Review for the Final

Stephen A. Edwards

Columbia University

Fall 2008

The Midterm

70 minutes

4-5 problems

Closed book

One single-sided 8.5 x 11 sheet of notes of your own devising
Comprehensive: Anything discussed in class is fair game
Little, if any, programming.

Details of O’Caml/C/C++/Java syntax not required

Broad knowledge of languages discussed

Topics

Structure of a Compiler

Scanning

Regular Expressions

The Subset Construction Algorithm
Parsing

Bottom-up Parsing

Name, Scope, and Bindings

Static Semantic Analysis
Intermediate Representations
Separate Compilation and Linking
The Lambda Calculus

Logic Programming (Prolog)

Concurrency

Partl

Structure of a Compiler

Compiling a Simple Program

int gcd(int a, int b)

while (a != b) {
if (a > b) a -= b;
else b -= a;

}

return a;

}

What the Compiler Sees
int gcd(int a, int b)

while (a '= b) {
if (a > b) a -= b;

else b -= a;

b

return a;
¥
in tsp g cd (i n tsp a ,
n tsp b)nl {nlspsp w h i 1
(asp ! =sp b)sp { nl spspsp
fsp (asp >sp b)sp asp - =
;nl spspspsp e 1 s esp bsp -
a ;nlspsp }nlspsp r e t ur

a ;nl } nl

Text file is a sequence of characters

sp i
e sp
sp i
sp b
= Sp
n sp

Lexical Analysis Gives Tokens

int gcd(int a, int b)

while (a !'= b) {
if (a > b) a -= b;
else b -= a;

}

return a,;

}

int_gcd ‘int‘@D int @E while E@
=16 | (€]][(=] 7o) D) o [T BT T et
o] [=[[a] [;] [3] [zeturn] [a] [+] 3]

A stream of tokens. Whitespace, comments removed.

Parsing Gives an AST

func\
int” gcd args se
g / g\ / q\ :'{int gcd(int a, int b)
arg arg while return while (a != b) {

/ \ / \ / \ | } gséa;_f)a;a -= b;

int a int b !=

/\ / \) return a;

a b > =

ANAR

a

/u

Abstract syntax tree built from parsing rules.

Semantic Analysis Resolves Symbols

func

ng/argS/ \
arg arg while return
A \ .
int a int 1= if
Symbol / \
Table: b

Types checked; references to symbols resolved

Translation into 3-Address Code

10:

14:
L5:
L1:

Idealized assembly language w/ infinite registers

sne
seq
btrue
sl
seq
btrue
sub
Jjmp
sub
Jjmp
ret

$1,
$0,
$0,
$3,
$2,
$2,

[=n

% while (a != b)

% if (a < b)
% a-=>b

% b -= a

int gecd(int a, int b)

while (a != b) {
if (a > b) a -= b;
else b -= a;

return a;

}

Generation of 80386 Assembly

ged:

.L8:

L5:

.L3:

pushl
mov1l
mov1l
mov1l
cmpl
je
jle
subl
Jjmp
subl
Jjmp
leave
ret

%ebp % Save FP
%esp, %ebp

8(%ebp) ,%eax % Load a from stack
12 (%ebp) ,%edx % Load b from stack
%edx, %eax

.L3 % while (a'!=Db)
L5 % if (a<Db)
%edx, %eax %a-=b

.18

%eax, %edx %b-=a

.18

% Restore SP, BP

PartIl

Scanning

Describing Tokens

Alphabet: A finite set of symbols

Examples: {0,1},{A, B,C, ..., Z}, ASCII, Unicode
String: A finite sequence of symbols from an alphabet
Examples: € (the empty string), Stephen, afy
Language: A set of strings over an alphabet

Examples: @ (the empty language), {1, 11, 111, 1111}, all English
words, strings that start with a letter followed by any sequence of
letters and digits

Operations on Languages

LetL={e,wo}, M ={man, men}

Concatenation: Strings from one followed by the other
LM = { man, men, woman, women }

Union: All strings from each language

Lu M = {e, wo, man, men }

Kleene Closure: Zero or more concatenations

M ={etUMUMMUMMM:---=
{e¢, man, men, manman, manmen, menman, menmen,
manmanman, manmanmen, Ianmenman, ...}

Part II1

Regular Expressions

Regular Expressions over an Alphabet

A standard way to express languages for tokens.

