
Table Generation Language TabPro
Project LRM

Rajat Dixit UNI: rd2392
Anureet Dhillon UNI:ad2660
LakshmiNadig UNI:ln2206

Contents
Table Generation Language TabPro ... 1
1. Lexical Conventions ... 3

1.1 whitespace:.. 3
1.2 Comments: .. 3
1.3 Identifiers: ... 3
1.4 Keywords: ... 3
1.5 Constants... 4
1.6 Declarations .. 4
1.7 Operators:.. 4
1.8 Separators:... 4
1.9 Scope and Name Space:.. 4
1.10 Built in functions and reserved keywords:.. 5

(c) row_limit .. 5
(d) col_limit .. 5
(e) col_sort_index... 5
(f) row_filter_condition ... 5

2. Types:.. 5
3. Expressions ... 6

3.1 Primary Expressions ... 6
3.2 Postfix Expressions... 6

3.2.1 Indexed Interpretation... 6
3.2.2 Function Calls ... 7

3.3 Expressions with Arithmetic Operators .. 7
3.4 Expressions with Relational Operators.. 7
3.5 Expressions with Logical And Operator.. 8
3.6 Expressions with Logical Or Operator ... 8
3.7 Expressions with Assignment operators ... 8

4. Statements ... 8
4.1 Normal Statement ... 9
4.2 Block Statement .. 9
4.3 Conditional statements.. 9
4.4 return statement... 9
4.5 Iteration Statements .. 10
4.6 Function Declaration... 10

5. Library Support... 11
6. Grammar rules .. 11
7. Lexer Tokens .. 13

1. Lexical Conventions
A TabPro program consists of a single translation unit stored in a file which is written
using the ASCII character set. The file is scanned in a forward manner starting from
the logical start of the file to the end of file.
Various tokens present in the file could be:

 Keywords
 Identifiers or variables
 Operators
 Constants

Tokens are separated from each other by using a white space or a semicolon.

1.1 whitespace:
TabPro ignores whitespace. Whitespace characters consist of newlines, carriage
returns, tabs and spaces. It could be also combination of the above mentioned
characters.

1.2 Comments:

Single line comments are supported. The character ? introduces a comment,
which terminates at the end of that line. Comments do not nest and they do not
occur within a string or character literals.

1.3 Identifiers:
An identifier represents a variable name or a function name. Identifier is a
combination of alphabets and digits where the first character has to be an alphabet.
Special characters are not permitted. The maximum length of an identifier could
be ten. Two identifiers are considered equal if the characters of their names match.

1.4 Keywords:
Below is the list of identifiers that has been reserved by TabPro for the use of
keywords:

num string loop
return function row
col if else
col_heading row_heading row_limit
col_limit col_sort_index row_filter_condition
size currIndex generate_table

1.5 Constants
The kinds of constants used in TabPro are listed below:

(a) Number Constants: These are declared using the keyword num: datatype in
Tabpro. These include decimal integers which are a string of decimal digits
from [0-9] and real numbers of the form [0-9][.][0-9.

(b) String Constants: A string constant is enclosed in double quotes. The quotes
are not considered as a part of the constant.

1.6 Declarations
TabPro declares an identifier when it is first encountered in a file. A declaration
is made by placing the <datatype: identifierName> combination on the left side of
the assignment operator. For instance, string: tabstring = “greetings!” declares a
string type identifier. Here the data type could be num, string, row or col.

1.7 Operators:
(a) All basic arithmetic operators (+, - , *, /) are supported by TabPro. These
operators work on row and column level as well. For instance num: abc = def+5;
(b) Operators like '+=', '-=', '*=', '/=' are used to indicate the arithmetic operation
followed by the assignment of the result of right side to the identifier of left side.
These assignment arithmetic operators can also be applied to range of rows and
columns as in myrow[3-5] += 5.
(c) '[]' operator is supported to access row or column’s elements.
Therefore, in order to access the 5th element of a row, one might use myrow[5].
(d) Relational operators like ==, !=, <, >, <=, >= are supported for evaluating a
relational expressions to a 1 or a 0. 1 corresponds to its true counterpart and 0
corresponds to false.
(e) logical operators like &&, || are used to join relational expressions. &&
operator is the logical AND and || operator represents the logical OR.
(The precedence of these operators is same as their counterparts in C language).

1.8 Separators:
While declaring a row or a column, in order to separate two elements “,” is used.
For instance, row: myrow = {3,88,45,33,12,77,59,48} declares a row.
Also, TabPro recognizes a semicolon “;” as the line separator which is the end of
an executable statement.

