Programming Languages and Translators

Stephen A. Edwards

Columbia University

Fall 2008

Instructor

Prof. Stephen A. Edwards sedwards@cs.columbia.edu http://www1.cs.columbia.edu/~sedwards/ 462 Computer Science Building Office Hours: 4–5 PM Tuesday, 3–4 PM Wednesday

Schedule

Mondays and Wednesdays, 1:10 - 2:25

535 Mudd

Lectures: September 4 to December 6

Midterm: October 29

Final: December 8 (in-class)

Final project report: December 19

Holidays: November 3 (Election day)

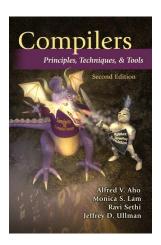
Objectives

Theory of language design

- ► Finer points of languages
- Different languages and paradigms

Practice of Compiler Construction

- Overall structure of a compiler
- Automated tools and their use
- Lexical analysis to assembly generation


Required Text

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.

Compilers: Principles, Techniques, and Tools.

Addison-Wesley, 2006. Second Edition.

Bug Al about all bugs.

Assignments and Grading

40% Programming Project

20% Midterm

30% Final

10% Individual homework

Project is most important, but most students do well on it. Grades for tests often vary more.

Prerequisite: COMS W3157 Advanced Programming

Teams will build a large software system

Makefiles, version control, test suites

Testing will be as important as development

Prerequisite: COMS W3261 Computability and Models of Computation

You need to understand grammars

We will be working with regular and context-free languages

Class Website

Off my home page, http://www1.cs.columbia.edu/~sedwards/ Contains syllabus, lecture notes, and assignments.

Schedule will be continually updated during the semester.

Collaboration

Collaborate with your team on the project.

Exception: CVN students do the project by themselves.

Do your homework by yourself.

Tests: Will be closed book with a one-page "cheat sheet" of your own devising.

Don't cheat on assignments (e.g., copy from each other): If you're dumb enough to cheat, I'm smart enough to catch you.

Every term I've caught people cheating and sent them to the dean. Please try to break my streak.

Part I

The Project

The Project

Design and implement your own little language.

Five deliverables:

- 1. A proposal describing and motivating your language
- 2. A language reference manual defining it formally
- 3. A compiler or interpreter for your language running on some sample programs
- 4. A final project report
- 5. A final project presentation

Teams

Immediately start forming four-person teams to work on this project.

Each team will develop its own langauge.

All members of the team should be familiar with the whole project.

Exception: CVN students do the project by themselves.

First Three Tasks

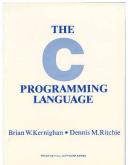
- 1. Decide who you will work with *You'll be stuck with them for the term; choose wisely.*
- 2. Elect a team leader Languages come out better from dictatorships, not democracies. Besides, you'll have someone to blame.
- 3. Select a weekly meeting time
 Harder than you might think. Might want to discuss with a
 TA you'd like to have so it is convenient for him/her as well.

Project Proposal

Describe the language that you plan to implement.

Explain what problem your language can solve and how it should be used.

Describe an interesting, representative program in your language.


Give some examples of its syntax and an explanation of what it does.

2-4 pages

Language Reference Manual

A careful definition of the syntax and semantics of your language.

Follow the style of the C language reference manual (Appendix A of Kernighan and Ritchie, *The C Programming Language*; see the class website).

Final Report Sections

- 1. Introduction: the proposal
- 2. Language Tutorial
- 3. Language Reference Manual
- 4. Project Plan
- 5. Architectural Design
- 6. Test Plan
- 7. Lessons Learned
- 8. Complete listing

Due Dates

Proposal September 24 soon

Reference Manual October 20

Final Report December 19

Design a language?

A small, domain-specific language.

Think of awk or php, not Java or C++.

