
CSEE W4840 Embedded System Design Lab 1

Stephen A. Edwards

Due February 1, 2010

Abstract

Learn to use the Altera Quartus development envrionment and

the DE2 boards by implementing a small hardware design that

displays and modifies the contents of a small memory.

1 Introduction

Use the Altera DE2 board to implement a simple hardware de-

sign. Describe its behavior using the VHDL language and use

Altera’s Quartus tools to synthesize and program the FPGA de-

vice. Use a VHDL simulator to verify and debug the design.

The circuit you program into the FPGA will display and

modify the contents of a 16× 8 bit RAM. Although there are

dedicated RAM chips on the DE2 board, for simplicity use a

RAM inside the FPGA. Use four pushbuttons as inputs and

three seven-segment LED displays as outputs. Two push buttons

should step up and down through the sixteen RAM locations; the

other two should increment and decrement the contents of the

currently-displayed memory location. One seven-segment dis-

play should show the current address (0–F), two others should

display the contents of that location in hexadecimal (00–FF).

You will learn to set up a project in the Altera Quartus tool,

run a VHDL simulation, and compile and download your design

to the FPGA. VHDL is a hardware description language, and the

process of using it is very different than developing programs in

C++ or Java. You will need these skills in later labs and while

you are developing your project.

Below, we introduce the DE2 board, show how to start a new

project from a template, add VHDL code to a project, simulate

it, and compile and download a design to the FPGA.

2 The DE2 Board

Figure 1 shows the Altera DE2 board. It consists of an Altera

Cyclone II FPGA connected to a variety of peripherals including

512K of SRAM, 4 MB of Flash, 8 MB of SDRAM, VGA output,

Ethernet, audio input and output, and USB ports. For this lab,

we will use four of the eight seven-segment LEDs and the four

blue pushbuttons. There are three USB connectors on the top

of the board. The leftmost one—the one nearest the 9V DC

connector—is for connecting the Altera “Blaster” cable to the

workstation. It is through this connection that the FPGA will be

programmed, that debugging information flows, etc. The other

two USB ports can be used in projects.

The DE2 board holds two quartz crystal oscillators (clock

sources: little silver boxes labeled with their frequencies). We

will use the 50 MHz clock for this lab; there is also a 27 MHz

clock designed for video timing.

The DE2 board has built-in configuration for testing and

demonstration purpose. You can verify the board is working

properly by observing this default behavior. Use the following

procedure to power up the DE2 board.

First, connect the USB blaster cable from the USB port on

the workstation to the USB Blaster connector on the DE2 board.

Next, connect the 9 V adapter to the DE2’s power connector at

the top left corner. Third, verify the RUN/PROG switch on the

left edge of the DE2 board (just to the left of the LCD display)

is in the RUN position.

Power on the DE2 board by pressing the red ON/OFF switch

in the upper left corner. The LEDs should flash, the LCD should

display “Welcome to the Altera DE2 Board,” and the VGA out-

put should display an Altera/Terasic logo page.

To download our design and override the default configura-

tion of the FPGA, we use a JTAG port (JTAG is a ubiquitous

standard that stands for the IEEE Joint Test Action Group). The

Altera Quartus tool running on the workstation sends the con-

figuration bit stream through the USB cable to the Cyclone II

FPGA. Once programmed, the FPGA retains its configuration as

long as power is applied to the board; it is lost when the power

is turned off. We cover the details of this process below.

3 Getting Started with Quartus

Quartus is Altera’s development environment for FPGAs. It

consists of an IDE and a “compiler” that can translate circuits

described in VHDL into configuration data for the FPGA. Start

the Quartus IDE by running the quartus command. This re-

quires the PATH and LM_LICENSE_FILE environment vari-

ables to be set.

Altera provides a variety of reference designs for the DE2.

For lab 1, we modified the DE2_Top design, which contains in-

formation about what each pin on the FPGA is connected to and

a top-level VHDL module with a port for each pin.

Download the lab1.tar.gz file from the class website and ex-

tract it with “tar zxf lab1.tar.gz” This will place the project files,

listed in Table 1, in the current directory.

DE2_TOP.qpf is the top Quartus project file. To open the

project file, use File→Open Project and select DE2_TOP. Once

the project is opened, you can see and change I/O pin assign-

ments with Assignment→Pins. Figure 2 shows this dialog.

