
Joel Christner (jec2160)
COMS-W4115 Spring 2009

Minimalistic Basic Compiler (MBC)
Project Final Report

Rev 1.0
5/14/2009

Table of Contents 
Table of Contents .. 2

Introduction .. 4
Language Status and Open Defects .. 4

Language Status.. 4
Open Defects... 4

Language Tutorial .. 4
Language Goals... 4
Language Features .. 5
How to Use MBC... 5
Mathematics Example.. 5
Iteration (For Loop) Example... 5
Iteration (While Loop) Example ... 6
Decision (If-Then-Else) Example ... 6

Language Reference Manual ... 6
Language Overview ... 6
Styles Used.. 7
Lexical Conventions and Program Structure... 7

Program Termination.. 7
Whitespace.. 7
Program Structure ... 7
Comments ... 7
Tokens... 7
Identifiers ... 7
Keywords... 8
Numerical Literals... 8
Miscellaneous .. 8

Operations ... 8
Multiplicative Operators.. 8
Additive Operators ... 8
Relational Operators... 9
Assignment Operators ... 9

Iteration Statements and Program Control ... 9
While Loops ... 9
For Loops .. 9
If-Then Statements... 9
End Statements ... 10
Display Operations ... 10
Exceptions ... 10

Project Plan .. 10
Processes.. 10
Programming Style .. 11
Planned Project Timeline.. 11

Roles and Responsibilities.. 11
Software Development Environment and Tools .. 11
Project Log .. 12

Architectural Design .. 12
Block Diagram of Major Components... 12
Interfaces Between Components ... 13
Component Ownership .. 14

Test Plan .. 14
Example Source Programs and Target Languages... 14
Translator Test Suites .. 15
Test Case Reasoning ... 15
Automation .. 15
Component Ownership .. 15

Lessons Learned ... 15
Most Important Learnings .. 15
Advice for Future Teams .. 16

Appendix .. 16
Complete Code Listing .. 16

scanner.mll .. 16
parser.mly .. 17
ast.mli .. 18
mbc.ml .. 18
makefile ... 21

End of Document .. 22

Introduction 
This document is the final project report for the Minimalistic Basic Compiler (MBC) project as
completed by Joel Christner (UNI jec2160) for COMS-W4115, Spring 2009 semester (Professor
Stephen Edwards).

MBC was designed to provide people with a compiler that would take simple BASIC-like source
code and compile it into C source code. MBC does not implement all of the BASIC language, and
restrictions exist on how the BASIC programs must be implemented, which will be discussed in this
document.

Language Status and Open Defects 
This section provides a status on the language and a list of open defects.

Language Status 
MBC is largely implemented, but has a handful of open defects. The open defects were unable to
be resolved by the time the project needed to be submitted.

Open Defects 
The following are the open defects in MBC at time of submission.

ID Description
1 Standalone mathematical expressions are not printed with a trailing semicolon in the

resultant C code. Behavior not problematic for expressions in for, while, and if
statements but is problematic for standalone mathematical expressions. Requires
parser, AST, and backend modification.

2 No differentiation between assignment and comparison in use of ‘equals’ operator.
Only a single-equals ‘=’ is used, rather than a double-equals ‘==’. Requires parser,
AST, and backend modification.

3 Incorrect expressions are being accepted by the parser (i.e. ’20 = A’), and keywords
are being allowed as identifiers. Numerical literals are being accepted as expressions.
Requires parser, AST, and backend modification.

4 Errors not being thrown when problem encountered to allow the user to understand
what line of code is causing a problem. Rather, a Parser error is generated. Backend
modification required to correct to include try and raise statements to support
exceptions.
Fatal error: exception Parsing.Parse_error

5 REM statements are currently not functioning as expected. Requires parser, AST, and
backend modification.

Language Tutorial 
This section provides a high-level overview of MBC and how to use it.

Language Goals 
The goal of MBC was to provide a simple tool that allowed simplistic BASIC programs to be
compiled to C. With the introduction of DOS and eventually Windows operating systems, BASIC in
its original form lost mindshare rapidly. Although dated, BASIC provides a solid programming
foundation for those who are looking to learn a simple language that is not overwhelming or daunting
in any way. MBC helps bridge the gap between learning BASIC and learning a more advanced
language such as C.

Language Features 
MBC supports integer data types. All BASIC statements must be contained within a single line and
can not span lines. MBC supports certain BASIC program control, loop, and iteration statements,
including ‘END’, ‘FOR…NEXT’, ‘IF…THEN…ELSE’ and ‘WHILE’.

