Retiming in Synplify Pro
	Maximum Fan-Out
	Preserving Nets
	Register Packing
	Resource Sharing
	Preserving Hierarchy
	Register Input and Output Delays
	Example 7-2. Specifying an Input or Output Register Delay Using Tcl Command Syntax
	syn_direct_enable
	Standard I/O Pad
	Example 7-3. Synplify SDC Syntax for the define_io_standard Constraint

	Altera-Specific Attributes
	altera_chip_pin_lc
	Example 7-4. Making Location Assignments to ACEX 1K and FLEX 10KE Devices, VHDL
	Example 7-5. Making Location Assignments to Other Devices, VHDL
	altera_implement_in_esb or altera_implement_in_eab
	altera_io_powerup
	altera_io_opendrain

	Exporting Designs to the Quartus II Software Using NativeLink Integration
	Running the Quartus II Software from within the Synplify Software
	Using the Quartus II Software to Run the Synplify Software
	Running the Quartus II Software Manually Using the Synplify-Generated Tcl Script
	Passing TimeQuest SDC Timing Constraints to the Quartus II Software in the .scf File
	Individual Clocks and Frequencies
	Input and Output Delay
	Multicycle Path
	False Path

	Passing Constraints to the Quartus II Software using Tcl Commands
	Global Signals
	Default or Global Clock Frequency
	Individual Clocks and Frequencies
	Example 7-6. Specifying Clock Frequencies for Individual Clocks
	Virtual Clocks
	Route Delay Option
	Multiple Clocks in Different Clock Groups
	Example 7-7. Specifying Clock Frequencies for Multiple Clocks
	Example 7-8. Quartus II Assignments for Multiple Clocks if the Clock Rise Time is Zero
	Example 7-9. Quartus II Assignments for Multiple Clocks if the Clock Rise Time is Not Zero
	Multiple Clocks with Different Frequencies in the Same Clock Group
	Example 7-10. Specifying Multiple Clocks with Different Frequencies in the Same Clock Group
	Example 7-11. Quartus II Assignments for Multiple Clocks with Different Frequencies in the Same Clock Group, if the Clock Rise Time is Zero
	Inter-Clock Relationships-Delays and False Paths between Clocks
	Example 7-12. Specifying Clock-to-Clock Delay Constraints
	False Paths
	False Path from a Signal
	False Path to a Signal
	False Path Through a Signal

	Multicycle Paths
	Multicycle Path from a Signal
	Multicycle Path to a Signal
	Multicycle Path Through a Signal

	Maximum Path Delays
	Maximum Path Delay from a Signal
	Maximum Path Delay to a Signal
	Maximum Path Delay through a Signal
	Register Input and Output Delays
	Default External Input Delay
	Port-Specific External Input Delay
	Default External Output Delay
	Port-Specific External Output Delay

	Guidelines for Altera Megafunctions and Architecture- Specific Features
	Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
	Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for Black Box Megafunction Instantiation
	Example 7-13. Top-Level Verilog HDL Code with Black Box Instantiation of lpm_counter
	Using MegaWizard Plug-In Manager-Generated VHDL Files for Black Box Megafunction Instantiation
	Example 7-14. Top-Level VHDL Code with Black Box Instantiation of lpm_counter
	Other Synplify Software Attributes for Creating Black Boxes
	Example 7-15. Verilog HDL Example

	Inferring Altera Megafunctions from HDL Code
	Inferring Multipliers
	Resource Balancing
	Controlling the Inferring of DSP Blocks
	Signal Level Attribute

	Example 7-16. Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code
	Example 7-17. Signal Attributes for Controlling DSP Block Inference in VHDL Code
	Inferring RAM
	Example 7-18. VHDL Code for Inferred Dual-Port RAM
	Example 7-19. VHDL Code for Inferred Dual-Port RAM Preventing Bypass Logic
	RAM Initialization
	Example 7-20. Using $readmemb System Task to Initialize an Inferred RAM in Verilog HDL Code
	Example 7-21. Sample VQM Instance Containing Memory Initialization File from Example 7-20
	Inferring ROM
	Inferring Shift Registers