Table 1: Files in the DE2_TOP project

Name Role

DE2_TOP.qpf Quartus Project File

DE2_TOP.qsf Pin assignments, etc.

DE2_TOP.vhd Top-level VHDL file

1



Figure 1: The Altera DE2 board

Figure 2: Assigning Pins Textually

For Quartus to configure an FPGA, it must know which pins

on the FPGA perform what roles (i.e., what each is named). This

information is board-specific since the pins on the FPGA can be

wired to arbitrary peripherals. The DE2_TOP.qsf file contains

this information for the DE2 board.

DE2_TOP.vhd is the top-level VHDL module for the project,

which mostly lists the top-level ports, i.e., the VHDL names for

the pins. It also sets the state of the LEDs.

Although you do not need to modify I/O pin settings for this

lab, you may need to do so in the future. Assignment→Pin Plan-

ner, shown in Figure 3, opens a display that shows the physical

location the pins on the FPGA and their assignments.

4 Compiling for the FPGA

The supplied project can be compiled and downloaded to the

board, altough it does not do much. First, make sure all the

source files are included in the project. From the Project naviga-

Figure 3: Assigning Pins Graphically

tor window, click on the Files tab. This will display the VHDL

files that will be compiled into the FPGA. To add a file, select

Project→Add/Remove Files in Project. This opens the window

in Figure 4.

Select VHDL files from the pop up window. If you have writ-

ten multiple VHDL files, add each of them. Do not add any test

benches (used for simulation) to the list of device design files

since they cannot be compiled into hardware.

Now we are ready to compile. Select Processing→Start Com-

pilation to start the compilation process (Figure 5). The window

on the left reports progress.

A pop-up appears when compilation completes. If there are

errors, use the Messages window to locate them (Figure 6). As

usual, the first error listed is most trustworthy; any others may

be due to earlier errors. A compilation process usually generates

some warnings. Most are harmless, but it is worth fixing them

them to avoid masking a genuine problem.

2



Figure 4: Adding files to a project

Figure 5: Compiling a design

Figure 6: Diagnosing errors

Figure 7: Programming the FPGA

Figure 8: Creating a new VHDL file

Double clicking on an error message will highlight the sus-

pect VHDL in the editor window. The compiler may also dis-

play warning messages, which can be explored in the same way.

You can obtain more information about a specific error or warn-

ing by selecting it and pressing the F1 key.

4.1 Programming the FPGA

Once your design has been compiled, it can be downloaded to

the FPGA. Select Tools→Programmer, which will display the

window in Figure 7. It should list the DE2_TOP.sof file to be

programmed into the EP2C35F672 device (Altera’s charming

name for the FPGA on the DE2).

You may have to click on the “Hardware Setup...” button and

select the USB-Blaster cable. Make sure the board’s USB cable

is plugged into the port marked “blaster” (i.e., nearest the power

connector).

Click the check box under Program/Configure for the

DE2_TOP.sof file destined for the FPGA and then click Start to

download your design to the FPGA. If all goes well, the design

should spring to life.

5 Editing VHDL

The next step is to code your circuit in VHDL. Quartus provides

a good VHDL text editor, which provides syntax highlighting,

language templates, and other aspects of a good IDE. To create

a new VHDL file in your project, select File→New. This will

bring up the dialog in Figure 8.

Select the VHDL file option and click OK. This brings up a

window where you can enter VHDL code (Figure 9).

The verbose syntax of VHDL is probably unfamiliar to you.

To help, the Quartus tool provides a collection of VHDL tem-

plates, which provide examples of various types of VHDL con-

structs, such as an entity declaration, a process statement, and

an assignment statement.

To use a VHDL template, select Edit→Insert Template. This

will open a window such as Figure 10.

Select “VHDL” and the type of template you want. The OK

button inserts the template in the active source file. Then fill in

the details in the template, such as the name of an entity.

6 The Lab 1 Design

Your goal is to implement a memory display/modification cir-

cuit whose block diagram is shown in Figure 11. Input ports are

3



Figure 9: Editing a VHDL file

Figure 10: Inserting a VHDL template

on the left; output ports are on the right.

To add the lab1 component to the project, instantiate it in the

top-level architecture in DE2_TOP.vhd.

architecture datapath of DE2_TOP is

begin

U1: entity work.lab1 port map (
clock => clock_50,
key => key,
hex6 => hex6,
hex5 => hex5,
hex4 => hex4

);

Here, the ports on your lab1 entity are mapped to top level

ports. The naming of these top level ports, such as CLOCK_50,

SW, KEY and HEX6 4, are all defined in the Quartus .qsf file.

