

COMS W4115: Programming Languages and Translators

MATLIP: MATLAB-Like Language for Image Processing

Language Reference Manual

Pin-Chin Huang (ph2249@columbia.edu)
Shariar Zaber Kazi (szk2103@columbia.edu)

Shih-Hao Liao (sl2937@columbia.edu)
PoHsu Yeh (py2157@columbia.edu)

October 22, 2008

1. INTRODUCTION
 Today, there are numerous image processing applications available such as
Adobe Photoshop, Picture-it, Picassa, etc. However, these applications do not provide
any programmatic ability to process images, which is required by image processing
systems such as iris pattern recognition system. These image processing centric
systems require conversion of image colors, image rotation, blurring, sharpening,
resizing, edge detection and a lot of other processing. There are a number of
languages available which offer such programmatic image processing, such as C++,
Java, MATLAB, etc. Of these, only MATLAB provides ease of programming images
for both novice and advanced users. However, because of the high cost in purchasing
the license for MATLAB, it often deters many users in buying. Here, we propose a
simple MATLAB like language syntax for simple and easy image processing. We call
it MATLIP (Matlab Like Image Processing).
 Since, our language will provide image manipulation, we start by a simple
description of how images are represented in computers. A modern computer image,
at the point where it is presented (rendered) for human consumption, usually consists
of a rectangular array of closely spaced colored dots. Ideally, these dots are so small
and so close together that the human eye cannot distinguish them individually. This
causes them to run together and appear to represent continuous color. The individual
dots are commonly referred to as pixels, which are derived from the term picture
elements.
 The pixels are typically stored and transported in files, and are then extracted

 1

mailto:ph2249@columbia.edu
mailto:szk2103@columbia.edu
mailto:sl2937@columbia.edu
mailto:py2157@columbia.edu

from the files and displayed on a computer screen or a sheet of paper for human
consumption. There are a fairly large number of formats for storing the pixels in a file.
Different file formats have advantages and disadvantages in terms of compression,
size, reproduction quality, etc. Our language will support reading standard image file
formats such as JPEG, TIFF, BMP, GIF etc. by using our simple built-in function
imread(). The language support provides manipulation of a single pixel, or a group
of pixels, or an entire image. For the image we have a built-in type “Image”. Since,
often image processing requires a 2-D matrix which is applied over the image for
various algorithms such as convolution, edge detection etc., we also have another
built-in type “Kernel” to provide such functionalities.

2. TYPES

 int: The int data type is a 32-bit signed integer. It has a minimum value of
-2,147,483,648 and a maximum value of 2,147,483,647 (inclusive).

 double: The double data type is a double-precision 64-bit floating point. It

consists of an integer part, a decimal point, a fraction part, an e, and an
optionally signed integer exponent. Either the integer part or the fraction part
(not both) may be missing; either the decimal point or the e and the exponent
(not both) may be missing.

 float: The float data type is a single-precision 32-bit floating point. It consists

of an integer part, a decimal point, a fraction part, an e, and an optionally signed
integer exponent. Either the integer part or the fraction part (not both) may be
missing; either the decimal point or the e and the exponent (not both) may be
missing.

 boolean: The boolean data type has only two possible values: true and

false.

 String: The String data type represents a string of characters. It is internally
implemented as an instance of the String class, but is exposed as a primitive
data type in MATLIP. Strings are constant; their values cannot be changed
after they are created.

 Image: The Image data type represents an image. It is internally implemented as

an instance of the BufferedImage class, but is exposed as a primitive data type

 2

in MATLIP. Individual pixels are accessible using bracket annotation,
ID[x,y,”R”/”G”/”B”], to access a specific color channel of the pixel
represented at the coordinate (x, y), or ID[x,y], to access all three channels as a
whole in the form of an integer.

 Kernel: The Kernel data type represents a kernel for image processing. It is

internally implemented as an instance of the Kernel class, which is a matrix, but
is exposed as a primitive data type in MATLIP.