	Incremental Compilation and Block-Based Design
	Hierarchy and Design Considerations with Multiple VQM Files
	Creating a Design with Separate Netlist Files
	Creating a Design with Multiple VQM Files Using Synplify Pro MultiPoint Synthesis
	Set Compile Points and Create Constraint Files
	Defining Compile Points Using Tcl or SDC

	Example 7-22. The define_compile_point Command
	Manually Defining Compile Points from the GUI
	Automatically Defining Compile Points from the GUI

	Apply the LogicLock Attributes
	Creating a Quartus II Project for Multiple VQM Files
	Example 7-23. Commands for Each LogicLock Region in a Tcl File
	Creating a Single Quartus II Project for a Top-Down Incremental Compilation Flow
	Creating Multiple Quartus II Projects for a Bottom-Up LogicLock Design Flow

	Generating a Design with Multiple VQM Files Using Black Boxes
	Manually Creating Multiple VQM Files Using Black Boxes
	Creating Black Boxes in Verilog HDL

	Example 7-24. Verilog HDL Black Box for Top-Level File A.v
	Creating Black Boxes in VHDL

	Example 7-25. VHDL Black Box for Top-Level File A.vhd
	Creating a Quartus II Project for Multiple VQM Files
	Creating Compile Points in a Single Quartus II Project for a Top-Down Incremental Compilation Flow
	Creating Multiple Quartus II Projects for a Bottom-Up Design Flow

	Conclusion
	Referenced Documents
	Document Revision History

	8. Quartus II Integrated Synthesis
	Introduction
	Design Flow
	Language Support
	Verilog HDL Support
	Example 8-1. Controlling the Verilog HDL Input Version with a Synthesis Directive // synthesis VERILOG_INPUT_VERSION <language version>
	Verilog-2001 Support
	SystemVerilog Support
	Initial Constructs and Memory System Tasks
	Example 8-2. Verilog Example of Initializing RAM with the readmemb Command
	Example 8-3. Text File Format for Initializing RAM with the readmemb Command
	Verilog HDL Macros
	Setting a Verilog Macro Default Value in the GUI
	Setting a Verilog Macro Default Value on the Command Line

	Example 8-4. Command Syntax for Specifying a Verilog Macro
	Example 8-5. Specifying a Verilog Macro a = 2
	Example 8-6. Specifying Verilog Macros a = 2 and a = 3

	VHDL Support
	Example 8-7. Controlling the VHDL Input Version with a Synthesis Directive
	VHDL Standard Libraries and Packages

	AHDL Support
	Schematic Design Entry Support
	State Machine Editor
	Design Libraries
	Specifying a Destination Library Name in the Settings Dialog Box
	Specifying a Destination Library Name in the Quartus II Settings File or Using Tcl
	Example 8-8. Specifying a Destination Library Name
	Specifying a Destination Library Name in a VHDL File
	Example 8-9. Using the library Synthesis Directive
	Mapping a VHDL Instance to an Entity in a Specific Library
	Direct Entity Instantiation

	Example 8-10. VHDL Example of Direct Entity Instantiation
	Component Instantiation-Explicit Binding Indication

	Example 8-11. VHDL Example of Explicit Binding Instantiation
	Component Instantiation-Default Binding

	Example 8-12. VHDL Example of Default Binding to the Entity in the Same Library as the Component Declaration
	Example 8-13. VHDL Example of Default Binding to the Directly Visible Entity

	Using Parameters/Generics
	Setting Default Parameter Values and BDF Instance Parameter Values
	Passing Parameters Between Two Design Languages
	Example 8-14. VHDL Parameterized Subdesign Entity
	Example 8-15. Verilog HDL Top-level Design Instantiating and Passing Parameters to VHDL Entity from Example 8-14
	Example 8-16. Verilog HDL Parameterized Subdesign Module
	Example 8-17. VHDL Top-level Design Instantiating and Passing Parameters to the Verilog Module from Example 8-16

	Incremental Synthesis and Incremental Compilation
	Partitions for Preserving Hierarchical Boundaries