1.9 Scope and Name Space:
Curly braces are required to mark the scope of a function or a looping
construct. TabPro supports a single name space i.e. only one identifier can have a
particular name, be it a function or an identifier.

1.10 Built in functions and reserved keywords:

(a) col_heading
This is a reserved word; a special list that holds the label values and types for the
elements of the respective column. This is a required field that the programmer
has to set.
(b) row_heading
This is a reserved word; a special list that holds the label values for the rows. This
is optional and need not be specified by the programmer.

(c) row_limit
This is a reserved word that defines the limit for the row i.e. the maximum
number of rows that can be present in the table.

(d) col_limit
This is a reserved word that defines the limit for the column i.e. the maximum
number of columns that can be present in the table.

(e) col_sort_index
This is a reserved word; a setting that can be used by the developer to set the
column by which the rows need to be sorted.

(f) row_filter_condition
 This is a reserved word; a setting that can be used by the developer to set the
 filtering condition by which the rows will be filtered before final display.

(g) generate_table(arg)
This built in function is used to print the table on the console or the file depending
upon the argument. “arg” can be 0,1 or 2 for standard console, file and both
respectively. If arg is 1 or 2, the generated table would be stored in a file having
the name as that of the table itself.

(h) size
This keyword indicates the size of the row/column in context. For instance,
myrow.size would refer to the size of “myrow” row i.e. the number of columns in
myrow.

2. Types:
TabPro supports the following data types:

(a) num: Decimal integers are allowed which are a string of decimal digits from [0-9]
or real numbers of the form [0-9][.][0-9]. These can be preceded by a – to indicate
negative numbers. The range of these numbers will be the same as a float type.

(b) string: Strings are allowed which are a collection of ASCII characters.
(c) row: This data type is used to declare a row of elements.

For Instance, row: myrow = {4,5,6,7}; declares a row of a table having four
columns.

(d) col: This data type is used to declare a column of elements.
For Instance, col: mycol = {4,5,6,7}; declares a column of a table having four
rows initialized to 4, 5, 6 and 7.

3. Expressions
Left-or right associative property of operators in expression is defined in the
respective subsections. The precedence of the operators used in the expressions or
sub-expressions is the same through out-highest precedence first. In an expression, if
the order of evaluation of operator is not coming in the picture, the expression is
independently evaluated.
The handling of exceptions like overflow, divide by zero check, and others in an
expression is not defined by the language.

3.1 Primary Expressions
Primary expressions are identifiers, numbers and strings.

 primary-expression
 identifier
 constant

An identifier is a primary expression provided that it has been suitably declared
with a specified type. An identifier basically refers a variable name or a function
name (As discussed in 1.3).
A constant is a primary expression. Its can be either of the types discussed in 1.5.
It should be noted that parenthesized expressions (like (expression)) are not
primary expressions and are not supported by our language.

3.2 Postfix Expressions
The operators in postfix expressions group left to right.

postfix-expression[expression]
postfix-expression(argument-expression-list-optional)

3.2.1 Indexed Interpretation
A postfix expression followed by an expression in square brackets is a
postfix expression denoting a subscript that specifies a range of columns.
Thus, if the type of an expression or sub-expression is “myrow [5]” then it
is interpreted as the 5th column of the row named ‘myrow’. Similarly, if
an expression is written like “myrow of integer1, integer2”, for any row
‘myrow’, then the value of the expression is interpreted as a ranged index,

i.e. for myrow- column ranging from integer1 to integer2, and the type of
the expression is same as defined by the user.

For e.g. myrow[4-6] *= 3 means the values of column number 4, 5 and 6
in ‘myrow’ will be multiplied by 3.

3.2.2 Function Calls
A function call is a postfix expression, followed by parentheses,
containing possibly empty, comma separated list of assignment
expressions, which constitutes to the arguments to the function.

num:a = my function ();
The term argument is given for an expression passed by a function call
while the term parameter is used for an input object received by the
function definition.
For instance, my function(num:x,num:y):num is a function declaration
with x and y as arguments and my function(4,6) has 4 and 6 as parameters
to this function.