3. LEXICAL CONVENTIONS

3.1 Reserved Keywords

The following is a list of reserved keywords in MATLIP. They may not be used for
any other purpose.

if for true double Kernel

elseif while false float String

else break function boolean

end continue int Image

3.2 Identifiers

An identifier is a sequence of alphanumeric characters and underscores. Identifiers
must start with a letter, and are case sensitive.

3.3 Special Characters

[] Brackets are used to form kernels.

For example, [0.0, -1.0, 0.0; -1.0, 5.0, -1.0; 0.0, -1.0, 0.0]
defines a kernel for image sharpening.
Moreover, brackets are also used to enclose subscripts of images.

() Parentheses are used to indicate precedence in arithmetic expressions. They are
also used to enclose arguments of functions.

= Used in assignment statements.
, Comma. Used to separate image subscripts, function arguments, and elements

of a row in a kernel.
. Decimal point. 314/100, 3.14 and .314e1 all represent the same value.
: Colon. Used to create subscript arrays, and specify for iterations.

For example, if A is a 100x100 image, one can “scissor-cut” a subset of the
image and assign it to B using B = A[25:50; 25:50];. For-iterations can be

 3

specified by, for example, for i=1:240.
; Semicolon. Used inside brackets to end rows for a kernel. Used after an

expression to form a statement and to separate statements.
% Percent. The percent symbol denotes a comment; it indicates a logical end of

line. Any following text is ignored

4. EXPRESSIONS

An expression can be divided into five types, primary expression, unary expression,
arithmetic expression, logical expression and relational expression.

4.1 Primary Expressions

Primary expressions can be an Identifier, Boolean value (true, false), an expression
contained in parenthesis, an image, or an image element such as
Img[i, j, “R”]

which evaluates to an int.

4.2 Unary Expressions

A unary expression has the following form:

unary_operator expression

where unary_operator can only be the minus sign ‘-’ in MATLIP, and
expression can only be of type int, float, or double.

The unary expression composed of the operator, ‘-‘, followed by any other primary
expression such as boolean, Image, or Kernel, is illegal.

4.3 Arithmetic Expressions

MATLIP has two main types of arithmetic operations. The first type applies to
numerical values having the type of int, float, or double. The behavior of this
type of operations is the same as that of C/C++ and Java. Take a + b for example. If
both a and b are integers, the expression will also evaluate to an integer, If
integers and doubles are mixed in an arithmetic expression, the result of the
expression will be promoted to a double.

 4

The order of precedence for this type of operations, from highest to lowest, is:

 * and /
 + and -

The second type of arithmetic operations may apply to images or kernels. Both
operands can be images, or the expression can also be mixed with an image and a
scalar value. The following summarizes the effects of this type of arithmetic
operations, in a decreasing order of precedence:

@ Convolution. It takes an image on the left and a kernel on the right,

calculates a sum of products over an image using the kernel, and stores the
results in a new image and returns it.

*/ Multiplication/Division between two images; in this case, each pixel in the
first image is multiplied/divided by the corresponding pixel in the second
image, and the results are stored in the new image returned by the
operation.

 Multiplication/Division between an image and a scalar value; in this case,
individual pixel entries are multiplied/divided by the scalar value, and the
results are stored in the new image returned by the operation. The scalar
value can be an int or float or double, but it will always be implicitly
converted to int by MATLIP.

+- Addition/Subtraction between two images; in this case, each pixel in the
second image is added/subtracted to/from the corresponding pixel in the
first image, and the results are stored in the new image returned by the
operation.

 Addition/Subtraction between an image and a scalar value; in this case, the
scalar value is added/subtracted to/from individual pixel entries, and the
results are stored in the new image returned by the operation. The scalar
value can be an int or float or double, but it will always be implicitly
converted to int by MATLIP.