	Quartus II Synthesis Options
	Setting Synthesis Options
	Analysis & Synthesis Settings Page of the Settings Dialog Box
	Quartus II Logic Options
	Synthesis Attributes
	Example 8-18. Synthesis Attributes in Verilog-1995 HDL
	Example 8-19. Synthesis Attributes in Verilog-2001 and SystemVerilog
	Example 8-20. Synthesis Attributes in VHDL
	Synthesis Directives
	Example 8-21. Synthesis Directives in Verilog HDL
	Example 8-22. Synthesis Directives in VHDL

	Optimization Technique
	Speed Optimization Technique for Clock Domains
	PowerPlay Power Optimization
	Restructure Multiplexers
	State Machine Processing
	Manually Specifying State Assignments Using the syn_encoding Attribute
	Example 8-23. Specifying User Encoded States with the syn_encoding Attribute in VHDL
	Example 8-24. Specifying User Encoded States with the syn_encoding Attribute in Verilog-2001

	Manually Specifying Enumerated Types Using the enum_encoding Attribute
	Example 8-25. Specifying an Arbitrary User Encoding for Enumerated Type
	Example 8-26. Specifying the “gray” Encoding Style or Enumeration Type

	Safe State Machines
	Example 8-27. Verilog HDL Example of a Safe State Machine Attribute
	Example 8-28. Verilog-2001 Example of a Safe State Machine Attribute
	Example 8-29. VHDL Example of a Safe State Machine Attribute

	Power-Up Level
	Inferred Power-Up Levels

	Power-Up Don’t Care
	Remove Duplicate Registers
	Remove Redundant Logic Cells
	Preserve Registers
	Example 8-30. Verilog HDL Example of a syn_preserve Attribute
	Example 8-31. Verilog-2001 Example of a syn_preserve Attribute
	Example 8-32. VHDL Example of a preserve Attribute

	Disable Register Merging/Don’t Merge Register
	Example 8-33. Verilog HDL Example of a dont_merge Attribute
	Example 8-34. Verilog-2001 Example of a dont_merge Attribute
	Example 8-35. VHDL Example of a dont_merge Attribute

	Noprune Synthesis Attribute/Preserve Fan-out Free Register Node
	Example 8-36. Verilog HDL Example of a syn_noprune Attribute
	Example 8-37. Verilog-2001 Example of a noprune Attribute
	Example 8-38. VHDL Example of a noprune Attribute

	Keep Combinational Node/Implement as Output of Logic Cell
	Example 8-39. Verilog HDL Example of a keep Attribute
	Example 8-40. Verilog-2001 Example of a keep Attribute
	Example 8-41. VHDL Example of a syn_keep Attribute

	Don't Retime, Disabling Synthesis Netlist Optimizations
	Example 8-42. Verilog HDL Example of a dont_retime Attribute
	Example 8-43. Verilog-2001 Example of a dont_retime Attribute
	Example 8-44. VHDL Example of a dont_retime Attribute

	Don't Replicate, Disabling Synthesis Netlist Optimizations
	Example 8-45. Verilog HDL Example of a dont_replicate Attribute
	Example 8-46. Verilog-2001 Example of a dont_replicate Attribute
	Example 8-47. VHDL Example of a dont_replicate Attribute

	Maximum Fan-Out
	Example 8-48. Verilog HDL Example of a syn_maxfan Attribute
	Example 8-49. Verilog-2001 Example of a maxfan Attribute
	Example 8-50. VHDL Example of a maxfan Attribute

	Controlling Clock Enable Signals with Auto Clock Enable Replacement and direct_enable
	Example 8-51. Verilog HDL Example of a direct_enable attribute
	Example 8-52. Verilog-2001 Example of a syn_direct_enable attribute
	Example 8-53. VHDL Example of a direct_enable attribute

	Megafunction Inference Control
	Multiply-Accumulators and Multiply-Adders
	Shift Registers
	RAM and ROM
	RAM to Logic Cell Conversion