1. eis aregular expression that denotes {€}
2. If ae X, ais an RE that denotes {a}
3. If r and s denote languages L(r) and L(s),

> (r)|(s) denotes L(r) U L(s)
> (1r)(s) denotes{tu:.teL(r),ueL(s)} .
> (r)* denotes U2 L' (L° ={e} and L' = LL'")

Nondeterministic Finite Automata

1. Set of states S: {, , @, @}

“All strings containing an Set of input symbols X: {0, 1}

even number of 0'sand 1’s”

N

3. Transition function o : § x = — 25
state ‘ e 0 1
start A - {B} {C}
B - {A (D}
C - {D} {A}
D - {C (B}

4. Start state sp :
5. Set of accepting states F: {}

The Language induced by an NFA

An NFA accepts an input string x iff there is a path from the start
state to an accepting state that “spells out” x.

Show that the string “010010” is
accepted.

Translating REs into NFAs
start a

a O {:)

rra

rilro

(r) * start € €

Translating REs into NFAs

Example: translate (a|b)* abb into an NFA

Show that the string “aabb” is accepted.

O D@ @ D@

Simulating NFAs

Problem: you must follow the “right” arcs to show that a string is
accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the e-closure of the start state
2. For each character c,

» New states: follow all transitions labeled ¢
» Form the e-closure of the current states

3. Accept if any final state is accepting

Simulating an NFA: -aabb, Start

Simulating an NFA: -aabb, e-closure

Simulating an NFA: a-abb

Simulating an NFA: a-abb, e-closure

Simulating an NFA: aa-bb

Simulating an NFA: aa-bb, e-closure

Simulating an NFA: aab-b

Simulating an NFA: aab-b, e-closure

Simulating an NFA: aabb-

Simulating an NFA: aabb-, Done

Deterministic Finite Automata

Restricted form of NFAs:

» No state has a transition on ¢

» For each state s and symbol q, there is at most one edge
labeled a leaving s.

Differs subtly from the definition used in COMS W3261 (Sipser,
Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining current
state. Accept if you end up on an accepting state. Reject if you end
on a non-accepting state or if there is no transition from the current
state for the next symbol.

Deterministic Finite Automata

{
type token = ELSE | ELSEIF
}

rule token =
parse "else" { ELSE }
| "elseif" { ELSEIF }

%
O

Deterministic Finite Automata
{ type token = IF | ID of string | NUM of string }

rule token =
parse "if" { IF }
| [’a’-"z’] [’a’-"z’ ’'0’-"9’]% as lit { ID(lit) }
| [’0’-"9°]+ as num { NUM(num) }

Part IV

The Subset Construction Algorithm

Building a DFA from an NFA

Subset construction algorithm

Simulate the NFA for all possible inputs and track the states that
appear.

Each unique state during simulation becomes a state in the DFA.

Subset construction for (a|b)*abb (1)

o5 Dpooo)-"{cdgmhseco

Subset construction for (a|b)*abb (2)

Subset construction for (a|b)*abb (3)

Subset construction for (a|b)*abb (4)

PartV

Parsing

Ambiguous Grammars

A grammar can easily be ambiguous. Consider parsing
3-4%2+5

with the grammar

e—e+e|le—e|exe|ele| N

+ - * x X
/'/\5 3/*\ f<,\>\ 3/>’ <\5
3 \“ “/ 5 3 4 2 5 4 \+ / 2

/\ /\ /\ /\
4 2 4 2 2 5 3 4

Fixing Ambiguous Grammars

A grammar specification:

expr PLUS expr {}
expr MINUS expr {}
expr TIMES expr {}
expr DIVIDE expr {}
NUMBER {}

Ambiguous: no precedence or associativity.

Ocamlyacc’s complaint: “16 shift/reduce conflicts.”

Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr {}
| expr MINUS expr {}
| term {}

term : term TIMES term {}
| term DIVIDE term {}
| atom {}

atom : NUMBER {}

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “8 shift/reduce conflicts.”

Assigning Associativity

Make one side the next level of precedence

expr : expr PLUS term {}
| expr MINUS term {}
| term {3

term : term TIMES atom {}
| term DIVIDE atom {}
| atom {3

atom : NUMBER {}

This is left-associative.

No shift/reduce conflicts.

Part VI

Bottom-Up Parsing

Rightmost Derivation

e—t+e
e—t
t—Id = ¢
t—Id

The rightmost derivation for Id * Id + Id:

=W N -

At each step, expand the rightmost
nonterminal.

nonterminal

“handle”: the right side of a production

Fun and interesting fact: there is exactly
one rightmost expansion if the grammar
is unambigious.

Rightmost Derivation

l1: e—t+e
2: e—t
3: t—Id x¢
4: t—Id
The rightmost derivation for Id * Id + Id:
€]
£ +[e]
t+ Tokens on the right are all terminals.
In each step, nonterminal just to the left
is expanded.
+1d
+Id

Reverse Rightmost Derivation

Beginning to look like a
parsing algorithm: start
with terminals and reduce
them to the starting
nonterminal.

Reductions build the parse

1: e—t+e
2: e—t
3: t—Id =t
4: t—Id
The reverse rightmost derivation for Id * Id + Id:
Id « [Id]+ Id Id
L |
ST
I +[1d| Id
- |
r+ |t
L+[e] t+ e

i
N

tree starting at the leaves.

Reverse Rightmost Derivation

e—t+e
e—t
t—Id =t
t—Id

=W N =

The reverse rightmost derivation for Id * Id + Id:

Id «[Id]+1d Big question: where are the handles?
+1d A handle is the right side of a production, but

not always vice-versa.
+ , o
> A handle is the result of an expansion in the

rightmost derivation.

Every step in a rightmost derivation is a right
sentential form.

Ao, A

Handle Hunting

The basic trick, due to Knuth: build an automaton that tells us
where the handle is in right-sentential forms.

Represent where we could be with a dot.

e—-t+e

e—-t The first two come from expanding e. The
= 'Ig * 1 second two come from expanding ¢.
t—-1

Consider the expansion of e first. This gives two possible positions:

e—t-+e when e was expanded to £+ e
e—t when e was expanded to just ¢; ¢ is a handle

The expanded- ¢ case also gives two possible positions:

t—1Id- =t when f was expanded to Id + ¢
t—1d- when y was expanded to just Id; Id is a handle

S7:e' — e-

a2

e—-e
e—-t+e
S0: e— -t
t— - Id=*t
r—-Id

Constructing the LR(0) Automaton

e—t-+e
e—t-

| a

t—Id-*t

S1: o 1d-

Id || *

t—Id=-t
S3:t— - Idx*t
t—-Id

Id

e—t+-e
e—-t+e
S4:e— -t
t—-Id=*t
t—-Id

e

S6:e—t+e:

S5 t—Id = t-

Shift-reduce Parsing

stack input action
Id«Id+1Id shift
Id *Id+1Id shift
) Id = Id+1Id shift
1: e—t+e Id <71 +Id reduce (4)
2: e—t +Id reduce (3)
3: t—Id x¢ t +Id shift
N t+ Id shift
4: 1~ t +tl reduce (4)
t+0 reduce (2)
reduce (1)
e accept

Scan input left-to-right, looking for handles.
An oracle says what to do

LR Parsing

stack input action

li Id*Id+1Id$ shift, goto 1
1.'L

k at state on top of stack

l1: e—t+e
2: e—t
3: t—Id ¢
4: t—Id
action goto

Id + = $|et
0]sl 72
1 m\
2 s4 12
3 sl 5
4|sl 6 2
5 13 13
6 rl
7 v

2. “and the next input token

| 3—to find the next action

4. In this case, shift the token onto the stack
and go to state 1.

LR Parsing

l1: e—t+e
2: e—t
3: t—Id ¢
4: t—Id
action goto

Id + = $|et
0|sl 72
1 r4 s3 r4
2 s4 12
3 sl 5
4|sl 62
5 13 13
6 rl
7 v

stack input action
[] Id*Id+Id$ shift, goto 1
[*Id+Id$ shift, goto 3
Id+Id$ shift, goto 1
LI G +Id$ reducew/ 4