How to Use MBC 
MBC is easy to use. Once compiled, simply run MBC from a command line and pass a BASIC
source code file to it as input. For instance:

$./mbc < source.bas

The following examples show you how MBC works with various types of programs. Note that
portions of text have been removed to keep the examples simple.

Mathematics Example 
File basicmath.bas
a = 10
b = a - 2
c = b * 2
d = c / 4
print d

Compiler output
$./mbc < examples/math.bas
#include <stdlib.h>
#include <stdio.h>

int a;
int b;
int c;
int d;

void main() {

(a == 10)
(b == (a - 2))
(c == (b * 2))
(d == (c / 4))
printf(a);

}

Iteration (For Loop) Example 
File forloop.bas
for a = 1 to 10 print a next
for b = 1 to 5 print b next

Compiler output
$./mbc < examples/forloop.bas
#include <stdlib.h>
#include <stdio.h>

int a;
int b;

void main() {

for ((a = 1), i < 10, i++) { printf(a); }
for ((b = 1), i < 5, i++) { printf(b); }
}

Iteration (While Loop) Example 
File whileloop.bas
while a < 10 do a = a + 1 loop
while b < 100 do b = b + 20 loop

Compiler output
$./mbc < examples/whileloop.bas
#include <stdlib.h>
#include <stdio.h>

int a;
int b;

void main() {

while (a < 10) { (a = (a + 1))}
while (b < 100) { (b = (b + 20))}
}

Decision (If‐Then‐Else) Example 
File ifthen.bas
a = 50
if a > 100 then print a else print 100
if a < 100 then print a else print 100
if a >= 50 then print a

Compiler output
$./mbc < examples/ifthen.bas
#include <stdlib.h>
#include <stdio.h>

int a;

void main() {

(a = 50)
if (a > 100) { printf(a); } else { printf(100); }
if (a < 100) { printf(a); } else { printf(100); }
if (a >= 50) { printf(a); }
}

Language Reference Manual 
This section includes the language reference manual (LRM). The LRM presented here has been
updated from the LRM that was provided earlier in the semester and reflects the current state of
MBC as a language.

Language Overview 
Minimalistic BASIC Compiler (MBC) provides a simple means of compiling small BASIC programs,
and supports many of the commonly-used commands and features of the BASIC language. MBC
will output C-compatible code which the user can then compile with a C compiler and execute.

Styles Used 
This document uses three primary styles to visualize concepts. Standard document text as shown
in this paragraph is in the Cambria font, 12 point. Text that shows an example of a line of MBC
code is shown in Courier New, 9 point. Text contained within an example of a line of MBC code
that should be considered a container for user-specified code is shown italicized in Courier New,
9 point., and will typically be encapsulated in braces (such as [insert code here]).

Lexical Conventions and Program Structure 
This section defines the lexical conventions and general program structure used by the MBC
language. MBC supports the ASCII character set only, and generally programs compiled with MBC
are stored within a file. This section describes the general program structure and content
requirements.

Program Termination 
Programs will terminate on one of two conditions. The first being that there simply are no further
lines of code to process, and the second being an explicit ‘END’ statement within the program.

Whitespace 
White space characters are excluded during tokenization. This includes the space character ‘ ‘,
carriage return ‘\r’, tab ‘\t’, and newline ‘\n’ characters.

Program Structure 
BASIC programs must have at most one statement per line. There are no numerical line identifiers.

Comments 
MBC supports comments through the use of ‘REM’ within the program. The use of ‘REM’ indicates
that any content from that point to the end of the line will be treated as a comment and not
compiled. There are no multi-line comments.

REM <all characters through end of line are comments>

REM This is a comment

Tokens 
There are several classes of tokens that can be used with MBC. These include identifiers,
keywords, and numerical literals.

Identifiers 
Identifiers are used to declare and reference stored information. Identifiers are a series of letters only
and may be a mix of upper and lower case. Identifier names are case sensitive, that is, the identifier
named Variable is not the same identifier as the identifier named VARIABLE. Identifiers do not
need to be declared; identifiers are implicitly declared when used for the first time and are turned into
global variables in the C program produced at the end. Only numerical identifiers are supported with
MBC. Assignment to an identifier is done through the use of the assignment operator as denoted by
the equals sign (‘=’) and using statements structured as follows:

[identifier] = [value]

A = 50 
Should an identifier be used prior to a value being assigned, a zero value is used. The assignment
operator (=) is also used within iteration statements and program control statements and in such
cases is not providing assignment but is providing comparison. All identifiers in MBC are global;
there is no concept of local identifiers in MBC.

Keywords 
Keywords are those character strings that are reserved by MBC and cannot be used as names of
identifiers, and keywords are not case sensitive. Keywords include:

REM PRINT FOR TO
STEP IF THEN ELSE
GOTO GOSUB RETURN PRINT
END DO LOOP WHILE

Each of these keywords will be explained throughout the course of this document.