3.3 Expressions with Arithmetic Operators
Multiplicative and additive operators * , /,+,- are grouped left to right. The
expressions on both side of operators should evaluate to a number data type.
Airthmetic operators are not defined for string data types.

arithmetic-expression:
arithmetic -expression * arithmetic -expression
arithmetic -expression / arithmetic –expression
arithmetic-expression+arithmetic-expression
arithmetic -expression - arithmetic –expression
expresison

3.4 Expressions with Relational Operators
The relational operators group left-to-right, but a<b<c is not supported by our
language. The result generated will be 0 if the expression is false and 1 if the
expression is true. The == (equal to) and the != (not equal to) operators are
analogous to the relational operators except for their lower precedence and are
used to compare the expressions on either side of the operator. The equality
operator follows the same rule- if the expression is true then it will return value 1,
and if it is false, it would return value 0.
relational-expression:
relational-expression<relational-expression
relational-expression>relational-expression
relational-expression<=relational-expression
relational-expression >= relational-expression

relational-expression==relational-expression
relational-expression != relational-expression
expresison
The operators used here hold usual meanings and are supported to compare two
expressions.

3.5 Expressions with Logical And Operator
logical-AND-expression:
logical-AND-expression && expression
The && operator groups left to right. It returns 1 if both its operands compare
unequal to zero, 0 otherwise. && guarantees left-to-right evaluation: the first
operand is evaluated, including all side effects; if it is equal to 0, the value of the
expression is 0. Otherwise, the right operand is evaluated, and if it is equal to 0,
the expression's value is 0, otherwise 1.
The operands need to have same arithmetic type.

3.6 Expressions with Logical Or Operator
logical-OR-expression:
logical-OR-expression || expression
The ‘||’ operator groups left-to-right. It returns 1 if either of its operands compare
unequal to zero, and 0 otherwise. Unlike ‘||’ follows left-to-right evaluation: the
first operand is evaluated, including all side effects; if it is unequal to 0, the value
of the expression is 1. Otherwise, the right operand is evaluated, and if it is
unequal to 0, the expression's value is 1, otherwise 0.
The operands need to have same arithmetic type.

3.7 Expressions with Assignment operators
There are several assignment operators; all group right-to-left.
assignment-expression:
unary-expression assignment-operator assignment-expression
assignment-operator:
= , *= , /= , += , -=

All require an lvalue as left operand, and the lvalue must be modifiable: it must
not have an incomplete type, or must not be a function. The type of an
assignment expression is that of its left operand, and the value is the value stored
in the left operand after the assignment has taken place.
In the simple assignment with =, the value of the expression replaces that of the
object referred to by the lvalue. Both operands must have the same arithmetic
type.

4. Statements
Statements can be one of the many kinds of statements described int eh sections
below:

Statement:
normalStmnt

blockStmnt
condStmnt
iterStmnt
returnStmnt
funcDeclStmnt

4.1 Normal Statement
These statements include expressions statements and declaration statements
ending with a semicolon ; . These include declarative statements and
expression statements.
normalStmnt:

declarativeStmnt
expressionStmnt

4.2 Block Statement
These include one or more normal statements that are nested within the curly
braces.

blockStmnt: { statement_list }

4.3 Conditional statements
The basic conditional statement consists of the if keyword, followed by an
expression that evaluates 1 or 0, and statements that have to be enclosed
within the open and close parenthesis even if it is just one statement
Abstract example:
if expression {
Statement(s)
}
Else {
Statement(s)
}
condStmnt:

 if (expression) statement
 if (expression) statement else{ statement }

4.4 return statement
return exits out of a scope (block of code) and optionally returns a value and
may
only be defined inside the scope of a function definition. Abstract example:
return <expression>. The return statement in a function is optional.

returnStmnt:
return expression

4.5 Iteration Statements
loop(expression){
Block of statement(s)
}
This is our basic looping mechanism. The block statements will be executed as
long as the expression evaluates to 1

<row/column variable>[<start index>-<end-index>]
This will perform the following block of statement(s) for the range of columns
in the row or range of rows in a column. This can also be used with operators
as defined in expressions . Examples:
To perform a block of statement(s) for a range of rows in myCol
myCol[3-6] {
Block of Statement(s)
}
To add 2 to all columnd of myRow:
Myrow[2-5] += 2;

iterStmnt:
identifier [constant – constant] block_statement

 loop (expression) block_statement

4.6 Function Declaration
A function declaration declares a block of code that can be executed by a
function call. A function declaration can also be made to define a block of
statements to be performed on all columns of a row or on all rows of a passed
column.
To define a function, start with the function keyword and follow it with an
identifier to serve as the function’s name, followed by an optional list of
function arguments separated by a comma, each having a type declaration
prefix.
Abstract example:
function <identifier> (list of <type:identifier>) <return type:return dientifier>
{
statement(s);
}
A more concrete example:
function product(num:I, num:j) num:k
{
k = I * j;
}
function sqr(row:myRow) row:resultRow
{
resultrow = myRow * myRow;

}
 funcDeclStmnt:

function identifier (argument_list) declaration_specifier

5. Library Support
The language will provide one library for some common statistical functions. This will be
the “statistics” library which will support the statistical functions like finding mean,
median, mode and variance. The library functions would be implemented in TabPro.