Action is “reduce with rule 4 (¢t — Id).” The

right side is removed from the stack to

reveal state 3. The goto table in state 3 tells

us to go to state 5 when we reduce a t:
stack input action

LIMGIE +Id$

LR Parsing

l1: e—t+e
2: e—t
3: t—Id ¢
4: t—Id
action goto

Id + = $|et
0|sl 72
1 r4 s3 r4
2 s4 12
3 sl 5
4|sl 62
5 13 13
6 rl
7 v

stack

[o]

[o] (]

Lol [3]
Lol [G108
Lol [E1E]
[oJ[2]

o]][]
o] 21 H
LJEIEIE
LJEIG
[o][£]

input
Id*Id +Id $
*Id+Id $
Id+Id$
+Id$
+Id$
+Id$
Id$
$

$
$
$

action

shift, goto 1
shift, goto 3
shift, goto 1
reduce w/ 4
reduce w/ 3
shift, goto 4
shift, goto 1
reduce w/ 4
reduce w/ 2
reduce w/ 1
accept

Building the SLR Parse Table from the LR(0) Automaton

S7:e' —e-

et

SO:

e—-e
e—-t+e
e— -t
t—-Id=t
t—-Id

t e—t-+e
e—t-

| 1a

Id

S1

t—Id-xt
Tt —Id-

Id || *

t—Id=-t

S3:t— - Idx*t

t—-Id

S5 t—1Id =t

S4.

e—1t+-e
e—-t+e
e— -t
t— Id=*t
t—-Id

e

S6:

e—1r+e-

Id

action
+ x $|et

NO G W = O

sl

sl

4 s3 rd
s4 12

13 13
rl
v

Part VII

Name, Scope, and Bindings

Names, Objects, and Bindings

Name?2

binding
Object4 Namel
I wnd :

Activation Records

argument 2
argument 1
return address — frame pointer
old frame pointer

local variables

temporaries/arguments

— stack pointer
| growth of stack

Activation Records

Return Address
Old Frame Pointer
int AQ) {
X int x;
A’s variables BO);
Return Address }
Old Frame Pointer int BO {
int y;
y cO;
B’s variables }
Return Address int cO {
0Old Frame Pointer) int z;
z
C’s variables

Nested Subroutines in Pascal

procedure mergesort;
var N : integer;

procedure split;
var I : integer;
begin

end
procedure merge;
var J : integer;
begin
end

begin

end

Nested Subroutines in Pascal

procedure A;
procedure B;
procedure C;
begin

end
procedure D;
begin

C
end

begin
D
end

procedure E;
begin

B

end

begin
E
end

E/

B/

D/

C/

Static vs. Dynamic Scope

program example;
var a : integer; (x Outer a =)

procedure seta;
begin

a :=1 (% Which a does this change? =)
end

procedure Iocala;
var a : integer; (+ Inner a =)
begin
seta
end

begin
a := 2;
if (readln() = ’'b’)
locala
else
seta;
writeln(a)
end

Symbol Tables in Tiger

parent
parent H_lt
a string
let // parent
var n := 8 n
var X := 3 / X
function sqr(a:int) / sqr
=a+*a
type ia = array of int
in
n := sqr(x)

end

Part VIII

Static Semantic Analysis

Static Semantic Analysis

Lexical analysis: Make sure tokens are valid

if i 3 "This" /% valid =/
#al123 /% invalid =/

Syntactic analysis: Makes sure tokens appear in correct order

for i :=1 to 5 do 1 + break /+ valid =/
if 1 3 /% invalid =/

Semantic analysis: Makes sure program is consistent

let v := 3 in v + 8 end /+* valid =/
let v := "f" in v(3) + v end /+ invalid =/

Static Semantic Analysis

Basic paradigm: recursively check AST nodes.