Examples from earlier terms:

Quantum computing language

Geometric figure drawing language

Projectile motion simulation langauge

Matlab-like array manipulation language

Screenplay animation language

Other language ideas

Simple animation language

Model train simulation language

Escher-like pattern generator

Music manipulation language (harmony)

Web surfing language

Mathematical function manipulator

Simple scripting language (à lá Tcl)

Petri net simulation language

Part II

What's in a Language?

Components of a language: Syntax

How characters combine to form words, sentences, paragraphs.

The quick brown fox jumps over the lazy dog.

is syntactically correct English, but isn't a Java program.

```
class Foo {
  public int j;
  public int foo(int k) { return j + k; }
}
```

is syntactically correct Java, but isn't C.

Specifying Syntax

Usually done with a context-free grammar.

Typical syntax for algebraic expressions:

```
\begin{array}{rcl} expr & \rightarrow & expr + expr \\ & | & expr - expr \\ & | & expr * expr \\ & | & expr / expr \\ & | & \mathbf{digit} \\ & | & (expr) \end{array}
```

Components of a language: Semantics

What a well-formed program "means."

The semantics of C says this computes the nth Fibonacci number.

```
int fib(int n)
  int a = 0, b = 1;
  int i;
  for (i = 1 ; i < n ; i++) {
    int c = a + b;
    a = b;
    b = c:
  return b;
```


Semantics

Something may be syntactically correct but semantically nonsensical.

The rock jumped through the hairy planet.

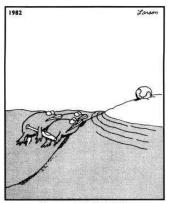
Or ambiguous

The chickens are ready to eat.

Semantics

```
Nonsensical in Java:
class Foo {
   int bar(int x) { return Foo; }
}
Ambiguous in Java:
class Bar {
  public float foo() { return 0; }
  public int foo() { return 0; }
}
```

Specifying Semantics


Doing it formally is beyond the scope of this class, but there are basically two ways:

- Operational semantics
 Define a virtual machine and how executing the program evolves the state of the virtual machine
- ➤ Denotational semantics
 Shows how to build the function representing the behavior of the program (i.e., a transformation of inputs to outputs) from statements in the language.

Most language definitions use an informal operational semantics written in English.

Part III

Great Moments in Evolution

Great moments in evolution

Assembly Language

Before: numbers	After	: Symbo	ols
55	gcd:	pushl	%ebp
89E5		movl	%esp, %ebp
8B4508		movl	8(%ebp), %eax
8B550C		movl	12(%ebp), %edx
39D0		cmpl	%edx, %eax
740D		je	.L9
39D0	.L7:	cmpl	%edx, %eax
7E08		jle	.L5
29D0		subl	%edx, %eax
39D0	.L2:	cmpl	%edx, %eax
75F6		jne	.L7
C9	.L9:	leave	
C3		ret	
29C2	.L5:	subl	%eax, %edx
EBF6		jmp	.L2

FORTRAN

Before

After: Expressions, control-flow

```
10
                             if (a .EQ. b) goto 20
gcd: pushl %ebp
                             if (a . LT. b) then
    movl %esp, %ebp
                                a = a - b
    movl 8(%ebp), %eax
                             else
                                b = b - a
    movl 12(%ebp), %edx
                             endif
     cmpl %edx, %eax
                             goto 10
    je .L9
                             end
                        20
.L7: cmpl %edx, %eax
     ile .L5
     subl %edx. %eax
.L2: cmpl %edx, %eax
     jne L7
.I.9: leave
    ret
.L5: subl %eax, %edx
     jmp
          .L2
```

COBOL

Added type declarations, record types, file manipulation

```
data division. file section.
```

* describe the input file

fd *employee-file-in*

label records standard block contains 5 records record contains 31 characters data record is employee-record-in.

01 employee-record-in.

02 employee-name-in **pic** x(20).

02 employee-rate-in pic 9(3)v99.

02 employee-hours-in pic 9(3)v99.

02 line-feed-in **pic** x(1).