Numerical Literals 
Numerical literals are simply numbers (both integer as well as floating-point) that are used within a
program and not assigned to an identifier. These must be on the right-side of an expression.

A = 5 + 10

A + 5

Miscellaneous 
MBC does not support pointers or structures.

Operations 
This section outlines the operations that are supported with MBC.

Multiplicative Operators 
The multiplicative operator, denoted by asterisk for multiplication ‘*’ or the slash ‘/’ for division,
provides the product of two integer literals or identifiers in the case of multiplication or the quotient of
two integer literals or identifiers in the case of division. This can also be used in conjunction with
print statements or in assignment. The multiplicative operators use the following syntax:

[product-identifier] = [id-or-val] * [id-or-val]

[quotient-identifier] = [id-or-val] / [id-or-val]

C = A * B

C = 5 * 20

C = A / 2

C = 100 / 5

Multiplicative operators are left associative. Multiplication holds higher precendence than division.

Additive Operators 
The additive operator, denoted by the plus sign ‘+’ for addition or the minus sign ‘-‘ for subtraction,
provides the sum or difference of two integer literals or identifiers. The additive operators use the
following syntax:

[sum-identifier] = [id-or-val] + [id-or-val]

[difference-identifier] = [id-or-val] – [id-or-val]

C = A + B

C = 5 + A

C = 5 – 2

C = D - 5

Additive operators are left associative. Addition holds higher precendence than subtraction, and
both are at lower precedence than division.

Relational Operators 
Relational operators define the relationship of two literals or identifiers. These are employed through
the use of the greater than sign ‘>’, the less than sign ‘<’, the equals sign (=), or a combination of
these, including:

• greater than or equal to: >=

• less than or equal to: <=

• not equal to: <> (either greater than or less than)

Assignment Operators 
As mentioned above the equals sign (=) is used as an assignment operator, and places the value
found on the right of the equals sign into the identifier named by the name on the left of the equals
sign. The following syntax is used:

[identifier] = [value]

A = 50

A = B + 2

This operator is also used to determine equality or inequality in conditional statements that guide
program flow or impact iterations. The exception to this rule is the ‘FOR’ statement which
increments the value of an identifier by a certain amount (defined by ‘STEP’) upon each iteration.

Iteration Statements and Program Control 
Iteration statements are used to execute statements in succession as long as the conditions
associated with the iteration remain true. Iteration statements come in three forms: while loops, for
loops, and if-then statements.

While Loops 
The while loop executes the statements contained between the DO statement and the LOOP
statement as the condition provided after ‘while’ is true. These statements follow this format:

WHILE [condition] DO [stmt] LOOP

WHILE A < 5 DO A = A + 1 LOOP

For Loops 
A for-next loop executes a series of statements and automatically increments a numerical counter
identifier by one after each iteration. Once the counter identifier reaches the amount specified in the
value specified after ‘TO’, the statement block is executed for the final time. For-next loops have the
following structure:

FOR [identifier] = startval TO endval [stmt] NEXT

FOR I = 1 TO 10 I = I + 1 NEXT

If‐Then Statements 
The if-then statement will evaluate a condition and then execute either the statement following
‘THEN’ if the condition is true, or the statement following ELSE if the condition is false. ELSE is
optional, and if the condition following IF is not true, nothing is done. These statements have the
following syntax:

IF [condition] THEN [stmt] ELSE [stmt]

IF [condition] THEN [stmt]

IF A = 5 THEN PRINT A ELSE PRINT 3

IF A = 5 THEN PRINT A

End Statements 
The END statement will terminate the program when reached. Multiple END statements may exist
within a program. An END statement is recommended but not required, and a program will
terminate when no additional code exists to execute. The syntax for the END statement is simple:

END

Display Operations 
The PRINT statement allows the user to display data on the standard output. When used by itself,
PRINT will simply print a blank line. PRINT can be followed by a numerical literal or identifier. Syntax
for the PRINT statement is:

PRINT

PRINT 5

PRINT A

Exceptions 
MBC does not provide an exception-handling system.

Project Plan 
This section provides details of the project plan in accordance with the sections requested on the
class website and discussed in the course videos.

Processes 
The following processes were used for planning, specification, development, and testing.

