SOIL
Simple Object Interaction Language

Final Report— August 10™, 2009

COMS W4115: Programming Languages and Translators
Professor Stephen A. Edwards

Richard Zieminski
rez2107(@columbia.edu

Contents:

5T 2 (016 10 13 o) o BRSSPSR 3
2 Langua@e TULOTIAL.......cciuiiiiieiieeie ettt ettt et et e e bt e et e e stesabeenseeesbeeseeenseenseessseenseesnseans 3
2.1 Defining shapes and ODJECES........cccviiiiiiiieiieiiiie ettt e e e e e e ta e e e naeeenreeeenes 3
2.2 DefiNINg fUNCHOMNS ...ccviiiiiieiieiieeiieeiteeieeete ettt e siteete et e sabeesateesbeenseessseenseesnseenseeesseenseennns 4
3 Language Reference Manualc.ccooiiieiiiiiiiiecicecie ettt et e et e et e e e tae e saaeeenveeesnnaeeennes 4
Conventions In ThisS DOCUMENTc..oeiiiiiiiiiieiie ettt saeeebee e 4
3.1 LeXiCal CONVENTIONSeeiiuiieeiiieeiieeeiiieeeitieeeieeeeteeessteeessseeessseeesseesnsseeesseessseesssseesssseessseeennses 4
R I 0071111115 111 OSSPSR 4
3.3 WIS PACE ...e et et eeiite ettt e ettt e ettt e et e e et e e s ateeeesbeeessseeesssee e saeeesseeenssaeensseeenssaeansaeesnsaeensseeennses 4
3.4 Line Breaks and SemiCOIONS..........coouiiiiiiiiiiiiiciieeeee ettt 4
R IR I (6 153018 4 1<) 4TSRS 4
3.6 Keywords and ResServed WOrdS.........cooveeiieriiiiiieieeiteie ettt ettt e 5
3.7 BUIlt 1N FUNCHOMNSeeiiiiiiiiie ettt ettt e et e e e et eeenaeeessaeeensaeesnsaeesnseeennnes 5
3.8 BUIIE 11 ODJECLS ..eiiiiiiieiiieiie ettt ettt ettt et et e et e st e et esaseeabeesabeenseessseenseesnseenseennns 5
R 0 0 1C) 110 £ PSS UUSPRRRUPURN 6
T 170 o PSS UOUSPRRRPPRRN 6
3.11 Primitive Data TYPES .ouveeruiieiieeiiieiiesiie ettt ettt et ettt e st eebeesaaeenbeessaeensaesnseenseennns 6
T I I L1533 o 1< ST 6
Bl 1.2 TEXL ettt et h et e h e bttt h e bttt h bt et eh ettt sb e e b entenae e 6
T O o) <t SR U SRR 7
BulT4 SRAPE ...ttt ettt et e st e bt e at e bt e abe e beeeabeenbeeenaeensaennteenseeenne 7
I B 5 4 03 (S TE) 1) o USSP 7
3.12.1 AdditiVe EXPIESSIONS ..ccuvvieurieiiieiieiiieeiieeiieeieesiteeteeeteeteesateenseesaseeseesseeenseessseenseessseanseennns 7
3.13 DECIATALIONS ...veiiiiieeiiieeiiee et e ettt ettt e et e e st e e e teeesstaeessbee e saeeesseeesseeensseesnsseesnsseesnsaeesnseeennses 7
314 FUNCHIONStieiiie ettt ettt ettt et ettt e sat e et e e ateesbeessbeenbeessbeenseasaseenseessbeenseansseenseennseenseennns 8
3.15 Conditional StateMENT.........cccviieiiiieiiieeieeeiee e eeee e e e et e e e eeetaeeenaeeenraeesasaeesnseeennnes 8
3.16 Shape/Object DEfINItIONSc.eeruiieiieiieeiieeie ettt et sttt e sreebeesaaeesbeeseaeesaessseenseeenne 9
T o (o) [To1 A o - s USSR 9
BT 331 151 U 4 LU OO PRSP 10
0. ATCRTEECIUTEC. ...eeuviieiiieeetieeeieeestee et e ettt e et teeetaeeeteeessteeessseeesssaeessaeenssaeassseeensseeansseeenssaesnsseesnsseesnsenenns 10
7 TESEINE .ttt ettt ettt et ettt e bt e et e e bt e s ab e e bt e eabeesseeeabeeaseeeabeanseeenbe e st e eateenbeeenbeenseeeabeenbeeenseenseas 12
oI TS0 s T T 1 s 1S USSR 14
0. C0AE LISHINE.....eeiieeiiieiieeie ettt ettt ettt et e st e bt e e et e esbeeesbeenbeesabeasseaesseenseesaseanseeasseenseensseenseesnsennseas 15