The ports named in the DE2_TOP.vhd and QSF file must match.

Remember to disable the constant assignments to HEX4,

HEX5, and HEX6 in the DE2_TOP.vhd file when you add your

lab1 component.

6.1 RAM

Your design should include a 16× 8 bit RAM, but what kind

of RAM? The DE2 board contains an SRAM chip, an SDRAM

chip, and RAM within the FPGA itself. The SDRAM chip pro-

vides the highest capacity but requires a complicated controller.

The SRAM chip is smaller, much simpler to use, and provides

KEY(0)
KEY(1)
KEY(2)
KEY(3)

clk

Ctrl.

16×8

RAM

a
di
we

clk

Hex
Decode

Hex
Decode

Hex
Decode

HEX4

HEX5

HEX6

do

Figure 11: The block diagram of lab 1

more storage than RAM on the FPGA. However, RAM internal

to the FPGA, so-called “block RAM,” is the smallest, fastest,

and easiest to use. Use it for this lab.

The FPGA block RAM can be configured many different

ways, e.g., as one big memory, as many small regions, and as

bits, bytes, or words. The easiest way to ask for a particular

type of RAM is to is to allow the Quartus tool to infer it from

the use of an array in VHDL. Below is code from which Quartus

will infer a small RAM block.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity raminfr is
port (
clk : in std_logic;
we : in std_logic;
a : in unsigned(3 downto 0);
di : in unsigned(7 downto 0);
do : out unsigned(7 downto 0)

);
end raminfr;

architecture rtl of raminfr is
type ram_type is array (0 to 15) of unsigned(7 downto 0);
signal RAM : ram_type;
signal read_a : unsigned(3 downto 0);

begin

process (clk)
begin
if rising_edge(clk) then
if we = ’1’ then
RAM(to_integer(a)) <= di;

end if;
read_a <= a;

end if;
end process;

do <= RAM(to_integer(read_a));

end rtl;

Here, the to_integer function converts an input in the form

unsigned to an integer index for accessing the array.

6.2 Seven-Segment LEDs

The block diagram in Figure 11 includes three seven-segment

LED output decoders. Each segment of each LED is connected

to a pin on the FPGA. Driving a pin low (to 0) lights the cor-

responding segment. Figure 12 shows how the segments are

arranged. Thus, to display a “1,” drive the port to “1111001.”

6.3 Keybounce

Like most switches, the buttons on the DE2 are a bunch of plas-

tic designed to bring two pieces of metal together. When a but-

ton is depressed, the piece of metal shorts a wire to ground;

4



a

b

c

d

e

f

g

Figure 12: A seven-segment LED display. E.g., hex0(0) is a;

hex0(6) is g

(a)

(b)

Figure 13: Keybounce illustrated. (a) The ideal response. (b)

What actually happens.

otherwise, a resistor “pulls” the wire to a “1” voltage. So a “0”

means the button is depressed and a “1” means it is not, so look-

ing for when a button has just been pushed should amount to

looking for a 1-to-0 transition.

Keybounce complicates this. Despite careful mechanical de-

sign, most buttons “bounce,” meaning that they quickly connect

and disconnect a few times before staying connected for a while.

Thus, if you look for a 1-to-0 transition to indicate a button

press, you can easily find many of them in a short time. Fig-

ure 13 illustrates the problem.

The solution comes from noting fingers are much slower than

electronics; once a transition has occurred, the next genuine

change can only occur, say, at least 10 ms later, so ignore any

that come before then.

7 VHDL Simulation

For many reasons, hardware is tricker to design than software.

For example, the usual edit-compile-debug cycle is longer be-

cause the hardware compiler has more details to consider. An-

other reason is that the behavior of hardware is harder to ob-

serve. It is difficult to put a print statement in hardware.1 It is

even harder to probe a wire inside a chip.

One way out of this conundrum is to simulate VHDL before

compiling it onto the FPGA. This is faster than compilation and

makes it easy to observe everything going on inside your design,

but can be thousands of times slower than running the actual

hardware.

7.1 Testbenches and the Synthesizable Subset

There is actually two dialects of VHDL: the complete language,

which the simulator accepts, and the synthesizable subset—

what can be translated into hardware. The non-synthesizable

part of the language is mostly useful for writing testbenches.