I tem Process
Planning 1. Identify high-level project concept

2. Determine high-level project components (toplevel,
scanner, parser, AST)

3. Determine function of each high-level component and
interaction amongst components

Specification 1. Examine each project component and determine internal
function

2. Create pseudo-code to identify redundant code and
create reusable functions

Development 1. Prepare source code skeletons for each high-level
project component identified in planning

2. Expand pseudo-code defined in specification phase to
implement functionality required

Testing 1. Identify test cases for individual components within the
project

2. Identify test cases for the entire project
3. Create white-box and black-box test cases and stress

boundary conditions

Programming Style  
A number of commonly-used programming style elements were used in this project, including the
following:

- Indentation and alignment – spaces from the left boundary in increments of two, and
alignment under the previous function statement

- Comments – use them frequently to assist others using your code
- Warnings – do not ignore compiler warnings, eliminate them
- Parentheses – use them to eliminate ambiguity wherever necessary
- Spaces – use them between operators to make code more readable

Planned Project Timeline 
The following shows the planned project timeline for MBC, and aligns each project task with the
processes mentioned above. Please note that some dates are estimates as they were not originally
logged.

S
ta

rt
 D

a
te

E
n

d
 D

a
te

Descr ipt ion
 P

la
n

n
in

g

S
p

e
c

if
ic

a
ti

o
n

D
e

ve
lo

p
m

e
n

t

T
e

st
in

g

1/20/09 1/27/09 Brainstorming on project ideas, landed on MBC X
1/30/09 2/10/09 Development of proposal X
2/10/09 2/10/09 Submission of proposal X
2/17/09 2/24/09 Creation of skeleton program files X X
2/24/09 3/10/09 Development of Language Resource Manual (LRM) X X
3/10/09 3/10/09 Submission of LRM X X
2/24/09 3/10/09 Design and development of scanner X X X
3/10/09 3/26/09 Design and development of parser X X X
3/17/09 3/31/09 Design and development of AST X X X
4/1/09 4/21/09 Design and development of toplevel including backend X X X
4/21/09 5/7/09 Testing X
5/7/09 5/14/09 Creation of documentation for project final report
5/14/09 5/14/09 Submission of final report and project tarball

Roles and Responsibilities 
I was the only contributor to this project. MBC was not planned, developed, or tested by a team.
However, tactical issues were presented to subject matter experts for guidance where applicable.

Software Development Environment and Tools 
The following describes the software development environment used during the project.

I tem Descript ion
Operating System Apple Macintosh OSX 10.5.6
Programming Language Objective Caml 3.10.2 (including ocamlyacc, ocamllex)
Integrated Development Environment vim and Apple XCode v3.1
Version Management Filesystem folders
Documentation Microsoft Office Word 2008
Presentation and Figures Microsoft Office PowerPoint 2008
Books Used for Reference Compilers: Principles, Techniques, & Tools (Aho, Lam, Sethi, Ullman)

Practical OCaml (Smith)

The Objective Caml Programming Language (Rentsch)
Helpful Resources Caml Forums (http://caml.inria.fr/resources/forums.en.html)

Caml Newsgroups
Professor Edwards

Project Log 
The following shows the actual project timeline for MBC, which can be compared and contrasted
with the planned project timeline shown above. Please note that some dates are estimates as they
were not originally logged.

S
ta

rt
 D

a
te

E
n

d
 D

a
te

Descr ipt ion
 P

la
n

n
in

g

S
p

e
c

if
ic

a
ti

o
n

D
e

ve
lo

p
m

e
n

t

T
e

st
in

g

1/20/09 1/27/09 Brainstorming on project ideas, landed on MBC X
1/30/09 2/10/09 Development of proposal X
2/10/09 2/10/09 Submission of proposal X
2/17/09 2/24/09 Creation of skeleton program files X X
2/24/09 3/10/09 Development of Language Resource Manual (LRM) X X
3/10/09 3/10/09 Submission of LRM X X
3/24/09 4/9/09 Design and development of scanner X X X
3/31/09 4/21/09 Design and development of parser X X X
4/7/09 4/14/09 Design and development of AST X X X
4/21/09 5/14/09 Design and development of toplevel including backend X X X
5/9/09 5/14/09 Testing X
5/12/09 5/14/09 Creation of documentation for project final report
5/12/09 5/14/09 Last minute scramble to fix open issues X X
5/14/09 5/14/09 Submission of final report and project tarball

Architectural Design 
This section outlines the architectural design of MBC in accordance with the items requested on the
course webpage.

Block Diagram of Major Components 
A block diagram of MBC is shown below:

MBC consists of the following files, which perform the following functions:

Fi lename Function
mbc.ml This file provides both the toplevel (entry point into the program) as well as backend

(processing of code).
scanner.mll This file provides token definitions, which are used by the parser, by mapping regular

expressions to token names. This file also handles comments as well as whitespace,
thus turning file contents into a stream of tokens.

parser.mly This file takes a stream of tokens and maps them to expressions. Additionally,
associativity and precedence are defined to reduce conflicts associated with
reduction and shifting.

ast.mli This file provides the type definition and structure of expressions, which is used by the
parser and by the backend.