From cafepress.com

I Speak

COBOL

LISP, Scheme, Common LISP

```
Functional, high-level languages
(defun gnome-doc-insert ()
  "Add a documentation header to the current function.
Only C/C++ function types are properly supported currently
  (interactive)
  (let (c-insert-here (point))
    (save-excursion
      (beginning-of-defun)
      (let (c-arglist
            c-functione
            (c-point (point))
            c-comment-point
            c-isvoid
            c-doinsert)
        (search-backward "(")
        (forward-line -2)
        (while (or (looking-at "^$")
                    (looking-at "^ *}")
                    (looking-at "^ \*")
                    (looking-at "^#"))
          (forward-line 1))
                                      4□ > 4□ > 4 = > 4 = > = 900
```

APL

Powerful operators, interactive language, custom character set

```
[0]
      Z+GAUSSRAND N;B;F;M;P;Q;R
[1]
      \triangleReturns \triangle random numbers having a Gaussian normal distribution
F 2 1
      A (with mean 0 and variance 1) Uses the Box-Muller method.
[3]
      A See Numerical Recipes in C. pg. 289.
[4]
[5]
      Z+10
[6]
     M+<sup>-</sup>1+2★31
                        A largest integer
[7]
     L1:Q←N-pZ
                        A how many more we need
[8]
     →(Q≤0)/L2
                        A quit if none
[9]
     Q+Γ1.3×Q÷2
                        A approx num points needed
[10]
     P \leftarrow 1 + (2 \pm M - 1) \times 1 + ?(Q, 2) PM A random points in -1 to 1 square
[11]
     R++/P×P
                        A distance from origin squared
[12]
     B+(R≠0)∧R<1
[13]
    R+B/R ◊ P+B+P
                        A points within unit circle
[14]
    F+(-2×(⊕R)÷R)★.5
     Z+Z, P\times F, [1.5]F
[15]
[16]
     →L1
[17] L2:Z+N+Z
      A ArchDate: 12/16/1997 16:20:23.170
[18]
```

Source: Jim Weigang, http://www.chilton.com/~jimw/gsrand.html

At right: Datamedia APL Keyboard

Algol, Pascal, Clu, Modula, Ada

Imperative, block-structured language, formal syntax definition, structured programming

```
PROC insert = (INT e, REF TREE t)VOID:
   # NB inserts in t as a side effect #
   IF TREE(t) IS NIL THEN t := HEAP \ NODE := (e, TREE(NIL), TREE(NIL))
   ELIF e < e OF t THEN insert(e, 1 \text{ OF } t)
   ELIF e > e OF t THEN insert(e, r OF t)
  FI:
PROC trav = (INT switch, TREE t, SCANNER continue, alternative)VOID:
   # traverse the root node and right sub-tree of t only. #
   IF t IS NIL THEN continue(switch, alternative)
   ELIF e OF t \le switch THEN
         print(e \ OF \ t):
         traverse( switch, r OF t, continue, alternative)
   ELSE # e OF t > switch #
         PROC defer = (INT sw, SCANNER alt)VOID:
               trav(sw, t, continue, alt);
         alternative(e OF t, defer)
   FI:
```

 $Algol-68, source\ http://www.csse.monash.edu.au/\sim lloyd/tilde Prog Lang/Algol 68/treemerge.a 6$

SNOBOL, Icon

String-processing languages

```
'ABCDEFGHIJKLMNOPQRSTUVWXYZ$#@'
           "+-,=.*()'/& "
SCOTA
      .....&``
SCOTA
OLIT
      = Q FENCE BREAK(Q) Q
               'L' Q | ANY(SCOTA) | BREAK(SCOTA) |
                                                 REM
F3 = ARBNO(ELEM FENCE)
      (SPAN('') | RPOS(0)) FENCE
F1
      BREAK('')
                  l REM
F2
       F1
      = ('LCL' | 'SET') ANY('ABC')
'AIF' | 'AGO' | 'ACTR' |
ATTR = ANY('TLSIKN')
ELEMC = '('FENCE *F3C')'
                              ATTR O
                                          ELEM
          ARBNO(ELEMC
                     FENCE)
                   B F3C . OPERAND
( CAOP . OPERATION
                 В
                   F3 . OPERAND)
     REM . COMMENT
```