1 Introduction

SOIL is a computer language which can be used to teach the concepts of basic object
interactions. Using a minimum of operations, a user can create simple objects and basic
shapes, and then assign basic properties which characterize them. Simulations can then
be run to see the outcome of the interactions between these objects.

2 Language Tutorial
A SOIL program consists of several sections:

1. Function declarations.
2. Global shape and object declarations.
3. Function ‘main’

In order to avoid confusion, all variables are defined as extensions of shapes or objects.
Access to the contained parameters is accomplished via the dereference operator ‘@’.

Example
circle@radius:=10;
toscreen (circle@radius);
Assignment of a variable to a parameter is done using the assignment ‘.=’ operator. This

s

was done to avoid confusion with comparison operators, such as ‘==",

2.1 Defining shapes and objects
Shapes and objects are defined in the exact same way, as shapes are basically a custom

type of object. An optional assignment of a value is allowed during creation in order to
simplify things. The ‘shape’ or ‘object’ keyword is necessary to distinguish the object
type prior to the function name.

Example:

shape circle (number radius);

object test (number x:=1, text color:= “Blue”);

2.2 Defining functions

Function declaration is the same as for most languages, with the ‘function’ keyword
required prior to the function name. Declaration of passed parameters is required.
Passed parameters are accessed by reference and can change based on the function.

Example:

function test (circle, square, test);

3 Language Reference Manual

Conventions In This Document
Text in italics type indicates a keyword or literal.

3.1 Lexical Conventions

3.2 Comments

Comments begin with the // character sequence and end with a line feed. Comments may
be placed on the same line as source code. Multi-line comments will always begin with
the // character sequence.

3.3 Whitespace

Whitespace characters which include spaces, tabs, and line feed characters may used to
separate keywords, operators, and code tokens in the input but are discarded during
parsing.

3.4 Line Breaks and Semicolons

Semicolons serve as a statement separator, and line breaks serve as a terminator.
Multiple statements may be put on a single line of source code using semicolons in
between each statement.

3.5 Identifiers

Identifiers represent the names of user defined variables and functions. All identifiers
begin with a letter or underscore, followed by zero or more letters, digits, and
underscores. Identifiers are case-sensitive. Identifiers can be any number of characters
in length.

3.6 Keywords and Reserved Words

The following words are reserved as keywords and may not be used as identifiers. They
are case sensitive. Valid keywords are:

if else

true false

run

world

function

shape object
for

text number

3.7 Built in Functions

SOIL also contains built in functions which may not be redefined. Valid function names
are:

a. toscreen(expr)

This function will handle combinations of text and numbers for output to the screen. It
will parse the provided text for verbatim output (anything within “’) and variables to be
output as set.

Example:

X:=3;
toscreen “This is a simulation that will run ““ x “ times”’;

Output:
This 1s a simulation that will run 5 times

3.8 Built in Objects
SOIL also contains built in objects which may not be redefined. Valid names are:

a. world

*world the extents of the interactive environment in 2 dimensional coordinates (X, y) and
needs to be set before running any simulation. It is defined as:

world(number x assign value, number 'y assign value){
width = $1;
height = $2;

b

Once defined, objects can be passed as parameters to other functions and their elements
referenced using the ‘@’ operator.