Interfaces Between Components 
The interfaces between the components of MBC are listed here:

I tem 1 Item 2 Relat ionship and Interface
Toplevel Original Source Program Toplevel receives the original source program on stdin
Toplevel Scanner Toplevel sends lines from original source program to scanner to

identify tokens
Toplevel Parser Tokens returned from scanner are then sent to the parser for

identifying expressions using definitions set forth in the AST
Parser AST The AST defines the types and structures for the parser
Toplevel Backend The backend is part of the same file as toplevel (mbc.ml),

evaluation of expressions occurs through the use of the
function ‘eval’, which expects an expr as input (returned from
the parser) and returns a string

Component Ownership 
Each component in the system was owned and developed by Joel Christner.

Test Plan 
This section outlines the test plan elements for MBC in accordance with the items requested on the
course webpage.

Example Source Programs and Target Languages 
The following table shows three different source language programs and the target language
program for each.

Source Program Target Program
while a < 10 do a = a + 1 loop
while b < 100 do b = b + 20 loop

#include <stdlib.h>
#include <stdio.h>

int a;
int b;

void main() {

while (a < 10) { (a = (a + 1))}
while (b < 100) { (b = (b + 20))}
}

a = 10
b = 20
if a > b then a = a + 1 else b = b -
1
while a < b do a = a + 1 loop

#include <stdlib.h>
#include <stdio.h>

int a;
int b;

void main() {

(a = 10)
(b = 20)
if (a > b) { (a = (a + 1)) } else { (b =
(b - 1)) }
while (a < b) { (a = (a + 1))}
}

a = 10
b = a + 10
for c = 1 to 20 a = a + 1 next
if a > c then print a else print c
print b

#include <stdlib.h>
#include <stdio.h>

int a;
int b;
int c;

void main() {

(a = 10)
(b = (a + 10))
for ((c = 1), i < 20, i++) { (a = (a +
1)) }
if (a > c) { printf(a); } else {
printf(c); }
printf(b);
}

Translator Test Suites 
A series of BASIC programs known to either be valid or invalid were created and stored in the
testcases/ directory. Files containing programs known to be valid end in –good.bas, whereas files
containing programs known to be problematic end in –bad.bas. These BASIC programs cover
virtually every aspect of MBC, including addition subtraction, assignment, for loops, identifiers, if-
then statements, literals, multiplication, division, print, relationships, comments, and while loops.

These tests can be executed individually from the command line using:

$./mbc < testcases/<filename.bas>

Additionally, a shell script has been created, stored in the root mbc directory (called test.sh) which
will execute each of these tests in sequence:

$./test.sh

If you wish, you can pipe the output of the tests to a file using standard notation:

$./test.sh > testresults

Additionally, these tests can be executed through the ‘make’ command as follows:

$ make test

Test Case Reasoning 
These tests were chosen specifically to ensure that MBC operated correctly under normal conditions
and also under abnormal conditions.

Automation 
No automation was used in the testing of MBC. All testing was performed manually.

Component Ownership 
Each component in the system was owned by Joel Christner.

Lessons Learned 
This section covers the lessons learned through the course of the class and in particular this project,
and then provides advice for future teams or individuals that are taking this course.

Most Important Learnings 
The most important learnings through this project and throughout the course include

- Most of us find it easy to take a language and a compiler for granted. Understanding the
intricacies of language construction and how compilers work under the hood is helpful in
developing sound, efficient, and performant software

- Common compilers can be broken into a small number of key components including
scanning (turning streams of characters into tokens), syntax trees (organization and
structure of expressions and other types), parsing (identifying those expressions and other
types), and the backend (rules defining what to do when expressions and other types are
encountered)

- Objective Caml is a powerful functional language that also includes imperative features, and
is language that provides streamlined compiler development

- Objective Caml is particularly powerful – in my humble opinion – on the front-end of a
compiler, specifically scanning and parsing. Getting the backend right in Objective Caml is
difficult, and I would have preferred to have used an imperative language such as C for this
task

Advice for Future Teams 
The following are advisory items for future teams that are building projects for COMS-W4115 and for
future students that are taking the class.