6. Grammar rules

constant:
number
string

declaration_specifier:
numtype identifier
stringType identifier

expression:
primary-expression
postfix-expression
arithmetic-expression:
relational-expression:
logical-AND-expression:
assignment-expression

primary-expression
 identifier
 constant

postfix-expression
postfix-expression[expression]
postfix-expression(argument-expression-list-optional)

arithmetic-expression:
arithmetic -expression * arithmetic -expression
arithmetic -expression / arithmetic –expression
arithmetic-expression + arithmetic-expression
arithmetic -expression - arithmetic –expression
expresison

relational-expression:
relational-expression < relational-expression
relational-expression > relational-expression
relational-expression <= relational-expression

relational-expression >= relational-expression
relational-expression == relational-expression
relational-expression != relational-expression
expresison

logical-AND-expression:
logical-AND-expression && expression
logical-AND-expression && expression

assignment-expression:
identifier = assignment-expression
identifier[constant] = assignment-expression

 expression

statement:
normalStmnt
blockStmnt
condStmnt
iterStmnt
returnStmnt
funcDeclStmnt

normalStmnt:
declarativeStmnt
expressionStmnt

blockStmnt: { statement_list }

 if (expression) statement
 if (expression) statement else{ statement }

iterStmnt:
identifier [constant - constant] block_statement

 loop (expression) block_statement

condStmnt:
 if (expression) statement
 if (expression) statement else{ statement }

returnStmnt:
return expression

funcDeclStmnt:
function identifier (argument_list) declaration_specifier

argument_list:
argument_list , arg

arg :
declaration_specifier identifier

7. Lexer Tokens
{

}
let digit = ['0'-'9']
let comma = [',']
let semicolon = [';']
let colon = [':']
let dot = ['.']
let exp = ['e''E']
let signedint = ['-''+']?['0'-'9']
let alphanum = ['a'-'z' 'A'-'Z' '0'-'9']
let alpha = ['a'-'z' 'A'-'Z']
let numType = "num"
let strType = "str"
let rowType = "row"
let colType = "col"
let mathOp = "+" | "-" | "*" | "/"
let assign = '='
let compOperator = "<" | ">" | "=="
let commentStart = '?'
let newLine = '\n' | '\r'
let if = "if"
let else = "else"
let leftParan = '('
let rightParan = ')'
let leftSqParan = '['
let rightSqParan = ']'
let blockBegin = '{'
let blockEnd = '}'
let loop = "loop"
let function = "function"
let size = "size"
let currIndex = "currIndex"
let col_heading = "col_heading"
let row_heading = "row_heading"
let row_limit = "row_limit"
let col_limit = "col_limit"
let col_sort_index = "col_sort_index"
let row_filter_condition = "row_filter_condition"
let return = "return"

rule token =
parse | [' ' '\t' '\r' '\n'] { token lexbuf }
 | (signedint)+ (dot digit*)? as n { NUMBER(float_of_string n) }

 | numType colon {NUMTYPE}
 | strType colon {STRTYPE}
 | rowType colon {ROWTYPE}
 | colType colon {COLTYPE}
 | mathOp { MATHOPERATOR }
 | assign {ASSIGN}
 | compOperator as op{COMPARATOR(op)}

| commentStart _ newLine {COMMENT}
| size {SIZE}
| currIndex {CURRINDEX}
| if {IF}
| else {ELSE}
| leftParan {LEFTPARAN}
| rightParan {RIGHTPARAN}
| leftSqParan {LEFTSQPARAN}
| rightSqParan {LEFTPARAN}
| blockBegin {BLOCKBEGIN}
| blockEnd {BLOCKEND}
| loop {LOOP}
| function {FUNCTION}
| col_heading {COL_HEADING}
| row_heading {ROW_HEADING}
| row_limit {ROW_LIMIT}
| col_limit {COL_LIMIT}
| row_filter_condition {ROW_FILTER_CONDITION}
| col_sort_index {COL_SORT_INDEX}
| return {RETURN}

 | alpha (alphanum)* as name {IDENTIFIER(name)}
 | _ { ERROR}

| eof { raise End_of_file }

{

}