3.9 Operators

* dereference fields of a shape

= assignment operator
++ combines two strings, or a string and a number

3.10 Scope

There are two types of scope, local and global. Identifiers declared within a function are
local only to that function and may not be used otherwise. Global identifiers which are
declared outside any functions may be used anywhere in the program.

3.11 Primitive Data Types
Supported types will be text, number, object, and shape.

3.11.1 Number
number is a 32 bit whole number (+/-). Only whole numbers are supported.

3.11.2 Text

Text is a sequence of characters surrounded by double quotes. Text literals may not
contain double quotes or span multiple lines.

3.11.3 Object

Object is a type that may contain any number of user defined fields of possible data
types. All variable are associated with a defined object.

3.11.4 Shape

Shape is a type that may contain any number of user defined fields of possible data types,
along with several pre-defined fields and functions.

Both shape and object variables can be accessed using the ‘@’ operator.
Example:
shape circle (number radius);

toscreen (circle@radius);

3.12 Expressions

Expression can be a combination of operators, identifiers and literals. Upon evaluation,
an expression will return a value. The value type is dependant on the expressions being
combined. Precedence of expressions is as listed in the operators section of this
document.

3.12.1 Additive Expressions

text + text = text

text + number = text
number + number = number
number + text = number*

*If the text can be translated to a number this will hold true.

Only text and numbers can be combined.

3.13 Declarations

Declarations are used to assign a value (text, number) to an identifier. They have the
form:

Identifier: = value;

(1324

A text declaration is defined by enclosing the value in quotes .

3.14 Functions
Functions will be defined through the use of the ‘function’ keyword.

Functions have the form:
function identifier (parameter-list)
{ body }

or

function identifier ()
{ body }

where parameter-list = shape or object

A function does not return a value. The parameter-list will be of the form (shape, object,
..). Parameters are passed by reference and can be modified within the calling function.

Function nesting is supported, but recursive operations are not.

Functions can access global variables as well as arguments as well as locally declared
variables.

3.15 Conditional Statement
There are two forms of the conditional statements:

a. if (expression)
{
statementl;
statement2;
}
else
{
statementl;
statement2;
55
b. if (expression)
{

statementl;
statement2;

s
*Brackets are always used to enclose conditional statements.

3.16 Shape/Object Definitions

Shapes and objects may be created anywhere, even within a function, although they will
be automatically destroyed upon leaving the function.

A shape is defined and created with the keyword:
shape identifier (parameter-list);

where parameter-list = number assign ID
or
text assign ID

An object is defined and created with the keyword:
object identifier (parameter-list);

where parameter-list = number assign ID
or
text assign ID

4. Project Plan

The project began with trying to come up with a language simple enough for a child to
use, but powerful enough that an adult would still find it valuable. After watching my
two year old son play with his toys, SOIL was born. The initial thought was the language
could present rudimentary shapes in a visual format to help him learn.

The design process started with laying out the keywords necessary to provide basic
functionality. I realized from the start that my keyword set was too elaborate therefore |
downsized the keyword count to a handful to try to make the language even more user
friendly and easy to learn.

The next step was to implement the scanner and parser and get a basic ‘Hello World’ type
program to run. After much tweaking I was able to accomplish this. As I went along and
added functionality, I proceeded to use test cases to regression test my work.

I then proceeded to tackle the largest task of trying to implement a c++ like object
dereferencing scheme for object access alongside the standard single variable accessor
method. Due to complexity issues I had to settle on a single dereference scheme for all
variable access. While this somewhat added to the access method, the single solution
provided for less confusion in the end.

The remaining steps would have been to implement the autonomous object interaction I
originally proposed. I also would have liked to qualify the shape object better. Right
now it is just a keyword, where object and shape are the same type. Unfortunately, the
initial concept turned out to be way too much of an endeavor for one person to handle in
a semester.