	RAM Style and ROM Style-for Inferred Memory
	Example 8-54. Verilog-1995 Example of Applying a romstyle Attribute to a Module Declaration
	Example 8-55. Verilog-2001 Example of Applying a ramstyle Attribute to a Module Declaration
	Example 8-56. VHDL Example of Applying a romstyle Attribute to an Architecture
	Example 8-57. Verilog-1995 Example of Applying a syn_ramstyle Attribute to a Variable Declaration
	Example 8-58. Verilog-2001 Example of Applying a romstyle Attribute to a Variable Declaration
	Example 8-59. VHDL Example of Applying a ramstyle Attribute to a Signal Declaration

	Turning Off Add Pass-Through Logic to Inferred RAMs/ no_rw_check Attribute Setting
	Example 8-60. Verilog HDL Inferred RAM Using no_rw_check Attribute
	Example 8-61. VHDL Inferred RAM Using no_rw_check Attribute

	RAM Initialization File-for Inferred Memory
	Example 8-62. Verilog-1995 Example of Applying a ram_init_file Attribute
	Example 8-63. Verilog-2001 Example of Applying a ram_init_file Attribute
	Example 8-64. VHDL Example of Applying a ram_init_file Attribute

	Multiplier Style-for Inferred Multipliers
	Example 8-65. Verilog-1995 Example of Applying a multstyle Attribute to a Module Declaration
	Example 8-66. Verilog-2001 Example of Applying a multstyle Attribute to a Module Declaration
	Example 8-67. Verilog-2001 Example of Applying a multstyle Attribute to a Variable Declaration
	Example 8-68. Verilog-1995 Example of Applying a multstyle Attribute to a Variable Declaration
	Example 8-69. Verilog-2001 Example of Applying a multstyle Attribute to a Binary Expression
	Example 8-70. VHDL Example of Applying a multstyle Attribute to an Architecture
	Example 8-71. VHDL Example of Applying a multstyle Attribute to a Signal or Variable

	Full Case
	Example 8-72. Verilog HDL Example of a full_case Attribute
	Example 8-73. Verilog-2001 Syntax for the full_case Attribute

	Parallel Case
	Example 8-74. Verilog HDL Example of a parallel_case Attribute
	Example 8-75. Verilog-2001 Syntax

	Translate Off and On / Synthesis Off and On
	Example 8-76. Verilog HDL Example of Translate Off and On
	Example 8-77. VHDL Example of Translate Off and On

	Ignore translate_off and synthesis_off Directives
	Read Comments as HDL
	Example 8-78. Verilog HDL Example of Read Comments as HDL
	Example 8-79. VHDL Example of Read Comments as HDL

	Use I/O Flipflops
	Example 8-80. Verilog HDL Example of the useioff Attribute
	Example 8-81. Verilog-2001 Syntax for the useioff Attribute
	Example 8-82. VHDL Example of the useioff Attribute

	Specifying Pin Locations with chip_pin
	Example 8-83. Verilog-1995 Examples of Applying Chip Pin to a Single Pin
	Example 8-84. Verilog-2001 Example of Applying Chip Pin to a Single Pin
	Example 8-85. VHDL Example of Applying Chip Pin to a Single Pin
	Example 8-86. Verilog-1995 Example of Applying Chip Pin to a Bus of Pins
	Example 8-87. Verilog-1995 Example of Applying Chip Pin to Part of a Bus
	Example 8-88. VHDL Example of Applying Chip Pin to Part of a Bus of Pins

	Using altera_attribute to Set Quartus II Logic Options
	Verilog HDL
	VHDL
	Example 8-89. Verilog-1995 Example of Applying Altera Attribute to an Instance
	Example 8-90. Verilog-2001 Example of Applying Altera Attribute to an Instance
	Example 8-91. VHDL Example of Applying Altera Attribute to an Instance
	Example 8-92. Verilog-1995 Example of Applying Altera Attribute to an Entity
	Example 8-93. Verilog-2001 Example of Applying Altera Attribute to an Entity
	Example 8-94. VHDL Example of Applying Altera Attribute to an Entity
	Example 8-95. Verilog-1995 Example of Applying Altera Attribute with -to
	Example 8-96. Verilog-2001 Example of Applying Altera Attribute with -to
	Example 8-97. VHDL Example of Applying Altera Attribute with -to