1 + break 1-5
+ -
1 break
check(+) check(-)
check(1l) = int check(1l) = int
check(break) = void check(5) = int
FAIL: int !'= void Types match, return int

Ask yourself: at a particular node type, what must be true?

Implementing multi-way branches

switch (s) {

case 1: one(); break;
case 2: two(); break;
case 3: three(); break;
case 4: four(); break;

}

Obvious way:

if (s == 1) { one(); }

else if (s == 2) { two(); }
else if (s == 3) { three(); }
else if (s == 4) { four(); }

Reasonable, but we can sometimes do better.

Implementing multi-way branches

If the cases are dense, a branch table is more efficient:

switch (s) {

case 1: one(); break;
case 2: two(); break;
case 3: three(); break;
case 4: four(); break;

}

A branch table written using a GCC extension:

/% Array of addresses of labels =*/
static void *1[] = { &&L1, &&L2, &&L3, &&IL4 };

if (s >=1 && s <= 4)
goto =1[s-1];

goto Break;
L1: one(); goto Break;
L2: two(); goto Break;
L3: three(); goto Break;
L4: four(); goto Break;
Break:

Applicative- and Normal-Order Evaluation

int p(int i) {
printf("%d ", 1);
return i;

}

void g(int a, int b, int ¢)
{

int total = a;

printf("%d ", b);

total += c;

}

What is printed by

a(p(1), 2, p(3));'

?

Applicative- and Normal-Order Evaluation

int p(int i) { printf("%d ", i); return i; }

void g(int a, int b, int ¢)
{

int total = a;

printf("%d ", b);

total += c;
}

qC p(1), 2, p(3));

Applicative: arguments evaluated before function is called.
Result: 132
Normal: arguments evaluated when used.

Result: 123

Applicative- vs. and Normal-Order

Most languages use applicative order.

Macro-like languages often use normal order.

#define p(x) (printf("%d ",x), x)

#define gq(a,b,c) total = (a), \
printf("%d ", (b)), \
total += (¢)

q(p(1), 2, p(3));

Prints 1 2 3.

Some functional languages also use normal order evaluation to
avoid doing work. “Lazy Evaluation”

Nondeterminism

Nondeterminism is not the same as random:
Compiler usually chooses an order when generating code.

Optimization, exact expressions, or run-time values may affect
behavior.

Bottom line: don’t know what code will do, but often know set of
possibilities.

int p(int i) { printf("%d ", i); return i; }
int g(int a, int b, int c¢) {}
gC p(1), p(2), p(3));

Will not print 5 6 7. It will print one of
123,132,213,231,312,321

Layout of Records and Unions

Modern memory systems read data in 32-, 64-, or 128-bit chunks:
32]1]0]

Layout of Records and Unions

Slower to read an unaligned value: two reads plus shift.

SPARC prohibits unaligned accesses.
MIPS has special unaligned load/store instructions.

x86, 68k run more slowly with unaligned accesses.

Layout of Records and Unions

Most languages “pad” the layout of records to ensure alignment
restrictions.

struct padded {
int x; /% 4 bytes x/
char z; /+ 1 byte =/
short y; /+ 2 bytes #/
char w; /* 1 byte =/
};

v [y [[7] I: Added padding
L[] v

Allocating Fixed-Size Arrays

Local arrays with fixed size are easy to stack.

void foo()
{
int a;
int b[10];
int c;

}

return address

a

bl[0]

b[9]

C

— FP

—FP+12

Allocating Variable-Sized Arrays

Variable-sized local arrays aren't as easy.

void foo(int n)
{

int a;

int b[n];

int c;

}

return address

a

Doesn’t work: generated code expects a fixed offset for c. Even

bl[0]

b[n-1]

C

worse for multi-dimensional arrays.

— FP

—FP+?

Allocating Variable-Sized Arrays

As always:
add a level of indirection

void foo(int n)
{

int a;

int b[n];

int c;

3

return address

a

b-ptry

C

b[0]<

b[n-1]

— FP

Variables remain constant offset from frame pointer.