5. Timeline

My timeline is somewhat skewed due to my unfortunate circumstances encountered
earlier this year. The gap between mid March and May should therefore be excluded.

Date Item

January 20" - January 27" Initial layout of project specifications
January 28" — February 10" Work on language layout, 1* Proposal
February 11" - March 10" Work on LRM, scanner layout

June 16" — July 3™ Development, scanner, parser
July 4™ — August 1% Get program working, testing
Week of August 3™ Testing, Documentation, Final Report

6. Architecture
Soil consists of just a few parts. These are as follows:

scanner.mll: The scanner is used to convert characters and symbols into tokens (or

language interpretable strings). Irrelevant details such as whitespace and comments are
removed at this stage.

10

ast.mli: This is the interface the program exposes to the world. Types are also defined
here.

parser.mly: The parser reads the tokens generated from the scanner and generates an
abstract syntax tree. It also checks to see that the file does not violate the rules that have
been defined for the language.

interpret.ml: This is the main part of the program. Its job is to:
1. Go through the abstract syntax tree
2. Create a local and global symbol table
3. Check types
4. Evaluate expressions and well as resolve functions

printer.ml: This is used to output the translated file for verification of parsing. It is
toggled on/off by setting the ‘print’ flag in the main ‘soil.ml’ file.

Block Diagram:

Input

l

Scanner

Parser

Symbol Table » Interpreter

Printer

-
Output

11

7. Testing

Testing consisted of creating a sub-directory of test (.mc) and output files (.out) and
running a script to compile, run, and compare all the test files outputs against the
expected results. For simplicity the ‘testall.sh’ script as provided for the microc example
was modified and used. Tests cases were chosen to check the major functionality of the
language. If given more time I would have liked to create many more test cases to cover
all conditions which could occur.

Here is the output from the scripted testing:

test-forl...OK
test-if1...OK

test-object number...OK
test-object text...OK
test-object wparm...OK
test-object wparms...OK
test-ops...OK
test-run...OK
test-run2...0K

Example 1: Test-run.mc
shape circle(number radius:=10, text color:="Blue");
shape square(number length:=10, number height:=10, text color:="Red");

function test(shapel)

{
toscreen(shapel@length);

b

function main()

{

test(square);

}

Output:
10

12

Example 2: Test-ops.mc
// Comment test //
// Should print: //
/I 117/
/1 -11/
/157
// Testingl //
/181

object a(number X, text y);

function main()

{
a@x:= 10;

a@x:=a@x + 1;

toscreen(a@x);

a@x:= 10;
a@x:=a@x - 11;

toscreen(a@x);
a@x:= 10;
a@x:=a@x / 2;

toscreen(a@x);

a@y:= "Testing";

a@y:=a@y ++ 1;
toscreen (a@y);
a@y:: u3u;

a@x:= a@x + a@y;

toscreen (a(@x);

b

Output:
11

-1

5
Testingl
8

8. Lessons Learned

Without knowing much about Ocaml, I set out to design a language which 1 though
would be useful, yet not too complex. Shortly after starting on the project I realized I had
promised too much. The complexities associated with learning a new language,
especially one so different that I’d become familiar with, tended to overshadow the
development. In the end I was able to deliver a subset of the original design, with similar
functionality and ease of use. I highly recommend getting familiar with the syntax of the
language very early in the design. A lot of lost time was due to misunderstanding of
language functionality encountered along the way. If it were not for the ‘microc’
example as a foundation I do not think I could have developed a compiler in the time
given. The learning curve is just too steep.

Overall I learned a lot about the inner workings of a compiler. I enjoyed learning a new,
fundamentally different type of language and I am glad that professor Edwards had
chosen to challenge us by switching from Java to Ocaml. Seeing things in a different
way allows us to be better programmers in the end.