- For those that do not have experience programming in a functional language (I didn’t), start
practicing with Objective Caml early. Study and rebuild the calculator example, mapping
out the way in which pieces work together. Study the microc example as well, and also
look at past projects

- Start your project early, do not procrastinate. There is no worse feeling than being at the
end of the eleventh hour with a massive bug when you should already be done with testing
and have your documentation nearly complete

- Have laser-focus on your project. Follow the KISS philosophy (keep it simple stupid). You
won’t have time to get to your ‘stretch’ items. It’s better to do a small number of things
right than to do a large number of things terribly wrong

- Allocate sufficient time weekly to study and to practice using Objective Caml. You don’t
want to learn this language in the final half of the class

- Print a hard copy of all slides that are related to the project and to Objective Caml. Keep
them in a binder and record your notes there, using tabs as bookmarks for quick access

- Start with the scanner first. It is easiest. You’ll find that you work with it less and less as
your project moves forward

- Develop the parser and AST second. These must be done together, as the AST defines the
types used by the parser. Be sure associativity and precedence are defined correctly

- Develop a generic backend and toplevel first, just to make sure your statements are
tokenized and parsed correctly into expressions. Think ‘printf’

Appendix 

Complete Code Listing 
Below is the output of each of the source code files. None of the files generated by the Objective
Caml compiler or other tools are included. Each of these files was authored by Joel Christner.

scanner.mll 
(* scanner.mll :: mbc scanner :: jec2160 *)
{ open Parser }

let whitespace = [' ' '\t' '\r' '\n']

rule token = parse
 whitespace { token lexbuf }
| "REM" { comment lexbuf }
| '(' { LPAREN }
| ')' { RPAREN }
| ':' { COLON }
| ',' { COMMA }
| '+' { PLUS }
| '-' { MINUS }
| '*' { TIMES }
| '/' { DIVIDE }
| '=' { EQ }
| '<' { LT }

| '>' { GT }
| "<>" { NEQ }
| "<=" { LEQ }
| ">=" { GEQ }
| "if" { IF }
| "then" { THEN }
| "else" { ELSE }
| "for" { FOR }
| "to" { TO }
| "step" { STEP }
| "next" { NEXT }
| "while" { WHILE }
| "do" { DO }
| "loop" { LOOP }
| "goto" { GOTO }
| "gosub" { GOSUB }
| "return" { RETURN }
| "end" { END }
| "print" { PRINT }
| "input" { INPUT }

(* literals and identifiers *)
| ['0'-'9']+ as lit { LITERAL(int_of_string lit) }
| ['a'-'z' 'A'-'Z']+ as lxm { ID(lxm) }

(* extra *)
| eof { EOF }
| _ as char { raise (Failure("illegal character " ^ Char.escaped char)) }

(* comment handler *)
and comment = parse
 '\n' { token lexbuf }
| _ { comment lexbuf }

parser.mly 
/* parser.ml :: mbc parser :: jec2160 */
%{ open Ast %}

/* tokens */
%token LPAREN RPAREN COLON COMMA
%token PLUS MINUS TIMES DIVIDE
%token EQ NEQ LT GT LEQ GEQ
%token IF THEN ELSE FOR TO STEP NEXT
%token WHILE DO LOOP GOTO
%token GOSUB RETURN END PRINT INPUT
%token EOF
%token <int> LITERAL
%token <string> ID

/* associativity and precedence */
%nonassoc ELSE
%left EQ NEQ
%left GT GEQ LT LEQ
%left PLUS MINUS
%left TIMES DIVIDE

/* change start to stmt after implemented */
%start expr
%type < Ast.expr> expr

%%

expr:

 | ID { Id($1) }
 | expr PLUS expr { Binop($1, Add, $3, $3) }
 | expr MINUS expr { Binop($1, Sub, $3, $3) }
 | expr TIMES expr { Binop($1, Mul, $3, $3) }
 | expr DIVIDE expr { Binop($1, Div, $3, $3) }
 | expr EQ expr { Binop($1, Equal, $3, $3) }
 | expr NEQ expr { Binop($1, Notequal, $3, $3) }
 | expr LT expr { Binop($1, Less, $3, $3) }
 | expr GT expr { Binop($1, Greater, $3, $3) }
 | expr LEQ expr { Binop($1, Leq, $3, $3) }
 | expr GEQ expr { Binop($1, Geq, $3, $3) }
 | LPAREN expr RPAREN { $2 }
 | LITERAL { Lit($1) }
 | IF expr THEN expr ELSE expr { Binop($2, Ifthenelse, $4, $6) }
 | IF expr THEN expr { Binop($2, Ifthen, $4, $4) }
 | WHILE expr DO expr LOOP { Binop($2, Whileop, $4, $4) }
 | FOR expr TO expr expr NEXT { Binop($2, Forop, $4, $5) }
 | PRINT expr { Binop($2, Printop, $2, $2) }
 | EOF { Endop }
 | END { Endop }

ast.mli 
type operator = Add | Sub | Mul | Div | Equal | Notequal | Less | Greater | Leq
| Geq
 | Ifthenelse | Ifthen | Whileop | Forop | Printop

type expr =
 | Binop of expr * operator * expr * expr
 | Id of string
 | Lit of int
 | Endop

mbc.ml 
(* mbc.ml :: mbc toplevel :: jec2160 *)
open Ast

let debuglevel = 0 (* 1=debug, 0=no debug *)