Part IX

Intermediate Representations/Formats

Stack-Based IR: Java Bytecode

javap -c Ged

Method int gcd(int, int)

int gcd(int a, int b) { 0 goto 19
while (a != b) {
if (a> b 3 iload_1 /1 Push a
a -= b; 4 iload_2 // Push b
else 5 if_icmple 15 //ifa<=bgoto 15
b -= a; .
} 8 iload_1 /] Push a
9 iload_2 // Push b
return a; -
’ 10 isub /la-b
11 istore_1 /1 Store new a
12 goto 19
15 iload_2 /1 Push b
16 iload_1 /] Push a
17 isub /Ib-a
18 istore_2 /1 Store new b
19 iload_1 // Push a
20 iload_2 /1 Push b

21 if_icmpne 3 //ifal!=bgoto3

24 iload_1 // Push a
25 ireturn /1 Return a

Register-Based IR: Mach SUIF

ged:
ged._gcdTmp0:
sne $vrl.s32 <- gcd.a,gecd.b

int gcd(int a, int b) { seq $vr0.s32 <- $vrl.s32,0
while (a != b) { btrue $vr0.s32,gcd._gcdTmpl //if!(a!=Db) goto Tmpl
if (a> b
a -= b; sl $vr3.s32 <- gecd.b,gcd.a
else seq $vr2.s32 <- $vr3.s32,0
b —= a: btrue $vr2.s32,gcd._gcdTmp4 //if!(a <b) goto Tmp4
’
} mrk 2, 4 // Line number 4
return a; sub $vr4.s32 <- gcd.a,ged.b

mov gcd._gcdTmp2 <- $vrd.s32

mov gecd.a <- gcd._gedTmp2 //a=a-b

jmp gcd._gcdTmp5
gcd._gedTmp4:

mrk 2, 6

sub $vr5.s32 <- gecd.b,ged.a

mov gcd._gcdTmp3 <- $vr5.s32

mov gcd.b <- ged._gedTmp3 //b=b-a
ged._gedTmpS:

jmp gecd._gcdTmpO

ged._gedTmpl:
mrk 2, 8
ret gcd.a //Returna

Basic Blocks

int ged(int a, int b) {
while (a != b) {
if (a<b) b -= a;
else a -= b;

return a;

lower
—

o

: sne t,

bz E,
slt t,
bnz B,
sub b,
jmp C

: sub a,
: jmp A
:ret a

[

S

o

)

split

B:

C:

E:

: Sne

bz

slt
bnz

sub
Jmp

sub
Jmp

ret

a

The statements in a basic block all run if the first one does.

Starts with a statement following a conditional branch or is a

branch target.

Usually ends with a control-transfer statement.

Control-Flow Graphs

A CFG illustrates the flow of control among basic blocks.

A: sne t, a, b

bz E, t

slt t, a, b p4

bnz B, t A: sne t, a, b slt t, a, b
bz E, t bnz B, t

sub b, b, a

jmp C

B: sub a, a, b

B: sub a, a, b

C: jmp A

E: ret a E: ret a'

Part X

Separate Compilation and Linking

Separate Compilation

foo.c bar.c

C compiler cc:

foo.s bar.s printf.o fopen.o malloc.o

A ler as:
ssembler as ArchiveN //

foo.o bar.o . libc.a

foo — An Executable

Part XI

The Lambda Calculus

The Lambda Calculus

Fancy name for rules about how to represent and evaluate
expressions with unnamed functions.

Theoretical underpinning of functional languages. Side-effect free.
Very different from the Turing model of a store with evolving state.

O’Caml: The Lambda Calculus:

English:

| The function of x that returns the product of two and x

Grammar of Lambda Expressions

expr — constant

| variable-name

| exprexpr

| (expr)

| A variable-name. expr

Constants are numbers; variable names are identifiers and
operators.

Somebody asked, “does a language needs to have a large syntax to
be powerful?”

Bound and Unbound Variables

In Ax. * 2 x, x is a bound variable. Think of it as a formal parameter
to a function.

“x 2 x” is the body.

The body can be any valid lambda expression, including another
unnnamed function.