4.4 Relational Expressions

A relational expression has the following form:

expression relational_operator expression

where expression can be of type int, float, or double, and
relational_operator can be one of the following, ‘>’, ‘<’, ‘>=’, ‘<=’, ‘==’, or
‘~=’, which represent “greater than”,” less than”, “equal or greater than”, “equal or

 5

greater than”, “not equal” respectively in our language. Let A and B be two integer or
double expressions. The logical expression, A>B, return true if A is greater than B else
it will return false; The logical expression, A<B, return true if A is smaller than B else
it will return false; The logical expression, A>=B, return true if A is equal or greater
than B else it will return false; The logical expression, A<=B, return true if A is equal
or smaller than B else it will return false; The logical expression, A==B, return true if
A is equal to B else it will return false; The logical expression, A~=B, return true if A
is not equal to B else it will return false.

The following summarizes relational operators:

> A>B returns true if A is greater than B else it will return false
< A<B returns true if A is smaller than B else it will return false
>= A>=B returns true if A is equal or greater than B else it will return false
<= A<=B returns true if A is equal or smaller than B else it will return false
== A==B returns true if A is equal to B else it will return false
~= A~=B returns true if A is not equal to B else it will return false

4.5 Logical Expressions

A logical expression has the following form:

expression logical_operator expression

where expression can only be of type boolean, and logical_operator can be
one of the following, ‘&’, ‘|’, and ‘~’, which represent “and”, “or”, “not” respectively
in our language. Let A and B be two Boolean expressions. The logical expression,
A&B, will return true if both A and B are evaluated to be true, else it will return
false; The logical expression, A|B, will return true if A or B is evaluated to be
true, else it will return false; The logical expression, ~A, will return true if A is
evaluated to be false, else it will return false.

5. STATEMENTS

5.1 Expression Statements

A statement can be formed by terminating an expression with a semicolon ';'.
Expression statements have the following form:

 6

expression;

5.2 Group of Statements (Block)

A block is also a type of statement consisting of several statements. For example, a
group of statements can be nested in the body of if-statement:

if expression
 statement+
end

5.3 Variable Declaration

Variable declaration has the following form:

TYPE identifier;

In MATLIP, a variable should always be declared first before it can be used. A
variable without declaration should throw a syntax error. Also, a variable name cannot
be declared twice. It is also illegal to declare multiple variables in the same line. For
example,

int x;

Image A;

int x, y, z; % This is illegal

5.4 Assignments

identifier = expression;

Our language only supports the assignment of an identifier of integer/double type. For
example:

int x = 1;
int y = 1;
String z = ”R”;
Image A;
A[x, y, z] = 100;

The element of an Image is of integer type where x and y specify the coordinate of the
pixel in the image, and z specifies the base color channel which we want to assign the

 7

value to. The color channel can only be either “R”, “G”, or “B”. In the example, we
are assigning the “Red” channel of the pixel having the coordinate of (1, 1) to 100,
and MATLIP will transform the new value to a single RGB integer type and then
store it in the (1, 1) pixel.

The user can also assign a pixel value without specifying the color channel. In this
case, the RGB value is assigned as a whole without transformation:

Image A;

% RGB value of pixel at (1, 1) is set to 100
A[1, 1] = 100;

The assignment between two images will copy the image on the right to the image on
the left. Note that this is not just a reference copy; the image on the left will receive a
new copy of the same image, and any subsequent changes to the new image will not
affect the original. The following example copies one image to another:

Image A;
Image B;

A = imread(“lotus.jpg”);
% B receives a new copy of image A
B = A;

5.5 Conditional

A conditional statement can have the following form:

if expression

 statements

end

In this case, if the expression is evaluated to be true, then the program will execute the
statements. Otherwise, the program will skip the statements and execute the line right
after the end keyword.

Alternatively, a conditional statement can also have the following form:

if expression1

 statements1

elseif expression2

 8

 statements2

else

 statements3

end

In the example, there is only one elseif statement. Generally, the user may use as
many elseif statements as necessary following the if-statement and before the
else-statement.

Using the example above, if expression1 is evaluated to be true, statements1
will be executed. If expression1 is evaluated to be false while expression2 is
evaluated to be false, then statements2 will be executed. If neither expression1
nor expression2 is true, then statements3 will be executed. Note that if both
expression1 and expression2 are evaluated to be true, then statements1 will
be executed while statements2 will be skipped.