	Analyzing Synthesis Results
	Analysis and Synthesis Section of the Compilation Report
	Project Navigator

	Analyzing and Controlling Synthesis Messages
	Quartus II Messages
	VHDL and Verilog HDL Messages
	Example 8-98. Generating an HDL Warning Message
	Example 8-99. Generating HDL Info Messages
	Setting the HDL Message Level
	Example 8-100. Verilog HDL Examples of message_level Directive
	Example 8-101. VHDL Example of message_level Directive
	Enabling or Disabling Specific HDL Messages by Module/Entity
	Example 8-102. Verilog HDL message_off Directive for Message with ID 10000
	Example 8-103. VHDL message_off Directive for Message with ID 10000

	Node-Naming Conventions in Quartus II Integrated Synthesis
	Hierarchical Node-Naming Conventions
	Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)
	Example 8-104. Verilog HDL Register
	Example 8-105. VHDL Register
	Example 8-106. Verilog HDL Register Feeding Output Pin

	Register Changes During Synthesis
	Synthesis and Fitting Optimizations
	State Machines
	Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions
	Packed Input and Output Registers of RAM and DSP Blocks

	Preserving Register Names
	Node-Naming Conventions for Combinational Logic Cells
	Example 8-107. Naming Nodes for Combinational Logic Cells in Verilog HDL

	Preserving Combinational Logic Names

	Scripting Support
	Adding an HDL File to a Project and Setting the HDL Version
	Quartus II Synthesis Options
	Assigning a Pin
	Creating Design Partitions for Incremental Compilation

	Conclusion
	Referenced Documents
	Document Revision History

	9. Mentor Graphics LeonardoSpectrum Support
	Introduction
	Design Flow
	Optimization Strategies
	Timing-Driven Synthesis
	Global Power Tab
	Clock Power Tab
	Input and Output Power Tabs

	Other Constraints
	Encoding Style
	Resource Sharing
	Mapping I/O Registers

	Timing Analysis with the Leonardo- Spectrum Software
	Exporting Designs Using NativeLink Integration
	Generating Netlist Files
	Including Design Files for Black-Boxed Modules
	Passing Constraints with Scripts
	Integration with the Quartus II Software

	Guidelines for Altera Megafunctions and LPM Functions
	Instantiating Altera Megafunctions
	Inferring Altera Memory Elements
	Inferring RAM
	Inferring ROM

	Inferring Multipliers and DSP Functions
	Simple Multipliers
	Multiplier Accumulators
	Multiplier Adders

	Controlling DSP Block Inference
	Global Attribute
	Module Level Attributes
	Example 9-1. Using Module Level Attributes in Verilog HDL Code
	Example 9-2. Using Module Level Attributes in VHDL Code
	Signal Level Attributes
	Example 9-3. Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code
	Example 9-4. Signal Attributes for Controlling DSP Block Inference in VHDL Code
	Guidelines for Using DSP Blocks

	Block-Based Design with the Quartus II Software
	Hierarchy and Design Considerations
	Creating a Design with Multiple EDIF Files
	Generating Multiple EDIF Files Using the LogicLock Option
	Creating a Quartus II Project for Multiple EDIF Files Including LogicLock Regions
	Example 9-5. Tcl File for Module Taps with taps_region as LogicLock Region Name

	Generating Multiple EDIF Files Using Black Boxes
	Black Boxing in Verilog HDL
	Example 9-6. Verilog HDL Top-Level File Black-Boxing Example
	Black Boxing in VHDL
	Example 9-7. VHDL Top-Level File Black-Boxing Example
	Creating a Quartus II Project for Multiple EDIF Files

	Incremental Synthesis Flow
	Modifications Required for the LogicLock_Incremental.tcl Script File
	Example 9-8. LogicLock_Interface.tcl Script File for Incremental Synthesis
	Running the Tcl Script File in LeonardoSpectrum

	Conclusion
	Referenced Documents
	Document Revision History

	10. Mentor Graphics Precision RTL Synthesis Support
	Introduction
	Device Family Support
	Design Flow
	Creating a Project and Compiling the Design
	Creating a Project
	Compiling the Design