(* add variables to a list, no concern over duplication *)
let add_text variablelist text =
 variablelist := text::!variablelist

(* add de-duplicated variables to a list - use 'add_text_nodup' *)
let rec add_to_list variablelist text =
 match variablelist with
 | h::t -> if h = text then variablelist else h::add_to_list t text
 | [] -> [text]

let add_text_nodup variablelist text =
 variablelist := add_to_list !variablelist text

(* top of program *)
let programheader1 = ref ["#include <stdlib.h>"; "#include <stdio.h>\n"]

(* middle of program, printed after variable list *)
let programheader2 = ref ["\nvoid main() {\n"]

(* end of program *)
let programfooter1 = ref ["}\n"]

(* output program body *)
let (programcontents : (string list) ref) = ref []

(* original program body *)
let (originalprogramcontents : (string list) ref) = ref []

(* list of variables that were defined, all are global *)
let (varlist : (string list) ref) = ref []

(* print all variable definitions *)
let printallvariables varlist = List.iter
 (fun n -> print_string "int ";
 print_string n;
 print_string ";\n";) varlist

(* print list forward *)
let printlistfwd varlist =
 List.iter (fun n -> print_string n; print_string "\n") !varlist

(* print list backward *)
let printlistback varlist =
 List.iter (fun n -> print_string n; print_string "\n") (List.rev(!varlist))

let rec eval = function
 | Lit(x) -> string_of_int x (* number *)

 | Id(x) -> (* variable *)
 if (debuglevel == 1) then
 print_string ("variable name " ^ x ^ "\n") else print_string "";
 add_text_nodup varlist x;
 x

 | Endop -> (* end of program *)
 if (debuglevel == 1) then
 print_string "endop\n" else print_string "";
 ""

 | Binop(e1, op, e2, e3) -> (* binary operators *)
 let v1 = eval e1 and v2 = eval e2 and v3 = eval e3 in
 match op with

 | Add -> (* addition *)
 if (debuglevel == 1) then
 print_string "addition\n" else print_string "";
 "(" ^ v1 ^ " + " ^ v2 ^ ")"

 | Sub -> (* subtraction *)
 if (debuglevel == 1) then
 print_string "subtraction\n" else print_string "";
 "(" ^ v1 ^ " - " ^ v2 ^ ")"

 | Mul -> (* multiplication *)
 if (debuglevel == 1) then
 print_string "multiplication\n" else print_string "";
 "(" ^ v1 ^ " * " ^ v2 ^ ")"

 | Div -> (* division *)
 if (debuglevel == 1) then
 print_string "division\n" else print_string "";
 "(" ^ v1 ^ " / " ^ v2 ^ ")"

 | Equal -> (* equal *)
 if (debuglevel == 1) then
 print_string "equal\n" else print_string "";
 "(" ^ v1 ^ " = " ^ v2 ^ ")"

 | Notequal -> (* not equal *)
 if (debuglevel == 1) then
 print_string "notequal\n" else print_string "";
 "(" ^ v1 ^ " != " ^ v2 ^ ")"

 | Less -> (* less than *)
 if (debuglevel == 1) then
 print_string "less\n" else print_string "";
 "(" ^ v1 ^ " < " ^ v2 ^ ")"

 | Greater -> (* greater than *)
 if (debuglevel == 1) then
 print_string "greater\n" else print_string "";
 "(" ^ v1 ^ " > " ^ v2 ^ ")"

 | Leq -> (* less than or equal *)
 if (debuglevel == 1) then
 print_string "lessequal\n" else print_string "";
 "(" ^ v1 ^ " <= " ^ v2 ^ ")"

 | Geq -> (* greater than or equal *)
 if (debuglevel == 1) then
 print_string "greaterequal\n" else print_string "";
 "(" ^ v1 ^ " >= " ^ v2 ^ ")"

 | Ifthenelse -> (* if then else *)
 if (debuglevel == 1) then
 print_string "ifthenelse\n" else print_string "";
 "if " ^ v1 ^ " { " ^ v2 ^ " } else { " ^ v3 ^ " }"

 | Ifthen -> (* if then no else *)
 if (debuglevel == 1) then
 print_string "ifthen\n" else print_string "";
 "if " ^ v1 ^ " { " ^ v2 ^ " }"