14

9. Code Listing

scanner.mll

{ open Parser }

rule token = parse
[" "\t" "\r' '"\n'] { token lexbuf } (* Whitespace *)

"shape" { SHAPE }
"object" { OBJECT }
"number" { NUMBER }
"text" { TEXT }
"toscreen" { TOSCREEN }
"world" { WORLD }

| "/ { comment lexbuf } (* Comments *)
| " (" { LPAREN }

| ") { RPAREN }

| " {" { LBRACE }

| "} { RBRACE }
| { SEMI }

! { COMMA }

| '+ { PLUS }

| =" { MINUS }

| 'x { TIMES }
VA { DIVIDE }

| "e=" { ASSIGN }

| "ae" { DEREFERENCE }
| "==" { EQ }

| =" { NEQ }

| < { LT }

‘ "<:" { LEQ }

| "> { GT }

| ">=" { GEQ }

| "+ { COMBINE }

| nifm { IF }

| "else" { ELSE }

| "for" { FOR }

| "function"™ { FUNCTION }
\

\

\

\

\

\

['0'-'9']+ as 1xm { LITERAL(lxm) }

\

‘ [lal_lzl lAl_lZl][lal_lZl IAI_IZI 101_191 '7']* as le { ID(le) }

'\ [~ "\"']* "\"'" as 1lxm { STR(lxm) } | _ as char { raise (Failure("illegal
character " »~ Char.escaped char)) }

| eof { EOF }

and comment = parse

"//" { token lexbuf }
I { comment lexbuf }

15

ast.mli
type op = Add | Sub | Mult | Div | Equal | Neg | Less
Combine

type objectexpr =
Literal of string
| Str of string
| Access of string * string
| Binop of objectexpr * op * objectexpr
| AssignToObject of string * string * objectexpr
| Noexpr

(* Object Expressions *)

type expr =
Id of string
| Assign of string * string * objectexpr
| Call of string * expr list

(* Expressions *)

type stmt =
Block of stmt list
| Expr of expr
| If of objectexpr * stmt * stmt
| For of objectexpr * objectexpr * objectexpr * stmt
| ToScreen of objectexpr

type p_decl = {
key : string;
value : string;

}

type v_decl = {

vartype : string;
varname : string;
varparams p_decl list;

}

type func decl = {
fname : string;
formals : string list;
locals : v _decl list;
body : stmt list;
}

type program = v_decl list * func _decl list

16

Leg

Greater

Geqg

parser.mly

%{ open Ast %}

%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA
%$token PLUS MINUS TIMES DIVIDE ASSIGN
%$token EQ NEQ LT LEQ GT GEQ COMBINE
%token IF ELSE FOR

%$token NUMBER TEXT

%token <string> ID

%token <string> LITERAL

%token <string> STR

stoken EOF

%token FUNCTION SHAPE OBJECT

stoken WORLD

%token DEREFERENCE

%token TOSCREEN

%$nonassoc NOELSE
%$nonassoc ELSE

%left ASSIGN

sleft EQ NEQ

%left LT GT LEQ GEQ
%$left COMBINE

$left PLUS MINUS
%left TIMES DIVIDE

%$start program
stype <Ast.program> program

o\
o\

program:
/* nothing */ { 1, [1 1}
| program vdecl { ($2 :: fst $1), snd $1 }
| program fdecl { fst $1, ($2 :: snd $1) }

fdecl:
FUNCTION ID LPAREN formalsiopt RPAREN LBRACE Vdeclilist Stmtilist RBRACE
{ { fname = $2;
formals S4;
locals = List.rev $7;
body = List.rev $8 } }

formals opt:
/* nothing */ { [] }
| formal list { List.rev $1 }

formal list:
| ID { [s1] }
| formal list COMMA ID { $3 :: $1 1}

vdecl list:

/* nothing */ { [] }
| vdecl list vdecl { $2 :: $1 }

17

vdecl:
OBJECT ID LPAREN p opt RPAREN SEMI { {

vartype = "Object"; varname = $2; varparams = $4;} }
| SHAPE ID LPAREN p opt RPAREN SEMI { {
vartype = "Shape"; varname = $2; varparams = $4;} }
| WORLD LPAREN p opt RPAREN SEMI { {
vartype = "World"; varname = "World"; varparams = $3;} }
p_opt:
/* nothing */ {11 1}
| p_list { s1
p list:
param { [811 }
| p_list COMMA param { $3 :: 351 1}
param:
NUMBER ID ASSIGN LITERAL { { key = $2;
value = $4;} }
| TEXT ID ASSIGN STR { | key = $2;
value = String.sub $4 1 ((String.length $4)-2) ;} }
| NUMBER ID { { key = $2;
value = "0";} }
| TEXT ID {1 key = $2;
value = "";} }
stmt list:
/* nothing */ { [] }
| stmt list stmt { $2 :: $1 }
stmt:

expr SEMI { Expr($1l) }
| LBRACE stmt list RBRACE { Block(List.rev $2) }
| IF LPAREN objectexpr RPAREN stmt $%prec NOELSE { If($3, $5, Block([])) }
| IF LPAREN objectexpr RPAREN stmt ELSE stmt { I£($3, $5, $7) 1}
| FOR LPAREN objectexpr SEMI objectexpr SEMI objectexpr RPAREN stmt
{ For($3, $5, $7, $9) }

| TOSCREEN objectexpr SEMI { ToScreen ($2) }
expr_ opt:
/* nothing */ { Noexpr }
| objectexpr { $1 }
expr:
1D { Id(s1) }
| ID DEREFERENCE ID ASSIGN objectexpr { Assign($1, $3, $5) }
| ID LPAREN actuals opt RPAREN { Call(S$1, $3) }
| LPAREN expr RPAREN { $2 }

objectexpr:
LITERAL
| STR
| objectexpr PLUS objectexpr
| objectexpr MINUS objectexpr
| objectexpr TIMES objectexpr
| objectexpr DIVIDE objectexpr

Literal ($1) }

Str($1) }

Binop ($1, Add, $3) }
Binop($1, Sub, $3) }
Binop($1, Mult, $3) }
Binop ($1, Div, $3) }

e e e TP,

18

objectexpr
objectexpr
objectexpr
objectexpr
objectexpr
objectexpr
objectexpr

EQ objectexpr

NEQ objectexpr

LT objectexpr

LEQ objectexpr

GT objectexpr

GEQ objectexpr
COMBINE objectexpr

ID DEREFERENCE ID ASSIGN objectexpr
ID DEREFERENCE ID
LPAREN objectexpr RPAREN

actuals opt:

/* nothing

*/ {01}

actuals list { List.rev $1 }

actuals list:

expr

{ [S11 1}

actuals list COMMA expr { $3 :: $1

}

19

Binop($1, Equal, $3) }
Binop ($1, Neq, $3) }

Binop ($1, Less, $3) }
Binop ($1, Leq, $3) }

Binop ($1, Greater, $3) }
Binop ($1, Geq, $3) }

Binop ($1, Combine, $3) }
AssignToObject ($1, $3, $5)
Access ($1, $3) }

$2 1}

interpret.ml

open Ast

module NameMap = Map.Make (struct

type t = string

let compare x y = Pervasives.compare x y
end)

exception ReturnException of string NameMap.t * string NameMap.t NameMap.t
(* Main entry point: run a program *)

let run (vars, funcs) =
(* Put function declarations in a symbol table *)
let func _decls = List.fold left
(fun funcs fdecl ->
if NameMap.mem fdecl.fname funcs then

raise (Failure ("function " » fdecl.fname ~ " is defined more than once!"));

NameMap.add fdecl.fname fdecl funcs)

NameMap.empty funcs

in

let initall = List.fold left

(fun globals wvdecl ->
let params = List.fold left
(fun param map param decl -> NameMap.add param decl.key param decl.value

param_map)