	Mapping the Precision Synthesis Design
	Setting Timing Constraints
	Setting Mapping Constraints
	Assigning Pin Numbers and I/O Settings
	Example 10-1. Verilog HDL Pin Assignment
	Example 10-2. VHDL Pin Assignment

	Assigning I/O Registers
	Disabling I/O Pad Insertion
	Preventing the Precision RTL Synthesis Software from Adding I/O Pads
	Preventing the Precision RTL Synthesis Software from Adding an I/O Pad on an Individual Pin

	Controlling Fan-Out on Data Nets

	Synthesizing the Design and Evaluating the Results
	Obtaining Accurate Logic Utilization and Timing Analysis Reports

	Exporting Designs to the Quartus II Software Using NativeLink Integration
	Running the Quartus II Software from within the Precision RTL Software
	Running the Quartus II Software Manually Using the Precision RTL Synthesis-Generated Tcl Script
	Using Quartus II Software to Launch the Precision RTL Synthesis Software
	Passing Constraints to the Quartus II Software
	create_clock
	Example 10-3. Specifying a Clock using create_clock
	set_input_delay
	Example 10-4. Specifying set_input_delay
	set_output_delay
	Example 10-5. Using the set_output_delay Constraint
	set_max_delay
	Example 10-6. Using the set_max_delay Constraint
	set_min_delay
	Example 10-7. Using the set_min_delay Constraint
	set_false_path
	Example 10-8. Using the set_false_path Constraint
	set_multicycle_path
	Example 10-9. Using the set_multicycle_path Constraint

	Megafunctions and Architecture- Specific Features
	Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
	Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for Black-Box Megafunction Instantiation
	Using MegaWizard Plug-In Manager-Generated VHDL Files for Black-Box Megafunction Instantiation

	Inferring Altera Megafunctions from HDL Code
	Multipliers
	Controlling DSP Block Inference for Multipliers

	Using the GUI
	Using Attributes
	Example 10-10. Setting the dedicated_mult Attribute in Verilog HDL
	Example 10-11. Setting the dedicated_mult Attribute in VHDL
	Example 10-12. Setting the preserve_signal Attribute in Verilog HDL
	Example 10-13. Setting the preserve_signal Attribute in VHDL
	Example 10-14. Verilog HDL Multiplier Implemented in Logic
	Example 10-15. VHDL Multiplier Implemented in Logic
	Multiplier-Accumulators and Multiplier-Adders
	Controlling DSP Block Inference
	Example 10-16. Setting the extract_mac Attribute in Verilog HDL
	Example 10-17. Setting the extract_mac Attribute in VHDL
	Example 10-18. Using extract_mac, dedicated_mult and preserve_signal in Verilog HDL
	Example 10-19. Using extract_mac, dedicated_mult, and preserve_signal in VHDL
	RAM and ROM

	Incremental Compilation and Block-Based Design
	Hierarchy and Design Considerations
	Creating a Design with Separate Netlist Files
	Creating Black Boxes in Verilog HDL
	Example 10-20. Verilog HDL Black Box for Top-Level File A.v
	Creating Black Boxes in VHDL
	Example 10-21. VHDL Black Box for Top-Level File A.vhd

	Creating Quartus II Projects for Multiple EDIF Files
	Creating a Single Quartus II Project for a Top-Down Incremental Compilation Flow
	Creating Multiple Quartus II Projects for a Bottom-Up Flow

	Conclusion
	Referenced Documents
	Document Revision History

	11. Synopsys Design Compiler FPGA Support
	Introduction
	Design Flow Using the DC FPGA Software and the Quartus II Software
	Setup of the DC FPGA Software Environment for Altera Device Families
	Example 11-1. Recommended Synthesis Settings for Stratix II Device Architecture

	Megafunctions and Architecture- Specific Features
	Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
	Clear Box Methodology
	Reading Megafunction Wizard-Generated Synthesizable Clear Box Netlist Files for Megafunction Instantiation
	Advanced Clear Box Support for the Direct-Instantiated or Inferred Clear Box Megafunctions
	Design Compiler FPGA Setup
	UNIX Environment Setting
	Error Message
	Sample Design Compiler FPGA Clear Box Setup Script