 | Whileop -> (* while do loop *)
 if (debuglevel == 1) then
 print_string "whileop\n" else print_string "";
 "while " ^ v1 ^ " { " ^ v2 ^ "}"

 | Forop -> (* for loop *)
 if (debuglevel == 1) then
 print_string "forop\n" else print_string "";
 "for (" ^ v1 ^ ", i < " ^ v2 ^ ", i++) { " ^ v3 ^ " }"

 | Printop -> (* printop *)
 if (debuglevel == 1) then
 print_string "printop\n" else print_string "";
 "printf(" ^ v1 ^ ");"

let _ =
 (* welcome message *)
 print_endline "\n\nminimalistic basic compiler :: version 1.0 :: joel christner";
 print_endline "project for coms-w4115 :: columbia university :: prof edwards\n";
 print_endline "original program contents";
 print_endline "--
-------";

 (* gather original program contents *)
 let rec gatherprogram () =
 try
 let line = input_line stdin in
 (* print_endline line; <-- remove for debugging *)
 add_text originalprogramcontents line;
 gatherprogram ()
 with End_of_file ->
 printlistback originalprogramcontents; (* display originalprogramcontents *)
 ()
 in
 gatherprogram ();

 (* end of gathering program contents *)
 print_endline "\n\n--
-----------";
 print_endline "end of input file, processing...";
 print_endline "--
-------";
 (* now we have the entire program stored in originalprogramcontents *)

 (* evaluate expressions from each line in originalprogramcontents, store result in
programcontents *)

 let programparser =
 List.iter (fun programline ->
 (* print_string ": "; *)
 (* print_string programline; *)
 (* print_string "\n"; *)
 let lexbuf = Lexing.from_string programline in
 let expr = Parser.expr Scanner.token lexbuf in
 let result = eval expr in
 print_endline result;
 (* now we have each line evaluated *)
 (* need to add it to programcontents *)
 add_text programcontents result
) (List.rev(!originalprogramcontents))
 in
 programparser;

 (* final program stored in programcontents - need to display *)
 print_endline "\n\n--
-----------";
 print_endline "output file...";
 print_endline "--
-------";

 (* print programheader1 *)
 printlistfwd programheader1;

 (* print list of variables *)
 printallvariables !varlist;

 (* print programheader2 *)
 printlistfwd programheader2;

 (* print programcontents *)
 printlistback programcontents;

 (* print programfooter1 *)
 printlistfwd programfooter1;
 print_endline "\n\n--
-----------";
 print_endline "finished...";
 print_endline "--
-------";

makefile 
OBJS = parser.cmo scanner.cmo mbc.cmo

TESTS = \
addsub-bad \
addsub-good \
assign-bad \
assign-good \
for-bad \
for-good \
forloops-bad \
forloops-good \
identifiers-bad \
identifiers-good \
ifthen-bad \
ifthen-good \
literals \
multdiv-bad \
multdiv-good \
print \
relation-bad \
relation-good \
rem \
while-bad \

while-good

EXAMPLES = \
exampleprogram1 \
exampleprogram2 \
forloop \
ifthen \
math \
whileloop

TARFILES = Makefile scanner.mll parser.mly ast.mli mbc.ml tests.sh \
 $(TESTS:%=testcases/%.bas) \
 $(EXAMPLES:%=examples/%.bas)

mbc : $(OBJS)
 ocamlc -o mbc $(OBJS)

.PHONY : test
test : mbc test.sh
 ./test.sh

scanner.ml : scanner.mll
 ocamllex scanner.mll

parser.ml parser.mli : parser.mly
 ocamlyacc parser.mly

%.cmo : %.ml
 ocamlc -c $<

%.cmi : %.mli
 ocamlc -c $<

mbc.tar.gz : $(TARFILES)
 cd .. && tar zcf mbc/mbc.tar.gz $(TARFILES:%=mbc/%)

.PHONY : clean
clean :
 rm -f mbc parser.ml parser.mli scanner.ml *.cmo *.cmi

Generated by ocamldep *.ml *.mli
mbc.cmo: scanner.cmo parser.cmi ast.cmi
mbc.cmx: scanner.cmx parser.cmx ast.cmi
parser.cmo: ast.cmi parser.cmi
parser.cmx: ast.cmi parser.cmi
scanner.cmo: parser.cmi
scanner.cmx: parser.cmx
parser.cmi: ast.cmi

End of Document 
This concludes the final report for the MBC project. I thoroughly enjoyed this class and this project,
and only wish I had a couple more days to wrap up the loose ends. Thanks to Professor Edwards
for managing such a challenging and rewarding course.