NameMap.empty vdecl.varparams in

if NameMap.mem vdecl.varname globals then

raise (Failure ("variable " »~ vdecl.varname ~ " is defined more than
once!"));

NameMap.add vdecl.varname params globals;
)
in
let rec call fdecl actuals globals =
(* Evaluate an expression and return (value, updated environment) *)
(**** This is the object eval section ***x*)
let rec eval object env = function

Literal (i) -> i, env
| Noexpr -> "Nothing", env (* must be non-zero for the for loop predicate
| Str(str) -> (String.sub str 1 ((String.length str)-2)), env
| Binop(el, op, e2) ->
let vl, env = eval object env el in
let v2, env = eval object env e2 in
let bool to str i = if i then "true" else "false" in

(match op with
Add -> string of int(int of string(vl) + int of string(v2))
Sub -> string of int(int of string(vl) - int of string(v2)

Less —> bool to str(int of string(vl) < int of string(v2)
Leqg -> bool to str(int of string(vl) <= int of string(v2)
Greater -> bool to str(int of string(vl) > int of string(v2))

)
Mult -> string of int(int of string(vl) * int of string(v2))
Div -> string of int(int of string(vl) / int of string(v2))
Equal -> bool to str(int of string(vl) == int of string(v2))
)
)
)

|
|
|
|
| Neqg -> bool to str(int of string(vl) != int of string(v2)
|
|
|

20

| Geg -> bool to str(int of string(vl) >= int of string(v2))

| Combine -> String.concat "" (vl::(v2::[1))), env
| Access (var, param) ->
let (locals, globals) = env in

if NameMap.mem var locals then

if NameMap.mem param (NameMap.find var locals) then
NameMap.find param (NameMap.find var locals), (locals, globals)

else raise (Failure ("undeclared identifier " ~ wvar))

else if NameMap.mem var globals then
if NameMap.mem param (NameMap.find var globals) then

globals)

(NameMap.find var globals), (locals,

("undeclared identifier " ~ wvar))
nwoA Var))

NameMap.find param
else raise (Failure
else raise (Failure ("undeclared identifier
| AssignToObject (var, param, e) ->
let v, (locals, globals) = eval object env e in

if NameMap.mem var locals then
v, (NameMap.add var (NameMap.add param v (NameMap.find var locals))

locals, globals)
else if NameMap.mem var globals then
v, (locals, NameMap.add var (NameMap.add param v (NameMap.find var

globals)) globals)
else raise (Failure ("undeclared identifier " ”~ wvar))

in
(* Evaluate an expression and return (value, updated environment)
(**** This i1is the normal eval section ****)

let rec eval env = function

Id(var) ->
let locals, globals = env in
if NameMap.mem var locals then
(NameMap.find var locals), env
else if NameMap.mem var globals then

(NameMap.find var globals), env
else raise (Failure ("undeclared identifier

Assign(var, param, e) ->
let v, (locals, globals) =
if NameMap.mem var locals then

NameMap.empty, (NameMap.add var

var locals)) locals, globals)

*)

" " var))

eval object env e in

(NameMap.add param v (NameMap.find

else if NameMap.mem var globals then

NameMap.empty, (locals, NameMap.add var (NameMap.add param v
(NameMap.find var globals)) globals)
else raise (Failure ("undeclared identifier " ~ wvar))
Call(f, actuals) ->

let fdecl =

try NameMap.find f func decls
(Failure ("undefined function " ~ f))

with Not found -> raise

in
let actuals, env = List.fold left
(fun (actuals, env) actual ->

let v, env = eval env actual in v

([]1, env) actuals

actuals, env)

in
let (locals, globals) = env in
try

call fdecl actuals globals in NameMap.empty, (locals,

let globals =

globals)
globals) -> v, (locals, globals)

with ReturnException (v,

21

in
(* Execute a statement and return an updated environment *)