	Example 11-2. Sample Clear Box Setup Script

	Black Box Methodology
	Reading Megafunction Wizard-generated Variation Wrapper Files
	Using Megafunction Wizard-Generated Variation Wrapper Files in a Black Box Methodology
	Using Megafunction Wizard-Generated Verilog HDL Files for Black Box Megafunction Instantiation
	Using Megafunction Wizard-Generated VHDL Files for Black Box Megafunction Instantiation

	Inferring Altera Megafunctions from HDL Code
	Example 11-3. Verilog HDL Code Inferring a Two-Port RAM

	Reading Design Files into the DC FPGA Software
	Selecting a Target Device
	Example 11-4. List of Available Devices in the Linked Library Using the -show_all Option

	Timing and Synthesis Constraints
	Compilation and Synthesis
	Example 11-5. Sample Synthesis Script

	Reporting Design Information
	Saving Synthesis Results
	Example 11-6. Syntax Using the write Command
	Example 11-7. Generating a Verilog Quartus Mapping Netlist

	Exporting Designs to the Quartus II Software
	write_fpga Command
	Example 11-8. Using the write_fpga Command after Compile
	Example 11-9. Using the write_fpga Command to Generate All Files

	write and write_par_constraint Commands
	Example 11-10. Using the write and write_par_constraint Commands

	Using Tcl Scripts with Quartus II Software
	Example 11-11. An Example Script

	Place and Route with the Quartus II Software
	Formality Software Support
	Conclusion
	Referenced Documents
	Document Revision History

	12. Analyzing Designs with Quartus II Netlist Viewers
	Introduction
	When to Use Viewers: Analyzing Design Problems
	Quartus II Design Flow with Netlist Viewers
	RTL Viewer Overview
	State Machine Viewer Overview
	Technology Map Viewer Overview
	Introduction to the User Interface
	Schematic View
	Schematic Symbols
	Example 12-1. Code Sample for Counter Schematic Shown in Figure 12-3
	Selecting an Item in the Schematic View
	Moving and Panning in the Schematic View

	Hierarchy List
	Selecting an Item in the Hierarchy List

	State Machine Viewer
	State Diagram View
	State Transition Table
	State Encoding Table
	Selecting an Item in the State Machine Viewer
	Switching Between State Machines

	Navigating the Schematic View
	Traversing and Viewing the Design Hierarchy
	Flattening the Design Hierarchy
	Viewing the Contents of a Design Hierarchy within the Current Schematic

	Viewing Contents of Atom Primitives in the Technology Map Viewer
	Viewing the Properties of Instances and Primitives
	Viewing LUT Representations in the Technology Map Viewer
	Zooming and Magnification
	Schematic Debugging and Tracing Using the Bird's Eye View
	Full Screen View

	Partitioning the Schematic into Pages
	Moving Between Schematic Pages
	Moving Back and Forward Through Schematic Pages
	Following Nets Across Schematic Pages
	Input Connectors
	Output Connectors

	Go to Net Driver

	Customizing the Schematic Display in the RTL Viewer
	Grouping Combinational Logic into Logic Clouds

	Filtering in the Schematic View
	Filter Sources Command
	Filter Destinations Command
	Filter Sources and Destinations Command
	Filter Between Selected Nodes Command
	Filter Selected Nodes and Nets Command
	Filter Bus Index Command
	Filter Command Processing
	Filtering Across Hierarchies
	Expanding a Filtered Netlist
	Reducing a Filtered Netlist

	Probing to Source Design File and Other Quartus II Windows
	Moving Selected Nodes to Other Quartus II Windows

	Probing to the Viewers from Other Quartus II Windows
	Viewing a Timing Path
	Other Features in the Schematic Viewer
	Tooltips
	Radial Menu
	Customizing the Radial Menu

	Rollover
	Displaying Net Names
	Displaying Node Names
	Find Command
	Exporting and Copying a Schematic Image
	Printing

	Debugging HDL Code with the State Machine Viewer
	Simulation of State Machine Gives Unexpected Results

	Conclusion
	Document Revision History