You need two things to run an interesting simulation of a sys-

1But not impossible: designers often use LEDs as one-bit debugging outputs.

tem: a description of the system itself and some input for it.

This latter component is known as a testbench and you need to

write VHDL for your testbench when you simulate a design. A

testbench instantiates the desing you are testing, stimulates the

design, e.g., by applying clocks and inputs, and monitors its re-

sponse. A test bench can be thought of as a signal generator and

oscilloscope.

A testbench can use non-synthesizable VHDL statements.

The wait statement, which can delay a precise amount of time,

is typical. It is not possible to build hardware that does this, al-

though you can build something that delays a precise number

of clock cycles, but it is easily done in simulation. For exam-

ple, wait can be used to provide a reset signal that goes low for

200 ns:

process
begin

resetn <= ’0’;
wait for 200 ns;
resetn <= ’1’;
wait;

end process;

The final wait stops the process so it does not automatically

repeat and generate multiple resets.

Wait is also useful for modeling clocks. Here is a way to

generate a clock with a 40 ns period.

process
begin

clock <= ’0’;
wait for 20 ns;

loop
clock <= ’1’;
wait for 20 ns;
clock <= ’0’;
wait for 20 ns;

end loop;
end process;

The loop statement tells the simulation to generate clock

pulses forever.

Wait can also be used to separate assignment statements to

generate specific input stimulus.

process
begin
wait for 100 ns;
a <= ’0’;
b <= ’0’;
cin <= ’0’;
wait for 20 ns;
a <= ’1’;
b <= ’0’;
cin <= ’0’;
wait for 20 ns;
a <= ’1’;
b <= ’0’;
cin <= ’1’;
wait;

end process;

You can test this lab by using this style of code to emulate

buttons being pressed.

7.2 Simulating your design

Quartus can run an external VHDL simulator. We will use a

version of Mentor Graphics’s ModelSim. It is a hassle to run the

simulator the first time, but it is much easier the second.

First, you probably need to tell Quartus where the simulator

is. Go to Tools→Options, select “EDA Tool Options,” double-

click on the ModelSim-Altera line and enter the name of the

5



Figure 14: Telling Quartus about a new test bench

Figure 15: Selecting ModelSim-Altera as the simulator and

telling it about a testbench

Figure 16: Running ModelSim and observing simulation results

Figure 17: Viewing your design as a schematic

directory in which the “vsim” executable resides. On our ma-

chines, this is /opt/e4840/altera7.2/modelsim_ae/linuxaloem.

Now, tell Quartus that you want to use ModelSim-Altera

as the “EDA simulator.” With the project open, select

Assignments→EDA tool settings and click on “Simulation.” Set

“Tool name” to “ModelSim-Altera.”

The Assignments→EDA tool settings dialog is also where

you must tell the simulator which testbench to use. Again un-

der EDA Tool Settings→Simulation, specify a testbench in the

“NativeLink settings” area by selecting “Compile test bench”

and clicking on Test Benches.

In the Test Benches dialog, click New to create a new test

bench. The name is arbitrary, but the entity name must match

that in your VHDL test bench file and the instance should be the

name of the instance of the design you are testing (e.g., “uut”).

You must also specify an execution time for your testbench. This

may be a number of µs. Finally, add the VHDL file for your

testbench by selecting it and clicking “Add.” See Figure 14.

Once you have created a new test bench, you can select it in

the pulldown menu to the right of “Compile test bench.” Fig-

ure 15 illustrates all of these settings.

Finally, you should be able to select Tools→EDA Simulation

Tool→Run EDA RTL Simulation to start ModelSim. You need

to have compiled your design before you start the simulation.

If all goes well, you should see the ModelSim window appear

and a waveform viewer display the results of the simulation:

Figure 16. Use the zoom tools to zoom in and out on this display

and the scrollbars to move. By default, the display will show all

the signals external to the unit under test (i.e., on the entity in

your VHDL test bench file you specified earlier).

7.3 The RTL Viewer

We are designing a circuit but have been writing textual VHDL.

Quartus includes an RTL viewer that displays your design

as a schematic. Bring this up by selecting Tools→Netlist

Viewers→RTL Viewer (Figure 17). Note that this is informa-

tive but not necessary for compilation.

8 What to turn in

Find an unsuspecting TA or instructor, show him/er your work-

ing memory reader/editor, your running simulation, and email

your .vhd file to sedwards@cs.columbia.edu.

6