AxAy.* (+xy)2

“The function of x that returns the function of y that returns the
product of the sum of x and y and 2.”

Currying

AxAy.* (+xy)2 '

is equivalent to the O’Caml

fun x > fun y > (x + y) :’rzi

All lambda calculus functions have a single argument.

As in O’Caml, multiple-argument functions can be built through
such “currying.”

Currying is named after Haskell Brooks Curry (1900-1982), who
contributed to the theory of functional programming. The Haskell
functional language is named after him.

Calling Lambda Functions

To invoke a Lambda function, we place it in parentheses before its
argument.

Thus, calling Ax. * 2 x with 4 is written

Ax. = 2x)4|

This means 8.

Curried functions need more parentheses:

Ax.Ay.* (+xy)2)4) 5

This binds 4 to y, 5 to x, and means 18.

Evaluating Lambda Expressions

Pure lambda calculus has no built-in functions; we’ll be impure.

To evaluate (+ (* 56) (* 8 3)), we can't start with + because it only

operates on numbers.

There are two reducible expressions: (+ 56) and (* 8 3). We can
reduce either one first. For example:

(+(x56) (x83))
(+30(x83))
(+3024)

54

Looks like deriving a sentence
from a grammar.

Evaluating Lambda Expressions

We need a reduction rule to handle As:

Ax.x2x)4
(x24)
8

This is called B-reduction.

The formal parameter may be used several times:

Ax.+ xx)4
(+44)
8

Beta-reduction

May have to be repeated:

(Ax.Ay.— xy))5) 4
Ay.—5y)4

(=54)

1

Functions may be arguments:

Af.f3)Ax.+ x1)
Ax.+ x13
(+31)

4

More Beta-reduction

Repeated names can be tricky:

Ax.Ax.+ (—x1))x3)9
Ax.+ (—x1)93
+(-91)3

+83

11

In the first line, the inner x belongs to the inner A, the outer x
belongs to the outer one.

Free and Bound Variables

In an expression, each appearance of a variable is either “free”
(unconnected to a A1) or bound (an argument of a 1).

B-reduction of (1x.E) y replaces every x that occurs free in E with y.

Free or bound is a function of the position of each variable and its
context.

Free variables

| (Ax.x\y’(/ly. +y " x

Bound variables

Alpha conversion

One way to confuse yourself less is to do a-conversion.
This is renaming a A argument and its bound variables.

Formal parameters are only names: they are correct if they are
consistent.

Ax.Ax.x) (+1x) — g Ax.(Ay.y) (+ 1 x)

Alpha Conversion

An easier way to attack the earlier example:

Ax.Ax.+ (—x1)x3)9
Ax.Ay.+ (—y1)x3)9
Ay.+ (-y1)93
+(—-91)3

+83

11

Reduction Order

The order in which you reduce things can matter.

Ax.Ay.y) ((Az.z2) (Az.2 2)) i

We could choose to reduce one of two things, either

Az.z22) (Az.22) i‘

or the whole thing

Ax.Ay.y) ((Az.z2) (Az.2 2)) i

Reduction Order

Reducing (Az.z z) (Az.z z) effectively does nothing because (Az.z z)
is the function that calls its first argument on its first argument. The
expression reduces to itself:

Az.z22) (Az.z22)

So always reducing it does not terminate.

However, reducing the outermost function does terminate because
it ignores its (nasty) argument:

Ax.Ay.y) ((Az.z22) (Az.22))
Ay.y

Reduction Order

The redex is a sub-expression that can be reduced.

The leftmostredex is the one whose A is to the left of all other
redexes. You can guess which is the rightmost.

The outermostredex is not contained in any other.

The innermostredex does not contain any other.

F0r| Ax.Ay.y) ((Az.z2) (Az.2 2)),

| (Az.zz) (Az.zz) §| is theleftmost innermost and

| Ax.Ay.y) ((Az.zz) (Az.zz)) §| is the leftmost outermost.

Applicative vs. Normal Order

Applicative order reduction: Always reduce the leftmost innermost
redex.