BASIC

Programming for the masses

- 10 PRINT "GUESS A NUMBER BETWEEN ONE AND TEN"
- 20 **INPUT** *A\$*
- 30 **IF** A\$ <> "5" **THEN GOTO** 60
- 40 PRINT "GOOD JOB, YOU GUESSED IT"
- 50 **GOTO** 100
- 60 **PRINT** "YOU ARE WRONG. TRY AGAIN"
- 70 **GOTO** 10
- 100 END

Started the whole Bill Gates/ Microsoft thing. BASIC was invented by Dartmouth researchers John George Kemeny and Thomas Eugene Kurtz.

Simula, Smalltalk, C++, Java, C#

The object-oriented philosophy

```
class Shape(x, y); integer x; integer y;
virtual: procedure draw;
begin
   comment -- get the x & y coordinates --;
   integer procedure getX;
      getX := x:
   integer procedure getY;
      getY := v:
   comment -- set the x & v coordinates --:
   integer procedure setX(newx); integer newx;
      x := newx;
   integer procedure setY(newy); integer newy;
      y := newy;
end Shape:
```

Efficiency for systems programming

```
int gcd(int a, int b)
{
  while (a != b) {
    if (a > b) a -= b;
    else b -= a;
  }
  return a;
}
```

ML, Miranda, Haskell

Functional languages with a syntax

```
structure RevStack = struct
  type 'a stack = 'a list
  exception Empty
  val emptv = []
  fun isEmpty (s:'a stack):bool =
    (case s
       of [] => true
        | _ => false)
  fun top (s:'a stack): =
    (case s
       of [] => raise Empty
        \mid x::xs \Rightarrow x
  fun pop (s:'a stack):'a stack =
    (case s
        of [] => raise Empty
          \mid x::xs \Rightarrow xs
  fun push (s:'a stack, x: 'a):'a stack = x::s
  fun rev (s:'a stack):'a stack = rev (s)
end
```

sh, awk, perl, tcl, python, php

Scripting languages: glue for binding the universe together

```
class() {
  classname='echo "$1" | sed -n '1 s/ *:.*$//p''
 parent='echo "$1" | sed -n '1 s/\.*: *//p''
  hppbody= 'echo "$1" | sed -n '2,$p''
  forwarddefs="$forwarddefs
  class $classname;"
  if (echo $hppbody | grep -q "$classname()"): then
    defaultconstructor=
 else
    defaultconstructor="$classname() {}"
  fi
```

VisiCalc, Lotus 1-2-3, Excel

The spreadsheet style of programming

```
TOTAL
```

Visicalc on the Apple II, c. 1979

Database queries

```
CREATE TABLE shirt (
    id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
    style ENUM('t-shirt', 'polo', 'dress') NOT NULL,
    color ENUM('red', 'blue', 'white', 'black') NOT NULL,
    owner SMALLINT UNSIGNED NOT NULL
        REFERENCES person(id),
    PRIMARY KEY (id)
);
INSERT INTO shirt VALUES
```

```
(NULL, 'polo', 'blue', LAST_INSERT_ID()),
(NULL, 'dress', 'white', LAST_INSERT_ID()),
(NULL, 't-shirt', 'blue', LAST_INSERT_ID());
```

SQL T-Shirt

From thinkgeek.com

Prolog

Logic Language

```
edge(a, b).
edge(b, c).
edge(c, d).
edge(d, e).
edge(b, e).
edge(d, f).

path(X, X).
path(X, Y) :- edge(X, Z), path(Z, Y).
```