
Uniform General Algorithmic (UNIGA)
Financial Trading Language

Leon Wu, Jian Pan, Jiahua Ni, Yu Song, Yang Sha

Columbia University
May 7, 2007

Outline of Presentation

Overview of language
Language tutorial and examples
Architectural design and implementation
Summary and lessons learned

Overview of Language

UNIGA: high level scripting language
for financial trading.
Language Features:

Easy-to-use: simple syntax
Portable: platform-independent
Versatile: built-in functions
Powerful: complete trading workflow
Extendable: custom functions

Outline of Presentation

Overview of language
Language tutorial and examples
Architectural design and implementation
Summary and lessons learned

Language Tutorial and
Examples

“Hello World”
Variables
Loops
“if” statement
User defined functions
Send an order
Check the price
Check the portfolio

“Hello world”

$ java Main market.uniga

main(){

print "the market price for Microsoft is $";

double r=market "MSFT";

println r;

}

the market price for Microsoft is $30.56

Variables

Data type: “double”
Strings are primitive
Dates are translated via “date[]”

main(){

double d1=date[20070404];

double d2=date[20070330];

print "The number of days between is:";

println d1-d2;

}

The number of days between is:5.0

Loops

“while” and “for”

main(){

double r=0;

while(r<2){

println r;

r=r+1;

}

for(r=0;r<2;r=r+1){ println r; }

}

“if” statement

main(){
double a=1, b=2;
if a<b then{

return 1;
}
else {

return 0;
}

}

User defined functions

User can define their own functions
Pass by value

double increase(double r){

return r+1;

}

void display(double r){

println r;

return;

}

main(){

display(increase(3));

}

Send an order

“buy” / “sell”

main(){

buy "MSFT" 1000 0 0;

sell "INTC" 535 22.53 22.53;

}

Symbol ID number of shares stop price limit price

Send an order (cont’d)

An order may be filled, or discarded

Send an order (cont’d)

Portfolio is also changed

Check the price

“high”, “low”, “open”, “close”, “volume”,
“market”

main(){

double op=open "MSFT" {1};

double cl=close "MSFT" {2};

double cu = market "MSFT";

if op>cl then

println cu;

}

Check the portfolio

“sum”– the sum of portfolio
“pl”– the profit loss
“holdings” – list the current positions

main(){

double pfLoss=pl();

double assetSum = sum();

holdings;

}

Outline of Presentation

Overview of language
Language tutorial and examples
Architectural design and implementation
Summary and lessons learned

Architectural Design and
Implementation

Data Structure Diagram

Trading Process and
Data Flow

buy "MSFT" 1000 0 30.50;

Orders(int type, String stockID, double amount, double stopPrice, double limitPrice)

if stopPrice==0 &&
limitPrice==0
it is Market Order

if stopPrice>0 &&
limitPrice==0
it is Stop Order

if stopPrice==0 &&
limitPrice>0
it is Limit Order

if stopPrice>0 &&
limitPrice>0
it is Stop Limit Order

stopPrice > ? limitPrice > ?

low<stopPrice<high low<limitPrice<high low<limitPrice<high
low<stopPrice<high

filledStatus = 1
filledPrice = marketPrice
filledQuantity = amount

filledStatus = 1
filledPrice = stopPrice
filledQuantity = amount

filledStatus = 1
filledPrice = marketPrice
filledQuantity = amount

filledStatus = 1
filledPrice = limitPrice or stopPrice
filledQuantity = amount

Update portfolio (PORTFOLIO.xml): 1> increase/decrease cash; 2> add/update stock holding

Update order (ORDERS.xml): add the order entry

End

End

Yes Yes
Yes

No No No

File System Structure

/
ParserLexer.g
Walker.g
Makefile
Main.java

—Utilities Functions—
ActivationRecord.java
CommonASTWithLines.java
Date.java
ErrorException.java
FuncScope.java
Scope.java

/data
ORDERS.xml
PORTFOLIO.xml

/data/market
ACN.xml
ADBE.xml
CSCO.xml
DELL.xml
EDS.xml
HPQ.xml
IBM.xml
INTC.xml

/test
add.uniga
assign.uniga
average.uniga
builtinfunc.uniga
buy.uniga
data.uniga
division.uniga

......
stategy_1.uniga
while.uniga
whileandopen.uniga
whileandsell.uniga
(total 37 *.uniga files)

/
—Built-in Functions—
Stock.java
GetRealData.java
Orders.java
Portfolio.java

—Automated Testing—
uniga.pl
unit_test.pm
bad_test_result.log
sound_test_result.log

Lexer

Defining the set of most basic tokens
to be recognized by UNIGA language.
Ex.

+, -, *, /, (), [],{ }, ==, <, >, &, “,”

Parser

analyzes a sequence of tokens to
determine its grammatical structure with
respect to UNIGA grammar
Left associative
Data Type: double
Statements: for, while, if-else, buy, sell
Expression: open, close, high, low, volume,
date
Declaration: variable, function

Walker

Walker parses the AST and associates
actions with each syntax
Scope definition
Operation definition

Testing

Unit Testing, Regression Testing and
Automated Testing
Unit testing for every language construct to
eliminate error at early stage
Prepare a set of test cases, and pass all of
them before uploading codes to SVN
Deploy regression testing when a milestone
is met

Outline of Presentation

Overview of language
Language tutorial and examples
Architectural design and implementation
Summary and lessons learned

Summary and lessons learned

Team work and effective project management
Set up development milestones
Ensure on-time deliverables by regular meetings at the
start of every week, constant email contacts during the
week
Ensure team members’ understanding of weekly goal
before workload breakdown.
Start with a small core objective and apply incremental
approach in development.

SVN (Subversion) on CUNIX
Source control a must for large scale team development
effort

Incremental Development Approach

Select a good application scope for the
language
Build a small core in the start, anticipate
more time spent than expected at this stage
Modularized development, separate the
project into front-end and back-end
Regression testing implemented to
guarantee new features won’t break old
features

Be Ready for Disasters Recovery

You never know a single operation can
cause catastrophe.
We lost some files due to a careless
operation
Periodically back up

Thank You!

UNIGA Team
Columbia University
May 7, 2007