Normative order reduction: Always reduce the leftmost outermost
redex.

For

Ax.Ay.y) ((Az.z2) (Az.22))

applicative order reduction never terminated; normative order did.

Applicative vs. Normal Order

Applicative:
reduce leftmost innermost

“evaluate arguments before the
function itself”

eager evaluation, call-by-value,
usually more efficient

Normative:
reduce leftmost outermost

“evaluate the function before its
arguments”

lazy evaluation, call-by-name,
more costly to implement,
accepts a larger class of programs

Normal Form

A lambda expression that cannot be reduced further is in normal
form.

Thus,

[y}

is the normal form of

| Ax.Ay.y) ((Az.z2) (Az.2 2))

Normal Form

Not everything has a normal form. E.g.,

| Az.z22) (Az.z2 2)

can only be reduced to itself, so it never produces an non-reducible
expression.

“Infinite loop.”

Part XII

Logic Programming

Unification

Part of the search procedure that matches patterns.

The search attempts to match a goal with a rule in the database by
unifying them.

Recursive rules:

> A constant only unifies with itself

» Two structures unify if they have the same functor, the same
number of arguments, and the corresponding arguments unify

» Avariable unifies with anything but forces an equivalence

Unification Examples

The = operator checks whether two structures unify:

| ?- a = a.

yes % Constant unifies with itself
| ?- a=b.

no % Mismatched constants

| ?- 5.3 = a.

no % Mismatched constants

| ?- 5.3 =X.

X = 5.37; % Variables unify

no

| ?- foo(a,X) = foo(X,b).

no % X=a required, but inconsistent
| ?- foo(a,X) = foo(X,a).

§0= a?; % X=a is consistent

| ?- foo(X,b) = foo(a,Y).

X =a

Y = b?; % X=a, then b=Y

no
| ?- foo(X,a,X) = foo(b,a,c).
no % X=b required, but inconsistent

The Searching Algorithm
in the order they appear

search(goal g, variablgs e)

for each clause h : - t1,..., t, in the database
e = unify(g, h, e) in the order they appear
if successful,

for each term 11,..., £,
e = search(ty, e)
if all successful, return e
return no

Note: This pseudo-code ignores one very important part of the
searching process!

Order Affects Efficiency

edge(a, b). edge(b, c).
edge(c, d). edge(d, e).
edge(b, e). edge(d, f).

path(X, X). path(a,a)
path(X, Y) :- |
edge(X, Z), path(Z, Y). path(a,a)=path(X,X)
I
X=a
Consider the query |

es
?- path(a, a). v

Good programming practice: Put the easily-satisfied clauses first.

Order Affect Efficiency

path(a,a)
|
edge(a, b). edge(b, c). path(a,a)=path(X,Y)
edge(c, d). edge(d, e). |
edge(b, e). edge(d, f). X=aY=a
path(X, Y) :- |
edge(X, Z), path(Z, Y). edge(a,Z)
path(X, X). |
edge(a,Z)=edge(a,b)
|
Consider the query 7=b
I

?- path(a, a). path(b,a)

Will eventually produce the right answer, but will spend much more
time doing so.

Order can cause Infinite Recursion

/Goal

edge(a, b). edge(b, c).

edge(c, d). edge(d, e). Pathl(a,a)

Sgﬁg{ §§ ' .fdge(d’ . path(a,a)=path(X,Y) ~ Unify
th(X, Z), edge(Z, . .)

patﬁ?X’ (X).), edge(Z, Y) Subgoal &ayzaklmphes

path(a,Z) edge(Z,a)

Consider the query

I
path(a,Z)=path(X,Y)
?- I
?- path(a, a). Xea Y7

VRN
path(a,Z) edge(Z,a)

I
path(a,Z)=path(X,Y)

|
X=a Y=7

	Structure of a Compiler
	Scanning
	Regular Expressions
	The Subset Construction Algorithm
	Parsing
	Bottom-Up Parsing
	Name, Scope, and Bindings
	Static Semantic Analysis
	Intermediate Representations/Formats
	Separate Compilation and Linking
	The Lambda Calculus
	Logic Programming