let rec exec env = function
Block(stmts) -> List.fold left exec env stmts
| Expr(e) -> let , env = eval env e in env

| If(e, sl, s2) ->
let v, env = eval object env e in
exec env (if String.compare "true" v==0 then sl else s2)
| For(el, e2, e3, s) —->
let , env = eval object env el in
let rec loop env =
let v, env = eval object env e2 in

if String.compare "true" v==0 then
let , env = eval object (exec env s) e3 in
loop env
else
env
in loop env
| ToScreen(e) ->

let str, env = eval object env e in
(match (str) with
| _ -> print endline str ; flush stdout; env)
in
(* Enter the function: bind actual values to formal arguments ¥*)
let locals =
try List.fold left2
(fun locals formal actual -> NameMap.add formal actual locals)
NameMap.empty fdecl.formals actuals

with Invalid argument() ->
raise (Failure ("wrong number of arguments passed to " » fdecl.fname))
in
(* Initilize local variables *)
let locals = initall locals fdecl.locals in

(* Execute each statement; return updated global symbol table *)
snd (List.fold left exec (locals, globals) fdecl.body)
in
(* add global variables to symbol table. *)
let globals = initall NameMap.empty vars in

try
call (NameMap.find "main" func decls) [] globals
with Not found -> raise (Failure ("did not find the main() function"))

printer.ml

open Ast
let rec string of expr = function

| Id(s) -> s

| Assign (var, param, e) -> ""

| Call(f, el) ->

£ ~ "(" ~ String.concat ", " (List.map string of expr el) ~ ")"

let rec string of objectexpr = function

Literal(s) -> s

| Noexpr -> ""
| Str(s) -> s

22

| Binop(el, o, e2) ->

string of objectexpr el ~ "™ " *
(match o with
Add -> "+" | Sub -> "-" | Mult -> "*" | Div -> "/"
| Equal -> "==" | Neq -> "!="
| Less _> "<" | Leq _> "<:" | Greater _> ">" | Geq _> ">:"
| Combine —-> "44") ~ ™ " ~

string of objectexpr e2
| Access(var, param)-> var ~ "@" ~ param

| AssignToObject (v, param, e) -> v ~ "@" ”~ param * "=" "~ string of objectexpr e
let rec string of stmt = function
Block (stmts) ->
"{\n" ~ String.concat "" (List.map string of stmt stmts) ~ "}\n"
| Expr(expr) -> string of expr expr ~ ";\n";
| If(e, s, Block([])) -> "if (" ~ string of objectexpr e ~ ")\n" " string of stmt
S
| If(e, sl, s2) -> "if (" ”~ string of objectexpr e *~ ")\n" *
string of stmt sl ~ "else\n" ~ string of stmt s2
| For(el, e2, e3, s) —->
"for (" ~ string of objectexpr el ~ " ; " ~ string of objectexpr ez ~ " ; "
string of objectexpr e3 ~ ") " ” string of stmt s
| ToScreen(s) -> "toscreen (" » string of objectexpr s ~ ")\n"
let string of vdecl id = "int " ~ id ~ ";\n"

let list of wvdecl vars

nwn

let string of fdecl fdecl =

fdecl.fname ~ " (" ~ String.concat ", " fdecl.formals ~ ")\n{\n" *
String.concat "" (List.map list of vdecl fdecl.locals) *
String.concat "" (List.map string of stmt fdecl.body) *
" } \n"

let string of program (vars, funcs) =
String.concat "" (List.map list of vdecl vars) ~ "\n" *
String.concat "\n" (List.map string of fdecl funcs)

23

soil.ml

let print = false

let =
for i = 1 to Array.length Sys.argv - 1 do
let ic = open in Sys.argv. (i) in
let lexbuf = Lexing.from channel ic in
let program = Parser.program Scanner.token lexbuf in
if print then

let listing = Printer.string of program program in
print string listing
else

ignore (Interpret.run program);
done

24