5.6 For Loops

A for-loop statement has the following form:

for variable = expression

 statements

end

In this case, statements in the body will be executed repeatedly while the
variable is incremented each time, until the value of the variable falls out of the
range of the expression. It is also possible to nest a for-loop inside another for-loop.
For example,

for i=1:240
 for j=1:320
 zeros[i,j]=i;
 end
end

5.7 While Loops

A while-loop has the following form:

while expression

 9

 statements
end

Here, statements in the body will be executed repeatedly until the expression is
evaluated to be false.

5.8 Break

“break;” statement terminates the innermost loop; can only be used in for-loops and
while-loops.

5.9 Continue

“continue;” statement skips all statements following it and returns to the beginning
of the innermost loop; can only be used in for-loops and while-loops.

5.10 Function Calls

Function calls have the following form:

result = function_name(arguments);

or if there is no return value, simply

function_name(arguments);

where result is an identifier bound to a variable that is used to store the return value,
function_name is an identifier bound to the function name, and arguments is a
list of zero or more expressions separated by commas (,).

6. FUNCTION DEFINITIONS

Function definitions have the following form:

function return_value = function_name(argument_list)

 statements

end

where function and end are keywords, function_name is an identifier,

 10

return_value can have the form (void | TYPE ID) which describes the type of
the return value and where the value is stored, and argument_list is a list of zero
or more arguments having the form of (TYPE ID) separated by commas (,).

For example, the following function calculates the average of two doubles:

function double answer = avg(double x, double y)

double sum = x + y;
answer = sum/2;

end

Here, the function name is avg; answer is the return value; and x and y are the
arguments taken by the function.

7. SCOPE & NAMES

7.1 Static Scoping

MATLIP uses static scoping. That is, the scope of a variable is a function of the
program text and is unrelated to the runtime call stack. In MATLIP, the scope of a
variable is the most immediately enclosing block, excluding any enclosed blocks
where the variable has been re-declared.

7.2 Global vs. Local

Global variable: The variables declared outside of the function are global variables,
which will be applied in the whole program except the function where there is a local
variable with the same name as that of the global variable. Global variable will exist
until the program terminates.

Local variable: The variables declared inside of the function are local variables,
which will exist and be applied only inside that function.

Scope conflicts: If there is a global variable whose name is the same with that of the
local variable, then the value of the local variable will be applied inside the function
while the value of the global variable will be applied in all the other part of the
program except that function.

For example:

 11

int i = 0; % global variable i with the value 0

function f(int i)
 i++; % local variable with the value of 3 when f(2) is called
end; %end of scope of local variable i

f(2);
i = i + 1; % global variable i unchanged, now with a value 1

7.3 Forward Declarations

MATLIP requires forward declarations for variables and functions. That is, a variable
needs to be declared before it can be referenced, and any function needs to be defined
before it can be invoked.

For example, MATLIP generally prohibits the following and will throw an error:

double a;
double b;
double mean;

mean = func(a, b);

function double answer = func(double x, double y)

...
end

In this case, the function func() needs to be defined before it is called.

7.4 Arithmetic Operator Overloading

Arithmetic operators (+, -, *, /) are overloaded in MATLIP. They can be used in
expressions where integers and floats/doubles are mixed, and where an image/kernel
is mixed with a scalar value, as described in Section 4.3: Arithmetic Expressions.

The convolution operator (@), however, is not overloaded. It takes exactly an image
on the left and a kernel on the right, nothing else.

7.5 Function Name Overloading

MATLIP does not allow function name overloading. That is, each function should
have a unique function name, or MATLIP compiler will complain. This helps make a
MATLIP program more readable and easier to understand, which are two important
goals of the language.

 12

7.6 Namespaces

MATLIP has only one namespace. Functions, variables, types, and record names, all
share the same namespace. For example, a variable foo and a function foo() cannot
coexist in a MATLIP program. This helps make a MATLIP program more readable
and easier to understand, which are two important goals of the language.

 13

